等比数列概念及性质PPT课件
合集下载
等比数列的概念及通项公式-上课PPT课件
![等比数列的概念及通项公式-上课PPT课件](https://img.taocdn.com/s3/m/8599a7e987c24028915fc3f5.png)
20类比等差数列这样的数列可以叫做等比数一般地如果一个数列从第二项起每一项与它前一项的比等于同一个常数这个数列就叫做等比数列这个常数就叫做等比数列的公比公比通常用字母q表示q0
等比数列
-
1
引例:
❖ ① 如下图是某种细胞分裂的模型:
细胞分裂个数可以组成下面的数列:
1 2 4 8 16 …
-
2
引例:
a1 q a1 q
2 3
12 18
-
a312,a14118,
an 1 an
q
例1. 一个等比数列的第3项和第4项分别是12和
18,求它的第1项和第2项.
解 :用{an} 表示题中公比为q的等比数列,由已知条件,有
16 与 8 .
ana1•qn1
3
解得 a1a4 a 2 a 3
因此, q
3 2
不是
等比数列中不 能存在为0的
项。
-
7
二、等比数列的通项公式:a n 1
an
q
思考:如何用a1和q表示第n项an?
❖ 方法:叠加法
等 a3 a2 d
差 数 列
a4 a3 d
ana1(n1)d
……
类比
+)an a1qn1
累乘法 a 3 q
等 比
a2
a4 q a3
数 列
an q n1
…a1 …
×) a2a1d
庄子曰:“一尺之棰,日取其半,万世不竭.”
意思:“一尺长的木
棒,每日取其一半,
1 1 1 1 永远也取不完” 。 1,,,, ,… 如果将“一尺之棰”视为单位“1”,
2 4 8 16
则每日剩下的部分依次为:
等比数列
-
1
引例:
❖ ① 如下图是某种细胞分裂的模型:
细胞分裂个数可以组成下面的数列:
1 2 4 8 16 …
-
2
引例:
a1 q a1 q
2 3
12 18
-
a312,a14118,
an 1 an
q
例1. 一个等比数列的第3项和第4项分别是12和
18,求它的第1项和第2项.
解 :用{an} 表示题中公比为q的等比数列,由已知条件,有
16 与 8 .
ana1•qn1
3
解得 a1a4 a 2 a 3
因此, q
3 2
不是
等比数列中不 能存在为0的
项。
-
7
二、等比数列的通项公式:a n 1
an
q
思考:如何用a1和q表示第n项an?
❖ 方法:叠加法
等 a3 a2 d
差 数 列
a4 a3 d
ana1(n1)d
……
类比
+)an a1qn1
累乘法 a 3 q
等 比
a2
a4 q a3
数 列
an q n1
…a1 …
×) a2a1d
庄子曰:“一尺之棰,日取其半,万世不竭.”
意思:“一尺长的木
棒,每日取其一半,
1 1 1 1 永远也取不完” 。 1,,,, ,… 如果将“一尺之棰”视为单位“1”,
2 4 8 16
则每日剩下的部分依次为:
《等比数列性质》课件
![《等比数列性质》课件](https://img.taocdn.com/s3/m/1017a063580102020740be1e650e52ea5418ce47.png)
等比数列的性质
等比数列的性质取决于公比的正负情况。
公比为正的情况
1 单调性
2
当公比大于1时,数列呈现递增趋势;当 公比小于1但大于0时,数列呈现递减趋势。
公比为负的情况
极限值
当公比大于1时,数列趋于正无穷;当公 比小于1但大于0时,数列趋于0。Biblioteka 1 单调性2 极限值
无论公比是多少,等比数列都不会出现单 调性。
无论公比是多少,等比数列都不会收敛于 一个确定的极限值。
等比数列的无穷级数
等比数列的无穷级数指的是将数列的所有项相加,即求和。 如果公比的绝对值小于1,那么等比数列的无穷级数将收敛,其和可以通过以下公式计算: S∞ = a1 / (1 - r)
等比数列在几何意义上的应用
等比数列在图形中的应用
等比数列可以用来生成一些有趣的图形,如分形。分形是一种具有自相似性质的图形,无论放大或缩 小,形状都保持一致。
《等比数列性质》PPT课件
什么是等比数列
等比数列是一种数列,其中每一项与前一项的比值保持不变。它可以用以下 的通项公式来表示: an = a1 × r(n-1) 其中,a1表示等比数列的首项,r表示公比,而an表示第n项。
等比数列的通项公式与前n项和公式
等比数列的通项公式允许我们计算数列中的任何一项。而前n项和公式则可以帮助我们计算数列前n项 的和。 通项公式:an = a1 × r(n-1) 前n项和公式:Sn = a1 × (1 - rn) / (1 - r)
黄金分割的生成与应用
黄金分割是一种与等比数列相关的数学概念,在建筑、艺术、自然界等领域中有广泛的应用。它具有 特殊的美学意义。
相关练习题目
等比数列的计算 填空题 选择题 解析题
《等比数列的概念》课件
![《等比数列的概念》课件](https://img.taocdn.com/s3/m/80d53b6d4a35eefdc8d376eeaeaad1f34693111c.png)
03
等比数列的应用
等比数列在数学中的应用
解题技巧
等比数列是数学中常见的数列类型, 它在解决数学问题时具有广泛的应用 。例如,在求解一些复杂数学问题时 ,可以利用等比数列的性质简化计算 过程。
公式推导
等比数列的通项公式和求和公式在数 学中经常被用来推导其他公式或解决 一些复杂的数学问题。这些公式是等 比数列应用的基石,能够提供解决问 题的有效途径。
等比数列的公比
总结词
表示等比数列中任意两项的比值
详细描述
等比数列的公比是任意两项的比值,通常用字母 q 表示。公比是等比数列中相 隔一项的两个数的比值,即 a_n/a_(n-1)。公比反映了等比数列中每一项与前一 项的比值。
等比数列的项数与项的关系
总结词
表示等比数列中项数与项的关系
详细描述
在等比数列中,任意一项的值可以用首项、公比和项数来表 示。例如,第 n 项的值可以用 a_n=a_1×q^(n-1) 来表示, 其中 a_1 是首项,q 是公比,n 是项数。这个公式揭示了等 比数列中项数与项的关系。
《等比数列的概念》ppt课件
目录 Contents
• 等比数列的定义 • 等比数列的性质 • 等比数列的应用 • 练习题与答案
01
等比数列的定义
等比数列的文字定义
总结词:简洁明了
详细描述:等比数列是一种特殊的数列,其中任意两个相邻项之间的比值都相等 。
等比数列的数学符号定义
总结词:专业严谨
详细描述:等比数列通常表示为 a_n,其中 a 是首项,r 是公比,n 是项数。其数学定义是 a_n = a * r^(n-1),其中 r ≠ 0。
等比数列与等差数列的区别
总结词:对比分析
等比数列课件ppt
![等比数列课件ppt](https://img.taocdn.com/s3/m/9dded24517fc700abb68a98271fe910ef02dae7d.png)
02
等比数列的通项公式
等比数列的通项公式推导
01
02
03
定义等比数列
等比数列是一个序列,其 中任意两个相邻项的比值 都相等。
推导通项公式
假设等比数列的首项为 $a_1$,公比为$r$,则第 $n$项$a_n$的通项公式 为$a_n = a_1 times r^{(n-1)}$。
证明通项公式
通过数学归纳法或迭代法 证明通项公式的正确性。
等比数列课件
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
等比数列的定义与性质
等比数列的定义
总结词
等比数列是一种特殊的数列,其 中任意两个相邻项之间的比值都 相等。
详细描述
等比数列中,任意两个相邻项的 商是常数,这个常数被称为公比 。在等比数列中,每一项都是前 一项与公比的乘积。
举例说明
通过具体的例子来解释等比数列求和公式的推导过程。
等比数列求和公式的应用
解决实际问题
等比数列求和公式在解决实际问题中有着广泛的应用,如金融、工程、物理等 领域。
举例说明
通过具体的例子来展示等比数列求和公式的应用。
等比数列求和公式的变体
等差数列与等比数列的关系
01
等差数列和等比数列是两种不同的数列,但它们之间存在一定
01
第三组数列是等比数列,因为相 邻两项的比值都是1/2。
02
第四组数列也是等比数列,因为 相邻两项的比值都是1/2。
习题二:等比数列的通项公式
01
题目:已知等比数列的首项为 a,公比为q,求第n项的通项
公式。
02
答案与解析
等比数列公开课课件PPT
![等比数列公开课课件PPT](https://img.taocdn.com/s3/m/cde8a3fb68dc5022aaea998fcc22bcd126ff420c.png)
等比数列的应用
在数学中的应用
数学建模
等比数列是数学建模中常用的数 学工具,可以用来描述和解决各 种数学问题,如数列求和、数列
极限等。
金融计算
等比数列在金融领域的应用广泛, 如复利计算、贷款还款等,通过等 比数列的公式可以快速准确地计算 出结果。
统计学
在统计学中,等比数列常被用来描 述和预测数据分布,如人口增长、 股票价格波动等。
使用等比数列求和公式可 以大大简化计算过程,提 高计算效率。
推广到其他数列
等比数列求和公式的应用 不仅限于等比数列,还可 以推广到其他类型的数列。
实例解析
实例一
求1,2,4,8,16,...的前n项和。
实例二
求1,3,9,27,81,...的前n项和。
实例三
求2,4,8,16,...的前n项和。
05
通过观察数列1,4,16,64,...可以发现相邻两项的比值分别
为4,4,4,...,所以公比q = 4。
答案2
03
这四项分别为1/3, 2/3, 4/3, 8/3。
答案与解析
• 解析2:已知等比数列的公比为2,前四项和为1,设第一项为a, 则第二项为2a,第三项为4a,第四项为8a。根据等比数列前n 项和公式S_n = a * (q^n - 1) / (q - 1),代入n=4, q=2, S_4=1,解得a = 1/3。因此这四项分别为1/3, 2/3, 4/3, 8/3。
等比数列公开课课件
• 引言 • 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
引言
主题简介
定义
等比数列是一种常见的数列,其中任意两个相邻 项之间的比值是常数。
在数学中的应用
数学建模
等比数列是数学建模中常用的数 学工具,可以用来描述和解决各 种数学问题,如数列求和、数列
极限等。
金融计算
等比数列在金融领域的应用广泛, 如复利计算、贷款还款等,通过等 比数列的公式可以快速准确地计算 出结果。
统计学
在统计学中,等比数列常被用来描 述和预测数据分布,如人口增长、 股票价格波动等。
使用等比数列求和公式可 以大大简化计算过程,提 高计算效率。
推广到其他数列
等比数列求和公式的应用 不仅限于等比数列,还可 以推广到其他类型的数列。
实例解析
实例一
求1,2,4,8,16,...的前n项和。
实例二
求1,3,9,27,81,...的前n项和。
实例三
求2,4,8,16,...的前n项和。
05
通过观察数列1,4,16,64,...可以发现相邻两项的比值分别
为4,4,4,...,所以公比q = 4。
答案2
03
这四项分别为1/3, 2/3, 4/3, 8/3。
答案与解析
• 解析2:已知等比数列的公比为2,前四项和为1,设第一项为a, 则第二项为2a,第三项为4a,第四项为8a。根据等比数列前n 项和公式S_n = a * (q^n - 1) / (q - 1),代入n=4, q=2, S_4=1,解得a = 1/3。因此这四项分别为1/3, 2/3, 4/3, 8/3。
等比数列公开课课件
• 引言 • 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
引言
主题简介
定义
等比数列是一种常见的数列,其中任意两个相邻 项之间的比值是常数。
《高二数学等比数列》课件
![《高二数学等比数列》课件](https://img.taocdn.com/s3/m/51c5289da48da0116c175f0e7cd184254a351b60.png)
03
02
01
04
等比数列与其他数列的联系与区别
等差数列和等比数列都是线性数列,具有特定的规律性。
定义关联
等差数列是等比数列的一种特例,当公比为1时,等比数列退化为等差数列。
增长趋势
等差数列的通项公式为$a_n=a_1+(n-1)d$,等比数列的通项公式为$a_n=a_1q^{n-1}$,其中$d$是公差,$q$是公比。
通项公式相似
项的变化
在等差数列中,任意两项之差是一个常数,而在等比数列中,任意两项之比是一个常数。
增长模式
等差数列是均匀增加或减少的,而等比数列则是以固定比例增加或减少。
通项公式差异
等差数列的通项公式仅包含常数和线性函数,而等比数列的通项公式包含指数函数。
联系实例
设有一等差数列${3, 7, 11, 15, ...}$,当公差$d=4$时,该等差数列可以看作是等比数列${3, 7, 15, 29, ...}$的特例,其中公比$q=5$。
详细描述
数列1,-2,4,-8,16是等比数列,因为其满足等比数列的性质,即公比为-2,首项为1,项数为5。
举例
总结词
01
通过具体实例说明等比数列的判定方法
详细描述
02
通过具体的实例来演示如何应用定义和性质进行等比数列的判定,包括计算比值、应用性质等步骤。
举例
03
数列3,6,12,24,48是等比数列,可以通过计算相邻两项的比值来验证(6/3=2,12/6=2,24/12=2,48/24=2),同时也可以应用等比数列的性质来验证(公比为2,首项为3,项数为5)。
06
总结与展望
等比数列的定义与性质
等比数列是一种特殊的数列,其中任意两个相邻项之间的比值是常数。
02
01
04
等比数列与其他数列的联系与区别
等差数列和等比数列都是线性数列,具有特定的规律性。
定义关联
等差数列是等比数列的一种特例,当公比为1时,等比数列退化为等差数列。
增长趋势
等差数列的通项公式为$a_n=a_1+(n-1)d$,等比数列的通项公式为$a_n=a_1q^{n-1}$,其中$d$是公差,$q$是公比。
通项公式相似
项的变化
在等差数列中,任意两项之差是一个常数,而在等比数列中,任意两项之比是一个常数。
增长模式
等差数列是均匀增加或减少的,而等比数列则是以固定比例增加或减少。
通项公式差异
等差数列的通项公式仅包含常数和线性函数,而等比数列的通项公式包含指数函数。
联系实例
设有一等差数列${3, 7, 11, 15, ...}$,当公差$d=4$时,该等差数列可以看作是等比数列${3, 7, 15, 29, ...}$的特例,其中公比$q=5$。
详细描述
数列1,-2,4,-8,16是等比数列,因为其满足等比数列的性质,即公比为-2,首项为1,项数为5。
举例
总结词
01
通过具体实例说明等比数列的判定方法
详细描述
02
通过具体的实例来演示如何应用定义和性质进行等比数列的判定,包括计算比值、应用性质等步骤。
举例
03
数列3,6,12,24,48是等比数列,可以通过计算相邻两项的比值来验证(6/3=2,12/6=2,24/12=2,48/24=2),同时也可以应用等比数列的性质来验证(公比为2,首项为3,项数为5)。
06
总结与展望
等比数列的定义与性质
等比数列是一种特殊的数列,其中任意两个相邻项之间的比值是常数。
等比数列的概念及基本运算ppt课件
![等比数列的概念及基本运算ppt课件](https://img.taocdn.com/s3/m/5674c4b54bfe04a1b0717fd5360cba1aa8118cc3.png)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
点评:(1)解决等比数列问题,关键是抓住首项 a1 和 公比 q,求解时,要注意方程思想的运用.
(2)运用等比数列求和公式时,要注意公比 q 是否为 1.当 n 较小时,直接利用前 n 项和的意义展开,不仅可避 开公比 q 的讨论,还可使求解过程简捷.
q3=-2, 所以a1=1,
或q3=-12, a1=-8.
所以 a1+a10=a1(1+q9)=-7.
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
a111--qq10=10, (2)(方法一)设公比为 q,则a111--qq20=30, 得 1+q10=3,所以 q10=2. 所以 S30=a111--qq30=a111--qq10(1+q10+q20) =10(1+2+22)=70. (方法二)因为 S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, 所以 S30-30=30-10102=40,所以 S30=70. 答案:(1)D (2)70
A.8
B.9
C.10
D.11
解:因为 a5a7=a62,a7a9=a82, 所以 a5a7+2a6a8+a7a9=a62+2a6a8+a28=(a6+a8)2=100.又 an> 0,所以 a6+a8=10.
答案:C
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2.(2015·新课标卷Ⅱ)已知等比数列{an}满足 a1=3,a1+a3
等比数列及其性质PPT教学课件
![等比数列及其性质PPT教学课件](https://img.taocdn.com/s3/m/6aa4caaccfc789eb162dc82e.png)
正确认识自尊自信,掌握正确的尺度
1、要自尊自信,不要虚荣忌妒。 2、要自尊自信,不要自卑。
请看图片并分析自卑的危害:
轮椅上的科学巨匠
正确认识自尊自信,掌握正确的尺度
1、要自尊自信,不要虚荣忌妒。 2、要自尊自信,不要自卑。 3、要自尊自信,不要自傲自负。
“虚心使人进步,骄傲使人落后”。 虚心是自尊自信的表现。
);
反之(
)。
你是班干部,威信很高,你的感受是(
);
反之(
)。
你的学习成绩很优秀,你的感受是(
);
反之(
)。
你自认为长得不好看,同学也因为你的丑嘲笑你,你的
感受是(
);同学鼓励你,你的感受是( )。
结论
青少年是否具有自尊自信,能否正确对待自尊自信, 要受到多种因素的影响。这些因素包括:父母、老师对 自己的态度和评语;在学校集体中的位置;学习成绩的 优劣;个人对自己的认识和评价能力等等。
期末复习
等比数列及其性质
一、知识要点:
1、定义:{an}为等比数列
_a_ann_1__常__数_
2.通项公式:an _______
推广:an _________
3.前n项和公式: Sn
4.重要结论: 若{an}是等比数列
5.等比数列的性质
(1) an am gqnm
qnm an
求q
am
答案:(1)必要不充分 (2)充要
二、例题选讲:
1、在等比数列 an中,
(1)若 a4 5, a8 6, 则 a2 a10 30
a6 30 (2)若 a5 2, a10 10, 则 a15 50
(3)已知 a3 a4 a5 8,求a2 a3 a4 a5 a6 32
等比数列定义及性质PPT课件
![等比数列定义及性质PPT课件](https://img.taocdn.com/s3/m/311ef3834b35eefdc9d33370.png)
a1 首项为 a 1,公比为 q 的等比数 列的通项公式:
a n= a 1 q n-1 (a 1 ≠0 且 q ≠0
n ∈N +)
练习:写出下列等比数列通项公式
(1) 2,4,8,16,… a n =2n
(2) 2,2
2 , 4, 4
2…
n 1
a n= 2 2
(3)
1,
1 2
,Байду номын сангаас
1 4
,
1 8
,
…
.
1
一、温故知新:
1、等差数列定义: an-an-1=d(d为常数) 2、等差数列单调性:d>0单调递增
d<0单调递减 d=0常数列
3、 等 差 数 列 的: 通an项 a1公 (n式 1)d
用什么方法推出的呢?
.
2
观察以上数列各有什么特点:
1, 2, 4, 8, … (1) 1.对于数列(1),从第2项起,每一项 与前一项的比都等于___2_
an q(n 2) a n 1
或 a n 1 q ( n 1) an
(2)既是等比数列又是等差数列的数列存在吗? 如果存在,你能举出例子吗?
非零的常数数列既是等差数列又是等比数列
.
5
探究: (1)等比数列的各项能等于0吗?为什么?
(2)公比q能等于0吗?
等差数列
由于等差数列是 作差 故a n , d 没 有要求
的前一项的差等于同 的前一项的 _比等于 _
一个常数,那么这个数 同一个常数,那么这个
列就叫做等差数列. 数列就叫做 等比数列
这个常数叫做等差数 这个常数叫做等 比 数
列的公差
列的 _公__比__
a n= a 1 q n-1 (a 1 ≠0 且 q ≠0
n ∈N +)
练习:写出下列等比数列通项公式
(1) 2,4,8,16,… a n =2n
(2) 2,2
2 , 4, 4
2…
n 1
a n= 2 2
(3)
1,
1 2
,Байду номын сангаас
1 4
,
1 8
,
…
.
1
一、温故知新:
1、等差数列定义: an-an-1=d(d为常数) 2、等差数列单调性:d>0单调递增
d<0单调递减 d=0常数列
3、 等 差 数 列 的: 通an项 a1公 (n式 1)d
用什么方法推出的呢?
.
2
观察以上数列各有什么特点:
1, 2, 4, 8, … (1) 1.对于数列(1),从第2项起,每一项 与前一项的比都等于___2_
an q(n 2) a n 1
或 a n 1 q ( n 1) an
(2)既是等比数列又是等差数列的数列存在吗? 如果存在,你能举出例子吗?
非零的常数数列既是等差数列又是等比数列
.
5
探究: (1)等比数列的各项能等于0吗?为什么?
(2)公比q能等于0吗?
等差数列
由于等差数列是 作差 故a n , d 没 有要求
的前一项的差等于同 的前一项的 _比等于 _
一个常数,那么这个数 同一个常数,那么这个
列就叫做等差数列. 数列就叫做 等比数列
这个常数叫做等差数 这个常数叫做等 比 数
列的公差
列的 _公__比__
等比数列概念及性质.ppt
![等比数列概念及性质.ppt](https://img.taocdn.com/s3/m/699aea8f960590c69ec376ec.png)
1 n ( ) 6
已知
an ,bn 是项数相同的等比数列, 求证 an bn 是等比数列.
证明:设数列 an 首项为a1,公比为q1 ;bn 首项为b1,公比为q 2 那么数列 an bn 的第n项与第n+1项 分别为:
an1 bn1 a1b1 (q1q2 ) n q1q2 .它是一个与n无关的常数, n 1 an bn a1b1 (q1q2 )
① 1,-1,1,…,(-1)n+1 ;√
②1,2,4,6…;× ③a,a,a,…,a; ×
④已知a1=2,an=3an+1 ; √
⑤
m, 2m, 4m ,8m ,...
2
3
×
⑥2a,2a,2a,…,2a. √
2、求出下列等比数列中的未知项: 1 (1)2,a,8;(2)-4,b,c, . 2
思考2:公比q<0时,等比数列呈现怎样的特 点? 正负交替
思考4:等比数列的通项公式与函数有怎样的关系?
例如:数列{an}的首项是a1=1,公比q=2,则通项公式是:
an 2n -1 ______
上式还可以写成
an 8
·
1 n an 2 2
7
6
5 4
可见,这个等比数列
1 的图象都在函数 2 的图象上,如右图所示。
y 2
x
3
2 1
0
· ·
例题3:一个等比数列的第3项和第4 项分别是12和18,求它的第1项和第2 项。
1.在等比数列{an}中,已知
a 3 20, a 6 160
求an.
四. 应用示例
例2.根据右图的框图,写出所打印 数列的前5项,并建立数列的递 推公式.这个数列是等比数列吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an=a1qn-1
其中,a1与q均不为0。由于当n=1时上面等式两边均为a1, 即等式也成立,说明上面公式当n∈N*时都成立,因此它 就是等比数列{an}的通项公式。
等比数列的通项公式: an=a1qn-1 (n∈N﹡,q≠0)
特别地,等比数列{an}中,a1≠0,q≠0
且 性1公 质 :比 q设 a, n,a为 m则 为 an等 amqn 比 m.或an数 q中 nm列 任 aamn 意
对公比q的探究: (a1 ﹥0时) 当0﹤q﹤1时,等比数列{an}为递减数列; 当q﹥1时,等比数列{an}为递增数列; 当q=1时,等比数列{an}为常数列; 当q﹤0时,等比数列{an}为摆动数列。
探究二:通项公式
思考3:如何用a1和q表示第n项an 1.不完全归纳法 2.叠乘法(累乘法)
等比数列的通项公式:
a 1 q 1 n 1 b 1 q 2 n 1 与 a 1 q 1 n b 1 q 2 n 即为 a 1 b 1(q 1q 2)n 1与 a 1 b 1(q 1q 2)n
an an 1b bn n1aa11 bb11((qq11 qq22))nn 1q1q2.它是一个与n无关的常数,
所以 an bn是一个以 q1q2 为公比的等比数列
① 1,-1,1,…,(-1)n+1 ;√
②1,2,4,6…;×
③a,a,a,…,a;×
④已知a1=2,an=3an+1 ;√
⑤ m,2m,4m2,8m3,... ×
⑥2a,2a,2a,…,2a. √
2、求出下列等比数列中的未知项: (1)2,a,8;(2)-4,b,c,12.
思考2:公比q<0时,等比数列呈现怎样的特 点? 正负交替
探究 特别地,如果是a n 等比数列,c是不等 于0的常数,那么数列 can 也是等比数列.
对于例4中的等比数列 a n 与b n ,数
是 列
a b
n n
也一定是等比数列吗?
比较:
数 列 等差数列
定义式
公差( 比)
定义变 形
通项公 式
一般形
an+1-an=d
d 叫公差
an+1=an+d
1o等比数列的符号表示 a n 1
{ a n }成等比数列
an
新疆 王新敞
奎屯
=q(≠0) ( nN )
2 隐含:任一项 an0且q0 (等比数列无零项)
3 q= 1时,{an}为常数列
新疆 王新敞
奎屯
非零的常数数列既是等差数列又是等比数列
思考1 :
1.用下列方法表示的数列中能确定
是等比数列的是 ① ④ ⑥.
函数的图象上的 一点 些孤立 0 1 2 3 4 n
探究三:
等比数列的图象与指数函数之间的关系:
等比数列{an}通项公式可整理为:an
a1 qn, q
它的图象是函数y a1 qx的图象上的孤立点. q
三.巩固 应用
例题1:某种放射性物质不断变化 为其他物质,每经过一年剩留的 这种物质是原来的84%.这种物质 的半衰期为多长(精确到1年)?
an= a1+(n-1)d
an=am+(n-m)d
等比数列
an 1 an
q
q叫公比
an+1=an q
an=a1qn-1 an=amqn-m
变形结论: 变通公式
在等差数列 a n 中
anam(nm)d
(n, m N* )
试问:在等比数列 a n 中,如果知道 a m 和公
比q,能否求 a n ?如果能,请写出表达式。
结束
开始
解 : 若 将 打 印 出 来 的 数 依 次 记 为
a1(即 A),a2,a3,......, 则:a1 1,
a2
a1
1 2
1, 2
a3
a2
1 2
1 4
,
a4
a3
1 2
1, 8
a5
a4
1 2
1, 16
A=1 n=1 输出A n=n+1
可得递推公式: a1
1, 1
an 2an1(n1)
A=1/2A
否
由于 an 1 , 这 个 数 列 是 等 比 数 列 , n>5?
an1 2
其通项公式为:
an
( 1 )n1 2
是 结束1)n 3
(1 )n 6
是
已知 an,bn是项数相同的等比数列, 求证 an bn是等比数列.
证明:设数列an 首项为a 1,公比为q 1;b n 首项为b 1 ,公比为q 2 那么数列 an bn的第n项与第n+1项 分别为:
思考4:等比数列的通项公式与函数有怎样的关系?
例如:数列{an}的首项是a1=1,公比q=2,则通项公式是:
__an__2_n-1_
an
8
·
上式还可以写成
an
1 2n 2
7 6
可见,这个等比数列
5
的图象都在函数
y
1 2
2x
4 3
·
的图象上,如右图所示。
2
·
结论 : 等比数 an列 的图象是其对 1 应 ·的
设数 an列 为等差数 m,n,列 p,q , N, 且
例题3:一个等比数列的第3项和第4 项分别是12和18,求它的第1项和第2 项。
1.在等比数列{an}中,已知 a320,a6160
求an.
四. 应用示例
开始
A=1
例2.根据右图的框图,写出所打印
数列的前5项,并建立数列的递
n=1
推公式.这个数列是等比数列吗? 输出A
n=n+1
A=1/2A
否
n>5? 是
an amqnm (n,mN*)
变通公式
性1质 :设 an,am为等比an数 中列 任意两
且公比 q,为 则 anamqnm.
证明设等比数a列 n的首项a为 1,公比为 q,
则有an a1qn1,am a1qm1
从而an am
qnm,即an
amqnm.
注:运用此公式,已知任意两项, 可求等比数列中的其他项
an a1 qn1 (n∈N﹡,q≠0)
2.由定义归纳通项公式
问:如何用a1和q表示第n项an 1.叠乘法(累乘法) 2.不完全归纳法
a2/a1=q a3/a2=q a4/a3=q …
an/an-1=q 这n-1个式子相乘得an/a1=qn-1 所以 an=a1qn-1
a2=a1q a3=a2q=a1q2 a4=a3q=a1q3 …
第二课时
二、新课
1.什么是等比数列?
如果一个数列从第2项起,每一项与它的
前一项的比等于同一个常数,那么这个数
列叫做等比数列,这个常数叫做公比q.
数学语言表示为: a n 1 q 2.什么是等比中项? a n
如果a,G,b成等比数列,那么G叫做
G a与b的等比中项 ,即 a
b G
或G2
ab
定义说明:
其中,a1与q均不为0。由于当n=1时上面等式两边均为a1, 即等式也成立,说明上面公式当n∈N*时都成立,因此它 就是等比数列{an}的通项公式。
等比数列的通项公式: an=a1qn-1 (n∈N﹡,q≠0)
特别地,等比数列{an}中,a1≠0,q≠0
且 性1公 质 :比 q设 a, n,a为 m则 为 an等 amqn 比 m.或an数 q中 nm列 任 aamn 意
对公比q的探究: (a1 ﹥0时) 当0﹤q﹤1时,等比数列{an}为递减数列; 当q﹥1时,等比数列{an}为递增数列; 当q=1时,等比数列{an}为常数列; 当q﹤0时,等比数列{an}为摆动数列。
探究二:通项公式
思考3:如何用a1和q表示第n项an 1.不完全归纳法 2.叠乘法(累乘法)
等比数列的通项公式:
a 1 q 1 n 1 b 1 q 2 n 1 与 a 1 q 1 n b 1 q 2 n 即为 a 1 b 1(q 1q 2)n 1与 a 1 b 1(q 1q 2)n
an an 1b bn n1aa11 bb11((qq11 qq22))nn 1q1q2.它是一个与n无关的常数,
所以 an bn是一个以 q1q2 为公比的等比数列
① 1,-1,1,…,(-1)n+1 ;√
②1,2,4,6…;×
③a,a,a,…,a;×
④已知a1=2,an=3an+1 ;√
⑤ m,2m,4m2,8m3,... ×
⑥2a,2a,2a,…,2a. √
2、求出下列等比数列中的未知项: (1)2,a,8;(2)-4,b,c,12.
思考2:公比q<0时,等比数列呈现怎样的特 点? 正负交替
探究 特别地,如果是a n 等比数列,c是不等 于0的常数,那么数列 can 也是等比数列.
对于例4中的等比数列 a n 与b n ,数
是 列
a b
n n
也一定是等比数列吗?
比较:
数 列 等差数列
定义式
公差( 比)
定义变 形
通项公 式
一般形
an+1-an=d
d 叫公差
an+1=an+d
1o等比数列的符号表示 a n 1
{ a n }成等比数列
an
新疆 王新敞
奎屯
=q(≠0) ( nN )
2 隐含:任一项 an0且q0 (等比数列无零项)
3 q= 1时,{an}为常数列
新疆 王新敞
奎屯
非零的常数数列既是等差数列又是等比数列
思考1 :
1.用下列方法表示的数列中能确定
是等比数列的是 ① ④ ⑥.
函数的图象上的 一点 些孤立 0 1 2 3 4 n
探究三:
等比数列的图象与指数函数之间的关系:
等比数列{an}通项公式可整理为:an
a1 qn, q
它的图象是函数y a1 qx的图象上的孤立点. q
三.巩固 应用
例题1:某种放射性物质不断变化 为其他物质,每经过一年剩留的 这种物质是原来的84%.这种物质 的半衰期为多长(精确到1年)?
an= a1+(n-1)d
an=am+(n-m)d
等比数列
an 1 an
q
q叫公比
an+1=an q
an=a1qn-1 an=amqn-m
变形结论: 变通公式
在等差数列 a n 中
anam(nm)d
(n, m N* )
试问:在等比数列 a n 中,如果知道 a m 和公
比q,能否求 a n ?如果能,请写出表达式。
结束
开始
解 : 若 将 打 印 出 来 的 数 依 次 记 为
a1(即 A),a2,a3,......, 则:a1 1,
a2
a1
1 2
1, 2
a3
a2
1 2
1 4
,
a4
a3
1 2
1, 8
a5
a4
1 2
1, 16
A=1 n=1 输出A n=n+1
可得递推公式: a1
1, 1
an 2an1(n1)
A=1/2A
否
由于 an 1 , 这 个 数 列 是 等 比 数 列 , n>5?
an1 2
其通项公式为:
an
( 1 )n1 2
是 结束1)n 3
(1 )n 6
是
已知 an,bn是项数相同的等比数列, 求证 an bn是等比数列.
证明:设数列an 首项为a 1,公比为q 1;b n 首项为b 1 ,公比为q 2 那么数列 an bn的第n项与第n+1项 分别为:
思考4:等比数列的通项公式与函数有怎样的关系?
例如:数列{an}的首项是a1=1,公比q=2,则通项公式是:
__an__2_n-1_
an
8
·
上式还可以写成
an
1 2n 2
7 6
可见,这个等比数列
5
的图象都在函数
y
1 2
2x
4 3
·
的图象上,如右图所示。
2
·
结论 : 等比数 an列 的图象是其对 1 应 ·的
设数 an列 为等差数 m,n,列 p,q , N, 且
例题3:一个等比数列的第3项和第4 项分别是12和18,求它的第1项和第2 项。
1.在等比数列{an}中,已知 a320,a6160
求an.
四. 应用示例
开始
A=1
例2.根据右图的框图,写出所打印
数列的前5项,并建立数列的递
n=1
推公式.这个数列是等比数列吗? 输出A
n=n+1
A=1/2A
否
n>5? 是
an amqnm (n,mN*)
变通公式
性1质 :设 an,am为等比an数 中列 任意两
且公比 q,为 则 anamqnm.
证明设等比数a列 n的首项a为 1,公比为 q,
则有an a1qn1,am a1qm1
从而an am
qnm,即an
amqnm.
注:运用此公式,已知任意两项, 可求等比数列中的其他项
an a1 qn1 (n∈N﹡,q≠0)
2.由定义归纳通项公式
问:如何用a1和q表示第n项an 1.叠乘法(累乘法) 2.不完全归纳法
a2/a1=q a3/a2=q a4/a3=q …
an/an-1=q 这n-1个式子相乘得an/a1=qn-1 所以 an=a1qn-1
a2=a1q a3=a2q=a1q2 a4=a3q=a1q3 …
第二课时
二、新课
1.什么是等比数列?
如果一个数列从第2项起,每一项与它的
前一项的比等于同一个常数,那么这个数
列叫做等比数列,这个常数叫做公比q.
数学语言表示为: a n 1 q 2.什么是等比中项? a n
如果a,G,b成等比数列,那么G叫做
G a与b的等比中项 ,即 a
b G
或G2
ab
定义说明: