专题2:直线和抛物线的位置关系
直线与抛物线的位置关系
![直线与抛物线的位置关系](https://img.taocdn.com/s3/m/47e0860c6edb6f1aff001ff5.png)
即:y 2 pmy p 0
2 2
p x my 2
y A F B x
y1 y2 p (定值)
2
例2、过抛物线焦点作直线交抛物线y 2 2 px( p 0)于 A ,B两点,设A( x1 , y1 ), B( x2 , y2 ), 求证 : y1 y2 p 2 .
解 由题意, 设直线 l的方程为 y 1 k x 2.
由方程组
2
y 1 k x 2 , y 4x ,
2
①
可得 ky 4 y 4 2k 1 0
1 当k 0时,由方程 ① 得 y 1,
1 把 y 1代入 y 4 x, 得 x . 4
y
C H D E F A
B O
x
例4、已知抛物线y2=2x,过Q(2,1)作直线与抛物线 交于A、B,求AB中点的轨迹方程.
y
解: 设A( x1, y1 ), B( x2 y2 ), AB中点M ( x, y)
2 y 1 2 x1 y1 y2 2 由 2 相减得: ( x1 x2 ) x1 x2 y1 y2 y2 2 x2
x
设A( x1, y1 ), B( x2 , y2 ), A, B到 准线l的距离分别为 d A , dB .
由抛物线的定义可知 AF d A x1 1, BF d B x2 1,
B’
所以 AB AF BF x1 x2 2 8
变式: 过抛物线y2=2px的焦点F任作一条直线m, 交这抛物线于A、B两点,求证:以AB为直径的圆 和这抛物线的准线相切.
第7节 第2课时 直线与抛物线的位置关系--2025年高考数学复习讲义及练习解析
![第7节 第2课时 直线与抛物线的位置关系--2025年高考数学复习讲义及练习解析](https://img.taocdn.com/s3/m/c319b991db38376baf1ffc4ffe4733687e21fc86.png)
第2课时直线与抛物线的位置关系课标解读考向预测1.会判断直线与抛物线的位置关系.2.会求直线与抛物线相交所得的弦长.3.能解决与抛物线的切线相关的简单几何问题.从近几年高考来看,直线与圆锥曲线的综合问题是高考考查的重点,高考试题中加大了思维能力的考查,以及二级结论的考查,减少了对复杂运算的考查.预计2025年高考对直线与抛物线综合问题考查的难度会增加,平时应注意二级结论的应用.必备知识——强基础1.直线与抛物线的位置关系(1)直线与抛物线的三种位置关系(2)设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立,整理成关于x 的方程k 2x 2+(2km -2p )x +m 2=0.①若k ≠0,当Δ>0时,直线与抛物线04相交,有05两个交点;当Δ=0时,直线与抛物线06相切,有07一个交点;当Δ<0时,直线与抛物线08相离,09无交点.②若k =0,直线与抛物线10只有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此,直线与抛物线只有一个交点是直线与抛物线相切的11必要不充分条件.2.弦长问题设直线与抛物线交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x1-x2|=1+k2·(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2·(y1+y2)2-4y1y2(k为直线的斜率,k≠0).3.抛物线的焦点弦问题若MN为抛物线y2=2px(p>0)的焦点弦(过焦点的弦),则焦点弦长为|MN|=12x1+x2+p(x1,x2分别为M,N的横坐标).设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则四种标准方程形式下的弦长公式如下表.标准方程弦长公式y2=2px(p>0)|AB|=x1+x2+py2=-2px(p>0)|AB|=p-(x1+x2)x2=2py(p>0)|AB|=y1+y2+px2=-2py(p>0)|AB|=p-(y1+y2)4.抛物线的切线(1)过抛物线y2=2px(p>0)上的点P(x1,y1)的切线方程是y1y=p(x+x1).(2)抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+p2k(k≠0).抛物线焦点弦的几个常用结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2;(2)若A在第一象限,B在第四象限,则|AF|=p1-cosα,|BF|=p1+cosα,弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);(3)1 |FA|+1|FB|=2p;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上;(7)通径:过焦点与对称轴垂直的弦,长度为2p;(8)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点.设直线l1的倾斜角为α,则|AB |=2psin 2α,|DE |=2psin =2p cos 2α.1.概念辨析(正确的打“√”,错误的打“×”)(1)抛物线C :y 2=2px (p >0)的焦点F 到准线l 的距离为2,则过点A (-1,0)恰有2条直线与抛物线C 有且只有一个公共点.()(2)已知过抛物线C :y 2=x 的焦点F 的直线l 与C 交于A ,B 两点,若直线l 垂直于x 轴,则|AB |=1.()(3)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x 的焦点为F ,直线l 的倾斜角为60°且经过点F .若l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,则x 1x 2=2.()答案(1)×(2)√(3)×2.小题热身(1)(人教A 选择性必修第一册3.3例4改编)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=()A .83B .163C .5D .33答案B解析由题意得,抛物线的焦点为F (1,0),直线AB 的方程为y =3(x -1).=3(x -1),2=4x ,得3x 2-10x +3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,所以|AB |=x 1+x 2+2=163.(2)(人教A 选择性必修第一册习题3.3T12改编)过定点P (0,1)且与抛物线y 2=8x 有且仅有一个公共点的直线有________条.答案3解析当斜率不存在时,直线方程为x =0,只有一个公共点,符合题意;当斜率存在时,设直线方程为y =kx +1,=kx +1,2=8x ,得k 2x 2+(2k -8)x +1=0,当k =0时,直线方程为y=1,只有一个公共点,符合题意;当k ≠0时,令Δ=(2k -8)2-4k 2=0,解得k =2,即直线与抛物线有一个公共点,符合题意.所以满足题意的直线有3条.(3)过点P (4,-3)作抛物线y =14x 2的两条切线,切点分别为A ,B ,则直线AB 的方程为________________.答案2x -y +3=0解析设切点为A (x 1,y 1),B (x 2,y 2),又y ′=12x ,则切线PA 的方程为y -y 1=12x 1(x -x 1),即y =12x 1x -y 1,同理,切线PB 的方程为y =12x 2x -y 2,由P (4,-3)是PA ,PB 的交点可知,-3=2x 1-y 1,-3=2x 2-y 2,由两点确定一条直线,可得过A ,B 的直线方程为-3=2x -y ,即2x -y +3=0.(4)(2024·山东济南模拟)已知A ,B 为抛物线C :x 2=4y 上的两点,M (-1,2),若AM →=MB →,则直线AB 的方程为________________.答案x +2y -3=0解析由题意知点M (-1,2)在抛物线内,且M (-1,2)是线段AB 的中点,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2,21=4y 1,22=4y 2,两式相减得(x 1-x 2)(x 1+x 2)=4(y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 24=-12,则直线AB 的方程为y -2=-12(x +1),即x +2y -3=0.+2y -3=0,2=4y ,消去y ,得x 2+2x -6=0,Δ=22-4×(-6)>0,故斜率为-12符合题意.因此直线AB 的方程为x +2y-3=0.考点探究——提素养考点一抛物线的切线例1(1)过抛物线x 2=4y 上一点(4,4)的抛物线的切线方程为()A .2x -y -4=0B .2x +y -4=0C .x -2y +4=0D .x +2y +4=0答案A解析解法一:设切线方程为y -4=k (x -4).-4=k (x -4),2=4y⇒x 2=4(kx -4k +4)⇒x 2-4kx +16(k -1)=0,由Δ=(-4k )2-4×16(k -1)=0,得k 2-4k +4=0.∴k =2.故切线方程为y -4=2(x -4),即2x -y -4=0.解法二:由x 2=4y ,得y =x 24,∴y ′=x 2.∴y ′|x =4=42=2.∴切线方程为y -4=2(x -4),即2x -y-4=0.(2)(2023·四川成都适应性考试)已知A ,B 为抛物线y =x 2上两点,以A ,B 为切点的抛物线的两条切线交于点P ,过点A ,B 的直线斜率为k AB ,若点P 的横坐标为13,则k AB =________.答案23解析设A (x 1,y 1),B (x 2,y 2),以A ,B 为切点的抛物线的切线斜率分别为k A ,k B ,由y =x 2,得y ′=2x ,故k A =2x 1,k B =2x 2,所以切线PA 的方程为y -x 21=2x 1(x -x 1),即x 21-2x 1x +y =0.同理可得,切线PB 的方程为x 22-2x 2x +y =0.设点P 的坐标为(x 0,y 0),所以x 21-2x 1x 0+y 0=0,x 22-2x 2x 0+y 0=0,所以x 1,x 2为方程x 2-2x 0x +y 0=0的两根,故x 1+x 2=2x 0,x 1x 2=y 0,则k AB =y 1-y 2x 1-x 2=x 1+x 2=2x 0=23.【通性通法】求抛物线切线方程的方法方法一首先设出切线方程,然后与抛物线方程联立,利用判别式求解方法二首先求导得出切线的斜率,然后由点斜式得出切线方程方法三过抛物线C :y 2=2px (p >0)上一点P (x 0,y 0)的切线方程为y 0y =p (x +x 0)【巩固迁移】1.(多选)(2023·辽宁名校联考)已知抛物线C :x 2=2py (p >0)的准线l 的方程为y =-1,过C 的焦点F 的直线与C 交于A ,B 两点,以A ,B 为切点分别作C 的两条切线,且两切线交于点M ,则下列结论正确的是()A .C 的方程为x 2=2yB .∠AMB =90°C .M 恒在l 上D .|MF |2=|AF |·|BF |答案BCD解析由题得-p2=-1,所以p =2,因此C 的方程为x 2=4y ,A 错误;由题意可知AB 的斜率存在,F (0,1),设AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),=kx +1,2=4y ,得x 2-4kx-4=0,所以x 1+x 2=4k ,x 1x 2=-4.由y =14x 2得y ′=12x ,所以AM 的斜率为k AM =12x 1,所以AM 的方程为y -y 1=12x 1(x -x 1),即y -14x 21=12x 1(x -x 1)①,同理BM 的斜率为k BM =12x 2,所以BM 的方程为y -14x 22=12x 2(x -x 2)②,所以k AM ·k BM =14x 1x 2=-1,即AM ⊥BM ,所以∠AMB=90°,B 正确;由①②得(x 2-x 1)y =14x 1x 2(x 2-x 1),因为x 1≠x 2,所以y =-1,将y =-1代入①②得x =x 2+x 12=2k ,所以点M 的坐标为(2k ,-1),又C 的准线l 的方程为y =-1,所以M 恒在l 上,C 正确;当AB 的斜率k 不为零时,则k MF =-1-12k =-1k ,所以k AB ·k MF =-1,所以AB ⊥MF ,当AB 的斜率k =0时,点M 的坐标为(0,-1),显然AB ⊥MF ,在Rt △ABM 中,由△AMF ∽△MBF 得|MF ||AF |=|BF ||MF |,所以|MF |2=|AF |·|BF |,D 正确.故选BCD.考点二焦点弦问题例2(1)(2024·河北邯郸模拟)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |=()A .4B .92C .5D .6答案B解析解法一:易知直线l 的斜率存在,设为k ,则其方程为y =k (x -1).=k (x -1),2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,设点A ,B 的横坐标分别为x A ,x B ,则x A x B =1①,因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1),即x A =2x B +1②,由①②解得x A =2,x B =12,所以|AB |=|AF |+|BF |=x A +x B +p =92.解法二:由对称性,不妨设点A 在x 轴的上方,如图,设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E ,设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m ,由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式,得|AB |=2p sin 2θ=92.解法三:因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92.(2)(多选)(2023·湖北鄂州市教学研究室期末)已知抛物线C :x 2=4y 的焦点为F ,准线l 与y 轴的交点为D ,过点F 的直线m 与抛物线C 交于A ,B 两点,点O 为坐标原点.下列结论正确的是()A .存在点A ,B ,使∠AOB ≤π2B .|AB |的最小值为4C .DF 平分∠ADBD .若点M (2,3)是弦AB 的中点,则直线m 的方程为x -y +1=0答案BCD解析抛物线C 的焦点F 的坐标为(0,1),由题意分析可知,直线m 的斜率一定存在.设A (x 1,y 1),B (x 2,y 2),直线m 的方程为y =kx +1,与抛物线C :x 2=4y 联立,得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4,所以OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 214·x 224=-4+1=-3<0,所以∠AOB 为钝角,故A 错误;|AB |=y 1+y 2+2=kx 1+1+kx 2+1+2=k (x 1+x 2)+4=4k 2+4≥4(当且仅当k =0时,等号成立),故B 正确;因为点D (0,-1),k DA +k DB =y 1+1x 1+y 2+1x 2=kx 1+2x 1+kx 2+2x 2=2kx 1x 2+2(x 1+x 2)x 1x 2=2k ×(-4)+2×4kx 1x 2=0,即直线DA 和直线DB 的倾斜角互补,所以DF 平分∠ADB ,故C 21=4y 1,22=4y 2,两式相减得(x 1+x 2)(x 1-x 2)=4(y 1-y 2),因为点M (2,3)是弦AB 的中点,所以x 1+x 2=4,所以直线m 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1,所以直线m 的方程为x -y +1=0,故D 正确.故选BCD.【通性通法】解决焦点弦问题的策略(1)利用抛物线的定义把过焦点的弦分成两个焦半径,然后转化为到准线的距离,再求解.(2)利用与抛物线焦点弦有关的二级结论求解.【巩固迁移】2.(2024·山东聊城质检)已知抛物线y2=2px(p>0)的焦点为F,过F作斜率为2的直线l与抛物线交于A,B两点,若弦AB的中点到抛物线准线的距离为3,则抛物线的方程为()A.y2=125x B.y2=245xC.y2=12x D.y2=6x 答案B解析因为直线l的方程为y=即y=2x-p,2=2px,=2x-p,消去y,得4x2-6px+p2=0,设A(x1,y1),B(x2,y2),则x1+x2=3p2,又因为弦AB的中点到抛物线准线的距离为3,所以|AB|=6,而|AB|=x1+x2+p,所以x1+x2=6-p,故3p2=6-p,解得p=125,所以抛物线的方程为y2=245x.故选B.3.(多选)(2023·新课标Ⅱ卷)设O为坐标原点,直线y=-3(x-1)过抛物线C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则()A.p=2B.|MN|=83C.以MN为直径的圆与l相切D.△OMN为等腰三角形答案AC解析对于A,直线y=-3(x-1)过点(1,0),所以抛物线C:y2=2px(p>0)的焦点为F(1,0),所以p2=1,即p=2,所以抛物线C的方程为y2=4x,A正确;对于B,不妨设M(x1,y1),N(x2,y2),x1>x2,=-3(x-1),2=4x,消去y并化简,得3x2-10x+3=0,解得x1=3,x2=13,所以|MN|=x1+x2+p=3+13+2=163,B错误;对于C,设MN的中点为A,M,N,A到直线l的距离分别为d1,d2,d,因为d=12(d1+d2)=12(|MF|+|NF|)=12|MN|,即A到直线l的距离等于|MN|的一半,所以以MN为直径的圆与直线l相切,C正确;对于D,由上述分析可知y1=-3×(3-1)=-23,y2=-3×=233,所以|OM|=32+(-23)2=21,|ON |=133,所以△OMN 不是等腰三角形,D 错误.故选AC.考点三直线与抛物线的综合问题例3(2023·重庆统考模拟预测)如图,已知抛物线C :y 2=2px (p >0),F 为其焦点,点A (2,y 0)在C 上,△OAF 的面积为4.(1)求抛物线C 的方程;(2)过点P (m ,0)(m >0)作斜率为-1的直线l 1交抛物线C 于点M ,N ,直线MF 交抛物线C 于点Q ,以Q 为切点作抛物线C 的切线l 2,且l 2∥l 1,求△MNQ 的面积.解(1)由题意,可知抛物线C 的焦点将A (2,y 0)代入抛物线C 的方程,得y 20=4p ,且p >0,则|y 0|=2p ,因为△OAF 的面积为12×p 2×2p =p p 2=4,解得p =4,所以抛物线C 的方程为y 2=8x .(2)由(1)可得抛物线C 的方程为y 2=8x ,焦点F (2,0),设直线l 1:x =-y +m (m >0),M (x 1,y 1),N (x 2,y 2),Q (x 3,y 3),=-y +m ,2=8x ,消去x ,得y 2+8y -8m =0,则Δ=64+32m >0,可得y 1+y 2=-8,y 1y 2=-8m ,因为点M (x 1,y 1)在抛物线上,则y 21=8x 1,即x 1=y 218,所以直线MF 的方程为x =x 1-2y 1y +2=y 218-2y 1y +2=y 21-168y 1y +2,=y 21-168y 1y +2,2=8x ,消去x ,得y 2+16-y 21y 1y -16=0,可得y 1y 3=-16,即y 3=-16y 1,则x 3=y 21-168y 1×2=32y 21,即因为l 2∥l 1,可设l 2:x =-y +n ,代入得32y 21=16y 1+n ,即n =32y 21-16y 1,所以l 2:x =-y +32y 21-16y 1,=-y +32y 21-16y 1,2=8x ,消去x ,得y 2+8y +0,因为l 2为抛物线C 的切线,则Δ=64-0,整理得y 21-8y 1+16=0,解得y 1=4,又因为y 1+y 2=-8,y 1y 2=-8m ,y 1y 3=-16,可得y 2=-12,m =6,y 3=-4,即Q (2,-4),l 1:x =-y +6,可得|MN |=2×|4-(-12)|=162,点Q (2,-4)到直线l 1:x +y -6=0的距离d =|2-4-6|2=42,所以S △MNQ =12|MN |·d =12×162×42=64.【通性通法】解决直线与抛物线综合问题的策略(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线y 2=2px 的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则一般用弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.【巩固迁移】4.(2023·甘肃张掖高台县第一中学统考期末)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求抛物线C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.解(1)抛物线C :y 2=2px (p >0)的焦点为准线方程为x =-p2,又点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,即(-2)2=2px 0,∴x 0=2p ,即-依题意,可得2p +p 2-2=12,解得p =1或p =4,∴y 2=2x 或y 2=8x .(2)证明:∵p <2,∴y 2=2x ,A (2,-2).设MN :x =my +n ,2=2x ,=my +n ,消去x ,整理得y 2-2my -2n =0,Δ=4m 2+8n >0,(ⅰ)且y 1+y 2=2m ,y 1y 2=-2n ,∴k AM ·k AN =2y 1-2·2y 2-2=-2,∴(y 1-2)(y 2-2)=-2,即y 1y 2-2(y 1+y 2)+6=0,∴n +2m =3,适合(ⅰ),将n =3-2m 代入x =my +n ,得x -3=m (y -2),-3=0,-2=0,=3,=2,∴直线MN 恒过定点Q (3,2).又AD ⊥MN ,∴点D 在以AQ 为直径的圆上,∵A ,Q |AQ |=(2-3)2+(-2-2)2=17,∴以AQ +y 2=174,∴存在点使得|DE |=172,为定值.课时作业一、单项选择题1.已知直线l 与抛物线x 2=2py (p >0)只有一个公共点,则直线l 与抛物线的位置关系是()A .相交B .相切C .相离D .相交或相切答案D解析直线l 与抛物线的对称轴平行或直线l 与抛物线相切时只有一个公共点,所以D 正确.故选D.2.过抛物线y 2=4x 的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若点C (x 1,0)与点D (x 2,0)关于直线x =32对称,则|AB |=()A .3B .4C .5D .6答案C解析抛物线y 2=4x ,∴p =2,过焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,则|AF |=x 1+p 2=x 1+1,|BF |=x 2+p 2=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2,又点C (x 1,0)与点D (x 2,0)关于直线x =32对称,则x 1+x 2=32×2=3,∴|AB |=3+2=5.3.(2023·四川资阳统考三模)已知抛物线C :y 2=8x ,过点P (2,-1)的直线l 与抛物线C 交于A ,B 两点,若|AP |=|BP |,则直线l 的斜率是()A .-4B .4C .-14D .14答案A解析设A (x 1,y 1),B (x 2,y 2),21=8x 1,22=8x 2,作差得y 21-y 22=8(x 1-x 2).因为|AP |=|BP |,所以P 是线段AB 的中点,所以y 1+y 2=-2,则直线l 的斜率k =y 1-y 2x 1-x 2=8y 1+y 2=-4.故选A.4.(2024·江西九江二模)青花瓷又称白地青花瓷,常简称青花,是中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.一只内壁光滑的青花瓷大碗水平放置在桌面上,瓷碗底座高为1cm ,瓷碗的轴截面可以近似看成是抛物线,碗里不慎掉落一根质地均匀、粗细相同且长度为22cm 的筷子,筷子的两端紧贴瓷碗内壁.若筷子的中点离桌面的最小距离为7cm ,则该抛物线的通径长为()A .16B .18C .20D .22答案C解析如图,建立平面直角坐标系,设抛物线为x 2=2py (p >0),焦点A (x 1,y 1),B (x 2,y 2),∵|AB |=22,|AB |≤|AF |+|BF |,∴y 1+y 2+p ≥22,设线段AB 的中点为M ,则2y M +p ≥22,由题意知,y M 的最小值为6,即12+p =22,得p =10,∴该抛物线的通径长为2p =20.故选C.5.(2023·辽宁名校联考)过抛物线C :x 2=4y 的焦点F 的直线l 交C 于A ,B 两点,点A 处的切线与x ,y 轴分别交于点M ,N .若△MON (O 为坐标原点)的面积为12,则|AF |=()A .2B .3C .4D .5答案A解析由题意可知,直线l 的斜率存在,且过抛物线C :x 2=4y 的焦点F ,与其交于A ,B 两点,设,14a又y =14x 2,所以y ′=x 2,所以点A 处的切线方程为y -14a 2=a2(x -a ).令x =0,可得y =-14a 2,即,-14a令y =0,可得x =a 2,即因为△MON 的面积为12,所以12×|-14a 2|×|a2|=12,解得a 2=4,所以|AF |=14a 2+1=2.故选A.6.(2023·河北石家庄模拟)过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A ,B 两点,若AB 中点的纵坐标为2,且|AB |=8,则p =()A .1B .2C .3D .4答案B解析设直线AB :y =k ≠0.2=2px ,=得k 2x 2-(k 2p +2p )x +k 2p 24=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k 2p +2p k2=p +2p k 2,y 1+y 2=k (x 1+x 2-p )=2pk .由题可知,x 1+x 2+p =8,y 1+y 22=2,+pk2=4,2,=1,=2.故选B.7.(2023·湖北武汉模拟)已知抛物线x 2=2py (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则该抛物线的准线方程为()A .y =-3B .y =-32C .x =-3D .x =-32答案B解析根据题意,设A (x 1,y 1),B (x 2,y 2),所以x 21=2py 1①,x 22=2py 2②,由①-②,得(x 1-x 2)(x 1+x 2)=2p (y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 22p ,因为直线AB 的斜率为1,线段AB 中点的横坐标为3,所以k AB =y 1-y 2x 1-x 2=x 1+x 22p =3p =1,即p =3,所以抛物线的方程为x 2=6y ,准线方程为y =-32.故选B.8.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10答案A解析抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则直线l 2的斜率为-1k ,故l 1:y =k (x -1),l 2:y =-1k (x -1).2=4x ,=k (x -1),消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=4+4k 2.同理可得|DE |=4+4k 2,∴|AB |+|DE |=8+4k 2+4k 2≥8+216=16,当且仅当1k 2=k 2,即k =±1时取等号.故|AB |+|DE |的最小值为16.二、多项选择题9.(2023·广州模拟)已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 交于A ,B 两点,则()A .|AB |=8B .OA ⊥OBC .△AOB 的面积为22D .线段AB 的中点到直线x =0的距离为2答案AC解析设A (x 1,y 1),B (x 2,y 2),因为抛物线C :y 2=4x ,则p =2,焦点为(1,0),则直线y =x -1过焦点.=x -1,2=4x ,消去y ,得x 2-6x +1=0,则x 1+x 2=6,x 1x 2=1,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=-4,所以|AB |=x 1+x 2+p =6+2=8,故A 正确;因为OA →·OB →=x 1x 2+y 1y 2=1-4=-3≠0,所以OA 与OB 不垂直,故B 错误;原点到直线y =x -1的距离为d =12,所以△AOB 的面积为S =12|AB |·d =12×8×12=22,故C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3,故D 错误.故选AC.10.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,直线l 过点F 且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,若M (m ,2)是线段AB 的中点,则下列结论正确的是()A .p =4B .抛物线的方程为y 2=16xC .直线l 的方程为y =2x -4D .|AB |=10答案ACD解析由焦点F 到准线的距离为4,并根据抛物线的定义可知p =4,故A 正确;抛物线的方程为y 2=8x ,故B 错误;因为焦点F (2,0),y 21=8x 1,y 22=8x 2,若M (m ,2)是线段AB 的中点,则y 1+y 2=4,所以y 21-y 22=8x 1-8x 2,即y 1-y 2x 1-x 2=8y 1+y 2=84=2,所以直线l 的方程为y =2x -4,故C 2=8x ,=2x -4,得x 2-6x +4=0,所以x 1+x 2=6,所以|AB |=|AF |+|BF |=x 1+x 2+4=10,故D 正确.故选ACD.三、填空题11.(2023·天津高考)过原点O 的一条直线与圆C :(x +2)2+y 2=3相切,交曲线y 2=2px (p >0)于点P ,若|OP |=8,则p 的值为________.答案6解析由题意得直线OP 的斜率存在.设直线OP 的方程为y =kx ,因为该直线与圆C 相切,所以|-2k |1+k2=3,解得k 2=3.将直线方程y =kx 与曲线方程y 2=2px (p >0)联立,得k 2x 2-2px=0,因为k 2=3,所以3x 2-2px =0,解得x =0或x =2p 3,设P (x 1,y 1),则x 1=2p3,又O (0,0),所以|OP |=1+k 2|x 1-0|=2×2p3=8,解得p =6.12.(2024·陕西咸阳二模)过抛物线y =14x 2的焦点F 的直线l 与抛物线交于A ,B 两点,若l的倾斜角为45°,则线段AB 的中点到x 轴的距离是________.答案3解析由题意,抛物线方程为x 2=4y ,则F (0,1),∴直线l 的方程为y =x +1,将直线方程代入抛物线方程,整理,得x 2-4x -4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,故线段AB的中点的横坐标为x 1+x 22=2,代入直线l 的方程,得y =3,∴线段AB 的中点到x 轴的距离是3.13.(2024·贵州遵义统考)已知抛物线x 2=2y 上两点A ,B 关于点M (2,t )对称,则直线AB 的斜率为________.答案2解析设A (x 1,y 1),B (x 2,y 2),代入抛物线方程x 2=2y ,21=2y 1,22=2y 2,则x 21-x 22=2(y 1-y 2)①,因为A ,B 两点关于点M (2,t )对称,则x 1≠x 2,x 1+x 2=4,所以由①得y 1-y 2x 1-x 2=x 1+x 22=2,即直线AB 的斜率为2.14.(2023·山东鄄城三模)已知抛物线C :y 2=2px (p >0)的焦点为F ,过A (-1,0)作抛物线C 的切线,切点为B ,|BF |=3,则抛物线C 上的动点P 到直线l :x -y +4=0的距离与到y 轴的距离之和的最小值为________.答案32-2解析根据抛物线的对称性,不妨设B (x 0,y 0)(y 0>0),由抛物线定义知,|BF |=x 0+p2=3,∴x 0=3-p2>0,∴p <6,∴y 0=6p -p 2,当y >0时,y =2px ,∴y ′=2p 2x ,∴2p23-p2=6p -p 23-p 2+1,解得p =0(舍去)或p =4或p =203(舍去),则抛物线C 的方程为y 2=8x ,焦点F (2,0),准线方程为x =-2,焦点F (2,0)到直线l :x -y +4=0的距离d =|2-0+4|12+(-1)2=32,抛物线C上的动点P 到直线l :x -y +4=0的距离与到y 轴的距离之和的最小值为32-2.四、解答题15.已知F 为抛物线T :x 2=4y 的焦点,直线l :y =kx +2与T 交于A ,B 两点.(1)若k =1,求|FA |+|FB |的值;(2)点C (-3,-2),若∠CFA =∠CFB ,求直线l 的方程.解由已知得F (0,1),设12=kx +2,2=4y ,得x 2-4kx -8=0,所以x 1+x 2=4k ,①x 1x 2=-8.②(1)|FA |+|FB |=x 214+1+x 224+1=(x 1+x 2)2-2x 1x 24+2.当k =1时,由①②,得|FA |+|FB |=10.(2)由题意可知,FA →1,x 214-FB →2,x 224-FC →=(-3,-3).由∠CFA =∠CFB ,得cos 〈FA →,FC →〉=cos 〈FB →,FC →〉,即FA →·FC →|FA →||FC →|=FB →·FC →|FB →||FC →|,又|FA |=x 214+1,|FB |=x 224+1,所以由FA →·FC →|FA →||FC →|=FB →·FC→|FB →||FC →|,得4+2(x 1+x 2)-x 1x 2=0,即4+8k +8=0,解得k =-32,所以直线l 的方程为3x +2y -4=0.16.(2024·江西南昌等四地联考)已知直线l :x -y +1=0与抛物线C :x 2=2py (p >0)交于A ,B 两点,|AB |=8.(1)求p ;(2)设抛物线C 的焦点为F ,过点F 且与l 垂直的直线与抛物线C 交于E ,G 两点,求四边形AEBG 的面积.解(1)设A (x A ,y A ),B (x B ,y B ),-y +1=0,2=2py ,可得x 2-2px -2p =0,易得Δ=4p 2+8p >0,所以x A +x B =2p ,x A x B =-2p ,则|AB |=2×(x A +x B )2-4x A x B =22×p 2+2p =8,即p 2+2p -8=0,因为p >0,所以p =2.(2)由题意可得抛物线C 的焦点为F (0,1),直线EG 的方程为x +y -1=0.+y -1=0,2=4y ,化简可得x 2+4x -4=0,则Δ=16+16>0,设E (x 1,y 1),G (x 2,y 2),则x 1+x 2=-4,y 1+y 2=2-(x 1+x 2)=6,则|EG |=y 1+y 2+p =8,因为AB ⊥EG ,所以S 四边形AEBG =12|AB |·|EG |=12×8×8=32.17.(多选)(2023·云南昆明模拟)设抛物线C :y 2=4x 的焦点为F ,O 为坐标原点,过F 的直线与C 交于A (x 1,y 1),B (x 2,y 2)两点,则()A .∠AOB 可能为直角B .x 1x 2为定值C .若与抛物线C 分别相切于点A ,B 的两条切线交于点N ,则点N 在抛物线C 的准线上D .以BF 为直径的圆与y 轴有两个交点答案BC解析设直线l AB :x =ty +1,与y 2=4x 联立并消去x ,得y 2-4ty -4=0,y 1y 2=-4,则x 1x 2=y 21y 2216=1,故B 正确;因为x 1x 2=1,所以k OA ·k OB =y 1y 2x 1x 2≠-1,所以∠AOB ≠π2,故A 不正确;设N (x 0,y 0),由y 2=4x ,得y =±2x ,所以y ′=±1x ,因为AN ,BN 均为切线,设k AN =1x 1,k BN =-1x 2,则AN 的方程为y -y 1=1x 1(x -x 1),化简,得yy 1-2x -2x 1=0,BN 的方程为y -y 2=-1x 2(x -x 2),化简,得yy 2-2x -2x 2=0,因为AN 与BN 的交点为N (x 0,y 0),所以y 0y 1-2x 0-2x 1=0,y 0y 2-2x 0-2x 2=0,则直线AB 的方程为y 0y -2x 0-2x =0,由于直线AB 过点F (1,0),所以x 0=-1,又因为抛物线C 的准线方程为x =-1,所以点N 在抛物线C 的准线上,故C 正确;设BF 的中点,|BF |2=1+x 22,则以BF 为直径的圆与y 轴相切,故D 不正确.故选BC.18.(多选)(2023·河北秦皇岛模拟)过抛物线C :y 2=2px (p >0)上一点A (1,-4)作两条相互垂直的直线,与C 的另外两个交点分别为M ,N ,则()A .C 的准线方程是x =-4B .过C 的焦点的最短弦长为8C .直线MN 过定点(0,4)D .当点A 到直线MN 的距离最大时,直线MN 的方程为2x +y -38=0答案AD解析将A (1,-4)代入C 的方程中,得p =8,所以C 的方程为y 2=16x ,所以C 的准线方程是x =-4,故A 正确;当过C 的焦点且与x 轴垂直时弦长最短,此时弦长为16,故B 不正确;设y y 直线MN 的方程为x =my +n ,将直线MN 的方程代入C 的方程,得y 2-16my -16n =0,所以y 1+y 2=16m ,y 1y 2=-16n .因为AM ⊥AN ,所以AM →·AN →=1,y 1+1,y 2+=(y 21-16)(y 22-16)256+(y 1+4)(y 2+4)=0.因为y 1≠-4,y 2≠-4,所以(y 1+4)(y 2+4)≠0,所以(y 1-4)(y 2-4)256+1=0,整理得y 1y 2-4(y 1+y 2)+272=0,所以-16n -64m +272=0,得n =-4m +17,所以直线MN 的方程为x =m (y -4)+17,所以直线MN 过定点P (17,4),故C 不正确;当MN ⊥AP 时,点A 到直线MN 的距离最大,此时直线MN 的方程为2x +y -38=0,故D 正确.19.(2023·河北石家庄三模)已知M ,N 为抛物线C :y 2=2px (p >0)上不同两点,O 为坐标原点,OM ⊥ON ,过O 作OH ⊥MN 于H ,且点H (2,2).(1)求直线MN 的方程及抛物线C 的方程;(2)若直线l 与直线MN 关于原点对称,Q 为抛物线C 上一动点,求点Q 到直线l 的距离最短时,点Q 的坐标.解(1)如图,由点H (2,2),得直线OH 的斜率为1,又OH ⊥MN ,则直线MN 的斜率为-1,故直线MN 的方程为y -2=-(x -2),整理,得直线MN 的方程为x +y =4.设M (x 1,y 1),N (x 2,y 2),+y =4,2=2px ,得y 2+2py -8p =0,1+y 22p ,1y 2=-8p ,由OM ⊥ON ,得OM →·ON →=0,即x 1x 2+y 1y 2=y 21y 224p2+y 1y 2=0,因为y 1y 2≠0,所以y 1y 2=-4p 2,所以-4p 2=-8p ,解得p =2,故抛物线C 的方程为y 2=4x .(2)设点A (x ,y )是直线l 上任一点,则点A 关于原点的对称点A ′(-x ,-y )在直线MN 上,所以-x +(-y )=4,即直线l 的方程为x +y =-4.设点Q (x 0,y 0),则y 20=4x 0,点Q 到直线l 的距离d =|x 0+y 0+4|2=|y 204+y 0+4|2=(y 0+2)2+1242,当y 0=-2时,d 取得最小值322,此时Q (1,-2).20.(2023·辽宁沈阳模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,且l 1与l 2交于点M .(1)求p 的值;(2)若l 1⊥l 2,求△MAB 面积的最小值.解(1)由题意知,准线方程为y =-p 2,焦点到准线的距离为2,即p =2.(2)由(1)知,抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x ,设12l 1:y -x 214=x 12(x -x 1),l 2:y -x 224=x 22(x -x 2),由于l 1⊥l 2,所以x 12·x 22=-1,即x 1x 2=-4.设直线l 的方程为y =kx +m ,与抛物线的方程联立,=kx +m ,2=4y ,消去y ,得x 2-4kx -4m=0,Δ=16k 2+16m >0,所以x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1,即直线l :y =kx +1,此时Δ=16k 2+16>0.=x 12x -x 214,=x 22x -x 224,=2k ,=-1,即M (2k ,-1).点M 到直线l 的距离d =|k ·2k +1+1|1+k 2=21+k 2,|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=4(1+k 2),所以S =12×4(1+k 2)×21+k 2=4(1+k 2)32≥4,当k =0时,△MAB 的面积取得最小值4.。
直线与抛物线的位置关系
![直线与抛物线的位置关系](https://img.taocdn.com/s3/m/f14f2613b4daa58da0114aad.png)
得到一元一次方程,容易 解出交点坐标为(9,6)
二、判断方法探讨
1、直线与抛物线的对称轴平行
变式练习:
y
若直线y=kx+1与抛物
线y2= x仅有一个公共
点,则 k 的值?
O
x
2、直线与抛物线的对称轴不平行
y
O
例:判断直线 y = x -1与
抛物线 y2 =4x 的位置 关系及求弦长?
x 计算结果:
相交,弦长为8。
2、直线与抛物线的对称轴不平行
y
O
变式练习:
倾斜角为1350 的
直线,经过抛物线
y2 = 8x的焦点,则
x 截得的弦长是多少?
(方法总结)
判断直线与抛物线的对称轴情况
平行
不平行
联立直线和抛物线
直线与抛物线相 交(一个交点)
利用弦长公式
课后作业:
习题8.6 2 题
yห้องสมุดไป่ตู้
O
x
; https:/// 炒股配资什么意思 ;
1、直线与圆
y
0
x
2、直线和椭圆
y
F1 0
F2
x
3、直线与双曲线
y
渐进线方程
..
F
O
x
一、直线与抛物线位置关系种类
y 相离
O
相切
x
相交
一个交点或者 两个交点
二、判断方法探讨
1、直线与抛物线的对称轴平行
y
O
例:判断直线 y = 6与抛
物线 y2 =4x的位置
关系及求交点坐标?
x
计算结果:
之后他再找那丫头说说情,或许能打动她也不一定,如今是不可能了.面对众人の喝骂,卓文鼎态度冷淡.身后の
考点102直线与抛物线的位置关系
![考点102直线与抛物线的位置关系](https://img.taocdn.com/s3/m/6ccdfcc150e2524de5187eeb.png)
考点102直线与抛物线的位置关系一、课本基础提炼1.研究直线与抛物线的位置关系,一般是联立两曲线方程,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”、“整体代入”、“点差法”以及定义的灵活应用.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式二级结论必备过抛物线焦点的动直线与抛物线交于点A,B,则该抛物线在点A,B处的两切线的交点轨迹是抛物线的准线.1.直线与抛物线相交时的弦长问题若直线过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用|AB|=x1+x2+p;若直线不过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用,对于此类问题,应熟练地利用韦达定理设而不求计算弦长,另外注意与面积有关的问题,常用到弦长公式.例1.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.【解析】(1)由题可知F,则该直线方程为代入y2=2px(p>0),得设M(x1,y1),N(x2,y2),则有x1+x2=3p.∵|MN|=8,∴x1+x2+p=8,即3p+p=8,解得p=2,∴抛物线的方程为y2=4x.(2)设直线l的方程为y=x+b,代入y2=4x,得x2+(2b-4)x+b2=0.∵l为抛物线C的切线,∴Δ=0,解得b=1.∴l的方程为y=x+1.设P(m,m+1),则=(x1-m,y1-(m+1)),=(x2-m,y2-(m+1)),∴=(x1-m)(x2-m)+[y1-(m+1)][y2-(m+1)]=x1x2-m(x1+x2)+m2+y1y2-(m+1)(y1+y2)+(m+1)2.由(1)可知:x1+x2=6,x1x2=1,∴(y1y2)2=16x1x2=16,y1y2=-4.,=1-6m+m2-4-4(m+1)+(m+1)2=2(m2-4m-3)=2[(m-2)2-7]≥-14,当且仅当m=2,即点P的坐标为(2,3)时,的最小值为-14.例2.抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O 或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.【解析】由题意,可设l的方程为y=x+m,-5<m<0.由方程组,消去y,得x2+(2m-4)x+m2=0 ,①∵直线l与抛物线有两个不同交点M、N,∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0,解得m<1,又-5<m<0,∴m的范围为(-5,0)设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1•x2=m2,点A到直线l的距离为,从而=4(1-m)(5+m)2,当且仅当2-2m=5+m,即m=-1时取等号.故直线l的方程为y=x-1,△AMN的最大面积为2.抛物线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为“点差法”.例3.已知抛物线y2=4x的一条弦的斜率为3,它与直线交点恰为这条弦的中点M,则点M的坐标为_______.【解析】设弦端点P(x1,y1)、Q(x2,y2),弦PQ的中点M(x0,y0),则x1+x2=2x0=1,y1+y2=2y0,又两式相减得(y1+y2)(y1-y2)=4(x1-x2)即2y0(y1-y2)=4(x1-x2),∴点M的坐标为3.抛物线的切线问题由于抛物线x2=2py(p≠0),可转化为函数,因此我们可以借助导数的几何意义来研究抛物线的切线.例4. 已知抛物线x2=2y,过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为________.【解析】由x2=2y,得,∴y′=x.设P(x1,y1),Q(x2,y2),∴抛物线在P,Q两点处的切线的斜率分别为x1,x2,∴过点P的抛物线的切线方程为y-y1=x1(x-x1),又∴切线方程为,同理可得过点Q的切线方程为,两切线方程联立解得又抛物线焦点F的坐标为,易知直线l的斜率存在,可设直线l的方程为,由,得x2-2mx-1=0,所以x1x2=-1,所以4.面积问题求三角形或四边形的面积最值是高考中的常见问题,解决这类问题的基本方法是把面积表示为某一变量的函数,再转化为函数求最值,或利用基本不等式求最值.例5.(2014•高考四川卷)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA→•OB→=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2 B.3【解析】设直线AB的方程为x=ny+m(如图),A(x1,y1),B(x2,y2),∴x1x2+y1y2=2.∴y1y2=-2.联立得y2-ny-m=0, ∴y1y2=-m=-2,∴m=2,即点M(2,0).又S△ABO=S△AMO+S△BMO当且仅当时,等号成立.例6.已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.(1)求a的取值范围.(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.【解析】(1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0.∴4ap+2p2≤p2,即4ap≤-p2又∵p>0,(2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y),由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,则有∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0)点N到AB的距离为从而当a有最大值时,S有最大值为5.对称问题根据圆锥曲线上存在不同两点关于某直线对称求参数范围,是一类典型问题,解决此类对称问题,要抓住三点:(1)中点在对称轴上;(2)两个对称点的连线与对称轴垂直;(3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”、“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围.例7.已知抛物线y=ax2-1(a≠0)上总有关于直线x+y=0对称的相异两点,求a的取值范围.解:设A(x1,y1)和B(x2,y2)为抛物线y=ax2-1上的关于直线x+y=0对称的两相异点,则两式相减,得y1-y2=a(x1-x2)(x1+x2).再由x1≠x2,得设线段AB的中点为M(x0,y0),则由M点在直线x+y=0上,得∴直线AB的方程为联立直线AB与抛物线的方程并消去y,得依题意,上面的方程有两个相异实根,∴a的取值范围是1.(2014•潍坊模拟)过抛物线y2=4x的焦点且斜率为的直线l与抛物线y2=4x交于A,B两点,则|AB|的值为( )【答案】A【解析】设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线l的方程为,代入抛物线方程得3x2-10x+3=0.根据抛物线的定义,可知|AB|=x1+1+x2+1=2.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )【答案】D【解析】由直线方程知直线过定点即抛物线焦点(2,0),由|FA|=2|FB|知x A+2=2(x B+2) 联立方程用根与系数关系可求3.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=0解方程组,得ax2-kx-b=0,可知,代入验证即可.4.已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为_______.答案】y2=4x【解析】设抛物线为y2=kx,与y=x联立方程组,消去y,得:x2-kx=0, x1+x2=k=2×2,故y2=4x.1.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,若点P恰为AB的中点,则|AF|+|BF|=( )A.12B.10C.6D.8 【答案】D【解析】设点A(x1,y1),B(x2,y2),则有y1+y2=2×1=2,|AF|+|BF|=(y1+3)+(y2+3)=(y1+y2)+6=8.故选D.2.已知双曲线(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为3,则p=( )A.1 C.2 D.3 【答案】C【解析】由双曲线的离心率.∴双曲线的渐近线方程为.由题意可设得p=2或-2(舍去).故选C.3.直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为( )A.48 B.56 C.64 D.72 【答案】A【解析】由题不妨设A在第一象限,联立y=x-3和y2=4x可得A(9,6),B(1,-2),而准线方程是x=-1,所以|AP|=10,|QB|=2,|PQ|=8,故S梯形APQB=(|AP|+|QB|)•|PQ|=48.4.过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,则这样的直线有条_______.注意到点(2,4)是抛物线上的点,用数形结合知满足题意的直线有两条,其一是过该点的切线;其二是过该点且与对称轴平行的直线.故填2.5.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若FQ=2,则直线l的斜率等于_______.【答案】±1【解析】设A(x1,y1),B(x2,y2),直线l的方程为y=k(x+1),联立得k2x2+(2k2-4)x+k2=0,x1+x2y1+y2=k(x1+x2)+2k=,设Q(x0,y0),则,又F(1,0),,解得k=±11.(2015福建文19)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0) ,延长AF交抛物线E于点B,求证:以点F为圆心且与直线GA相切的圆,必与直GB相切.【答案】(1)y2=4x;(2)见解析【解析】(1)由抛物线的定义得.因为|AF|=3,即,解得p=2,所以抛物线E的方程为y2=4x.(2)解法一:因为点A(2,m),在抛物线E:y2=4x上,所以,由抛物线的对称性,不妨设由,F(1,0)可得直线AF的方程为,得2x2-5x+2=0.解得x=2或,从而又G(-1,0),所以所以k GA+K GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.解法二:设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以,由抛物线的对称性,不妨设由,F(1,0)可得直线AF的方程为,得2x2-5x+2=0.解得x=2或,从而又G(-1,0),故直线GA的方程为从而又直线GB的方程为所以点F到直线GB的距离这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.2.设不同的两点A(x1,y1),B(x2,y2)在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上的截距的取值范围.【查看答案】【答案】(1) x1+x2=0 ;(2)【解析】(1)F∈l⇔|FA|=|FB|⇔A,B两点到抛物线的准线的距离相等,∵抛物线的准线是x轴的平行线,y1≥0,y2≥0,依题意y1,y2不同时为0,∴上述条件等价于∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F.(2)设l在y轴上的截距为b,依题意得l的方程为由y=2x2,得过A,B的直线方程为∵直线AB与抛物线有两个不同交点,∴联立得32x2+8x+5-16b=0,Δ=-9+32b>0,.因此直线l在y轴上截距的取值范围是3.如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l′(斜率不等于零)与(1)中的轨迹C交于不同的两点E,F(E在B,F之间),试求△OBE与△OBF面积之比的取值范围.(1) 以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆;(2)【解析】(1)由x2=4y,得∴直线l的斜率为y′|x=2=1,故直线l的方程为y=x-1,∴点A坐标为(1,0).设M(x,y),则由得整理得∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆.(2)由题意知直线l′的斜率存在且不为零,设l′的方程为y=k(x-2)(k≠0),①将①代入整理,得(2k2+1)x2-8k2•x+(8k2-2)=0,由Δ>0得设E(x1,y1),F(x2,y2),由此可得,且0<λ<1.由②知(x1-2)•(x2-2)=x1x2-2(x1+x2)+4又∵0<λ<1,∴△OBE与△OBF面积之比的取值范围是。
12.8抛物线的性质2(直线与抛物线的位置关系)
![12.8抛物线的性质2(直线与抛物线的位置关系)](https://img.taocdn.com/s3/m/ac854f4f3c1ec5da50e270ad.png)
消去 x 得 ky 2 4 y 4 0
小结
1、点P在抛物线内,则过P点的直线与抛物线有 一个交点的直线有__________ 条; 1 2、点P在抛物线上,则过P点的直线与抛物线有 2 一个交点的直线有__________ 条 3、点P在抛物线外,则过P点的直线与抛物线有 3 一个交点的直线有__________ 条
>0 相交
=0 相切
<0 相离
直线与圆锥曲线的位置关系题型
1、交点个数问题 ——联立方程组或看图
1 2、弦长问题 ——l 1 k x1 x2 1 2 y1 y2 k
2
3、弦中点问题 ——点差法
例题
1、已知抛物线的方程
y 4x ,直线L过定点
2
(-2,1),斜率为K。K为何值时,直线与抛物线
2、顶点在原点, 焦点在x轴上的抛物线被直 线y 2x 1截得的弦长为 15, 求抛物线的方程.
[解]设所求抛物线方程为y 2 ax a 0 , 直线y 2x 1与抛物线交于A x1 , y1 , B x 2 , y 2 . y 2 ax, 由 消去y得4x 2 4 a x 1 0, y 2 x 1, a4 1 则x1 x 2 , x1 x 2 . 4 4
变式:过Q(2,1)做抛物线y 4 x的弦AB ,
2
弦AB正好被Q平分,求AB所在直线.
思考:过抛物线y 2 x的顶点作两条互相垂直的弦
2
OA, OB, 求证:直线AB与x轴的交点为定点.
解:(1)设lOA : y kx, 则lOB : y
y kx x 2 , y 2 联立 2 A A 2 k k y 2x
直线和抛物线的位置关系
![直线和抛物线的位置关系](https://img.taocdn.com/s3/m/88676e8aec3a87c24028c47c.png)
直线和抛物线的位置关系 姓名【预习达标】1.直线与抛物线的位置关系:(1)位置关系的判定:联立直线:l y k x m =+和抛物线22(0)y p x p =>消y 整理得:2222()0k x k m p x m +-+= 当0a ≠时0∆>⇔直线与抛物线相交,有两个不同公共交点0∆=⇔直线与抛物线相切,只有一个公共交点0∆<⇔直线与抛物线相离,没有公共交点当0a =时,则直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能成为相切(2)若直线与抛物线相交于112(,),(,)A x y B x y ,则弦长2212121()4AB k x x x x =++-或21212211()4AB y y y y k =++-,特别注意解题是结合韦达定理来处理问题2.焦点弦问题:设过抛物线)0(22≠=p px y 的焦点(,0)2p F 的直线与抛物线交于),(),,(1111y x B y x A ,直线与的斜率分别为21,k k ,直线的倾斜角为,则有 ①221p y y -=;②4221p x x =;③421-=k k ;④α221sin 2p p x x AB =++=, ⑤αcos 1-=p FA ,αcos 1+=p FB ;⑥112AF BF p+=, ⑦过,A B 两点做准线的垂线,垂足分别为,M N ,则090MFN ∠=, ⑧通径P AB 2=;⑨以弦AB 长为直径的圆总与准线相切【例题讲解】题型一:直线和抛物线位置关系例1.设抛物线28y x =的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,求直线l 的斜率的取值范围 ( []1,1- )1.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值. (40,1,5a =--)2.已知直线b x y l +=:与抛物线y x C 4:2=相切于点A(1)求实数b 的值(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程题型二:和弦长有关问题 例2.已知直线2y kx =-交抛物线28y x =于,A B 两点,且AB 的中点为0(2,)M y ,求0y 及弦AB 的长例3. 已知抛物线2y x =-与直线(1)y k x =+相交于,A B 两点,当OAB ∆的面积等于10时,求k 的值变式练习:1.已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若S △PAB =39,求P 点的坐标。
高一数学复习考点知识专题讲解23---抛物线的简单几何性质
![高一数学复习考点知识专题讲解23---抛物线的简单几何性质](https://img.taocdn.com/s3/m/0100e4e9fad6195f302ba6e9.png)
高一数学复习考点知识专题讲解抛物线的简单几何性质学习目标 1.掌握抛物线的几何性质.2.掌握直线与抛物线的位置关系的判断及相关问题.知识点一 抛物线的简单几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R对称轴 x 轴 x 轴 y 轴 y 轴 焦点坐标F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 准线方程 x =-p 2x =p 2y =-p 2y =p 2顶点坐标 O (0,0) 离心率 e =1 通径长2p知识点二 直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程组⎩⎪⎨⎪⎧y =kx +b ,y 2=2px 解的个数,即二次方程k 2x 2+2(kb -p )x +b 2=0解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;若Δ=0,直线与抛物线有一个公共点;若Δ<0,直线与抛物线没有公共点.当k =0时,直线与抛物线的轴平行或重合,此时直线与抛物线有1个公共点.1.抛物线关于顶点对称.( × )2.抛物线只有一个焦点,一条对称轴,无对称中心.( √ ) 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.( √ )4.抛物线x 2=4y ,y 2=4x 的x ,y 的范围是不同的,但是其焦点到准线的距离是相同的,离心率也相同.( √ )5.“直线与抛物线有一个交点”是“直线与抛物线相切”的必要不充分条件.( √ )一、抛物线的几何性质的应用例1 (1)等腰直角三角形AOB 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是( )A .8p 2B .4p 2C .2p 2D .p 2 答案 B解析 因为抛物线的对称轴为x 轴,内接△AOB 为等腰直角三角形,所以由抛物线的对称性知,直线AB 与抛物线的对称轴垂直,从而直线OA 与x 轴的夹角为45°.由方程组⎩⎪⎨⎪⎧y =x ,y 2=2px得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =2p ,y =2p ,不妨设A ,B 两点的坐标分别为(2p ,2p )和(2p ,-2p ). 所以|AB |=4p ,所以S △AOB =12×4p ×2p =4p 2.(2)已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交于A ,B 两点,|AB |=23,求抛物线方程.解 由已知,抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上. 故可设抛物线方程为y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点A (x 1,y 1),B (x 2,y 2). ∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称, ∴点A 与B 关于x 轴对称, ∴|y 1|=|y 2|且|y 1|+|y 2|=23, ∴|y 1|=|y 2|=3,代入圆x 2+y 2=4, 得x 2+3=4,∴x =±1,∴A (±1,3)或A (±1,-3),代入抛物线方程, 得(3)2=±a ,∴a =±3.∴所求抛物线方程是y 2=3x 或y 2=-3x .反思感悟 把握三个要点确定抛物线的简单几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x 还是y ,一次项的系数是正还是负. (2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p ;过焦点垂直于对称轴的弦(又称为通径)长为2p ;离心率恒等于1. 跟踪训练1 (1)边长为1的等边三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A ,B 的抛物线方程是( ) A .y 2=36x B .y 2=-33x C .y 2=±36x D .y 2=±33x答案 C解析 设抛物线方程为y 2=ax (a ≠0).又A ⎝⎛⎭⎫±32,12(取点A 在x 轴上方),则有14=±32a ,解得a =±36,所以抛物线方程为y 2=±36x .故选C.(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,△AOB 的面积为3,则抛物线的焦点坐标为( ) A .(2,0) B .(1,0) C .(8,0) D .(4,0) 答案 B解析 因为c a =2,所以c 2a 2=a 2+b 2a 2=4,于是b 2=3a 2,则ba =3,故双曲线的两条渐近线方程为y =±3x . 而抛物线y 2=2px (p >0)的准线方程为x =-p2,不妨设A ⎝⎛⎭⎫-p 2,3p 2,B ⎝⎛⎭⎫-p 2,-3p 2,则|AB |=3p ,又三角形的高为p2,则S △AOB =12·p2·3p =3,即p 2=4.因为p >0,所以p =2,故抛物线焦点坐标为(1,0). 二、直线与抛物线的位置关系命题角度1 直线与抛物线位置关系的判断例2 已知直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C :只有一个公共点;有两个公共点;没有公共点.解 联立⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,(*)式只有一个解x =14,∴y =1,∴直线l 与C 只有一个公共点⎝⎛⎭⎫14,1, 此时直线l 平行于x 轴.当k ≠0时,(*)式是一个一元二次方程, Δ=(2k -4)2-4k 2=16(1-k ). ①当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时直线l 与C 相交;②当Δ=0,即k =1时,l 与C 有一个公共点,此时直线l 与C 相切; ③当Δ<0,即k >1时,l 与C 没有公共点,此时直线l 与C 相离. 综上所述,当k =1或0时,l 与C 有一个公共点; 当k <1,且k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点. 命题角度2 直线与抛物线的相交问题例3 已知抛物线方程为y 2=2px (p >0),过此抛物线的焦点的直线与抛物线交于A ,B 两点,且|AB |=52p ,求AB 所在的直线方程. 解 由题意知焦点F ⎝⎛⎭⎫p 2,0,设A (x 1,y 1),B (x 2,y 2), 若AB ⊥x 轴,则|AB |=2p ≠52p ,不满足题意.所以直线AB 的斜率存在,设为k , 则直线AB 的方程为y =k ⎝⎛⎭⎫x -p2,k ≠0. 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得y 1+y 2=2pk ,y 1y 2=-p 2.所以|AB |=⎝⎛⎭⎫1+1k 2·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p ⎝⎛⎭⎫1+1k 2=52p ,解得k =±2.所以AB 所在的直线方程为2x -y -p =0 或2x +y -p =0. 延伸探究本例条件不变,求弦AB 的中点M 到y 轴的距离.解 如图,过A ,B ,M 分别作准线x =-p2的垂线交准线于点C ,D ,E .由定义知|AC |+|BD |=52p ,则梯形ABDC 的中位线|ME |=54p ,∴M 点到y 轴的距离为54p -p 2=34p .反思感悟 直线与抛物线的位置关系(1)设直线方程时要特别注意斜率不存在的直线应单独讨论,求解交点时不要忽略二次项系数为0的情况.(2)一般弦长:|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (3)焦点弦长:设焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p . 跟踪训练2 (1)过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( ) A .4条 B .3条 C .2条 D .1条 答案 B解析 如图,过P 可作抛物线的两条切线,即y 轴和l 1均与抛物线只有一个公共点,过P 可作一条与x 轴平行的直线l 2与抛物线只有一个公共点.故过点P 与抛物线只有一个公共点的直线共3条,故选B.(2)设抛物线C :x 2=4y 焦点为F ,直线y =kx +2与C 交于A ,B 两点,且||AF ·||BF =25,则k 的值为( )A .±2B .-1C .±1D .-2 答案 A解析 设A (x 1,y 1),B (x 2,y 2),将直线y =kx +2代入x 2=4y , 消去x 得y 2-(4+4k 2)y +4=0, 所以y 1·y 2=4,y 1+y 2=4+4k 2,抛物线C :x 2=4y 的准线方程为y =-1, 因为||AF =y 1+1,||BF =y 2+1,所以||AF ·||BF =y 1·y 2+(y 1+y 2)+1=4+4+4k 2+1=25⇒k =±2.1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .-43 B .-1 C .-34 D .-12答案 C解析 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,所以-p 2=-2,解得p =4,所以y 2=8x ,所以焦点F 的坐标为(2,0),故直线AF 的斜率k =3-0-2-2=-34.2.(多选)以y 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D. x 2=-8y答案 CD解析 设抛物线方程为x 2=2py 或x 2=-2py (p >0), 依题意得y =p2,代入x 2=2py 或x 2=-2py 得|x |=p ,∴2|x |=2p =8,p =4.∴抛物线方程为x 2=8y 或x 2=-8y .3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) 答案 B解析 由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0. 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B.4.抛物线y 2=4x 的弦AB ⊥x 轴,若|AB |=43,则焦点F 到直线AB 的距离为________. 答案 2解析 由抛物线的方程可知F (1,0),由|AB |=43且AB ⊥x 轴得y 2A =(23)2=12,∴x A =y 2A4=3,∴所求距离为3-1=2.5.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 答案 0或1解析 当k =0时,直线与抛物线有唯一交点, 当k ≠0时,联立方程消去y ,得 k 2x 2+4(k -2)x +4=0, 由题意Δ=16(k -2)2-16k 2=0, ∴k =1.1.知识清单:(1)抛物线的几何性质.(2)直线与抛物线的位置关系.2.方法归纳:待定系数法、数形结合法、代数法.3.常见误区:四种形式的抛物线性质混淆;忽略直线的特殊情况.1.若抛物线y2=4x上一点P到x轴的距离为23,则点P到抛物线的焦点F的距离为()A.4 B.5 C.6 D.7答案 A解析由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为23,则P(3,±23),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选A.2.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线()A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在答案 B解析当斜率不存在时,x1+x2=2不符合题意.当斜率存在时,由焦点坐标为(1,0),可设直线方程为y=k(x-1),k≠0,由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0, ∴x 1+x 2=2k 2+4k 2=5,∴k 2=43,即k =±233.因而这样的直线有且仅有两条.3.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |等于( ) A .4 3 B .8 C .8 3 D .16 答案 B解析 由抛物线方程y 2=8x ,可得准线l :x =-2,焦点F (2,0),设点A (-2,n ), ∴-3=n -0-2-2,∴n =4 3.∴P 点纵坐标为4 3. 由(43)2=8x ,得x =6, ∴P 点坐标为(6,43),∴|PF |=|P A |=|6-(-2)|=8,故选B.4.抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|F A |+|FB |等于( ) A .2 B .3 C .5 D .7 答案 D解析 设A (x 1,y 1),B (x 2,y 2), 则|F A |+|FB |=x 1+x 2+2.由⎩⎪⎨⎪⎧y 2=4x ,2x +y -4=0得x 2-5x +4=0,∴x 1+x 2=5,x 1+x 2+2=7.5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( )A .18B .24C .36D .48答案 C解析 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F ⎝⎛⎭⎫p 2,0, ∵当x =p 2时,|y |=p , ∴|AB |=2p =12,∴p =6,又点P 到直线AB 的距离为p 2+p 2=p =6, 故S △ABP =12|AB |·p =12×12×6=36. 6.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为__________.答案 ⎝⎛⎭⎫18,±24 解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18,∴y =±24,∴此点坐标为⎝⎛⎭⎫18,±24. 7.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 是FN 的中点,则|FN |=________.答案 6解析 如图,过点M 作MM ′⊥y 轴,垂足为M ′,|OF |=2,∵M 为FN 的中点,|MM ′|=1,∴M 到准线距离d =|MM ′|+p 2=3, ∴|MF |=3,∴|FN |=68.已知点A 到点F (1,0)的距离和到直线x =-1的距离相等,点A 的轨迹与过点P (-1,0)且斜率为k 的直线没有交点,则k 的取值范围是________.答案 (-∞,-1)∪(1,+∞)解析 设点(x ,y ),依题意得点A 在以y 2=4x .过点P (-1,0)且斜率为k 的直线方程为y =k (x +1),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k ,得ky 2-4y +4k =0,当k =0时,显然不符合题意; 当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞).9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.解 设所求抛物线的标准方程为x 2=2py (p >0),设A (x 0,y 0),由题意知M ⎝⎛⎭⎫0,-p 2, ∵|AF |=3,∴y 0+p 2=3, ∵|AM |=17,∴x 20+⎝⎛⎭⎫y 0+p 22=17, ∴x 20=8,代入方程x 20=2py 0得, 8=2p ⎝⎛⎭⎫3-p 2,解得p =2或p =4. ∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知抛物线C :y =2x 2和直线l :y =kx +1,O 为坐标原点.(1)求证:l 与C 必有两交点.(2)设l 与C 交于A ,B 两点,且直线OA 和OB 斜率之和为1,求k 的值.(1)证明 联立抛物线C :y =2x 2和直线l :y =kx +1,可得2x 2-kx -1=0,所以Δ=k 2+8>0,所以l 与C 必有两交点.(2)解 设A (x 1,y 1),B (x 2,y 2), 则y 1x 1+y 2x 2=1,① 因为y 1=kx 1+1,y 2=kx 2+1,代入①,得2k +⎝⎛⎭⎫1x 1+1x 2=1,② 由(1)可得x 1+x 2=12k ,x 1x 2=-12,代入②得k =1.11.若点M (1,1)是抛物线y 2=4x 的弦AB 的中点,则弦AB 的长为________.答案 15解析 设A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x ,可得y 21=4x 1,y 22=4x 2,两式相减,可得k =y 1-y 2x 1-x 2=4y 1+y 2=2, 所以直线AB 的方程为y -1=2(x -1),即y =2x -1,代入抛物线的方程得4x 2-8x +1=0,则x 1+x 2=2,x 1x 2=14, 则||AB =1+k 2·(x 1+x 2)2-4x 1x 2=5×⎝⎛⎭⎫22-4×14=15, 即弦AB 的长为15.12.已知A ,B 是抛物线y 2=2px (p >0)上两点,O 为坐标原点.若|OA |=|OB |,且△AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________.答案 x =5p 2解析 由抛物线的性质知A ,B 关于x 轴对称.设A (x ,y ),则B (x ,-y ),焦点为F ⎝⎛⎭⎫p 2,0.由题意知AF ⊥OB ,则有y x -p 2·-y x =-1. 所以y 2=x ⎝⎛⎭⎫x -p 2,2px =x ⎝⎛⎭⎫x -p 2. 因为x ≠0.所以x =5p 2. 所以直线AB 的方程为x =5p 2. 13.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 6解析 抛物线的焦点坐标F ⎝⎛⎭⎫0,p 2,准线方程为y =-p 2.代入x 23-y 23=1得||x = 3+p 24. 要使△ABF 为等边三角形,则tan π6=|x |p =3+p 24p =33,解得p 2=36,p =6. 14.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为________.答案 48解析 由⎩⎪⎨⎪⎧ y 2=4x ,y =x -3消去y 得x 2-10x +9=0,得x =1或9,即⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6. 所以|AP |=10,|BQ |=2或|BQ |=10,|AP |=2,所以|PQ |=8,所以梯形APQB 的面积S =10+22×8=48.15.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB→=0,则k 等于( )A.12B.22C. 2 D .2答案 D解析 由题意可知,抛物线的焦点为(2,0).设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -2).由⎩⎪⎨⎪⎧y =k (x -2),y 2=8x 得k 2x 2-(4k 2+8)x +4k 2=0, 则x 1+x 2=4k 2+8k 2,x 1x 2=4. y 1+y 2=k (x 1-2)+k (x 2-2)=k (x 1+x 2-4)=8k, y 1y 2=-8x 18x 2=-16.∴MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+y 1y 2-2(y 1+y 2)+4=x 1x 2+2(x 1+x 2)+4-16-16k +4=0, 解得k =2,故选D.16.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.解 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3,又F ⎝⎛⎭⎫32,0,所以直线l 的方程为y =3⎝⎛⎭⎫x -32. 联立⎩⎪⎨⎪⎧y =3⎝⎛⎭⎫x -32,y 2=6x ,消去y 得4x 2-20x +9=0,解得x 1=12,x 2=92, 故|AB |=1+(3)2×⎪⎪⎪⎪92-12=2×4=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义,知|AB |=|AF |+|BF |=x 1+p 2+x 2+p 2=x 1+x 2+p =x 1+x 2+3=9, 所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.。
高中数学同步学案 直线与抛物线的位置关系
![高中数学同步学案 直线与抛物线的位置关系](https://img.taocdn.com/s3/m/b60a819cfc0a79563c1ec5da50e2524de518d0a1.png)
第二课时 直线与抛物线的位置关系[读教材·填要点]直线与抛物线的位置关系设直线l :y =kx +m,抛物线:y 2=2px(p >0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx +c =0,(1)若a≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a =0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.[小问题·大思维]若直线与抛物线有且只有一个公共点,则直线与抛物线有什么样的位置关系?提示:直线与抛物线相切时,只有一个公共点,反过来,当只有一个公共点时,直线与抛物线相切或直线平行于抛物线的对称轴或与对称轴重合.直线与抛物线的位置关系若直线l :y =(a +1)x -1与曲线C :y 2=ax 恰好有一个公共点,试求实数a 的取值集合.[自主解答] 因为直线l 与曲线C 恰好有一个公共点,所以方程组⎩⎪⎨⎪⎧y =a +1x -1,y 2=ax有唯一一组实数解.消去y,得[(a +1)x -1]2=ax, 整理得(a +1)2x 2-(3a +2)x +1=0.①(1)当a +1=0,即a =-1时,方程①是关于x 的一元一次方程,解得x =-1,这时,原方程组有唯一解⎩⎪⎨⎪⎧x =-1,y =-1.(2)当a +1≠0,即a≠-1时,方程①是关于x 的一元二次方程.令Δ=(3a +2)2-4(a +1)2=a(5a +4)=0, 解得a =0或a =-45.当a =0时,原方程组有唯一解⎩⎪⎨⎪⎧x =1,y =0,当a =-45时,原方程组有唯一解⎩⎪⎨⎪⎧x =-5.y =-2.综上,实数a 的取值集合是⎩⎨⎧⎭⎬⎫-1,-45,0.若将“曲线C :y 2=ax 恰有一个公共点”改为“抛物线C :y 2=ax(a≠0)相交”,如何求解?解:列方程组⎩⎪⎨⎪⎧y =a +1x -1,y 2=ax a≠0,消去x 并化简,得(a +1)y 2-ay -a =0.(*)①当a +1=0即a =-1时:方程(*)化为y +1=0, ∴y =-1.∴方程组的解为⎩⎪⎨⎪⎧x =-1,y =-1,故直线与抛物线相交.②当a +1≠0即a≠-1时, 由Δ=(-a)2+4a(a +1)≥0,得 5a 2+4a≥0,结合a≠0, 解得a≤-45或a>0.综上所述,实数a 的取值范围是⎝⎛⎦⎥⎤-∞,-45∪(0,+∞).直线与抛物线的位置关系有三种,即相交、相切、相离,这三种位置关系可通过代数法借助判别式判断.当直线与抛物线的对称轴平行或重合时直线与抛物线也是相交,此时只有一个交点.1.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A. (1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解:(1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y 得x 2-4x -4b =0,(*)因为直线l 与抛物线C 相切, 所以Δ=(-4)2-4×(-4b)=0. 解得b =-1.(2)由(1)可知b =-1,故方程(*)为x 2-4x +4=0. 解得x =2,代入x 2=4y,得y =1, 故点A(2,1).因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 就等于圆心A 到抛物线的准线y =-1的距离. 即r =|1-(-1)|=2.所以圆A 的方程为(x -2)2+(y -1)2=4.弦长、中点弦问题已知顶点在原点,焦点在y 轴上的抛物线被直线x -2y -1=0截得的弦长为15,求此抛物线方程.[自主解答] 设抛物线方程为:x 2=ay(a≠0),由方程组⎩⎪⎨⎪⎧x 2=ay ,x -2y -1=0.消去y 得:2x 2-ax +a =0, ∵直线与抛物线有两个交点,∴Δ=(-a)2-4×2×a>0,即a <0或a >8. 设两交点坐标为A(x 1,y 1),B(x 2,y 2),则 x 1+x 2=a 2,x 1x 2=a 2,y 1-y 2=12(x 1-x 2),弦长为|AB|=x 1-x 22+y 1-y 22=54x 1-x 22=54[x 1+x 22-4x 1x 2]=145a 2-8a .∵|AB|=15,∴145a 2-8a =15,即a 2-8a -48=0,解得a =-4或a =12, ∴所求抛物线方程为:x 2=-4y 或x 2=12y.(1)研究直线与抛物线的弦长问题,通常不求弦的端点坐标,而是直接利用弦长公式|AB|=1+k 2|x 1-x 2|,另外要注意斜率不存在的情况,当弦过焦点时可利用焦点弦公式求解.(2)在直线与抛物线的问题中经常遇到中点弦的问题,处理的基本方法是点差法或利用根与系数的关系求出中点弦所在直线的斜率.2.过点Q(4,1)作抛物线y 2=8x 的弦AB,若弦恰被Q 平分,求AB 所在直线方程. 解:设以Q 为中点的弦AB 端点坐标为A(x 1,y 1),B(x 2,y 2),则有⎩⎪⎨⎪⎧y 21=8x 1, ①y 22=8x 2, ②x 1+x 2=8, ③y 1+y 2=2, ④k =y 1-y 2x 1-x 2,⑤ ①-②得(y 1+y 2)(y 1-y 2)=8(x 1-x 2). 将④代入,得y 1-y 2=4(x 1-x 2),4=y 1-y 2x 1-x 2.∴k =4.经验证,此时直线与抛物线相交.∴所求弦AB 所在直线方程为y -1=4(x -4), 即4x -y -15=0.抛物线中的定点、定值问题A,B 是抛物线y 2=2px(p>0)上的两点,并满足OA ⊥OB,求证:(1)A,B 两点的横坐标之积、纵坐标之积,分别都是一个定值; (2)直线AB 经过一个定点.[自主解答] (1)因为AB 斜率不为0,设直线AB 方程为my =x +b,由⎩⎪⎨⎪⎧my =x +b ,y 2=2px ,消去x,得y 2-2pmy +2pb =0.由Δ=(-2pm)2-8pb>0,又∵y 1+y 2=2pm,y 1y 2=2pb,OA ⊥OB, ∴x 1·x 2+y 1·y 2=0.∴y 21·y 224p2+y 1·y 2=0.∴b 2+2pb =0.∴b +2p =0.∴b =-2p. ∴y 1y 2=-4p 2,x 1·x 2=b 2=4p 2.所以A,B 两点的横坐标之积、纵坐标之积,分别是4p 2和-4p 2;(2)直线AB 的方程为my =x -2p, 所以AB 过定点(2p,0).直线与抛物线相交问题中有很多的定值问题,如果该定值是个待求的未知量,则可以利用特殊位置(如斜率不存在、斜率等于0等)找出该定值,然后证明该定值即为所求.3.过抛物线y 2=2px(p>0)的焦点F 作直线l 交抛物线于A,B,求证:y A ·y B =-p 2. 证明:①斜率不存在时y 1=p,y 2=-p, ∴y 1y 2=-p 2.②斜率存在时,⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x 得,y =k·y 22p -kp2,∴y 1·y 2=-kp 2k 2p =-p 2.解题高手 多解题 条条大路通罗马,换一个思路试一试抛物线y 2=x 上,存在P,Q 两点,并且P,Q 关于直线y -1=k(x -1)对称,求k 的取值范围. [解] 法一:设P(x 1,y 1),Q(x 2,y 2),∴⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2⇒(y 1-y 2)(y 1+y 2)=x 1-x 2.又∵⎩⎪⎨⎪⎧y 1-y 2=-1k x 1-x 2,y 1+y 22-1=k ⎝ ⎛⎭⎪⎫x 1+x 22-1,∴y 1+y 2=-k.∴-k 2-1=k ⎝ ⎛⎭⎪⎫y 21+y 222-1=k 2[(y 1+y 2)2-2y 1y 2-2]. ∴-k -2=k[k 2-2y 1(-k -y 1)-2]. ∴2ky 21+2k 2y 1+k 3-k +2=0. ∴Δ=4k 4-8k(k 3-k +2)>0. ∴k(-k 3+2k -4)>0. ∴k(k 3-2k +4)<0. ∴k(k +2)(k 2-2k +2)<0. ∴k ∈(-2,0).法二:设P(x 1,y 1),Q(x 2,y 2),且PQ 的中点M(x 0,y 0), 由题意可知直线y -1=k(x -1)的斜率存在,且k≠0. 不妨设直线PQ 的方程为x +ky +m =0,由⎩⎪⎨⎪⎧x +ky +m =0,y 2=x ,得y 2+ky +m =0. ∴y 1+y 2=-k. 即y 0=-k 2,x 0=12-1k.又∵中点M(x 0,y 0)在抛物线的内部, ∴y 20<x 0,∴k 3-2k +4k<0,即k +2k 2-2k +2k<0,∴k ∈(-2,0).1.若直线y =2x +p 2与抛物线x 2=2py(p>0)相交于A,B 两点,则|AB|等于( )A .5pB .10pC .11pD .12p解析:将直线方程代入抛物线方程, 可得x 2-4px -p 2=0.设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=4p,∴y 1+y 2=9p. ∵直线过抛物线的焦点,∴|AB|=y 1+y 2+p =10p. 答案:B2.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A,B 两点,则弦AB 的长为( ) A .213 B .215 C .217D .219解析:不妨设A,B 两点坐标分别为(x 1,y 1),(x 2,y 2), 由直线AB 斜率为-2,且过点(1,0)得直线AB 方程为y =-2(x -1), 代入抛物线方程y 2=8x 得4(x -1)2=8x, 整理得x 2-4x +1=0, ∴x 1+x 2=4,x 1x 2=1, ∴|AB|=1+k2|x 1-x 2|=5[x 1+x 22-4x 1x 2]=215.答案:B3.过点(0,1)作直线,使它与抛物线y 2=2x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:斜率不存在时,直线x =0符合题意,斜率存在时,由⎩⎪⎨⎪⎧y =kx +1,y 2=2x ,得k 2x 2+(2k -2)x +1=0, k =0时,符合题意, k≠0时,由Δ=0得k =12.答案:C4.已知△OAB 为等腰直角三角形,其中|OA|=|OB|,若A,B 两点在抛物线y =14x 2上,则△OAB 的周长是________.解析:设A(x 1,y 1),B(x 2,y 2),x 2<0<x 1,由|OA|=|OB|及抛物线的对称性知AB ⊥y 轴,y 1=x 1,又y 1=14x 21,所以x 1=y 1=4,故|OA|=|OB|=42,|AB|=8,△OAB 的周长为8+8 2.答案:8+8 25.已知抛物线y 2=2px(p >0),过其焦点且斜率为1的直线交抛物线于A,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________.解析:抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p 2,将其代入得:y 2=2px =2p ⎝ ⎛⎭⎪⎫y +p 2=2py +p 2,所以y 2-2py -p 2=0,所以y 1+y 22=p =2,所以抛物线的方程为y 2=4x,准线方程为x =-1.答案:x =-16.直线y =kx -2交抛物线y 2=8x 于A,B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长. 解:将y =kx -2代入y 2=8x 中变形整理得: k 2x 2-(4k +8)x +4=0,由⎩⎪⎨⎪⎧k≠0,4k +82-16k 2>0⇒k>-1且k≠0,设A(x 1,y 1),B(x 2,y 2), 由题意得:x 1+x 2=4k +8k 2=4⇒k 2=k +2⇒k 2-k -2=0.解得k =2或k =-1(舍去). 由弦长公式得: |AB|=1+k 2·64k +64k2=5×1924=215.一、选择题1.过抛物线y 2=2px(p >0)的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2)两点,则y 1y 2x 1x 2的值为( )A .4B .-4C .p 2D .-p 2解析:取特殊位置,当AB ⊥x 轴时,A ⎝ ⎛⎭⎪⎫p 2,p ,B ⎝ ⎛⎭⎪⎫p 2,-p . ∴y 1y 2x 1x 2=-4. 答案:B2.设抛物线y 2=8x 的准线与x 轴交于点Q,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:准线x =-2,Q(-2,0),设l :y =k(x +2),由⎩⎪⎨⎪⎧y =k x +2,y 2=8x ,得k 2x 2+4(k 2-2)x +4k 2=0.当k =0时,x =0,即交点为(0,0), 当k≠0时,Δ≥0,-1≤k<0或0<k≤1. 综上,k 的取值范围是[-1,1]. 答案:C3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点与抛物线y 2=2px(p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .2 3B .2 5C .4 3D .4 5解析:由⎩⎪⎨⎪⎧ y =b ax ,x =-p2,解得⎩⎪⎨⎪⎧y =-bp 2a ,x =-p2.由题得知⎩⎪⎨⎪⎧-bp2a=-1,-p2=-2,解得⎩⎪⎨⎪⎧b a =12,p =4.又知p 2+a =4,故a =2,b =1,c =a 2+b 2=5,∴焦距2c =2 5. 答案:B4.设定点M ⎝⎛⎭⎪⎫3,103与抛物线y 2=2x 上的点P 的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点的坐标为( )A .(0,0)B .(1,2)C .(2,2)D.⎝ ⎛⎭⎪⎫18,-12解析:连接PF,则d 1+d 2=|PM|+|PF|≥|MF|,知d 1+d 2的最小值为|MF|,当且仅当M,P,F 三点共线时,等号成立,而直线MF 的方程为y =43⎝⎛⎭⎪⎫x -12,与y 2=2x 联立可得x =2,y =2.答案:C 二、填空题5.已知抛物线y 2=4x,过点P(4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 21+y 22的最小值是________.解析:显然x 1>0,x 2>0.又y 21=4x 1,y 22=4x 2,所以y 21+y 22=4(x 1+x 2)≥8x 1x 2,当且仅当x 1=x 2=4时取等号,所以y 21+y 21的最小值为32.答案:326.过抛物线y 2=2px(p>0)的焦点F 作斜率为45°的直线交抛物线于A,B 两点,若线段AB 的长为8,则p =________.解析:设A(x 1,y 1),B(x 2,y 2),由条件可知直线AB 的方程为y =x -p 2,由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,得x 2-px +p24=2px.即x 2-3px +p24=0,又|AB|=8,即⎝ ⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 2+p 2=8. ∴x 1+x 2=8-p. 即3p =8-p,∴p =2. 答案:27.直线y =x -3与抛物线y 2=4x 交于A,B 两点,过A,B 两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB 的面积为________.解析:由⎩⎪⎨⎪⎧y 2=4x ,y =x -3消去y 得x 2-10x +9=0,得x =1或9,即⎩⎪⎨⎪⎧x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6.所以|AP|=10,|BQ|=2或|BQ|=10,|AP|=2,所以|PQ|=8,所以梯形APQB 的面积S =10+22×8=48.答案:488.已知以F 为焦点的抛物线y 2=4x 上的两点A,B 满足AF ―→=3FB ―→,则弦AB 的中点到准线的距离为________.解析:依题意,设直线AB 的方程是x =my +1,A(x 1,y 1),B(x 2,y 2),则由⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x 得y 2=4(my +1),即y 2-4my -4=0,所以y 1+y 2=4m,y 1y 2=- 4. 又AF ―→=3FB ―→,AF ―→=(1-x 1,-y 1),FB ―→=(x 2-1,y 2),于是有-y 1=3y 2,y 22=43, (y 1+y 2)2=4y 22=163, 弦AB 的中点到准线的距离为x 1+x 22+1=y 21+y 228+1 =y 1+y 22-2y 1y 28+1=163+88+1=83. 答案:83三、解答题9.已知抛物线y 2=-x 与直线l :y =k(x +1)相交于A,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解:(1)证明:易知k≠0,联立⎩⎪⎨⎪⎧ y 2=-x ,y =k x +1,消去x,得ky 2+y -k =0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1. 因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,即OA ―→·OB ―→=0,所以OA ⊥OB.(2)设直线l 与x 轴的交点为N,则N 的坐标为(-1,0),所以S △AOB =12|ON|·|y 1-y 2| =12×|ON|×y 1+y 22-4y 1·y 2 =12×1× 1k2+4=10,解得k 2=136,所以k =±16. 10.如图,过抛物线y 2=x 上一点A(4,2)作倾斜角互补的两条直线AB,AC 交抛物线于B,C 两点,求证:直线BC 的斜率是定值.证明:设AB 的斜率为k,则AC 的斜率为-k.故直线AB 的方程是y -2=k(x -4),与y 2=x 联立得,y -2=k(y 2-4),即ky 2-y -4k +2=0.∵y =2是此方程的一解,∴2y B =-4k +2k ,y B =1-2k k, x B =y 2B =1-4k +4k 2k 2. ∴B ⎝ ⎛⎭⎪⎫1-4k+4k 2k 2,1-2k k . ∵k AC =-k,以-k 代替k 代入B 点坐标得点C 的坐标为⎝⎛⎭⎪⎫1+4k+4k 2k 2,1+2k -k , ∴k BC =-1+2k k -1-2k k 1+4k +4k 2k 2-1-4k +4k 2k 2=-14为定值.。
直线与抛物线的位置关系
![直线与抛物线的位置关系](https://img.taocdn.com/s3/m/1c3af75b27d3240c8447ef88.png)
第3课时 直线与抛物线的位置关系一、直线与抛物线的位置关系1.直线与抛物线公共点的个数可以有0个、1个或2个. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线相切,若Δ>0,则直线与抛物线相交,若Δ<0,则直线与抛物线没有公共点.特别地,当直线与抛物线的轴平行时,直线与抛物线有一个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程根的问题.题型一、直线与抛物线的位置关系例1、已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1).(2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点;k =1±32或k =0时,l 与C 只有一个公共点;1-32<k <0或0<k <1+32时,l 与C 有两个公共点. 例2、已知点A(0,2)和抛物线C :2y =6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0. 由⎩⎨⎧x =0y 2=6x,得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0). 如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组 ⎩⎨⎧y =kx +2y 2=6x,由方程组消去x 得方程,ky 2-6y +12=0① 当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点()23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y+8=0.因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2. 题型二、弦长问题例3、顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为______. [答案] y 2=12x 或y 2=-4x例4、已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1)、B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=__________________.[答案] 12 题型三、对称问题例5、已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1)、B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y 2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1,得⎩⎨⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.故实数k 的取值范围是-2<k <0.例6、求过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程.[正解] (1)若直线斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎨⎧ x =0y 2=2x ,得⎩⎨⎧x =0y =0.即直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,设为k ,则过点P (0,1)的直线方程为y =kx +1,由方程组⎩⎨⎧y =kx +1,y 2=2x .消去y ,得k 2x 2+2(k -1)x +1=0.当k =0时,得⎩⎨⎧x =12.y =1.即直线y =1与抛物线只有一个公共点;当k ≠0时,直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0,所以k =12,直线方程为y =12x +1.综上所述,所求直线方程为x =0或y =1或y =12x +1.课后作业一、选择题1.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 2.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是( )A .12B .-12C .3D .-3[答案] D[解析] 设A (y 214,y 1)、B (y 224,y 2),则OA →=(y 214,y 1),OB →=(y 224,y 2),则OA →·OB →=(y 214,y 1)·(y 224,y 2)=y 21y 2216+y 1y 2,又∵AB 过焦点,则有y 1y 2=-p 2=-4,∴OA →·OB →=(y 1y 2)216+y 1y 2=(-4)216-4=-3,故选D.3.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是( )A .1B .2 C.58 D.158[答案] D[解析] 如图所示,设AB 的中点为P (x 0,y 0),分别过A ,P ,B 三点作准线l 的垂线,垂足分别为A ′,Q ,B ′,由题意得|AA ′|+|BB ′|=|AB |=4,|PQ |=|AA ′|+|BB ′|2=2,又|PQ |=y 0+18,∴y 0+18=2,∴y 0=158.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B[解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为F A →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线与抛物线交于点A (x 1,y 1)、B (x 2,y 2),则y 21+y 22的最小值为( )A .4B .6C .8D .10[答案] C[解析] 当直线的斜率不存在时,其方程为x =1,∴y 21=4,y 22=4, ∴y 21+y 22=8.当直线的斜率存在时,设其方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得ky 2-4y -4k =0, ∴y 1+y 2=4k,y 1y 2=-4,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+8, ∵k 2>0,∴y 21+y 22>8,综上可知,y 21+y 22≥8,故y 21+y 22的最小值为8.6.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D[解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2)y 2=8x 消去y 得,k 2x 2+4x (k 2-2)+4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223. 二、填空题6.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP |+|MF |的最小值是______________________.[答案] 4[解析] 过P 作垂直于准线的直线,垂足为N ,交抛物线于M ,则|MP |+|MF |=|MP |+|MN |=|PN |=4为所求最小值.7.在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线y =kx +92对称,则k 的取值范围为__________________.[答案] k >14或k <-14[解析] 设M (x 1,x 21),N (x 2,x 22)关于直线y =kx +92对称, ∴x 21-x 22x 1-x 2=-1k ,即x 1+x 2=-1k .设MN 的中点为P (x 0,y 0),则x 0=-12k ,y 0=k ×(-12k )+92=4.因中点P 在y =x 2内,有4>(-12k )2⇒k 2>116,∴k >14或k <-14.三、解答题8.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1)、B (y 226,y 2).因为OA ⊥OB ,所以OA →·OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,① ∵点A 、B 与点P (4,2)在一条直线上, ∴y 1-2y 216-4=y 1-y 2y 216-y 226, 化简得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24. 将①式代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610. 9.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. [解析] (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, ∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x .消去x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0, 解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 综上知:t =1.所以符合题意的直线l 存在,其方程为2x +y -1=0. 10.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.[解析] (1)如图所示,由⎩⎪⎨⎪⎧y 2=-xy =k (x +1),消去x 得,ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由根与系数的关系得y 1·y 2=-1,y 1+y 2=-1k .∵A ,B 在抛物线y 2=-x 上,∴y 21=-x 1,y 22=-x 2,∴y 21·y 22=x 1x 2. ∵k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,∴OA ⊥OB .(2)设直线与x 轴交于点N ,显然k ≠0. 令y =0,得x =-1,即N (-1,0). ∵S △OAB =S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON |·|y 1-y 2|, ∴S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(-1k)2+4. ∵S △OAB =10, ∴10=121k 2+4,解得k =±16.。
直线与抛物线的位置关系
![直线与抛物线的位置关系](https://img.taocdn.com/s3/m/93673a3ff111f18583d05ae3.png)
x2 x2
6 1
OF
x
B’ B
AB 2 (x1 x2 )2 4x1x2 8
所以,线段AB的长是8。
例2.斜率为1的直线L经过抛物线 y2 = 4x 的焦点F, 且与抛物线相交于A,B两点,求线段AB的长.
解法二:由题意可知,
y
p
2,
p 2
1,
准线l
:
x
1.
A’
§2.4.2 直线与抛物线的位置关系
一、直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一个交点,
两个交点)
与双曲线的
y
情况一样
O
x
例 1、已知抛物线的方程为 y2 4x ,直线 l 过 定点 P(2,1) ,斜率为 k , k 为何值时,直线 l 与抛 物线 y2 4x :⑴只有一个公共点;⑵有两个公共 点;⑶没有公共点?
解析: 抛物线的焦点为 F(1,0),准线方程为 x=-1.
由抛物线定义知|AB|=|AF|+|BF|=x1+p2+x2+p2 =x1+x2+p, 即 x1+x2+2=7,得 x1+x2=5,于是弦 AB 的中点 M 的横坐标为 52,因此点 M 到抛物线准线的距离为52+1=72.
课堂练习: 1.过抛物线 y2 = 8x的焦点,作倾斜角为 450
16 的直线,则被抛物线截得的弦长为_________
2.过点 M(0,1) 且和抛物线 C: y2 4x 仅有一个公共点的 直线的方程是__________________________.
y 1或 x 0或
联立
ykx y2 4x
1
y x1
知识讲解_直线与抛物线的位置关系(理)_基础
![知识讲解_直线与抛物线的位置关系(理)_基础](https://img.taocdn.com/s3/m/4b85cba3c77da26925c5b05a.png)
直线与抛物线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求抛物线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、准线)解决相关问题;3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】【要点梳理】 要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点诠释:上述定义可归结为“一动三定”:一个动点,一定点F (即焦点),一定直线(即准线),一定值1(即动点M 到定点F 的距离与定直线l 的距离之比).要点二、抛物线的标准方程 抛物线标准方程的四种形式:22y px =,22y px =-,22x py =,22x py =-(0)p >抛物线抛物线的定义与标准方程 抛物线的几何性质 直线与抛物线的位置关系 抛物线的综合问题抛物线的弦问题抛物线的准线要点诠释:求抛物线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设抛物线方程的具体形式;“定值”是指用定义法或待定系数法确定p 的值.要点三、抛物线的几何性质 范围:{0}x x ≥,{}y y R ∈,抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。
抛物线是无界曲线。
对称性:关于x 轴对称抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。
抛物线只有一条对称轴。
顶点:坐标原点抛物线y 2=2px (p >0)和它的轴的交点叫做抛物线的顶点。
抛物线的顶点坐标是(0,0)。
离心率:1e =.抛物线y 2=2px (p >0)上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率。
专题:直线与抛物线的位置关系及中点弦问题
![专题:直线与抛物线的位置关系及中点弦问题](https://img.taocdn.com/s3/m/7b52f4bc960590c69ec37685.png)
专题:直线与抛物线的位置关系及中点弦问题(1)位置关系:设直线)0(:≠+=m m kx y l ,抛物线)0(22>=p px y 联立解得:0222=+-pm py ky若0=k ,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点; 若0≠k ,0>∆⇒直线与抛物线相交,有两个交点;0=∆⇒直线与抛物线相切,有一个交点;0<∆⇒直线与抛物线相离,无交点;(2)相交弦长:直线与圆锥曲线相交的弦长公式设直线l :y =kx +n ,圆锥曲线:F (x ,y )=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2), 且由⎩⎨⎧+==nkx y y x F 0),(,消去y 得到mx 2+nx +p =0(m ≠0),Δ=n 2 -4mp 。
设),(),,(2211y x B y x A ,则弦长公式为:则2122124)(1||x x x x kAB -++= 若联立消去x 得y 的一元二次方程:20(0)my ny q m ++=≠设),(),,(2211y x B y x A ,则2122124)(11||y y y y kAB -++= (3)典例分析: ()22例1 已知抛物线的方程为y =4x,直线l 过定点P -2,1,斜率为k,k 为何值时,直线l与抛物线y =4x :只有一个公共点;有两个公共点;没有公共点?例2、已知抛物线C :y 2=4x ,设直线与抛物线两交点为A 、B ,且线段AB 中点为M (2,1),求直线l 的方程.例3已知抛物线的顶点在原点,焦点在x 轴的正半轴上,直线14+-=x y 被抛物线所截得的弦AB 的中点的纵坐标为2-。
(1)求抛物线的方程;(2)是否存在异于原点的定点H ,使得过H 的动直线与抛物线相交于P 、Q 两点,且以PQ 为直径的圆过原点?解(1):由条件可设抛物线方程为:)0(22>=p px y联立直线14+-=x y 化简得:022=-+p py y 设),(),,(2211y x B y x A 则4221-=-=+p y y 8=∴p 抛物线方程为:x y 162= (2)设存在满足条件的定点H ,设动直线方程为)0(≠+=k b kx y 联立抛物线方程化简得:016162=+-b y ky 设),(),,(2211y x Q y x P 则有02121=+y y x x 即:k b 16-= 故动直线方程为)16(16-=-=x k k kx y ,恒过定点(16,0)当直线斜率不存在时,设直线方程为0x x =,易解得160=x 。
直线和抛物线的位置关系
![直线和抛物线的位置关系](https://img.taocdn.com/s3/m/5123083124c52cc58bd63186bceb19e8b8f6ece6.png)
(2)M过(p,0) (3)M过(2p,0)
x1x2=p2;y1y2=-2p2. x1x2=4p2;y1y2=-4p2.
OA OB
(4)M过(3p,0)
x1x2=9p2;y1y2=-6p2.
(5)M过。。。。。。。
y
A
M
x
B
y2=2px
l
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
得到一元一次方程
直线与抛物线的 对称轴平行或重合
相交(一个交点)
得到一元二次方程 计算判别式
>0 =0 <0 相交 相切 相离
例1 求过定点P(0,1)且与抛物线 y2 2x
只有一个公共点的直线的方程.
{ { 解:
(1)若直线斜率不存在,则过点P的直线方程是
x0
x 0
xy=0.
由 y2 2x 得 y0
OF
x
B` B
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
(5)以AB为直径的圆与准线相切.
证明:如图,
y
M M1
A A1
B B1 2
AF BF 2
AB 2
l A1
A
故以AB为直径的圆与准线相切.
F
O
M1
M
X
B1
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
yc
-
py1 2x1
-
py1 2 y12
p2 y1
直线与抛物线的位置关系
![直线与抛物线的位置关系](https://img.taocdn.com/s3/m/2f1092cfb14e852458fb57db.png)
[思考尝试· 夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)若一条直线与抛物线只有一个公共点则二者一定 相切.( )
(2)过点(1, 0)的直线 l 被抛物线 y2=4x 截得的最短弦 长为 4.( )
(3)直线 x- 2y+1=0 与抛物线 y2=x 的关系是相 交.( )
解析:(1)错误.直线与抛物线只有一个公共点,除 了相切情况,还有直线与抛物线对称轴平行的情况. (2)正确.(1,0)恰为 y2=4x 的焦点,过焦点的弦中 通径是最短的,其通径为 4. x-2y+1=0, 2 (3)错误.由 2 ⇒y -2y+1=0,Δ=0, y = x
3.抛物线 y=ax2+1 与直线 y=x 相切,则 a 等于 ( ) 1 1 1 A. B. C. D.1 8 4 2
2 y = ax +1, 解析:由 消去 y,得 ax2-x+1=0. y=x,
因为直线 y=x 与抛物线 y=ax2+1 相切, 所以方程 ax2-x+1=0 有两相等实根.
5 (x1-x2)2= 4 1 5(a2-8a). 4 因为|AB|= 15,
5 [(x1+x2)2-4x1x2]= 4
1 所以 5(a2-8a)= 15, 4
即 a2-8a-48=0,解得 a=-4 或 a=12. 所以所求抛物线方程为:x2=-4y 或 x2=12y.
类型 3 抛物线的中点弦及弦长问题 [典例 3] 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰 被点 Q 所平分,求弦 AB 所在直线的方程. 解:法一:设以点 Q 为中点的弦 AB 的端点坐标为
类型 1 直线与抛物线的位置关系(自主研析) [典例 1] 已知直线 l:y=kx+1,抛物线 C:y2=4x, 当 k 为何值时,l 与 C 有一个公共点、两个公共点、没有 公共点? y=kx+1, [自主解答] 将 l 和 C 的方程联立得 2 y =4x,
2.3.2抛物线的几何性质直线与抛物线的位置关系
![2.3.2抛物线的几何性质直线与抛物线的位置关系](https://img.taocdn.com/s3/m/5e35093149d7c1c708a1284ac850ad02de8007f9.png)
O F(1,0) x0
y 1
x
y 2
y2 4x
例1 已知抛物线的方程为 y2 4x,动直线 l
过定点P(2,1) ,斜率为 k . 当 k 为何值时,直
线 l 与抛物线 y2 4x :(1)只有一个公共点;
(2)有两个公共点;(3)没有公共点?
ly
P (-2,1)
O F(1,0)
x
y2 4x
作业
1. 直线过点 P(-1,0)且与抛物y线2 4x
求该直线倾斜角的取值范围.
相交,
2. 在抛物线 y2 64x上求一点 P,使它到直线 4x+3y+46=0的距离最小.
提示:数形结合
复习回顾
y
O
x
y
O
x
y
O
xHale Waihona Puke 探究 求下列直线与抛物线y2 4x的公共点坐标:
(1) y=x
(0,0) , (4,4)
两个公共点
(2) y=1 (3) y=-2 (4) y=x+1
( 1 ,1)
4
(1,-2) (1,2)
一个公共点
(5) x=0
(0,0)
(6) y=x+2
无公共点
ly
y x2y x 1 y x
三维目标
知识与技能: 掌握直线与抛物线的位置关系及判断方法.
过程与方法: 让学生学会使用解析法,并且在解题过程中注重培养
学生数形结合思想、分类思想以及转化思想. 情感态度与价值观:
让学生体验研究解析几何的基本思想,培养学生主动 探索的精神。
重难点
重点:直线与抛物线的位置关系及其判断方法
难点: 直线与抛物线的位置关系的判断方法及应用
直线与抛物线位置关系
![直线与抛物线位置关系](https://img.taocdn.com/s3/m/ba4283a32e3f5727a4e96266.png)
【学习目标】直线与抛物线的位置关系及判断方法(1) 直线和抛物线有三种位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一 个公共点)。
(2)直线和抛物线的位置关系的判断: 设直线方程:,m kx y +=抛物线方程:,22px y =两方程联立消去y 可得方程:222(22)0k x km p x m +-+=222(22)0k x km p x m +-+=,一般形式为20,Ax Bx C ++=若A=0,则直线与抛物线的对称轴平行或重合,直线与抛物线相交且只有一个交点;若A 0≠其判别式为∆=24B AC -当∆>0时,直线与抛物线相交且直线和抛物线有两个交点;当∆=0时,直线与抛物线相切且只有一个交点;当∆<0时,直线与抛物线相离,没有交点。
(注意:把直线和圆锥曲线的方程联立后得到方程20,ax bx c ++=它不一定是一元二次方程,要分析2x 的系数a ,才能确定。
如果不能确定,要分类讨论)。
(3)中点弦问题:在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.考向一:直线与抛物线的位置关系例1 已知抛物线24y x =过定点A(-2, 1)的直线l 的斜率为k,下列情况下分别求k 的 取值范围:(1)l 与抛物线有且仅有一个公共点;(2)l 与抛物线恰有两个公共点;(3) l 与抛物线没有公共点.考向二:弦长及中点弦问题例2、已知抛物线x y 22=,过点)1,2(Q 作一直线交抛物线于A 、B 两点,试求弦AB 的中点轨迹方程。
2.4.3直线与抛物线的位置关系 (第1课时,共1课时)考向三、 对称问题例3:已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.考向四 定点与定值问题①定值问题 在几何问题中,有些问题和参数无关,这就是定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。
直线与抛物线的位置关系 课件
![直线与抛物线的位置关系 课件](https://img.taocdn.com/s3/m/ada0d7795b8102d276a20029bd64783e08127d41.png)
题型三 弦长问题
例 3 已知顶点在原点,焦点在 x 轴上的抛物线被直线
y=2x+1 截得的弦长为 15,求抛物线的方程.
解析:设抛物线的方程为 y2=2px,则
y2=2px, y=2x+1,
消去 y 得:4x2-(2p-4)x+1=0,
∴x1+x2=p-2 2,x1x2=14.
∴|AB|= 1+k2|x1-x2|
直线与抛物线的位置关系
设直线l: y=kx+m,抛物线:y2=2px(p>0),将直 线方程与抛物线方程联立整理成关于x的方程:ax2+bx+ c=0.
(1)若 a≠0,当Δ__>__0时,直线与抛物线相交,有
两个交点;
当Δ_=___ 0时,直线与抛物线相切,有一个交点; 当Δ_<___0时,直线与抛物线相离,无公共点.
∵P1P2 的中点为(4,1),∴6k=2,∴k=3,
∴所求直线方程为 y-1=3(x-4),
即 3x-y-11=0.
∴y1+y2=2,y1·y2=-22,
∴|P1P2|=
1
1+k2
(y1+y2)2-4y1y2=
3 .
点评:处理中点问题的基本方法是点差法和联立方程的方
∵P1,P2 在抛物线上, ∴y21=6x1,y22=6x2. 两式相减,得(y1+y2)(y1-y2)=6(x1-x2). ∵y1+y2=2,∴k=yx11--yx22=y1+6 y2=3,
∴直线的方程为 y-1=3(x-4). 即 3x-y-11=0.
由yy2==36xx-,11, 得 y2-2y-22=0,
∴y1+y2=2,y1·y2=-22,
∴|P1P2|= 1+19 22-
(-22) =2 3230.
直线和抛物线的位置关系
![直线和抛物线的位置关系](https://img.taocdn.com/s3/m/c1a3120f03d8ce2f00662332.png)
直线和抛物线的位置关系一.直线与抛物线的位置关系的判定(1) 相交:①直线与抛物线交于两个不同点⇔判别式0>∆;②直线与抛物线交于一点,直线平行于抛物线的对称轴或与抛物线的对称轴重合.(2) 相切0=∆⇔.(3) 相离0<∆⇔.二.有关弦长问题(1)一般弦长公式:设直线b kx y +=交双曲线于()111,y x P ,()222,y x P,则 ()21221222121411x x x x k kx x P P -+⋅+=+-=(2)焦点弦长问题 若AB 为抛物线()022>=p px y 的一条过焦点F 的弦,()11,y x A ,()22,y x B , 则弦长.21p x x BF AF AB ++=+=三、基础自测 1.抛物线x y 122=截直线12+=x y 所得弦长等于( ) (A) 15 (B) 152 (C)215 (D) 15 2.过抛物线x y 42=的焦点F 的直线交抛物线于()11,y x A ,()22,y x B ,若x 1+x 2=6,则|AB|的值为( )(A)4 (B)6 (C)8 (D) 123.过点P(0, 2)且与抛物线y 2=2px(p>0)只有一个公共点的直线有( )(A)1条 (B)2条 (C)3条 (D)4条4.设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
若AB 的中点为(2,2),则直线l 的方程为_____________.5.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于6.在直角坐标系xOy 中,直线l 过抛物线x y 42=的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
若直线l 的倾斜角为60º.则△OAF 的面积为7.已知抛物线x y 42=,过点P(4,0)的直线与抛物线相交于()11,y x A ,()22,y x B 两点,则2221y y +的最小值是 . 8.已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.9.已知斜率为1的直线经过抛物线()042>=p px y 的焦点,且与该抛物线交于A,B 两点,若三角形OAB 的面积为22(O 为原点),求该抛物线的方程.。
2025版新教材高中数学第3章第2课时直线与抛物线的位置关系课件新人教A版选择性必修第一册
![2025版新教材高中数学第3章第2课时直线与抛物线的位置关系课件新人教A版选择性必修第一册](https://img.taocdn.com/s3/m/da9bf5237ed5360cba1aa8114431b90d6c8589dc.png)
题型二
中点弦问题
2.过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在
直线的方程. [解析] 方法一:(点差法)设以 Q 为中点的弦 AB 的端点坐标为 A(x1,
y1),B(x2,y2),则有 y21=8x1,y22=8x2, ∴(y1+y2)(y1-y2)=8(x1-x2). 又 y1+y2=2,∴y1-y2=4(x1-x2), 即yx11- -yx22=4,∴kAB=4. ∴AB 所在直线的方程为 y-1=4(x-4),即 4x-y-15=0.
∴x1+x2=2k2k+2 8,x1-x2=-k82 k=-k8. ∴y1-y2=[k(x1-1)+2]-[-k(x2-1)+2] =k(x1+x2)-2k=k·2k2k+2 8-2k=8k. ∴kAB=yx11- -yx22=-1. ∴直线 AB 的斜率为定值-1.
课堂检测•固双基
1.已知动圆M经过点A(3,0),且与直线l:x=-3相切,则动圆圆心
(2)由题意设 A(x1,y1),B(x2,y2), 联立yx=2=k2xy+,1, 消去 y 化简得 x2-2kx-2=0, ∴x1+x2=2k,x1x2=-2. ∵|AB|= 1+k2· x1+x22-4x1x2= 1+k2· 4k2+8=2 6, ∴k4+3k2-4=0, 又 k2≥0,∴k2=1,∴k=±1.
[解析] 据题意知,△PMF 为等边三角形时,|PF| =|PM|,所以 PM 垂直抛物线的准线,设 Pm42,m,则 M(-1,m),则等边三角形边长为 1+m42,
因为 F(1,0),所以由|PM|=|FM|,得 1+m42= -1-12+m2,解得 m2=12,所以等边三角形边长为 4,其面积为 4 3.
所以 p=2.
高中数学选择性必修一(人教版)《3.3.2第二课时 直线与抛物线的位置关系及应用》课件
![高中数学选择性必修一(人教版)《3.3.2第二课时 直线与抛物线的位置关系及应用》课件](https://img.taocdn.com/s3/m/7acfecb380c758f5f61fb7360b4c2e3f57272525.png)
(2)若 k2≠0,当 Δ>0 时,直线与抛物线相交,有两个交点; 当 Δ=0 时,直线与抛物线相切,有一个交点; 当 Δ<0 时,直线与抛物线相离,无公共点.
[对点练清] 1.已知直线 y=kx-k 及抛物线 y2=2px(p>0),则 ( )
(2)证明:设 A(x1,y1),B(x2,y2),M(xM,yM),直线 AB: x=my+1(m≠0),
联立yx2==m4xy+,1, 消去 x,得 y2-4my-4=0. 于是,有 yM=y1+2 y2=2m,xM=m·yM+1=2m2+1, 即 M(2m2+1,2m).同理,Nm22+1,-m2 . 因此,直线 MN 的斜率 kMN=2m2+21m-+mm222+1=m2m-1,
(2) 设 直 线 l 的 方 程 为 x = my + 1 , 与 抛 物 线 方 程 联 立 得
x=my+1, y2=4x,
消去 x,得 y2-4my-4=0,
所以 y1+y2=4m,y1y2=-4,Δ=16(m2+1)>0.
|AB|= m2+1|y1-y2|
= m2+1· y1+y22-4y1y2
解:(1)因为抛物 C:y2=4x 的焦点 F(1,0)在 x 轴上,所以条件 ①适合,条件②不适合. 又因为抛物线 C:y2=4x 的准线方程为 x=-1,所以条件④ 不适合题意. 当选择条件③时,|MF|=xM+1=1+1=2,此时适合题意, 故选择条件①③时,可得抛物线 C 的方程是 y2=4x.
解:(1)由已知,得抛物线的焦点为 F(1,0). 因为线段 AB 的中点在直线 y=2 上, 所以直线 l 的斜率存在, 设直线 l 的斜率为 k,A(x1,y1),B(x2,y2),AB 的中点 M(x0, y0),由yy1222= =44xx12, , 得(y1+y2)(y1-y2)=4(x1-x2),所以 2y0k=4. 又 y0=2,所以 k=1,故直线 l 的方程是 y=x-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB
2p
sin2
.
解 : 若 ,则 AB 2 p,此时AB为抛物线的通径结论得证
2
若 ,设直线l的方程为 : y ( x p )tan ,即x y p ,
计算结果:得
到一元二次方
x
程,需计算判 别式。相切。
二、判断方法探讨
3、直线与抛物线的对称轴平行,相交与 一点。
例:判断直线 y = 6与抛
y
物线 y2 =4x 的位置关系
计算结果:得到一
O
x
元一次方程,容易 解出交点坐标
二、判断方法探讨
4、直线与抛物线的对称轴不平行,相交
与两点。
例:判断直线 y = x -1与
问题1:求证 :| AB | x1 x2 p
解 : AB AF BF
p
p
( x1
2
) ( x2
) 2
x1 x2 p
例3.(抛物线的焦点弦问题)
丛书62页12题
已知过抛物线y2 2 px p 0的焦点F的直线l交抛
物线于A x1, y1 , B x2 , y2 两点.
问题2 : 若l的倾斜角为 ,则
平行
数形结合
不平行
直线与抛物线 相交(一个交点)
计算判别式 >0 =0 <0 相交 相切 相离
例 6 已知抛物线的方程为 y2 4x ,直线 l 过定点 P(2,1) , 斜率为 k , k 为何值时,直线 l 与抛物线 y2 4x :⑴只有一个公
共点;⑵有两个公共点;⑶没有公共点?
解:直线l的方程为y 1 k(x 2).
y
抛物线 y2 =4x 的位置关系
计算结果:得到一
元二次方程,需计
O
x 算判别式。相交。
总结:
判断直线与抛物线位置关系的操作程序(一): 把直线方程代入抛物线方程
得到一元一次方程
直线与抛物线的 对称轴平行
相交(一个交点)
得到一元二次方程 计算判别式
>0 =0 <0 相交 相切 相离
判断直线与抛物线位置关系的操作程序(二) 判断直线是否与抛物线的对称轴平行
y02 2p
p 2
.
o F
DB
x
与 y2 2 px联立,可得B点的纵 图2.3 5
坐标为y p2 . 5
y0
由4、5得, DB // x轴,故DB 平行于抛物线的对称轴.
三.抛物线的最值与定值问题
例3、已知过抛物线 A(x1, y1)、B(x2, y2 )的焦点F 的直线交抛物线于 y2 2 px( p 0) 两点。
由方程组
y
1 y2
k
(x 4x
2)
•
可得 ky2 4 y 4(2k 1) 0
⑴只有一个公共点
k 0,或
k 0 △ 16(2k2 k 1) 0
k 1,或 k 0,或 k= 1
2
⑵有两个公共点
k 0 △ 16(2k2 k 1) 0
1 k 0, 或0 k 1 2
⑶没有公共点
k 0 △ 16(2k 2
k
1)
0
k
1,
或k 1 2
综上所述
当k 1,或k 0,或k 1 时,直线与抛物线只有一个公共点; 2
当1 k 0或0 k 1 时,直线与抛物线有两个公共点; 2
当k 1或k 1 时,直线与抛物线没有公共点。 2
2、在抛物线y2=64x上求一点,使它到直线 L:4x+3y+46=0的距离最短,并求此距离.
另解:设直线4x 3y m 0与抛物线相切
y2 4x
64x 3y
m
0
y2 16
3y
m
0
由 0得 : m 36
ly
例2 过抛物线焦点 F 的直线
A
交抛物线于A, B两点,通过点A
和 抛 物线顶点的直线交抛物
o F
x
线的准 线 于点 D , 求 证 : 直线 D B
DB平行于抛物线的对称轴.
(1)x1 x2是否为定值?y1 y2 呢?
(2) 1 1 是否为定值?
| FA | | FB |
y
A ( x1, y1 )
这一结论非常奇妙, 变中有不变,动中有不动.
F
O
x
B ( x2, y2 )
例3.(抛物线的焦点弦问题)
已知过抛物线y2 2 px p 0的焦点F的直线l交抛 物线于A x1, y1 , B x2 , y2 两点.
x
设抛物线方程为y2 2 px, 1 D B
点A的坐标为
y02 2p
,
y0
,
则直
图2.3 5
线OA的方程为y 2 p x, 2
y0
抛物线的准线方程为x
p 2
.
3
联立2、3,可得D点的纵坐标为y p2 . 4
y0
因为点F的坐标是
p 2
,0
, 所以
ly A
直线AF的方程为 y y0
x
p 2
分析 我们用坐标法证明,即通 图2.3 5
过建立抛物线及直线的方程, 借
助方程研究直线DB与抛物线对
称轴之间的位置关系.
建立如图2.3 5所示的直角坐标系,只要证明
点D的纵坐标与点B的纵坐标相等即可.
证明 如图2.3 5,以抛物线 对称轴为x轴,它的顶点为原
ly A
点, 建立直角坐标系.
o
F
解:直线与抛物线无交点设抛物线上一点P(x0.y0 ),
则y02 64x0
d | 4x0 3y0 46 | 4x0 3y0 46
16 9
5
y
将x0
y02 64
代入得:
d
y02 16
3y0 46 5
y02
48
y0 16 80
46
,
(
y0
R)
.
OF x
当y0 24时, dmin 2 此时P(9,24)
专题2 直线和抛 物线的位置关系
方程 图
y2 = 2px (p>0)
y
l
y2 = -2px (p>0)
y
l
x2 = 2py (p>0)
y
F
x2 = -2py (p>0)
y
l
形 范围
OF x F O x
O
x l
O F
x
x≥0 y∈R x≤0 y∈R x∈R y≥0 x∈R y≤0
对称性 关于x轴对称
顶点 (0,0)
关于x轴对称
关于y轴对称
(0,0) (0,0)
关于y轴对称
(0,0)
焦半径
焦点弦 的长度
p 2
x0
p x1 x2
p 2
x0
p (x1 x2 )
p 2
y0
p y1 y2
p 2
y0
p ( y1 y2 )
一、直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一个交点,
两个交点)
与双曲线的
y
情况一样
O
x
二、判断方法探讨
1、直线与抛物线相离,无交点。
例:判断直线 y = x +2与
y
抛物线 y2 =4x 的位置关系
计算结果:得
到一元二次方
O
x
程,需计算判 别式。相离。
二、判断方法探讨
2、直线与抛物线相切,交与一点。
例:判断直线 y = x +1与
y
O
抛物线 y2 =4x 的位置关系