高等数学隐函数的求导法则

合集下载

高等数学-隐函数的求导法则

高等数学-隐函数的求导法则

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。

高等数学@9.5隐函数的求导法则

高等数学@9.5隐函数的求导法则

x x
x 2 z
2z x 2

(2 z) x z x
(2 z)2
(2 z) x x

2 z (2 z)2
(2 z)2 x2 (2 z)3 .
例3 设 x =x(y,z)、 y =y(x,z)、 z =z(x,y) 都是由方程 F(x,y,z)=0所确定的具有连续偏导数的函数,
Fz
y) z
x z x
x
y
z y


z Fz

y ( y) zz
Fz
zFz Fz
z
练习题
1.求方程 z3 3xyz a3 确定隐函数z=z(x,y) 的偏导数
2. 设 z=z(x,y) 是由方程 f (x+y, y+z, z+x)=0
所确定的隐函数,求 z , z x y
解 设 F x y z, G x2 y2 z2 1
Fx 1, Fy 1, Fz 1, Gx 2x, Gy 2 y, Gz 2z,
J
Fx Gx
Fy Gy
1
2x
1 2y
2( y x)
dx 1 Fz dz J Gz
Fy Gy
11 J 2z
F dx F dy F dz 0, x y z
则方程F(x,y,z)=0在该邻域 内恒能唯 0,
连续且具有连续偏导数的
dz Fx dx Fy dy
函数 z = f (x, y)它满足条件
Fz
Fz
z0=f(x0, y0), 并有
1 J
x y
u v


vx x2

高数知识点总结大一求导公式

高数知识点总结大一求导公式

高数知识点总结大一求导公式在大一学习高等数学的过程中,求导公式是一项重要的数学工具。

通过掌握和熟练运用求导公式,我们可以对各种函数进行求导,解决实际问题。

下面是对大一求导常用公式的总结,希望对你的学习有所帮助。

一、基本初等函数的求导公式1.常数函数:f(x) = C,其导数为f'(x) = 0,C为常数。

2.幂函数:f(x) = x^n,其中n为常数。

当n ≠ 0时,导数为f'(x) = nx^(n-1)。

当n = 0时,导数为f'(x) = 0。

3.指数函数:f(x) = a^x,其中a为常数,a > 0且a ≠ 1。

导数为f'(x) = ln(a) * a^x。

4.对数函数:f(x) = logₐx,其中a为常数,且a > 0且a ≠ 1。

导数为f'(x) = 1 / (x * ln(a))。

5.三角函数:正弦函数:f(x) = sin(x)。

导数为f'(x) = cos(x)。

余弦函数:f(x) = cos(x)。

导数为f'(x) = -sin(x)。

正切函数:f(x) = tan(x)。

导数为f'(x) = sec^2(x)。

余切函数:f(x) = cot(x)。

导数为f'(x) = -csc^2(x)。

6.反三角函数:反正弦函数:f(x) = arcsin(x)。

导数为f'(x) = 1 / sqrt(1-x^2)。

反余弦函数:f(x) = arccos(x)。

导数为f'(x) = -1 / sqrt(1-x^2)。

反正切函数:f(x) = arctan(x)。

导数为f'(x) = 1 / (1+x^2)。

二、基本运算法则1.常数倍规则:若f(x) = C * g(x),其中C为常数,g(x)可导,则f'(x) = C * g'(x)。

2.和差规则:若f(x) = g(x) ± h(x),其中g(x)和h(x)都可导,则f'(x) = g'(x) ± h'(x)。

高等数学上24隐函数的导数对数求导法由参数方程所确定函数的导数

高等数学上24隐函数的导数对数求导法由参数方程所确定函数的导数

结束
若函数 xy ((tt))二阶可 , 导
d2 y dx2

d (dy) dx dx

d ((t)) dt dt (t) dx
d2y dx 2

d dt

(t ) ( t )

dx
dt
(t)( t) 2( t)(t)(t)1 (t)
上页
返回
下页
结束
x a(t sint) y a(1cost)
x a cos3 t

y

a
sin 3
t
2
2
2
x3 y3 a3
首页
上页
返回
下页
结束
x2 y2 axa x2 y2
a(1cost)
首页
上页
返回
下页
结束
ea
a
首页
首页
上页
返回
下页
结束
例8 一汽球从离5开 0m 0处 观离 察地 员面铅
上升 ,其速率 14m 0为 /mi.当 n 气球高 50m 度 0时,为
观察员视线的 率仰 是角 多 ? 增 少加
解 设t时 刻 ,气球上升h高 ,观度 察为 员 视 线
的 仰 角 ,则 为
tan h (相关方程)
500
四、隐函数的导数 对数求导法 由参数方程所确定函数的导数
隐函数的导数 对数求导法由参数 方程所确定函数的导数
首页
上页
返回
下页
结束
1、隐函数的导数 P102
定义: 设在方程 F(x, y) 0中,当x取某区 间内的任意值 , 相时应地总有满足这的方程 唯一y的值存,在 那么就说方F程 (x, y) 0在 该区间内确定了一函个数y隐 f (x).

高等数学9_6隐函数求导

高等数学9_6隐函数求导

导数的另一求法 — 利用隐函数求导
sin y ex xy 1 0, y y(x)
两边对 x 求导
两边再对 x 求导
y x 0
ex cos
y y
x
(0,0)
sin y ( y)2 cos y y
令 x = 0 , 注意此时 y 0 , y 1
d2y dx2
x 0 3
机动 目录 上页 下页 返回 结束
定理2 . 若函数 F(x, y, z)满足:
① 在点
的某邻域内具有连续偏导数 ,
② F(x0 , y0, z0 ) 0 ③ Fz (x0 , y0, z0 ) 0
则方程
在点
某一邻域内可唯一确
定一个单值连续函数 z = f (x , y) , 满足
并有连续偏导数
z Fx , z Fy x Fz y Fz
化简得
x f dy
F2 dy 消去d y 可得 dz .
dx
机动 目录 上页 下页 返回 结束
第六节 隐函数的求导方法
一、由一个方程所确定的隐函数 的求(偏)导公式
二、由方程组所确定的隐函数组 的求(偏)导法则
三、全微分法
本节讨论 :
1) 方程(组)在什么条件下才能确定隐函数 . 2) 在方程(组)能确定隐函数时,研究其连续 性、可微性及求(偏)导方法问题 .
一、由一个方程所确定的隐函数的求导公式
dy dx
Fx x 0 Fy
x
0
ex y cos y x
d2y dx2 x 0
d ( ex y ) dx cos y x
x 0, y 0
( ex y)(cos y x) (ex y)(sin y y 1)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)

高等数学 第三章 第4节 隐函数及由参数方程确定的函数的导数(中央财经大学)
原则是: 按照高阶导数的定义, 运用隐函数及参 数方程所确定的函数的求导法则逐阶进行求 导.

d y 设 x + x y + y = 4, 求 . 2 dx
2 2
2

对方程两边关于 x 求导:
2 x + y + x y′ + 2 y y ′ = 0
故 2x + y y′ = − x + 2y
想想如何求二阶导数?

(
)
1 2 1+ t 2 d y = 2 = = 2 2t 2 ′ 4t dx (ln(1 + t ) ) 1 + t 2
⎛ t ⎞′ ⎜ ⎟ ⎝ 2⎠
⎛ 1 + t 2 ⎞′ 2t 2 − 1 − t 2 ⎜ 3 ⎜ 4t ⎟ ⎟ 2 t 4 −1 d y 4t ⎝ ⎠ = = = 3 3 ′ 2t 8t dx (ln(1 + t 2 ) ) 1+ t 2

1 (1 − x)(1 − 2 x)(1 + x ) y′ = 3 3 (1 + 5 x)(1 + 8 x)(1 + x 4 )
⎧ −1 −2 2x 5 8 4 x3 ⎫ − − − ⎨1 − x + 1 − 2 x + 2 1 + 5x 1 + 8 x 4⎬ 1+ x 1+ x ⎭ ⎩
2
四、 隐函数及参数方程 确定的函数的高阶导数
F ( x, f (x) ) ≡ 0
对上式两边关于 x 求导:
d F ( x , y) = 0 dx
然后, 从这个式子中解出 y ′, 就得到隐函数的导数.

求由方程 F ( x , y ) = xy − e x + e y = 0 ( x ≥ 0 ) 所确定的隐函数的导数 y′, 并求 y′

隐函数的求导法则-取对数求导法

隐函数的求导法则-取对数求导法
一.隐函数的求导法则
一.隐函数的求导法则
方法及步骤如下:
F ( x, f (x) ) 0 恒等式两边同时关于 x 求导: 从上式中解出 y , 整理得隐函数的导数. 将 y = f (x) 代入方程中, 得到恒等式: 如果由方程 F(x, y) = 0 确定隐函数 y = f (x) 可导,
判断:
202X

3.4 隐函数和高阶求导法则
CLICK HERE TO ADD A TITLE
高等数学之——
演讲人姓名
添加标题
添加标题
添加标题
添加标题
目录
例如
特点在于:
可以表示成等式左边是只含因变量,而右边等式
只含自变量。即解析式中明显地可以用一个变量
的代数式表示另一个变量时,称为显函数。
但不是所有函数都可用这种方式来表达,比如类
05.
注意:y 是 x 的函数.
二.取对数求导法
适用范围:
取对数求导法常用来求一些 复杂的根式、乘除式、幂指函数 等的导数.
运用取对数求导法
例3
两边同时对x求导,得


复杂的根式
运用取对数求导法
两边关于 x 求导:
例4

复杂的乘除式
整理得
运用取对数求导法
两边关于 x 求导:

例5

幂指函数
似 由方程确定的隐函数。
求由方程
所确定的隐函数的导数 y
在恒等式两边关于 x 求导:

例1

由方程 确定 y 是 x 的函数,
设为 y =f (x) ,得恒等式
第一步
第二步
第三步
求曲线
在点(2,2)处的切线方程

隐函数的求导法则

隐函数的求导法则

隐函数的求导法则在高等数学中,人们经常要研究使用函数表示不明确的关系的问题。

具有x和y两个自变量的方程通常也称为隐函数。

在这种情况下,求导的方法与单变量函数的情况有所不同。

假设我们有一个方程f(x,y)=0代表一个隐函数。

如果我们将y表示为x的函数,那么我们可以使用求导规则计算dy/dx。

我们用y=f(x)来代表意味着y是x的函数,在这种情况下,我们可以将原始方程看成f(x,f(x))=0。

现在我们需要将它们进行求导:通过链式法则,我们得到:∂f/∂x + ∂f/∂y * dy/dx = 0解决方程,我们可以得到dy/dx:dy/dx = -(∂f/∂x)/(∂f/∂y)这就是隐函数的求导法则。

现在我们来看几个例子。

例子1:考虑方程x^2+y^2 = 1,代表一个圆形。

假设我们需要求通过点(0.5,0.866)的圆的斜率。

我们可以通过对方程隐式地求导来解决这个问题。

从方程中得到:2x + 2y * dy/dx = 0这个时候,我们用点(0.5,0.866)代入求导公式:dy/dx = -(∂f/∂x)/(∂f/∂y) = -x/y = -0.577例子2:考虑方程x^2+y^2+z^2 = 1,代表一个球。

假设要求通过点(0.5, 0.866, 0)的球的切平面。

我们如何确定这个平面的法向量?这里我们可以思考什么会构成法向量:从点(0.5, 0.866, 0)向球的中心(0,0,0)所成的向量,然后我们将这个向量投影在切平面上。

我们可以通过隐函数求导的方法来找到它的方向。

从方程中得到:2x + 2y * dy/dx + 2z * dz/dx = 0我们需要知道dz/dx的值,但只有两个自变量,我们该怎么办?我们可以再次隐式地求导。

我们有这样的等式:∂f/∂x + ∂f/∂y * dy/dx + ∂f/∂z * dz/dx = 0将方程放入这个等式,我们得到:(1) + y * dy/dx + z * dz/dx = 0然后再用我们之前求出的dy/dx代替,得到:(1) + y * (-x/y) + z * dz/dx = 0然后代入我们想要的点,我们得到:dz/dx = -x * z/y = (-0.5) * 0/0.866 = 0现在我们知道了dz/dx = 0。

高等数学《隐函数的导数和由参数方程确定的函数的导数》

高等数学《隐函数的导数和由参数方程确定的函数的导数》
相关变化率: 通过函数关系确定两个相互依赖的 变化率; 解法: 通过建立两者之间的关系, 用链 式求导法求解.
练习题
一、填空题:
1、设 x 3 2x 2 y 5xy2 5 y 1 0确定了y 是x 的函
数,则 dy dx
=________,d 2 y
(1,1)
dx 2
________.
2、曲线 x 3 y 3 xy 7 在点(1,2)处的切线方程
一、1、 4 ,6x 4 xy 8xy 20 yy 10x( y)2 ;
3
10xy 2x 2 5
2、x 11y 23 0
3、 x y 0 ;
2
2
4、sin t cos t ,2 3 ; 5、e x y y .来自cos t sin t
x e x y
二、1、e 2 y (2
发射炮弹, 其运动方程为
x v0t cos ,
y
v0t
sin
1 2
gt
2
,
求 (1)炮弹在时刻t0的运动方向;
(2)炮弹在时刻t0的速度大小.

(1)

t
时刻的运动方向即
0
y v0
vy
v vx
轨迹在
t
时刻的切
0
线方向,
可由切线的斜率来反映. o
x
dy
(v0t
sin
1 2
gt 2 )
v0
sin
1、y 1 xe y ; 2、 y tan( x y); 3、x y y x ( x 0,y 0) .
三、用对数求导法则求下列函数的导数: 1、y x x2 ;
2、y x 2(3 x)4 ; ( x 1)5

高等数学 第八章 第4节 隐函数的求导公式

高等数学 第八章 第4节 隐函数的求导公式

求导, 将所给方程的两边对 y 求导,用同样方法得
∂u xv − yu , = 2 2 ∂y x + y
∂v xu + yv . =− 2 2 x +y ∂y
18
x + y + z = 0 du 例6 u = sin xy , 且 2 2 2 , 求 . dz x + y + z = 1
解 : 方程组对 求导 方程组对z
1(1)(3),2,3,4
B组 组
1,3

思考题
x y 为可微函数, 已知 = ϕ ( ) ,其中ϕ 为可微函数, z z ∂z ∂z 求x + y =? ∂x ∂y
22
思考题解答
1 则 Fx = , z −x y (− y ) y 1 Fy = −ϕ ′( ) ⋅ , Fz = 2 − ϕ ′( ) ⋅ 2 , z z z z z y − zϕ ′ ( ) Fy ∂z ∂z Fx z z , =− = , =− = Fz x − yϕ ′( y ) Fz x − yϕ ′( y ) ∂y ∂x z z
F ( x , y , u( x , y ), v ( x , y )) = 0 ∴ G ( x , y , u( x , y ), v ( x , y )) = 0 方程组对x 方程组对 求偏导
∂u ∂v Fx + Fu ∂x + Fv ∂x = 0 G + G ∂u + G ∂v = 0 u v x ∂x ∂x
19
三、小结
(分以下几种情况) 隐函数的求导法则 分以下几种情况)
(1) F ( x , y ) = 0
( 2) F ( x , y , z ) = 0

高等数学隐函数求导

高等数学隐函数求导

一、填空题:
练习题
1、设 x 3 2x 2 y 5 xy 2 5 y 1 0确定了 y 是 x 的函
数,则dy =________. dx (1,1)
2、曲线 x 3 y 3 xy 7在点(1,2)处的切线方程 是___________.
3、曲线
x y
t t
cos t sin t
在t
2
处的法线方程________.
4、已知
x
et
cos
t
,则 dy
=______;dy
=______.
y e t sin t dx
dx
t
3
5、设 xy e x y,则dy =________. dx
目录 上页 下页 返回 结束
二、求下列方程所确定的隐函数y
的二阶导数d 2 dx
y
2

1、 x2 y2 1 ;
例7. 设
xf(t) y tf(t)f(t), 且
f(t)0,求
d d
2
x
y
2
.
解:
d d
y x
t f (t) f (t)
t,
d2 y d x2
1 f (t)
练习:
x
1 2
t
2
y 1t
,
求d y dx
,
d2y dx2
.
解: d y dx
1; t
d2 y d x2
1 t2
t
1 t3
目录 上页 下页 返回 结束
dx dx
dy dx
15y421x26
因x=0时y=0,

dy dx
x
0

高等数学:第九讲 隐函数的导数

高等数学:第九讲 隐函数的导数
2. 隐函数求导的关键是搞清楚y是x的函数,碰到只含有x的 函数,正常求导;碰到含有y的函数,先对y求导,再乘以y 对x的导数y′。
3. 在隐函数导数的结果中,既含有自变量x,又含有因变量y, 通常不能也无须求得只含自变量的表达式.
谢谢
即 ey .y′ -2y .y′+(y+x y′) =0 从中解出y,得
y y' 2y xey
因为y是x的函数,
z
所以ey是x的复合函数. y
记z e y , 求 dz .
dy
dy dx
ey
y
03 小结
1. 显函数求导的四则运算法则和复合函数求导法则对于 隐函数的导数同样成立。
02 隐函数的求导法则
F(x, y) 0 方程两边对 x 求导
d F(x, y) 0 dx
将方程中的y视为x 的函数y( x)(隐函数)
得到含导数 y 的方程 ,从而解出 y .
例题:
设方程 ey-y2+xy=0确定函数 y = y(x),求 y.
解 方程两边对x求导,得 (ey)′ - (y2 )′+ (xy )′=(0)′,
隐函数的导数
目录
01 隐函数的定义
02 隐函数的求导法则
03
小结
01 隐函数的定义
对应法则的显性和隐性 函数
显函数 隐函数
01 隐函数的定义
形如 y f (x) 的函数,称为显函数。 例如 y sin x,y x3 ex 都是显函数。 特点:方程的左边是因变量,右边是关于自变量的表达式。
隐函数
定义 若如由果方二程元方F (程x,Fy)(x, 0y)可确0 可定确y 定是 yx 是的函x 的数函, 则数称, 此则函称数

《隐函数的求导法则》课件

《隐函数的求导法则》课件

对数求导法则
对数求导法则
对于形如 `y = f(g(x))` 的复合函数,其导数为 `dy/dx = (d(g)/dx) * (df/dg) * (dg/dx)`。
应用
对数求导法则在处理复杂函数的求导问题时非常有用,特别是当需要计算复合 函数的导数时。
04
隐函数在实际问题中的应用
经济模型中的应用
通过求导法则,可以分析工程系统中 的动态特性,例如稳定性、响应时间 等。
05
隐函数求导的注意事项
初始条件的确定
01 初始条件是隐函数存在的前提,必须先确定初始 条件才能进行求导。
02 初始条件通常由实际问题或实验数据给出,是隐 函数求导的基础。
03 在确定初始条件时,需要充分考虑隐函数的性质 和特点,确保初始条件的合理性和准确性。
参数的取值范围
01
在对隐函数进行求导时,需要考虑参数的取值范围。
02
参数的取值范围会影响到隐函数的形状和性质,进而影响到求
导的结果。
在确定参数的取值范围时,需要充分考虑隐函数的实际背景和
03
意义,确保取值范围的合理性和准确性。
多重解的情况
1
对于某些隐函数,可能存在多个解的情况。
2
在求导过程中,需要特别注意多重解的情况,并 采取适当的措施进行处理。
3
处理多重解的方法包括筛选、验证和比较等,需 要根据具体情况选择合适的方法进行处理。
06
总结与展望
隐函数求导的总结
隐函数求导的定义
隐函数是一类特殊的函数,其函数值由方程决定,而非显 式地给出。求隐函数的导数需要使用特定的求导法则。
求导法则的应用
在解决实际问题时,经常需要求隐函数的导数,如经济模型、物 理现象等。掌握隐函数求导法则对于解决这些问题至关重要。

隐函数的求导法则

隐函数的求导法则

求 2z . x2
解 令 F (x, y, z) x2 y2 z2 4z, 则
Fx 2x, Fz 2z 4,
z Fx x ,
x
Fz 2 z
2z x2
(2 z) x z
x
(2 z)2
(2 z) x x
2z (2 z)2
(2 z)2 (2 z)3
x2
.
注:在实际应用中,求方程所确定的多元函数的偏导数时,生搬硬套地套公
dx Fy
y dx x0
二阶导数为
d2y dx 2
y xy y2
y x( x )
y y2
1 , y3
d2y
dx2
1.
x0
例 2 求由方程 xy ex ey
0 所确定的隐函数 y 的导数 dy , dy dx dx
x0 .
解 此题在第二章第六节采用两边求导的方法做过,
这里我们直接用公式求之.
z
z(x,
y) ,
y
sin
x,

du dx
时要考虑到上面各种联系.
例 8 设 u f (x, y, z), y sin x, z z(x, y) 由方程(x2, ey , z) 0 确定,
其中 f , 具有一阶连续偏导数,且 0, 求 du .
z
dx
解 由 u f (x, y, z), y sin x, z z(x, y) ,
使 Fz0,于是得
z Fx , z Fy . x Fz y Fz
例 1 证明方程 x2 y2 1 0 在点(0,1)的某邻域内能唯一确定一个有连续导
数且当 x 0 时 y 1的隐函数 y f (x) ,求这函数的一阶和二阶导数在 x 0 的值.

大学高等数学 2-6隐函数的导数 参数方程求导

大学高等数学  2-6隐函数的导数  参数方程求导

v
v02 2v0 gt 0 sin g 2 t 02 v v
2 x
x a cos 3 t 表示的函数的二阶导数. 例8 求由方程 3 y a sin t dy dy dt 3a sin2 t cos t tan t 解 2 dx dx 3a cos t ( sin t ) dt
当 t 时, x a( 1), y a . 2 2
所求切线方程为 y a x a(



即 y x a( 2 ) 2 x f ( x) , dy 2) 设 其中f 可导, 且 f (0) 0, 求 3t dx y f (e 1),
曲线在点 (e / 2 , / 2) 处的切线的斜率为
y ( e / 2 , / 2)
点 (e
/2
e sin e cos e cos e sin / 2



1
, / 2) 的直角 坐标为 (0, e / 2 )
/2 . 因此,所求切线方程为 y e 2 ( x 0), 即 x y e
v( x )
的情形.
( x 1)3 x 1 例4 设 y , 求y. 2 x ( x 4) e
解 等式两边取对数得
1 ln y ln( x 1) ln( x 1) 2 ln( x 4) x 3 上式两边对x求导得
y 1 1 2 1 y x 1 3( x 1) x 4

2
1)
t 0
.
解: dy
dx t 0
3e 3t f (e 3t 1) 3 f ( 0 ) 3 f ( t ) f ( 0 ) t 0

高等数学隐函数求导法则

高等数学隐函数求导法则

高等数学隐函数求导法则
高等数学隐函数求导法则是指当被求导的函数中含有一个隐函数时,求函数和隐函数的导数。

这种情况下,不能像求常见函数的导数那样,使用常见的微积分中的微分法则来直接求解,而是要使用高等数学隐函数求导法则,使用更加复杂的求解方法。

高等数学隐函数求导法则的基本原理是:若函数f(x,y)
含有隐函数y=φ(x),则y的导数可表示为
dy/dx=dy/dx+φ'(x)dx/dx,这里φ'(x)表示隐函数y=φ(x)
的导数。

这就是求解隐函数求导时, x 不变,只考虑 y 求导的原理,也是微积分中隐函数求解中常用到的法则,成为高等数学隐函数求导法则。

高等数学隐函数求导法则在求解函数和隐函数的导数时,都要求解隐函数的导数,这就需要考虑隐函数的定义域,即显函数的定义域这个问题,要严格遵守求解隐函数求导的基本原理。

例1.若f(x,y)=x+y,其中y=φ(x)=sin(x),则隐函数的求导法则显示,dy/dx=x+cos(x)dx/dx=1+cos(x).
例2.若f(x,y)=2x+y,其中y=φ(x)=ln(x),则隐函数的求导法则显示,dy/dx=2+1/x dx/dx = 2+1/x.
从上面几个例子来看,使用高等数学隐函数求导法则是一种既有系统又有效的方法,解决涉及到隐函数求导的问题。

最重要的是,要避免求导出现不对称或错误结果,就必须牢记求解隐函数求导的基本原理,严格按照高等数学隐函数求导法则进行求解。

隐函数求导公式

隐函数求导公式

隐函数求导公式隐函数求导是数学分析学中十分重要的一个内容,它是指求取拓展又称多元函数在任意变量上导数的过程。

隐函数求导公式是数学分析学课程中经常提及的一个概念,它用来解释多元函数在任意变量上的导数,是多元函数求导学习中必不可少的。

隐函数求导公式是一类多元函数求导方法,可以有效地计算多元函数在任意变量上的导数。

它是由哥本哈根大学教授L.C.Young于1896年提出的,由此可以看出,隐函数求导的概念具有很长的历史。

隐函数求导的方法一共有四种:基本公式、偏导数法、极限法和高等切线法。

以下是基本隐函数求导公式:设y=f(x1,x2,...,xn),则其在任意变量xk上的导数为:(y)/(xk)=(f(x1,x2,...,xn))/(xk)=f/xk由此可见,导数的运算规则极其简单:先对所有的变量求偏导数,即把其它变量看做常数,再把求出的偏导数累加起来,便可得到在任意变量上的导数。

这就是隐函数求导的基本原理。

除此之外,偏导数法是求取隐函数导数的重要方法之一。

它的思想是:假设其它变量都为常数,关于一个变量求取其偏导数,使用应用问题可以更加具体地解释偏导数的概念和意义。

例如,设y=x^2+2x,求x的偏导数:(y)/(x)=(x^2+2x)/(x)=2x+2从这里可以看出,偏导数即可以描述函数在某一特定点处的性质,也可以表示函数在任意点上的变化率。

极限法是另外一种重要的求取隐函数导数的方法。

它的意思是:把不同变量的变化率的极限纳入计算,从而得到在任意变量上的导数。

极限法的应用范围并不局限于求取隐函数导数,同样也能用来求取某一函数的极限。

例如:设f(x)=x^2+2x,求lim(x→1) f(x)lim(x→1) f(x)=lim(x→1) (x^2+2x)=1+2=3最后,高等切线法是一种求取隐函数导数的高等数学方法,它是由柯西公式发展而来的。

柯西公式是一种将变量从函数定义域扩展到实数域的一种切线法,其中每条切线也就是一个变量与另一变量的函数,而柯西公式的核心就是求取函数在其变量上的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于就是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==.解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = de ()0,0,1d cos x y x y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F zx F ∂=-∂,y zF z y F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡, 将上式两端分别对x 与y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于就是得x z F zx F ∂=-∂, y zF z y F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z x z z z ∂-+-+∂-+∂-===∂---.二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=与1yu xv +=可以确定两个二元函数22y x y u +=,22y x x v +=. 事实上, 0xu yv -= ⇒u y x v =⇒1=⋅+u y x x yu ⇒22yx yu +=,2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi)行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数x u ∂∂,xv ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数y u ∂∂,yv ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x ∂∂,uy∂∂与v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂与vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂与vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于就是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例4 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂.。

相关文档
最新文档