常用等离子切割方法及其工艺特性(精)
等离子弧切割工艺
等离子弧切割工艺等离子切割适合于所有金属材料和部分非金属材料,是切割不锈钢、铝及铝合金、铜及铜合金等有色金属的有效方法。
最大切割厚度可达到180~200mm。
目前已用切割厚度35mm以下的低碳钢和低合金结构钢。
厚度25mm以下的碳钢板切割时,采用等离子弧切割双氧-乙炔切割快5倍左右;而对于大于25mm的板切割时,氧-乙炔切割速度快些。
1.气体选择等离子弧切割工作气体既是等离子弧的导电介质,同时还要排除切口中的熔融金属,因此对等离子弧的切割特性以及切割质量和速度有明显的影响。
等离子弧切割在生产中通常使用的离子气体有N2、Ar、N 2+H2、N2+Ar,也有用压缩空气、氧气、水蒸气或水作为产生等离子弧的介质。
离子气的种类决定切割时的弧压,弧压越高切割功率越大,切割速度及切割厚度都相应提高。
但弧压越高,要求切割电源的空载电压也越高,否则难以引弧或电弧在切割过程中容易熄灭。
各种工作气体在等离子弧切割中的适用性见表1,等离子弧切割常用气体的选择见表2。
N2是一种广泛采用的切割离子气,氮气的热压缩效应比较强,携带性好,动能大,价廉易得,是一种被广泛应用的切割气体。
但氮气用作离子气时,由于引弧性和稳弧性较差,需要有较高的空载电压,一般在165V以上。
氢气的携热性、导热性都很好,所需分子分解热较大,故要求更高的空载电压(350V以上)才能产生稳定的等离子弧。
由于氢气等离子弧的喷嘴很易烧损,因此氢常作为一种辅助气体而被加入,特别是大厚度工件切割时加入一点氢对提高切割能力和改善切口质量有显著成效。
用工业纯氩作为切割气体,只需要用较低的空载电压(70~90V),但切割厚度仅在30mm以下,且由于氩气费用较高,不经济,所以一般不常使用。
N2、H2、Ar任意两种气体混合使用,比任何一种单一气体使用时效果好,因它们可以相互取长补短,各自发挥其特长。
其中尤以Ar+H 2及N 2+H 2混合气体切口质量和切割效果最好。
切割较大厚度时,用N 2+H 2混合气体。
等离子切割的原理及特点
等离子切割的原理及特点(1)原理及特点1)原理等离子弧切割是利用等离子弧的热实现切割的方法,切割时等离子弧将件熔化,并借等离子流的神击力将熔化金属排除,从而形成割缝。
2)特点(A)可切割任何黑色金属、有色金属,(B)采用非转移型弧,可割非金属材料及混凝土,耐火码等(C)由于等离子弧量高度集中,所以切制速度快,生产率高,(D)切口光洁,平整,并且切口,热影响区小,变形小,切测质量好(2)电源工作气体及电极1)电源要求具有陡降外特性的直流电源,并且空载电压在150400V之间2)工作气体主要有氮气,及混合气体(氮气+氢气、氩气+氢气及氩气,氮气等),其中氩气与氮气的混合气体切割效果最佳3)电极材料当等离子气为氩气或其他情性气体时,可采用钍钨极或铈钨极;等离子气为氮或氧化性强的气体时,可采用锆电极,(3)工艺参数1切割电流及电压切割电流和电压决定着等离子弧的功率,等离子弧功率大,所以切割厚度也大,用增加切割电压来提高切割厚度,效果比增加切割电流要好。
2)等离子气种类与流量主要根据切割厚度来选择,见表6-6编辑搜图请点击输入图片描述(最多18字)适当增加等离子气流量,可提高切割厚度和质量,但流量过大,冷却气流会带走大量的热量,使切割能力下降,等离子弧不稳定,3)切割速度在功率不变的情况下,适当提高切割速度可使切口变窄,热影响区减小,切割速度过快,会造成割不透4)喷嘴距焊件的距离一般距离为7-10mm,距离过大会降低切能力,过小则易烧坏喷嘴4)“双弧”现象所谓“双弧”,是在使用转移型等离子弧时出现的一种破坏电弧燃烧稳定性的现象。
这时除已存在的等离子弧外,又在工件和喷嘴之间产生电弧,如图6-19所示,出现双弧时会破坏切割或焊接工艺的正常进行,严重时会造成喷嘴烧损,产生双弧的原因除与喷嘴的结构尺寸有关外,还与切割工艺参数的选择是否正确有关。
等离子切割原理及工艺
等离子切割原理及工艺
一、等离子切割的原理
直接等离子切割:直接等离子切割是将激光和电GF进行直接切割的方法,通过高能量的光束对工件进行切割。
它的原理是将高温等离子体产生的高频电能转化为激光光束,将激光光束对工件表面进行切割。
工作液等离子切割:工作液等离子切割是将工作液作为载体,使工作液中的高温等离子体与工件表面发生化学反应,以达到切割的目的。
这种方法适用于金属、陶瓷、玻璃等材料的切割和加工。
二、等离子切割的工艺
1.前期准备:等离子切割前需要对材料进行选择和划线等工作。
首先要选择适合等离子切割的材料,例如金属、陶瓷、玻璃等。
然后根据需要进行划线,确定切割的位置和形状。
2.设备操作:等离子切割需要使用高频电源和等离子切割设备。
在操作过程中,需要按照设备使用说明进行操作,将电极与工件接触,产生高频电波激励等离子体,然后将等离子体与工件表面接触,使其发生化学反应。
3.后期处理:等离子切割后,需要对切割面进行处理,以达到所需的精度和光滑度。
后期处理可以使用划线处理、抛光等方式进行。
综上所述,等离子切割是一种利用高温等离子体进行切割或加工材料的方法,通过高频电源产生高频电场,将气体电离形成等离子体,达到切割和加工的目的。
等离子切割的工艺包括前期准备、设备操作和后期处理
等环节,具有切割速度快、精度高、表面光滑等优点,广泛应用于制造业和材料加工行业。
等离子切割方法和要领
等离子切割方法和要领等离子切割是一种常见的金属切割方法,主要用于切割钢铁等金属材料。
它通过高温等离子体将金属材料加热并氧化,然后利用氧化物对金属材料进行切割。
下面我们将详细介绍等离子切割的方法和要领。
一、等离子切割方法1. 准备工作:首先需要确定需要切割的材料及其厚度,并选用适合的等离子切割机。
然后需要准备好切割枪、氧气和惰性气体。
切割枪必须能够承受高温和高压,氧气用于切割金属材料,惰性气体用于保护切割区域。
2. 调整切割机参数:根据材料的厚度和硬度,需要调整切割机的电流、电压、气压等参数。
如果参数设置不正确,会导致切割质量不佳或者切割速度过慢。
3. 启动切割机:将惰性气体和氧气按照比例调节好后,启动切割机。
在切割过程中,需要不断调整氧气和惰性气体的供应比例,以保证切割区域的稳定性。
4. 开始切割:将切割枪放置在需要切割的位置,按下开关开始切割。
在切割过程中,需要保持切割枪的稳定性,以免切割线路不规则或者切割质量不佳。
5. 结束切割:切割完成后,需要关闭氧气和惰性气体的供应,将切割枪放置在安全位置。
等待材料冷却后,即可进行后续加工或者使用。
二、等离子切割要领1. 选用适合的切割机:不同的金属材料需要不同的切割机,所以在选择切割机时需要考虑材料的种类和厚度。
如果切割机的功率过低,会导致切割质量下降,切割速度过慢;如果切割机的功率过高,会导致切割过度,影响材料的使用寿命。
2. 调整切割参数:在使用切割机前,需要根据材料的种类和厚度调整切割机的参数。
如果参数设置不正确,会导致切割质量不佳或者切割速度过慢。
因此,需要根据实际情况进行调整。
3. 保证切割区域的稳定性:在切割过程中,需要保证切割区域的稳定性,以免切割线路不规则或者切割质量不佳。
因此,在切割过程中需要不断调整氧气和惰性气体的供应比例,以保证切割区域的稳定性。
4. 注意安全:在进行等离子切割时,需要注意安全问题。
切割枪需要与地面保持一定的距离,并且需要使用防护眼镜和手套等防护用品,以免发生意外事故。
等离子切割方案
等离子切割方案介绍等离子切割技术是一种常见的切割工艺,它利用等离子体的高温和高能量来实现对金属材料的切割。
本文将介绍等离子切割技术的原理、设备和应用,并探讨其优势和局限性。
原理等离子切割是利用气体离子熔解材料的工艺。
在等离子体切割过程中,高频电压或者直流电弧在电极间形成等离子体,将切割区域加热至高温,使金属材料部分熔化并蒸发。
同时,气体喷嘴会向切割区域供应气体,气体经加热被分解成等离子气体,这些等离子气体在高能量下与材料相互作用,将其熔化并吹散,实现切割。
设备等离子切割设备主要由电源、气体供应系统、切割枪和控制系统组成。
其中,电源提供切割所需的高频电压或直流电弧;气体供应系统负责向切割区域提供气体;切割枪将电能转化为等离子体,并将其引导到切割区域;控制系统用于调整切割参数和监控切割过程。
应用领域等离子切割技术在多个领域有广泛应用。
以下是一些常见的应用领域:1. 金属加工在金属加工领域,等离子切割可用于各种金属材料的切割,包括钢铁、铝、不锈钢等。
等离子切割可以实现高效、精确的切割,适用于各种形状和厚度的金属材料。
2. 汽车制造汽车制造过程中需要对金属板材进行切割和加工,以制造车身和零部件。
等离子切割技术在汽车制造中起到了重要的作用,能够高效地切割金属板材,提高生产效率。
3. 造船造船行业也是等离子切割技术的重要应用领域之一。
船体结构一般由大量的金属板材拼接而成,等离子切割技术可以高效地完成对板材的切割和加工,保证船体结构的质量和精度。
4. 金属零件加工除了汽车制造和造船领域,等离子切割技术还广泛应用于金属零件加工。
无论是工业零部件还是家用电器的金属外壳,等离子切割都可以提供高效、精确的切割方案。
优势与局限性等离子切割技术具有以下优势:•高效:等离子切割速度快,可以大大缩短切割周期。
•精确:切割精度高,能够满足复杂形状的切割需求。
•适用性广:等离子切割适用于多种金属材料和厚度范围。
•自动化程度高:等离子切割设备能够实现自动化操作,提高生产效率。
等离子切割
等离子切割简介等离子切割(Plasma Cutting)是一种常用于金属切割的加工技术。
它利用高温等离子体切割机的喷嘴产生的高热能,将金属工件切割成所需形状。
等离子切割具有速度快、精度高、操作简便等优点,广泛应用于制造业领域。
等离子切割原理1.等离子体形成:等离子切割机利用电弧产生的高温等离子体来实现切割。
首先,在喷嘴中引入气体,例如氧气、氮气等,通过电流使气体离子化并形成等离子体。
2.等离子体切割:产生的等离子体通过喷嘴喷出,并沿着金属工件表面移动。
高温的等离子体与金属工件发生强烈的化学反应,将金属表面氧化并喷出,从而实现金属切割。
3.切割控制:等离子切割可以通过计算机数控系统来控制切割机的移动路径和速度,从而实现高精度切割。
等离子切割的优势等离子切割技术在金属切割领域具有以下优势:1.速度快:等离子切割的切割速度比传统机械切割快,加工效率高。
2.精度高:等离子切割机能够实现高精度的切割,切割质量高。
3.切割适应性强:等离子切割适用于切割不同种类的金属材料,包括铁、铜、铝等。
4.操作简便:等离子切割机操作简单,技术要求较低。
5.切割成本低:与激光切割相比,等离子切割具有更低的切割成本。
等离子切割应用领域等离子切割技术被广泛应用于各个制造业领域,包括:1.金属制造业:等离子切割可用于制造汽车零部件、船舶建造、铁路轨道加工等。
2.建筑业:等离子切割可用于加工门窗、楼梯扶手、大型钢结构等。
3.家居装饰:等离子切割可用于制作家具、艺术品、装饰面板等。
4.电力行业:等离子切割可用于加工发电设备、输电线路等。
5.航空航天业:等离子切割可用于制作飞机零部件、航天器船壳等。
使用等离子切割的注意事项在使用等离子切割技术时,需要注意以下事项:1.安全防护:使用等离子切割时,应戴好防护眼镜、手套和口罩,防止高温等离子体对人体造成伤害。
2.设备维护:定期检查和保养等离子切割机,确保其正常工作。
3.切割参数选择:根据不同的材料类型和厚度,选择适当的切割参数,以确保切割质量。
等离子切割的工作原理及操作要领
等离子切割的工作原理及操作要领一、等离子切割的原理:等离子弧切割是利用等离子弧的热能,实现切割的方法。
切割时等离子弧将割件熔化,并借压缩空气的冲击力将熔化金属排除,从而形成割缝,实现切割。
二、特点:1、可切割任何黑色金属、有色金属。
2、采用转移型弧,可切割非金属材料及混凝土、耐火砖等。
3、由于等离子弧能量高度集中,所以切割速度快,生产率高。
4、切口光洁、平整,并且切口窄,变形小,切割质量好。
我厂现使用的等离子切割机是江苏武进科技实验厂生产的G100 60—C型.最大切割厚为32mm,电源种类是直流三相四线制,有两档切割厚度选择:0-18mm、16-32mm。
所使用的气源种类为压缩空气,工作压力0.5-0.7Mpa。
等离子弧切割设备主要由切割电源控制箱,割炬、气路系统等组成。
如果是自动切割系统,还应有自动切割小车。
三、操作要领:1、接通电源后,要检查散热风扇的旋向是否与箭头所示方向一致。
2、打开空压机,检查气源管路是否畅通,气源压力是否达到额定值。
3、将切割按钮打到试气一侧,检查割炬是否有气流等,指示灯由红灯转为绿灯时方可正常工作。
4、根据工件的厚度,选择相应的切割按钮。
5、检查割炬是否完好,接地线与工件是否接触牢固,割嘴喷头是否正常。
6、在功率不变的情况下,适当提高切割速度可使切口变窄,热影响区减少,但切割速度过快,会造成割不透。
7、喷嘴距割件距离,一般为7-10mm,距离过大会降低切割能力,过小易烧坏喷嘴。
四、常见故障及排除:五、安全注意事项:采用等离子弧切割金属时,因电源空载电压较高,应注意以下几点:1、切割机必须可靠接地;2、电缆接头必须拧紧;3、经常注意电缆绝缘情况,如有损坏应及时修理;4、切割时,注意气路工作情况,防止损坏割炬;5、切割机安放通风良好的场所;6、切割机空载电压高,电焊工必须注意安全,电源一定要接地,割炬的手把绝缘一定要可靠7、等离子弧切割时,弧光及紫外线比焊接时强烈,对皮肤及眼睛均有伤害,所以必须做好防护工作。
等离子弧切割
等离子弧切割
等离子弧切割是一种常用的金属切割方法,利用弧电流和高温等离子弧来加热和融化金属,然后使用气体喷嘴将融化的金属吹散,从而实现切割的目的。
等离子弧切割的基本原理是利用电弧放电产生高温等离子弧,通过将电弧聚焦在工件上,使工件表面的金属迅速加热到熔点以上,同时使用高速喷出的氧气或氮气吹散被加热的金属,形成切割口。
等离子弧切割通常包括以下几个主要的步骤:
1.弧起弧压:通过适当的电流和电压设置,在切割机上产生一定弧压和电弧能量,使电弧从电极中产生,并引导至工件表面。
2.弧焦点调节:通过调整等离子弧焦点位置和聚焦长度,控制等离子弧的形状和聚焦强度,从而实现切割焦点的调整。
3.切割速度控制:控制切割机的移动速度,使等离子弧在工件表面保持稳定的切割速度,以达到理想的切割效果。
4.气体喷嘴调节:通过调整气体喷嘴的气体流量和喷嘴形状,控制气体吹散的速度和方向,以便有效地将融化的金属吹散。
等离子弧切割具有以下特点和优势:
1.快速高效:等离子弧切割速度快,能够在较短时间内完成大量的切割任务。
2.切割质量好:等离子弧切割切口平整,切割面光滑,几乎没有热影响区和变形。
3.适用广泛:等离子弧切割可用于切割各种金属材料,包括钢、铝、铜等。
4.切割厚度大:等离子弧切割可以切割较厚的金属材料,可以达到几十毫米甚至更厚的切割厚度。
切割加工中的等离子切割技术
切割加工中的等离子切割技术在制造行业中,切割加工是一个非常重要的环节。
而等离子切割技术在其中扮演了一个极为重要的角色。
等离子切割作为一种非常高效、精准的切割方式,深受厂家们的喜爱。
本文将从等离子切割的原理,技术特点以及应用领域等方面进行论述与探讨。
一、等离子切割的原理等离子是一种带正电荷的带电体,其激发动力来自于高能电子与原子分子的强烈碰撞,导致其内部的电子脱离原子成为自由电子,同时在该区域内产生电离的气体(即离子体)。
等离子切割正是利用了高能等离子体的原理,将气体中的工作气体(如氧气、氮气等)与电弧相结合,通过电弧放电使气体电离,形成高温等离子体,利用其高温的热能和气体的化学反应发生氧化、燃烧、蒸发等作用,最终实现对材料的切割加工。
二、等离子切割的技术特点1、高效快捷:等离子切割作为一种高能、高效的工艺,可以实现对各种复杂材料的快速、高效切割。
2、精度高:等离子切割作为一种非常准确的工艺,可以实现对各种形状的材料的高精度加工和裁剪。
在一些对精度要求较高的场合,等离子切割可以做到其他切割方式不能做到的精度。
3、广泛应用:等离子切割技术可以广泛应用于金属材料的切割、钢结构的建筑、甚至是冶金、汽车制造、工程机械等领域。
4、作业燃料少:作业中的能量是由气体放电产生的,所需的气体并非很多,所以使用成本比较低。
三、等离子切割的应用领域1、轮廓线切割。
等离子切割可以根据绘制的轮廓线,对各种材料进行高精度的尺寸裁剪,常用于金属板材、不锈钢板等材料的切割。
2、孔洞切割。
等离子切割可以根据预先规划的孔位和大小对工件进行穿孔,用于制作网孔、过滤器、板式换热器等产品。
3、焊接准备切割。
等离子切割常用于板材异形切割或尺寸修整,以便更好地进行焊接加工。
4、材料切割。
等离子切割可以实现对各种材料的快速、高效切割,包括镁合金、铝板、黄铜、铜、不锈钢、铁和钛等材料。
5、工程机械切割。
等离子切割技术在工程机械、轮船、航天等领域也得到了广泛的应用。
等离子切割工艺及技术
等离子切割等离子弧切割是利用高温等离子电弧的热量使工件切口处的金属局部熔化(和蒸发),并借助高速等离子的动量排除熔融金属以形成切口的一种加工方法。
等离子切割配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区!等离子切割发展到现在,可采用的工作气体(工作气体是等离子弧的导电介质,又是携热体,同时还要排除切口中的熔融金属)对等离子弧的切割特性以及切割质量、速度都有明显的影响。
常用的等离子弧工作气体有氩、氢、氮、氧、空气、水蒸气以及某些混合气体。
等离子切割机广泛运用于汽车、机车、压力容器、化工机械、核工业、通用机械、工程机械、钢结构等各行各业。
一、等离子弧切割工艺参数各种等离子弧切割工艺参数,直接影响切割过程的稳定性、切割质量和效果。
主要切割规范简述如下:1.空载电压和弧柱电压等离子切割电源,必须具有足够高的空载电压,才能容易引弧和使等离子弧稳定燃烧。
空载电压一般为120-600V,而弧柱电压一般为空载电压的一半。
提高弧柱电压,能明显地增加等离子弧的功率,因而能提高切割速度和切割更大厚度的金属板材。
弧柱电压往往通过调节气体流量和加大电极内缩量来达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。
2.切割电流增加切割电流同样能提高等离子弧的功率,但它受到最大允许电流的限制,否则会使等离子弧柱变粗、割缝宽度增加、电极寿命下降。
3.气体流量增加气体流量既能提高弧柱电压,又能增强对弧柱的压缩作用而使等离子弧能量更加集中、喷射力更强,因而可提高切割速度和质量。
但气体流量过大,反而会使弧柱变短,损失热量增加,使切割能力减弱,直至使切割过程不能正常进行。
4.电极内缩量所谓内缩量是指电极到割嘴端面的距离,合适的距离可以使电弧在割嘴内得到良好的压缩,获得能量集中、温度高的等离子弧而进行有效的切割。
等离子弧切割工艺及提高切割质量的措施
等离子弧切割工艺及提高切割质量的措施
1、等离子弧切割的原理:
等离子弧切割是利用弧割,分别由负来励磁铁和半导体加热端子构成,实现通过气体弧焊极化来切割材料,形成成型孔。
等离子弧切割在原
理上类似于电弧焊接,但是由于上弧焊时,被切割的材料由于弧焊极
化转向抗割性大,将极化后材料顶空。
由于等离子加热产生的高温,
它会瞬间把围绕在等离子中的材料溶解,形成孔洞。
产生的过程不同
于激光切割,不会产生冷加工影响,而且可以准确的切割绝大多数材料。
2、等离子切割的优点:
(1)切割质量高:等离子切割的质量比激光切割更好,钣金的火花强,可以快速切割,非金属材料烧蚀角度小,无切割毛刺,切口较平整,
无夹渣。
(2)深度大:使用等离子切割机,可以达到1毫米左右的切割深度,
可以切割更厚的板材。
(3)切割速度快:等离子切割速度快,能够较快分割金属板材,可以
有效提高切割效率,大大节省切割成本。
3、提高切割质量的措施:
(1)保持等离子弧形态:需要增加等离子系统的整体稳定性,以维持良好的切割质量和表面状态。
(2)减薄切割层:减薄切割层可以减少切面烧蚀,改善切割质量,提高精度。
(3)控制气体流量;确保足够的气体流量,以促使切割孔清洁,防止焊接滴、溅射、烧伤等切割缺陷。
(4)正确的切割参数设置:根据材料的不同,调整正确的切割参数,如电流、电压、速度等,提高切割质量。
(5)正确使用切割机:使用切割机时要加强对设备的操作,以保证设置的参数正确,准确实现切割。
等离子切割原理及相关工艺要点
等离子切割原理及相关工艺要点一、等离子切割的原理1.等离子体的产生:等离子体是指由电子和正离子组成的带电粒子体系。
在等离子体切割过程中,通过高频交流电源产生电弧放电,使气体在电极和工件之间发生电离,形成等离子体。
2.等离子体弧的形成:在电极和工件之间形成的弧光放电,会产生高温和高能量的等离子体弧。
等离子体弧的温度可达数万摄氏度,能量密度高达几千瓦/平方厘米,其作用区域通常在2-4毫米。
3.等离子体弧的切割作用:等离子体弧对金属材料有较强的熔化和气化作用。
等离子体弧与金属材料发生作用时,会使金属表面迅速加热,达到熔化温度,然后通过气化作用将熔化的金属迅速除去,从而实现切割。
二、等离子切割的工艺要点1.气体选择:等离子切割中常用的气体有氮气、氧气、氩气等。
氮气适用于不锈钢、铝及其合金的切割,氧气适用于碳钢等低合金钢材的切割,而氩气主要用于对切割表面有要求的材料。
2.切割电流:切割电流直接影响到等离子体弧的强弱和切割速度。
一般来说,电流越大,切割速度越快,但过大的电流会导致过度熔化和变形。
合适的电流应根据材料的类型、厚度等因素来确定。
3.切割速度:切割速度是指单位时间内切割的长度,一般用毫米/分钟表示。
切割速度过快会导致表面质量下降,切割速度过慢则会浪费时间。
合适的切割速度应根据材料的特性和厚度来确定。
4.切割气流:切割气流通常用于将熔化的金属气化并将其从切割缝隙排出,以保持切割质量。
适当的切割气流可以有效地冷却切割区域,减少热影响区和变形。
5.切割距离:切割距离是指等离子体弧到工件表面的垂直距离。
适当的切割距离能够保持稳定的等离子体弧形态,同时避免产生过度热影响区。
6.切割压力:等离子切割过程中需要对工件施加一定的切割压力。
适当的切割压力能够保持电弧稳定,防止产生切割缺陷。
7.切割表面处理:切割前的表面处理对切割质量有重要影响。
应保证切割表面清洁无油污,以避免影响切割质量。
以上就是等离子切割的原理及相关工艺要点的详细介绍。
等离子弧切割
四、等离子弧切割方法分类
➢ 等离子弧切割方法可从几个方面进行分类。按等离子弧 的类型可分为转移型等离子弧切割和非转移型等离子弧 切割两大类。
➢ 转移型等离子弧切割的工件处于切割电流回路内,被切 割的材料必须是导电的;非转移型等离子弧切割的工件 不需处于切割电流回路内,可以切割导电的及不导电的 材料,能用于切割非金属材料。
2、水再压缩等离子弧切割
水再压缩等离子弧切割原理
•水再压缩等离子弧也称为水射流等离子弧。 •水再压缩等离子弧切割时,由割枪喷出的除了工作气体外, 还伴随着高速流动的水束,共同迅速地将熔化金属排开。 •由工作气体形成等离子弧,并喷出经过处理的高压水,对等 离子弧再次加以压缩(故称水再压缩等离子弧)。 •这种方法应用于水中切割工件,水再压缩等离子弧切割的水 喷溅严重,一般在水槽中进行,工件位于水面下200mm左右 ,切割时,利用水的特性,可以大大降低切割噪声,并能吸收 切割过程中所形成的强烈弧光、金属粒子、烟气、紫外线等, 改善了工作条件。水还能冷却工件,使割口平整和割后工件热 变形减小,割口宽度也比一般等离子弧切割的割口窄。
➢ 切割碳钢或铸铁时,在气流中加入氧气,还可以 提供额外的切割能量。
➢ 等离子弧切割方法具有切割厚度大、机动灵活, 装夹工件简单及可以切割曲线等优点。
➢ 与氧—乙炔焰切割相比,等离子弧能量集中、切割 变形小、起始切割时不用预热,能切割几乎所有的 金属,而且切割碳钢的速度比氧气切割快。但是由 于割口较宽,所以被熔化掉的金属较多,板材较厚 时切口不如氧—乙炔切割的那样光滑平整。
3、空气等离子弧切割
(a)单一空气等离子弧切割
(b)复合式空气等离子弧切割
空气等离子弧切割的原理 1-电极冷却水;2-镶嵌式电极;3-压缩空气;4-压缩喷嘴;5-冷却水;
常用等离子切割方法及其工艺特性
常用等离子切割方法及其工艺特性1. 1 等离子空气切割法等离子空气切割法以枯燥的压缩空气作为加工气体,主要用于切割碳钢,也可用于切割不锈钢和铝。
由于空气主要由氮气和氧气组成,切割碳钢时,切口中的氧与铁的放热反响提供了附加的热量,同时生成外表X力低、流动性好的FeO 熔渣,改善了切口中熔融金属的流动性,因此不但切割速度较快,而且切割面较光洁,切口下缘根本不粘渣,切割面斜角较小。
切割不锈钢和铝时,氧与不锈钢中的铬和铝起反响,其切割面较粗糙,一般对切割外表质量要求较高时不采用这种加工方法。
等离子空气切割法主要存在如下缺点:a . 切割面上附有氮化层,焊接时焊缝中会产生气孔。
因此用于焊接的切割边,需用砂轮打磨,去除氮化层。
b. 由于存在氧化作用,电极和喷嘴易损耗, 使用寿命较短。
由于压缩空气的本钱较低,这种切割方法在大批量的非焊接碳钢板的切割中使用较为广泛。
不同电流强度下,等离子空气切割碳钢时常用板厚和切割速度之间的关系如图1 所示。
图1 等离子空气切割碳钢1. 2 等离子氧气切割法等离子氧气切割法以氧气作为工作气体,主要用于切割碳钢、铝。
氧的离解热高、携热性好,粒子复合时的放热量大,投入切割的热量多,因此可获得较高的切割速度。
在加工碳钢时,因切割过程中的铁2氧反响提供了大量的附加热量,促进了切割速度的进一步提高。
与等离子空气切割法相比,等离子氧气切割法在切割碳钢时有以下优点:a . 切割速度更快;b. 切割面更光洁,呈金属光泽,尤其是无氮化层,切割后可直接用于焊接;c. 切口下缘不粘渣;d. 切割变形小,精度高。
等离子氧气切割法也存在如下缺点:a . 因氧化作用强,电极损耗更快,使用寿命短;b. 切割面斜角较大。
不同电流强度下,等离子氧气切割碳钢和铝时常用板厚和切割速度之间的关系如图2 和图3所示。
图2 等离子氧气切割碳钢图3 等离子氧气切割铝113 等离子氮气切割法等离子氮气切割法以氮气作为工作气体,主要用于切割不锈钢。
等离子切割原理及相关工艺
• 等离子弧静特性与工作气体种类和流 等离子弧静特性与工作气体种类 工作气体种类和
量、喷嘴尺寸及电极间距等有关 喷嘴尺寸及电极间距等有关
(4)等离子弧燃烧稳定性 (4)等离子弧燃烧稳定性
• 使用转移型等离 使用转移型等离
子弧时 子弧时,会出现 一种破坏电弧燃 烧稳定性的现象
• 双弧现象
• 破坏切割工艺的 正常进行 • 引起喷嘴烧损
有明显的提高
• 等离子弧的导电性能没有显著变化 • 等离子弧弧柱的截面尺寸比较小,它的电 等离子弧弧柱的截面尺寸比较小,
阻往往很大
• 决定气体电离度的主要因素是温度 决定气体电离度的主要因素是温度
等离子体的定义
• 在30000K时,各种气体几乎都变成离子, 30000K 各种气体几乎都变成离子,
处于完全电离状态 处于完全电离状态
等离子弧的工作气体
• 气体在弧柱加热、分解、电离的过程中吸收 气体在弧柱加热、分解、
热量, 热量,并达到很高的温度 • 气体热分解、电离以及温度升高时,吸收的 气体热分解、电离以及温度升高时, 热量越多, 热量越多,传递热量的能力越大 • 从加热分解的角度,只有分子态气体才可能 从加热分解的角度,只有分子态气体才可能 分解 • 等离子弧的工作气体有:H2、N2、空气、水 等离子弧的工作气体有: 空气、 蒸气和氩气等 蒸气和氩气等 • 等离子弧燃烧时所用气体的热焓随温度的升 高而增大
(3)等离子弧的电特性 (3)等离子弧的电特性
• 等离子弧的静态伏安特性,即静特性 等离子弧的静态伏安特性,
等离子弧静 等离子弧静特性
• 喷嘴限制了等离子弧柱截面积增大 • 等离子弧相对普通电弧静特性的差别 等离子弧相对普通电弧静特性 普通电弧静特性的差别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用等离子切割方法及其工艺特性
1. 1 等离子空气切割法
等离子空气切割法以干燥的压缩空气作为加工气体,主要用于切割碳钢,也可用于切割不锈
钢和铝。
由于空气主要由氮气和氧气组成,切割碳钢时,切口中的氧与铁的放热反应提供了附加的
热量,同时生成表面张力低、流动性好的FeO 熔渣,改善了切口中熔融金属的流动性,因此不但切割速度较快,而且切割面较光洁,切口下缘基本不粘渣,切割面斜角较小。
切割不锈钢和铝时,氧与不锈钢中的铬和铝起反应,其切割面较粗糙,一般对切割表面质量要求较高时不采用这种加工方
法。
等离子空气切割法主要存在如下缺点:
a . 切割面上附有氮化层,焊接时焊缝中会产生气孔。
因此用于焊接的切割边,需用砂轮打磨,去除氮化层。
b. 由于存在氧化作用,电极和喷嘴易损耗, 使用寿命较短。
由于压缩空气的成本较低,这种切割方法在大批量的非焊接碳钢板的切割中使用较为广泛。
不同
电流强度下,等离子空气切割碳钢时常用板厚和切割速度之间的关系如图 1 所示。
图1 等离子空气切割碳钢
1. 2 等离子氧气切割法
等离子氧气切割法以氧气作为工作气体,主要用于切割碳钢、铝。
氧的离解热高、携热性好,粒子复合时的放热量大,投入切割的热量多,因此可获得较高的切割速度。
在加工碳钢时,因切割过程中的铁2氧反应提供了大量的附加热量,促进了切割速度的进一步提高。
与等离子空气切割法相比,等离子氧气切割法在切割碳钢时有以下优点:
a . 切割速度更快;
b. 切割面更光洁,呈金属光泽,尤其是无氮化层,切割后可直接用于焊接;
c. 切口下缘不粘渣;
d. 切割变形小,精度高。
等离子氧气切割法也存在如下缺点:
a . 因氧化作用强,电极损耗更快,使用寿命短;
b. 切割面斜角较大。
不同电流强度下,等离子氧气切割碳钢和铝时常用板厚和切割速度之间的关系如图 2 和图3所示。
图2 等离子氧气切割碳钢
图3 等离子氧气切割铝
113 等离子氮气切割法
等离子氮气切割法以氮气作为工作气体,主要用于切割不锈钢。
氮的导热和携热性能较好,弧柱也较长,因此具有较好的切割能力。
但切割的表面质量不是很好,且切割面有氮化物。
相对氧气而言,氮气的价格较低,因此这种切割方法一般只用于对切割表面质量要求不高且不直接用于焊
接的不锈钢下料。
不同电流强度下,等离子氮气切割不锈钢时常用板厚和切割速度之间的关系如图 4 所示。
图4 等离子氮气切割不锈钢
1. 4 等离子氩2氢气切割法
等离子氩2氢气切割法以Ar 和H2 的混合气体作为工作气体,主要用于切割不锈钢和铝。
Ar易电离,可形成稳定的等离子弧,加之原子量大,等离子流的动量也大。
而H2 的导热性好,电离粒子复合时放热量高。
两者相结合能形成稳定、能量密度高、弧柱长的等离子弧,切割能力强,切口宽度和切割面斜角较小,切口光洁,切割中产生的氮氧化物较少,是等离子切割中切割质量较好的一种方法。
但这种切割方法使用混合气体作为工作气体,须增加一混合装置,才能使Ar 和H2 很好地混合在一起。
由于氩气和氢气的价格较高,且氢气为危险气体,所以这种切割方法主要用于切割其他等离
子切割无法加工的、对切口要求较高的较厚不锈钢和铝工件,且使用环境符合安全要求的情况下。
不同电流强度下,等离子氩2氢气切割不锈钢、铝时常用板厚和切割速度之间的关系如图5、图6所示。
图5 等离子氩2氢气切割不锈钢
图6 等离子氩2氢气切割铝
1. 5 等离子氮气水涡流切割法
等离子氮气水涡流切割法以氮气作为工作气体,主要用于切割不锈钢和铝。
工作气体通过涡
流环形成涡旋气流,使等离子流也以涡旋方式射向工件,从而可获得一个斜角极小的切割边。
在工作气体的周围,是经过处理的高压水流,使电弧能量密度大大提高,形成了温度极高、挺度好及流速大的等离子弧。
另外,部分水离解成H2 和O2 ,对切割过程也有一定的促进作用。
与其他等离子
切割方法相比,等离子氮气水涡流切割法具有以下特点:
a . 切割速度快;
b. 切割质量好,切口宽度小,切割面光洁、斜角极小,切口下缘不粘渣;
c. 切割变形很小,精度高;
d. 喷嘴寿命长;
e . 适合水下加工,基本无烟尘和弧光,噪声低。
不同电流强度下,等离子氮气水涡流切割不锈钢常用板厚和切割速度之间的关系如图7、图8所示。
图7 等离子氮气水涡流切割不锈钢
图8 等离子氮气水涡流切割铝
2 切割不同材料时等离子切割方法的选用
由上述可知,对于不同的切割材料及切割要求,有多种等离子切割方法可以选用。
笔者从切割速度、切割质量、切割变形、操作成本等方面对切割不锈钢、铝和碳钢时常用等离子切割方法进
行比较,具体操作时可根据不同的切割要求选用合适的切割方法。
2. 1 不锈钢
几种常用不锈钢材料切割方法见表 1 ,切割速度比较如图9 所示。
图9 不锈钢切割速度比较(电流90A) 2. 2 铝
几种常用铝材料切割方法见表 2 ,切割速度比较如图10 所示。
图10 铝切割速度比较(电流90A) 2. 3 碳钢
几种常用碳钢材料切割方法见表 3 ,切割速度比较如图11 所示。
图11 碳钢切割速度比较(电流90A)。