最新八年级数学下册第五单元《分式与分式方程》检测试题及答案
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(1)

一、选择题1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数 C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为03.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10 B .15C .18D .204.使分式21xx -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数5.已知分式24x x+的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠06.某市为有效解决交通拥堵营造路网微循环,决定对一条长1200米的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加20%,结果提前5天完成任务,求实际每天改造道路的长度和实际施工的天数.一位同学列出方程()1200120050120%x x+-=+,则方程中未知数x 所表示的量是( )A .实际每天改造的道路长度B .实际施工的天数C .原计划施工的天数D .原计划每天改造的道路长度7.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④8.下列各式中,正确的是( )A .22a a b b=B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=-- 9.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 10.若a b ,则下列分式化简中,正确的是( )A .22a ab b +=+ B .22a ab b -=- C .33a a b b = D .22a a b b=11.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1-B .1C .3D .3-12.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .3二、填空题13.(1)分解因式39x x -= ______________. (2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________. 14.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 15.某种病毒的直径为0.0000000028米,用科学记数法表示为______米. 16.氢原子的半径约为0.00000000005m ,用科学记数法表示为______ m . 17.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根.18.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 19.计算()4011152π-⎛⎫⨯---= ⎪⎝⎭_________.20.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.三、解答题21.(1)分解因式3228x xy - (2)解分式方程:23193xx x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件. 23.(1)计算:32(1263)3a a a a +-÷ (2)解方程:211x x x-=- 24.(1)化简分式:11222x x x-+---; (2)判断方程112022x x x-+-=--是否有解?_____(填“是”或“否”) 25.先化简,再求值:已知2cos45x =︒,2sin 45tan30y =︒-︒,求222x x xyx y x y x y⎛⎫-÷ ⎪--+⎝⎭的值. 26.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+.原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的运算法则及分式的性质逐项进行计算即可. 【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意;C :1b a b a a b b a a b a b+=-=-----,故不符合题意; D :0.22100.7710++=--a b a ba b a b ,故不符合题意;故选:D . 【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.B解析:B 【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案. 【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误; 当2x <-时,20x +<,分式的值为正数,选项C 正确; 当2x =-时,20x +=,分式的值为0,选项D 正确; 故选:B .本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.3.D解析:D 【分析】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.C解析:C 【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.D解析:D 【分析】若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D .本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 6.D解析:D 【分析】根据提前天数+实际工作用天数-原计划天数=0,可以判断方程中未知数x 表示的量. 【详解】设原计划每天铺设管道x 米,则实际每天改造管道(1+20%)x ,根据题意,可列方程:()1200120050120%x x+-=+,所以所列方程中未知数x 所表示的量是原计划每天改造管道的长度, 故选:D . 【点睛】本题考查了由实际问题布列分式方程,解题的关键是依据所给方程等量关系.7.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以11 21xx≤<+,故选B.【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.8.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.9.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B、b a a bc c--+=-,故B正确;C、a b a bm m-+-=-,故C正确;D、22112323x xx x--=---,故D正确.故答案为:A.【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.10.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;11.D解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.12.A解析:A 【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.二、填空题13.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯ 【分析】(1)先提取公因式x ,再用平方差公式分解; (2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3); (2)∵5a b +=,3ab =, ∴22a b +=(a+b)2-2ab=25-6=19; (3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯.本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.14.5【分析】根据已知有增根即使分式方程分母为0的根即满足x-2=0;解题中分式方程先通分再去分母化成整式方程后用x 表示出未知参数m 最后将x 的值代入即可求得m 的值【详解】解:分式方程有增根得:x=2通分解析:5 【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值. 【详解】解:分式方程有增根20x ∴-= 得:x=2 21122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=- 化简得:31m x =- 将x=2代入得m=5 故答案为5. 【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.15.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000000 解析:92.810-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000000028=2.8×10-9, 故答案为:92.810-⨯. 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:用科学记数法 解析:11510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法把0.0000 0000 005表示为5×10-11.故答案为:5×10-11.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由 解析:6【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值.【详解】 解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12, 去分母得7-2x=m将x=12代入得m=6 即当m=6时,原分式方程会出现增根.故答案为6.【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.18.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 19.1【分析】先计算负整数指数幂零指数幂化简绝对值再计算有理数的乘法与减法即可得【详解】原式故答案为:1【点睛】本题考查了负整数指数幂零指数幂绝对值等知识点熟练掌握各运算法则是解题关键解析:1【分析】先计算负整数指数幂、零指数幂、化简绝对值,再计算有理数的乘法与减法即可得.【详解】原式16115=⨯-,1615=-,1=,故答案为:1.【点睛】本题考查了负整数指数幂、零指数幂、绝对值等知识点,熟练掌握各运算法则是解题关键.20.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy - =()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++=()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.甲每小时做32个零件,乙每小时做40个零件.【分析】设甲每小时做x 个零件,乙每小时做(x +8)个零件,根据“甲做240个零件的时间=乙做300个零件的时间”列出方程求解即可.【详解】解:设甲每小时做x 个零件,乙每小时做(x+8)个零件, 由题意可得:2403008x x =+, 解得:x =32,经检验,x =32是原方程的解,∴x +8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.【点睛】本题考查了分式方程的应用,找出正确的数量关系是本题的关键.23.(1)2421a a +-;(2)2x =【分析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)32(1263)3a a a a +-÷ 321236333a a a a a a =÷+÷-÷2421a a =+-;(2)去分母得:()()2121x x x x --=-, 解得:2x =,经检验2x =是分式方程的解.【点睛】本题考查了解分式方程,以及整式的除法,熟练掌握运算法则是解本题的关键. 24.(1)1;(2)否.【分析】(1)原式通分并利用同分母分式的加减法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可.【详解】解:(1)11222x x x -+--- =12(2)1222x x x x x --++--- =12412x x x -+-+- =22x x -- =1;(2)去分母得:1-x+2x-4+1=0,解得:x=2,经检验x=2是增根,分式方程无解.故答案为:否.【点睛】此题考查了分式方程的解,以及解分式方程,熟练掌握运算法则是解本题的关键.25.1x y-. 【分析】根据特殊角的三角函数值,确定x ,y 的值,再对分式进行化简,后代入求值即可.【详解】∵2cos45x =︒,2sin 45tan30y =︒-︒,∴2cos 45x y -=︒-⎭=, ∵222x x xy x y x y x y⎛⎫-÷ ⎪--+⎝⎭ =1()()()x x y x x y x y x y xy+-⨯-+- =1()()x y x x y x y y x y x y y++⨯-⨯-+- =()()x y x y x y y x y +--- =()x y x y x y +--1x y=-, ∴原式==【点睛】本题考查了分式的化简求值,熟练进行化简,熟记特殊角的函数值进行定值是解题的关键.26.(1);(2)32 【分析】(1)变形已知条件得到x +1x 2+2x =1,再利用降次和整体代入的方法把原式化为−x +1,然后把x 的值代入计算即可;(2)变形已知条件,把2x =+x 2−4x =−1或x 2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x =,∴x +1,∴(x +1)2=2,即x 2+2x +1=2,∴x 2+2x =1,∴原式=2x (x 2+2x )−3x +1=2x−3x +1=−x +1=−−1)+1=;(2)∵2x =+∴x−2,∴(x−2)2=3,即x 2−4x +4=3,∴x 2−4x =−1或x 2=4x−1, ∴原式=()()()241419415513x x x x x -------++ =12(16x 2−8x +1−4x 2+x−36x +9−5x +5) =12 [12(4x−1)−48x +15] =12(48x−12−48x +15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(答案解析)

一、选择题1.甲乙两地相距60km ,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h ,若设此轮船在静水中的速度为x km/h ,可列方程为( ) A .6060855x x +=+- B .120120855x x +=+- C .6058x+= D .6060855x x +=+- 2.已知112a b -=,则a b ab-的值是( ) A .2 B .2- C .12 D .12- 3.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 4.若关于x 的方程2033x a x x ++=++有增根,则 a 的值为( ) A .1 B .3 C .4 D .55.下列各分式中是最简分式的是( )A .2-1-1x xB .42xC .22-1x xD .-11-x x6.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-17.某市为有效解决交通拥堵营造路网微循环,决定对一条长1200米的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加20%,结果提前5天完成任务,求实际每天改造道路的长度和实际施工的天数.一位同学列出方程()1200120050120%x x+-=+,则方程中未知数x 所表示的量是( ) A .实际每天改造的道路长度 B .实际施工的天数C .原计划施工的天数D .原计划每天改造的道路长度 8.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 9.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=-- 10.计算2m m 1m m-1+-的结果是( ) A .m B .-m C .m +1 D .m -111.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .812.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-二、填空题13.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n的值为______________________. 14.关于x 的方程433x m x x-=--有增根,则m =_____. 15.已知5a b +=,6ab =,b a a b +=______. 16.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 17.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.18.已知12x y =,则32x y x y ++的值为____. 19.计算22111m m m---,的正确结果为_____________. 20.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.三、解答题21.一辆汽车开往距离出发地180km 的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地. (1)求前1小时这辆汽车行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?22.如图,“丰收1号”小麦试验田是边长为m(10)a a >的正方形减去一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦试验田是边长为(1)m a -的正方形.(1)第一年,两块试验田分别收获400kg 小麦.①这两块试验田中,单位产量高的试验田是_______________;②高的单位产量比低的单位产量多了多少;(2)经过一年的试验后,第二年,两块试验田产量都比前一年有增长,并且“丰收1号”试验田增产更多.已知两块试验田的单位产量相同且“丰收1号”比“丰收2号”多收获100kg ,求“丰收1号”试验田第二年的产量.23.(1)计算:2132)1263+. (2)化简并求值:23(1)11a a a a -÷--++,其中a 32. (3)解方程:22510111x x x -+=+--. 24.先化简,再求值:()232284422a a a a a a -⎛⎫÷-+⋅- ⎪+⎝⎭,其中12020a =. 25.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?26.(1)计算:()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭ (2)化简:21111x x x ⎛⎫-÷ ⎪+-⎝⎭(3)先化简,再求值:()()()22322a b a b a b +-+-,其中13a =,12b =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 2.B解析:B【分析】根据分式的运算法则即可求出答案.【详解】解:∵112a b -=, ∴2b a ab-=, ∴原式=﹣2,故选:B .【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 3.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++,∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mxx x -=--化简得:()13m x +=,∵方程1122mxx x -=--无解,∴m +1=0,或321x m ==+,则m 的值是-1或12,故错误;③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误;④若111,,567abbcaca b b c c a ===+++,且0abc ≠, ∴1111115,6,7a bb ca cab a b bc b c ac a c +++=+==+==+=,∴ab bc acabc ++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭ =11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭=()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】 本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.4.A解析:A【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可.【详解】解:分式方程去分母得:20x a ++=,由分式方程有增根,得到x+3=0,即x=-3,把x=-3代入整式方程得:320a -++=,解得1a =故选:A .【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点. 5.C解析:C【分析】根据最简分式的定义即可求出答案.【详解】解:A 、211()111)(11x x x x x x -==+--+-,故选项A 不是最简分式,不符合题意; B 、42=2x x ,故选项B 不是最简分式,不符合题意; C 、22-1x x ,是最简二次根式,符合题意; D 、1111(1)x x x x --==----,故选项D 不是最简分式,不符合题意. 故选:C .【点睛】本题考查最简分式,解的关键是正确理解最简分式的定义,本题属于基础题型. 6.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 7.D解析:D【分析】根据提前天数+实际工作用天数-原计划天数=0,可以判断方程中未知数x 表示的量.【详解】设原计划每天铺设管道x 米,则实际每天改造管道(1+20%)x ,根据题意,可列方程: ()1200120050120%x x+-=+, 所以所列方程中未知数x 所表示的量是原计划每天改造管道的长度,故选:D .【点睛】本题考查了由实际问题布列分式方程,解题的关键是依据所给方程等量关系.8.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.9.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误; B .11a a b b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C .【点睛】 本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】 原式=211m m m m ---=21m m m--=(1)1m m m --=m , 故选:A .【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明11.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.12.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.二、填空题13.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n=22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.14.1;【分析】若原分式方程有增根则x-3=0解得x 的值再代入即可解得m 值【详解】解:若原分式方程有增根则x-3=0所以x=3方程去分母得x-4+m=0当x=3时即3-4+m=0则m=1故答案为:1【点解析:1;【分析】若原分式方程有增根,则x-3=0,解得x 的值,再代入433x m x x-=--,即可解得m 值. 【详解】解:若原分式方程有增根,则x-3=0,所以x=3, 方程433x m x x-=--去分母得x-4+m=0, 当x=3时,即3-4+m=0,则m=1,故答案为:1.【点睛】 本题考查分式方程的增根;熟练掌握分式方程的求解方法,分式方程增根与分式方程根之间的联系是解题的关键.15.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 16.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 17.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 18.1【分析】根据已知得到代入所求式子中计算即可【详解】∵∴∴故答案为:1【点睛】本题考查了求分式的值利用已知得到再整体代入是解题的关键 解析:1【分析】 根据已知得到12x y =,代入所求式子中计算即可. 【详解】 ∵12x y =, ∴12x y =, ∴1533221152222y y y x y x y y y y ⨯++===++. 故答案为:1.【点睛】 本题考查了求分式的值,利用已知得到12x y =,再整体代入是解题的关键. 19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.三、解答题21.(1)60km/h ;(2)以提速后的速度行驶更省油【分析】(1)设前1小时行驶的速度为xkm/h ,则1小时后行驶的速度为1.5xkm/h ,根据时间=路程÷速度结合提速后比原计划提前23h (40min )到达目的地,解之经检验后即可得出结论; (2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油(y+0.3)升,根据总油耗=每小时油耗×运动时间,即可得出关于y 的一元一次方程,解之即可求出y 值,再分别求出返程时按两种速度所需总油耗,比较后即可得出结论.【详解】解:(1)设前1小时行驶的速度为/xkm h ,则1小时后行驶的速度为1.5xkm/h ,依题意,得:18018021.53x x x x ---=, 解得:60x =, 经检验,60x =是原方程的解,且符合题意.答:前1小时行驶的速度为60km/h .(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油()0.3y +升, 依题意,得:18060(0.3)7.5 4.3,1.560y y -+⋅+=-⨯ 解得: 1.2y =,∴回来时若以原速度行驶总耗油180 1.2 3.660=⨯=(升), 若以提速后的速度行驶总耗油180(1.20.3)31.560=⨯+=⨯(升). ∵3.63>,∴以提速后的速度行驶更省油.【点睛】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.22.(1)①“丰收2号”;②()()280011kg a a +-;(2) ()5050a kg + 【分析】(1)①先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;②根据①中两块试验田的面积及其产量,求出其差即可;(2)可设“丰收2号”试验田第二年的产量是kg ,则“丰收1号”试验田第二年的产量是(x +100)kg ,根据两块试验田的单位产量相同列方程求解即可.【详解】解:(1)①∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形, ∴“丰收1号”小麦的试验田的面积=21a -,“丰收2号”小麦的试验田的面积=()21a -,∵()()221121a a a ---=-, 由题意可知,a >1,∴2(a -1)>0,即()2211a a ->-∴这两块试验田中,单位产量高的试验田是“丰收2号”,故答案为:“丰收2号”;②∵“丰收1号”小麦的试验田的面积=21a -,“丰收2号”小麦的试验田的面积=()21a -,两块试验田的小麦都收获了400kg ,∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()()()()()()222240014001400400800111111a a kg a a a a a a +---==--+-+-, 答:高的单位产量比低的单位产量多了()()280011kg a a +-;(2)设“丰收2号”试验田第二年的产量是xkg ,则“丰收1号”试验田第二年的产量是(x +100)kg , 由题意得:()22x 10011x a a +=--, 解得:x =50a -50,则x +100=50a +50,答:“丰收1号”试验田第二年的产量是(50a +50) kg .【点睛】本题考查一元一次方程的应用、因式分解的应用,熟练掌握运用因式分解解决问题是解题的关键.23.(1)7-;(2)1a+2;3;(3)无解 【分析】(1)根据二次根式运算法则计算即可;(2)先按照分式计算法则化简,再求值即可;(3)按照解分式方程的步骤解方程即可.【详解】(1)原式34=-+7=-(2)原式=()()113211a a a a a +---÷++ =22a 411a a a --÷++=()()2a+11a+2a-2a a -⨯+ =1a+2当2=a3 (3)22510111x x x -+=+-- 去分母得:()21510)1(xx +=--﹣, 去括号得:225510x x ---=-,解得:1x =经检验:1x =是分式方程的增根,原分式方程无解.【点睛】本题考查了二次根式的计算、分式的化简求值、解分式方程,解题关键是熟练运用相关知识,准确进行计算.24.2a,4040. 【分析】 利用分式的性质先化简,在将12020a =代入即可解答. 【详解】 原式()()()()222224422a a a a a a a a+--+=÷⋅-+ ()()()2222222a a a a a a -=⋅⋅-=-. 当12020a =时,原式4040=. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的性质是解题关键.25.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x 元,则每千克柿饼10x 元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x 元,则每千克柿饼10x 元. 依题意得,400080000200010x x+=, 方程两边乘10x ,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义, 当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键. 26.(1)0;(2)-x+1;(3)21210ab b +,12【分析】(1)根据负指数幂和零指数幂计算即可;(2)根据分式的乘除化简即可;(3)先根据整式乘法进行化简,在代入求值即可;【详解】解:(1) ()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭, =-8+9-1,=0;(2)21111x x x ⎛⎫-÷⎪+-⎝⎭, =()()()11111x x x x x -++-+, =()()111x x x x x+--+, =1x -+; (3)()()()22322a b a b a b +-+-,=()222241294a ab b a b++--,=222241294a ab b a b ++-+, =21210ab b +, 当13a =,12b =-时,原式=12×12×12⎛⎫- ⎪⎝⎭+10×212⎛⎫- ⎪⎝⎭=12. 【点睛】本题主要考查了分式化简、整式化简求值、实数计算,准确计算是解题的关键.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)

一、选择题1.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米2.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .143.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .24.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4 D .55.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( )A .9-B .8-C .7-D .6- 6.当x在实数范围内有意义( ) A .1x >B .1≥xC .1x <D .1x ≤ 7.关于代数式221a a+的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大D .当01a <<时,a 越大,221a a +的值就越大 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m =9.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,160010.已知2,1x y xy +==,则y x x y+的值是( ) A .0B .1C .-1D .2 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b= D .22a a b b= 12.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭二、填空题13.若231x x +=-,则11x x _______________________.14.(1)分解因式39x x -= ______________.(2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________.15.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 16.已知关于x 的分式方程233x k x x -=--的解是非负数,则k 的取值范围为______. 17.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 18.若分式方程13322a x x x--=--有增根,则a 的值是________. 19.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.20.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 三、解答题21.观察下列各个等式的规律: 第一个等式:111122=-⨯; 第二个等式:1112323=-⨯; 第三个等式:1113434=-⨯;…… (1)直接写出第四个等式;(2)证明:()()()()1121122n n n n n n +=++++; (3)探究并计算:111124466820182020+++⋯+⨯⨯⨯⨯. 22.解方程:(1)81877--=--x x x ; (2)21124x x x -=--. 23.(1)计算:32(1263)3a a a a +-÷(2)解方程:211x x x -=- 24.解方程(1)2231022x x x x -=+- (2)31523x-162x -=- (3)25231x x x x +=++ (4)552252x x =-+ 25.计算题:(1)因式分解:229()4()a x y b y x -+-;(2)计算:203)(2)-+-;(3)解分式方程:23193x x x +=--; (4)先化简-+⎛⎫-÷ ⎪+-⎝⎭223a 2a 11a 2a 4,然后从2-,1-,1,2中选择一个合适的整数作为a 的值代入求值.26.今年我市某公司分两次采购了一批金丝小枣,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨金丝小枣的价格比去年的平均价格上涨了1000元,第二次采购时每吨金丝小枣的价格比去年的平均价格下降了1000元,第二次的采购数量是第一次采购数量的2倍.试问去年每吨金丝小枣的平均价格是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y--+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 3.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2,解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.4.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠,则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.5.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.6.A解析:A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A .【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.7.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m 时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13)2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键. 8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 10.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.11.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】 ∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y -+--,符合题意;C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 二、填空题13.【分析】先将化为再由得然后代入计算即可【详解】解:先把原式变为:∵∴∴故填:-2【点睛】本题主要考查了代数式求值和分式的加减运算根据题意对已有等式和代数式灵活变形是解答本题的关键解析:2-【分析】 先将11x x 化为211x x x +-+,再由231x x +=-得213x x =--,然后代入计算即可. 【详解】 解:先把原式变为:211111111x x x x xx x x x ∵231x x +=-∴213x x =-- ∴22111312111x x x x x x x x .故填:-2.【点睛】本题主要考查了代数式求值和分式的加减运算,根据题意对已有等式和代数式灵活变形是解答本题的关键.14.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯【分析】(1)先提取公因式x ,再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3);(2)∵5a b +=,3ab =,∴22a b +=(a+b)2-2ab=25-6=19;(3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯.【点睛】本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.15.5【分析】根据已知有增根即使分式方程分母为0的根即满足x-2=0;解题中分式方程先通分再去分母化成整式方程后用x 表示出未知参数m 最后将x 的值代入即可求得m 的值【详解】解:分式方程有增根得:x=2通分解析:5【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.16.且【分析】先解分式方程可得检验可得再由关于的分式方程的解是非负数列不等式解不等式从而可得答案【详解】解:去分母得:检验:关于的分式方程的解是非负数综上:且【点睛】本题考查的是分式方程的解与解分式方程 解析:6k ≤且 3.k ≠【分析】先解分式方程可得6,x k =-检验可得3,k ≠再由关于x 的分式方程233x k x x -=--的解是非负数,列不等式,解不等式,从而可得答案.【详解】 解:233x k x x -=-- 去分母得:()23,x x k --=26,x x k ∴-+=6,x k ∴=-检验:30,x -≠630,k ∴--≠3,k ∴≠关于x 的分式方程233x k x x -=--的解是非负数, 60,k ∴-≥6,k ∴≤综上:6k ≤且 3.k ≠【点睛】本题考查的是分式方程的解与解分式方程,解一元一次不等式,掌握解分式方程一定要检验是解题的关键.17.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 18.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】 此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.19.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.20.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x = 0x =【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 三、解答题21.(1)145=⨯1145-;(2)证明见详解;(3)10094040 【分析】(1)由已知等式知,连续整数乘积的倒数等于这两个数倒数差,据此可得;(2)根据以上所得规律可得第n 个和n +1个式子,再根据分式的混合运算顺序和运算法则验证左右两边是否相等可得.(3)根据题目中的例子和所求式子的特点,只要提出14即可用例子的方法计算出所求的式子的值;【详解】解:(1)第四个等式为145=⨯1145-; 故答案为:145=⨯1145- (2)证明:左边=()()()111111112112n n n n n n n n +=-+-++++++122(2)1n n n n =-=++=右边, ∴()()()()1121122n n n n n n +=++++. (3)111124466820182020+++⋯+⨯⨯⨯⨯ =11111()412233410091010⨯+++⋯+⨯⨯⨯⨯ =11111111(1)42233410091010⨯-+-+-+⋯+- =1111(0)401-⨯ =10094040. 【点睛】 本题主要考查了数字变化规律问题和分式的加减运算,解决此类问题的关键是运用由特殊到一般的思想,找到一般规律,要善于前后联系,挖掘规律.22.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解. 【点睛】 本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.23.(1)2421a a +-;(2)2x =【分析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)32(1263)3a a a a +-÷321236333a a a a a a =÷+÷-÷2421a a =+-;(2)去分母得:()()2121x x x x --=-, 解得:2x =,经检验2x =是分式方程的解.【点睛】本题考查了解分式方程,以及整式的除法,熟练掌握运算法则是解本题的关键. 24.(1)4x =;(2)10=9x ;(3)无解;(4)356x =- 【分析】(1)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(2)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(3)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(4)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;【详解】解:(1)2231022x x x x -=+- 整理,得:310(2)(2)x x x x -=+- 方程两边同乘(2)(2)x x x +-得:3(2)(2)0x x --+=去括号,得:3620x x ---=移项,合并同类项,得:28x =系数化1,得:4x =经检验:4x =是原方程的解∴原分式方程的解为:4x =(2) 31523x-162x -=- 整理,得:3152312(31)x x -=-- 方程两边同乘2(31)x -得:()33125x --=去括号,得:9325x --=移项,合并同类项,得:9=10x系数化1,得:10=9x 经检验:10=9x 是原方程的解 ∴原分式方程的解为:10=9x (3)25231x x x x +=++ 整理,得:523(1)1x x x x +=++ 方程两边同乘(1)x x +得:523x x +=移项,合并同类项,得:22x =-系数化1,得:1x =-经检验:1x =-是原方程的增根∴原分式方程无解(4)552252x x =-+ 方程两边同乘()()2525x x +-得:()()525225x x +=-去括号,得:1025410x x +=-移项,合并同类项,得:635x =-系数化1,得:356x =-经检验:356x =-是原方程的解 ∴原分式方程的解为:356x =-【点睛】本题考查解分式方程,掌握解方程步骤,正确计算是解题关键,注意分式方程的结果要进行检验.25.(1)()()()3232x y a b a b -+-;(2)3)4x =-;(4)21a a --,a=-1时,原式=32【分析】(1)先提公因式(x ﹣y ),再利用平方差公式分解因式即可;(2)分别利用平方差公式、完全平方公式、零指数幂运算法则进行计算即可解答; (3)根据分式方程的解法步骤:化为整式方程、解方程、检验、写结论进行求解即可; (4)先通分化简括号内分式,再将除法算式化为乘法,同时分子、分母因式分解,约分化简原式,再代入使分式有意义的数值计算即可解答.【详解】(1)解:原式229()4()a x y b x y =--- ()(32)(32)x y a b a b =-+-解:原式207(141=---+=(3)解:方程两边都乘以()(33)x x +-,去分母得:23(3)9x x x ++=-去括号得:22339x x x ++=-移项、合并同类项得:312x =-化系数为1得:4x =-检验:当4x =-时, (3)(3)0x x +-≠所以4x =-是原分式方程的解(4)解:原式223(2)(2)2(1)a a a a a +-+-=⋅+- 21a a -=- 当2a =-,2,1时,分式无意义 当1a =-时,原式123112--=--. 【点睛】本题是一道综合题,涉及因式分解、实数的运算、平方差公式、完全平方公式、解分式方程、分式的化简求值等知识,解答的关键是熟练掌握各知识题型的解法步骤和注意事项,比如因式分解要彻底、解分式方程时要验根、代数值时要使分式有意义等.26.7000元【分析】设去年每吨金丝小枣的平均价格为x 元,根据“第二次的采购数量是第一次采购数量的2倍” 得:400000600000210001000x x ⨯=+-. 【详解】解:设去年每吨金丝小枣的平均价格为x 元,则可列方程 400000600000210001000x x ⨯=+- 解得7000x =经检验:7000x =是原分式方程的解答:去年每吨金丝小枣的平均价格为7000元.【点睛】本题考查了分式方程的应用.理解题意,根据等量关系列出方程是关键.。
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

(共25题)一、选择题(共10题)1.若分式x2−4x+2的值为0,则x的值为( )A.±2B.2C.−2D.02.在方程:x+32−5=0,4x=6,x2+x−3=0,x3−4x=1中,是分式方程的有( )A.2个B.3个C.4个D.0个3.使分式3xx+2有意义的x的取值范围为( )A.x≠−2B.x≠2C.x≠0D.x≠±24.若代数式1x−9有意义,则实数x的取值范围是( )A.x≠0B.x≥0C.x≠9D.x≥95.使分式13−x有意义的x的取值范围是( )A.x≠3B.x=3C.x≠0D.x=06.计算2x+3x+1−2xx+1的结果为( )A.1B.3x+1C.3D.x+3x+17.下列方程是分式方程的是( )A.x−32+x+13=4B.xπ+1−x+1π−1=2C.√x−1x−12=1D.2xx+x−22=48.计算(1+1x )÷x2+2x+1x的结果是( )A.x+1B.1x+1C.xx+1D.x+1x9.若分式xx−3有意义,则x的取值范围是( )A . x >3B . x <3C . x ≠3D . x =310. 要使分式 3x−1有意义,则 x 的取值范围是 ( )A . x ≠1B . x >1C . x <1D . x ≠−1二、填空题(共7题) 11. 化简:4xy 220x 2y = . 12. 若 a b=23,则a−b b= .13. 要使分式 x−1x+1 有意义,x 的取值应满足 .14. 要使分式 x 2−1(x+1)(x−2) 有意义,则 x 应满足的条件是 .15. 当 x 时,分式 1x+3 有意义.16. 当 x 时,分式 1x 的值为正数.17. 用换元法解方程1x 2−2x+2x 2−4x =3 时,如果设 x 2−2x =y ,那么原方程可以化为关于 y 的整式方程是 .三、解答题(共8题) 18. 按要求计算:(1) 计算:√12−∣2√3−1∣+(π−2√3)0÷(12)−2.(2) 因式分解:① 4a 2−25b 2;② −3x 3y 2+6x 2y 3−3xy 4. (3) 解方程:x−1x−2+2=32−x .19. 已知 1x −1y =2,求 3x+4xy−3y2x−5xy−2y 的值.20.解下列方程:2x−2−1x=0.21.计算:11+x +x1−x.22.化简:x4−16x3+2x2+4x+8.23.从不同角度谈谈你对等式x(x+4)=5的理解.24.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?25.解方程:5x−4=14−x+2.答案一、选择题(共10题)1. 【答案】B【解析】根据题意得x2−4=0且x+2≠0,解得x=2.【知识点】分式值为正,为负,为零的条件2. 【答案】B【解析】由分式方程的定义,知4x =6,x2+x−3=0,x3−4x=1是分式方程.【知识点】分式方程的概念3. 【答案】A【解析】x+2≠0,∴x≠−2.【知识点】分式有无意义的条件4. 【答案】C【知识点】分式有无意义的条件5. 【答案】A【解析】分式13−x有意义,则3−x≠0,解得:x≠3.【知识点】分式有无意义的条件6. 【答案】B【解析】2x+3x+1−2xx+1=2x+3−2xx+1=3x+1.【知识点】分式的加减7. 【答案】D【知识点】分式方程的概念8. 【答案】B【解析】原式=(xx+1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1.【知识点】分式的混合运算9. 【答案】C【解析】∵分式xx−3有意义,∴x−3≠0,∴x的取值范围是x≠3.【知识点】分式有无意义的条件10. 【答案】A【解析】由题意得,x−1≠0,解得x≠1.【知识点】分式有无意义的条件二、填空题(共7题)11. 【答案】y5x【解析】原式=4xy⋅y4xy⋅5x =y5x.故答案为:y5x.【知识点】约分12. 【答案】−13【知识点】分式的基本性质13. 【答案】x≠−1【解析】∵分式x−1x+1有意义,∴x+1≠0,解得x≠−1.【知识点】分式有无意义的条件14. 【答案】x≠−1且x≠2【知识点】分式有无意义的条件15. 【答案】≠−3【解析】由题意得:x+3≠0,解得x≠−3.【知识点】分式有无意义的条件16. 【答案】 >0【解析】由题意得:1x >0,即 x >0.【知识点】分式值为正,为负,为零的条件17. 【答案】 2y 2−3y +1=0【知识点】分式方程的解法三、解答题(共8题) 18. 【答案】(1)√12−∣2√3−1∣+(π−2√3)0÷(12)−2=2√3−2√3+1+1+4= 6.(2) ① 原式=(2a +5b )(2a −5b );② 原式=−3xy 2(x 2−2xy +y 2)=−3xy 2(x −y )2.(3) 去分母得,x −1+2(x −2)=−3.3x −5=−3.解得x =23.检验:把 x =23 代入 x −2≠0,所以 x =23 是原方程的解.【知识点】提公因式法、算术平方根的运算、平方差、负指数幂运算、完全平方式、零指数幂运算、绝对值、分式方程的解法19. 【答案】 29.【知识点】约分、简单的代数式求值20. 【答案】去分母得:2x −x +2=0.解得:x =−2.经检验,x =−2 是原方程的解.【知识点】分式方程的解法21. 【答案】 1+x 21−x 2.【知识点】分式的加减22. 【答案】 x −2.【知识点】约分23. 【答案】①方程:一元二次方程 x 2+4x −5=0,两根分别为 x 1=1,x 2=−5;或分式方程 x +4−5x =0,两根分别为 x 1=1,x 2=−5; ②函数:二次函数 y =x 2+4x 与直线 y =5 的交点,或一次函数y=x+4与反比例函数y=5x的交点;③图形:边长为x和x+4,面积为5的矩形.【知识点】一元二次方程的解法、矩形的面积、分式方程的解法24. 【答案】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,根据题意,得15001.2x −1200x=10,变形为:1500−1440=12x,解得:x=5.经检验,x=5是原方程的解.则该老板这两次购买玩具一共盈利为:15001.2×5×(8−1.2×5)+12005×(7−5)=980(元).答:该老板两次一共赚了980元.【知识点】分式方程的应用25. 【答案】去分母得:5=−1+2(x−4).整理得:2x=14.解得:x=7.经检验x=7是分式方程的解.【知识点】分式方程的解法。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试(有答案解析)

一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >- 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4B .9C .-4D .-8 3.分式方程3121x x =-的解为( ) A .1x =B .2x =C .3x =D .4x = 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数 5.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0 6.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变7.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .118.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 9.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .610.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 11.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0 C .-3 D .-412.下列变形不正确的是( )A .1122x x x x +-=---B .b a a b c c--+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______. 14.(1)分解因式39x x -= ______________.(2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________.15.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 16.某种病毒的直径为0.0000000028米,用科学记数法表示为______米.17.有意义,则x 的取值范围是______________. 18.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.19.计算22a b a b a b-=-- _________. 20.要使分式3 x 2-有意义,则 x 的取值范围是___________. 三、解答题 21.(1)计算: 02202013(3)(1)2-π-+-+--() (2)解方程:3231x x =+- 22.解方程:21113x x x++=. 23.解方程:(1)25231x x x x +=++; (2)23111x x x -=--. 24.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 25.计算:(2933a a a+--)÷3a a +. 26.(1)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭(2)先化简再求值:22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭,其中2=a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.A解析:A【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论. 【详解】解:由11x y =3,得y x xy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A .【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x ≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 6.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7.B解析:B【分析】根据分式方程的解为正整数解,即可得出a=0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a<5,找出a的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x=121a+,∵x≠3,∴121a+≠3,即a≠3,又∵分式方程有正整数解,∴a=0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51 yy a≤⎧⎨-⎩>,∴a−1<4,解得,a<5,∴a=0,1,2,∴0+1+2=3,故选:B.本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.8.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.9.C解析:C【分析】先对分式方程进行求解,即用含k的代数式表示分式方程的解,然后根据题意可进行求解.【详解】解:由3211kx x+=--可得:52xk=+,∵分式方程的解为非负数,且1x≠,∴52k+≥且512k+≠,解得:5k≥-且3k≠-∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C.本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.10.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.11.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B 、b a a bc c --+=-,故B 正确; C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键 解析:163【分析】 将原分式化简得163n m mn -=,再两边同时除以mn 即可得结果. 【详解】 由22227m mn n m n mn--=-+得24414m mn n m n mn --=-+ 所以163n m mn -=,则11163m n -= 故答案为:163【点睛】 本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键. 14.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯【分析】(1)先提取公因式x ,再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3);(2)∵5a b +=,3ab =,∴22a b +=(a+b)2-2ab=25-6=19;(3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯.【点睛】本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.15.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.16.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000000解析:92.810-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000000028=2.8×10-9,故答案为:92.810-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.18.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.20.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2【分析】根据分式有意义得到分母不为0,即可求出x 的范围.【详解】 解:要使分式3 x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0. 三、解答题21.(1)1;(2)9x =【分析】(1)根据绝对值的性质、零指数幂、负整数次幂和有理数的乘方进行计算即可; (2)把分式方程化成整式方程求解,最后验根.【详解】解:(1)原式=31411=+-+=;(2)3231x x =+- 去分母得:()()3123x x -=+,去括号得:3326x x -=+,移项、合并得:x =9,检验:把x =9代入方程,各分母都不为0,∴x =9是方程的解.【点睛】本题考查实数的运算、解分式方程,解题的关键是掌握实数的相关性质和解分式方程的方法.22.43x =- 【分析】先去分母将分式方程化为整式方程,求解整式方程并验根即可.【详解】解:去分母得:3(21)13x x ++=,去括号得:6313x x ++=,移项合并同类项得:34x =-,系数化为1得:43x =-. 经检验43x =-是该方程的根. 【点睛】本题考查解分式方程.注意解分式方程一定要验根.23.(1)无解;(2)2x =【分析】(1)先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可; (2)先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)25231x x x x +=++ 方程两边同乘以()1x x +,得523x x +=,解整式方程得,1x =-,检验:当1x =-时,()10x x +=,因此1x =-不是原分式方程的解,∴原分式方程无解;(2)23111x x x -=-- 方程两边同乘以()()11x x +-,得()()2113x x x +--=解方程得,2x =检验:当2x =时,()()110x x +-≠所以,原分式方程的解2x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要检验.24.原式1x=,1x=时,原式1=;或2x=时原式12=.【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x<3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:2111 x xxx x⎛⎫-+÷⎪++⎝⎭=2(1)(1)11x x x xx x --++⋅+=221 x xx-+=1x,∵x(x+1)≠0,∴x≠0,x≠-1,∵整数x满足-1≤x<3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.a【分析】首先提出负号使括号内变为2933aa a⎛⎫-⎪--⎝⎭,然后根据平方差公式、除法法则进行化简即可.【详解】原式229393(3)3333a a a a aa aa a a a a a⎛⎫+-+=-÷=÷=+⋅= ⎪---+⎝⎭【点睛】本题考查了平方差公式、分式的化简,重点是掌握乘法公式在分式化简中的计算方法.26.(1)21x-,(2)21a+,2-【分析】(1)先计算括号内的分式减法,再算除法即可;(2)先依据分式运算法则和顺序化简,再代入求值即可.【详解】解:(1)221111x x x ⎛⎫÷- ⎪-+⎝⎭, 2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x+=-, ()()21·11x x x x x +=+-,21x =-; (2)22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭, ()()()()22212·1112a a a a a a a--=++-+-, 22(1)11a a a a -=-++, 21a =+, ∵2=a ,∴a=2(不符合题意,舍去)或a=-2,把a=-2代入,原式2221-+==-. 【点睛】本题考查了分式的运算和分式化简求值,解题关键是熟练运用分式的运算法则和运算顺序解题.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(包含答案解析)

一、选择题1.已知112a b -=,则a bab-的值是( )A .2B .2-C .12D .12-2.已知113x y -=,则代数式21422x xy y x xy y----的值( ) A .4B .9C .-4D .-83.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn mn -元/升C .王勇比李刚低()22m n mn-元/升D .李刚与王勇的平均单价都是2m n+元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数 C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为05.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠06.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( ) A .3B .4C .5D .67.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 8.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+- D .21628x x -+9.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .411.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a cN b+=,a bP c+=,则M ,N ,P 之间的大小关系是( ) A .M P N << B .M N P <<C .N P M <<D .P M N <<12.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==二、填空题13.(1)分解因式39x x -= ______________.(2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________.14.如果30,m n --=那么代数式2⎛⎫-⋅⎪+⎝⎭m nn n m n 的值为______________________. 15.氢原子的半径约为0.00000000005m ,用科学记数法表示为______ m . 16.若式子11x -有意义,则x 的取值范围是______________. 17.已知234a b c ==(0abc ≠,a b c +≠),则=+a b ca b c -+-_____. 18.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.19.对于每个非零自然数n ,x 轴上有(,0)n A x ,(,0)n B y 两点,以n n A B 表示这两点间的距离,其中n A ,n B 的横坐标分别是方程组1121111n x y x y ⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220202020A B A B A B +⋅⋅⋅++的值等于_______.20.计算22111m m m ---,的正确结果为_____________. 三、解答题21.一辆汽车开往距离出发地180km 的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地. (1)求前1小时这辆汽车行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?22.先化简2454111x x x x x --⎫⎛+-÷⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 23.先化简,再求值:已知(23x x -+93x-)÷2121x x x --+,其中x 满足x 2+2x ﹣5=0.24.先化简,再求值:23222122a b a b a ab a a a b ab--⎛⎫-÷ ⎪+++⎝⎭,其中20a b +-=.25.解下列分式方程 (1)42122x xx x++=--;(2)()()21112x x x x =+++-. 26.在我市“青山绿水”行动中,某社区计划对面积为3600m 2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m 2区域的绿化时,甲队比乙队少用6天.求甲,乙两工程队每天各能完成多少面积的绿化?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式的运算法则即可求出答案. 【详解】 解:∵112a b-=, ∴2b aab-=, ∴原式=﹣2, 故选:B . 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2.A解析:A 【分析】 由11xy=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论.【详解】解:由11xy =3,得y xxy -=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.A解析:A 【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mnm n+元,再求解王勇每次加油30升的平均单价为每升:2m n+元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升:()6006002300300300mnm n m n m n mn==+++(元),王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n++=(元), ()()()224222m n m n mn mnm n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠()()22m n m n -∴+>0, ∴2m n +>2mnm n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A 【点睛】本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B 【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案. 【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误; 当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确; 故选:B . 【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.5.D解析:D 【分析】若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 【点睛】本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 6.A解析:A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得. 【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解, 即放入口袋中的黄球总数n =3, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 7.C解析:C 【分析】根据分式的性质逐一判断即可. 【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确;C. 2422x y x yx x--=分子分母同时除以2,变形正确; D.22m nn m-=-不正确; 故选:C . 【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.8.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分; 【详解】 A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.9.C解析:C 【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答. 【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式;B 、22y x x y--=-x-y ,故该项不是最简分式;C 、2222x y x y xy++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x yx y -+,故该项不是最简分式; 故选:C . 【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.10.B解析:B 【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答. 【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x +=+-是分式方程,故④正确; 故选:B . 【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.A解析:A 【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答. 【详解】 解:∵a+b+c=1,∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c ,∴1110,0,c b b c bc a --=>< ∴111a c b <<, ∴M<P<N , 故选A . 【点睛】本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.12.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.二、填空题13.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯ 【分析】(1)先提取公因式x ,再用平方差公式分解; (2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3);(2)∵5a b +=,3ab =, ∴22a b +=(a+b)2-2ab=25-6=19; (3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯. 【点睛】本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键 解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值. 【详解】解:2⎛⎫-⋅ ⎪+⎝⎭m nn n m n =22m n n m nn ⎛⎫⋅⎪⎭-+⎝ =()()nnm nm n m n -⋅++ =m n -∵30m n --=,∴=3m n - 故答案为:3. 【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:用科学记数法 解析:11510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:用科学记数法把0.0000 0000 005表示为5×10-11. 故答案为:5×10-11. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.17.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 18.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.19.【分析】将n 看做已知数求出方程组的解表示出x 与y 列举出所求式子各项拆项后抵消即可得到结果【详解】解:方程组①+②得即将代入①得:∴∵n >0∴是该方程组的根∴则原代数式故答案为:【点睛】此题考查了分式 解析:20202021【分析】将n 看做已知数求出方程组的解表示出x 与y ,列举出所求式子各项,拆项后抵消即可得到结果.【详解】 解:方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩①②, ①+②得22n x =,即1x n =, 将1x n =代入①得:11y n =+, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩, ∵n >0, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩是该方程组的根, ∴111n n A B n n =-+, 则原代数式1111112020112232020202120212021=-+-+⋯+-=-=. 故答案为:20202021. 【点睛】此题考查了分式的加减法,解二元一次方程组,以及坐标与图形性质,熟练掌握运算法则是解本题的关键.20.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.三、解答题21.(1)60km/h ;(2)以提速后的速度行驶更省油【分析】(1)设前1小时行驶的速度为xkm/h ,则1小时后行驶的速度为1.5xkm/h ,根据时间=路程÷速度结合提速后比原计划提前23h (40min )到达目的地,解之经检验后即可得出结论;(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油(y+0.3)升,根据总油耗=每小时油耗×运动时间,即可得出关于y 的一元一次方程,解之即可求出y 值,再分别求出返程时按两种速度所需总油耗,比较后即可得出结论.【详解】解:(1)设前1小时行驶的速度为/xkm h ,则1小时后行驶的速度为1.5xkm/h , 依题意,得: 18018021.53x x x x ---=,解得:60x =,经检验,60x =是原方程的解,且符合题意.答:前1小时行驶的速度为60km/h .(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油()0.3y +升, 依题意,得:18060(0.3)7.5 4.3,1.560y y -+⋅+=-⨯ 解得: 1.2y =,∴回来时若以原速度行驶总耗油180 1.2 3.660=⨯=(升), 若以提速后的速度行驶总耗油180(1.20.3)31.560=⨯+=⨯(升). ∵3.63>,∴以提速后的速度行驶更省油.【点睛】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程. 22.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.23.x 2+2x ﹣3,2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由方程得出x2+2x=5,代入即可得到答案.【详解】 解:(23x x -+93x-)÷2121x x x --+ =(2933x x x ---)÷21(1)x x -- =2(3)(3)(1)31x x x x x +---- =(x ﹣1)(x +3)=x 2+2x ﹣3,∵x 2+2x ﹣5=0,∴x 2+2x =5,则原式=5﹣3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.24.+a b ,2 【分析】 先根据分式的混合运算顺序和运算法则化简原式,再由等式得出=2+a b ,代入计算可得.【详解】解:23222122a b a b a ab a a a b ab --⎛⎫-÷ ⎪+++⎝⎭=2212()()a b a b a a b a a a b ⎛⎫---÷ ⎪++⎝⎭=222()()a b a b a b a a b a a b ----÷++ =22()()2a b a a b a a b a b-++- =+a b∵20a b +-=∴=2+a b ,即原式=2【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 25.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.甲工程队每天能完成100m 2的绿化,乙工程队每天能完成50m 2的绿化.【分析】设乙工程队每天能完成xm 2的绿化,则甲工程队每天能完成2xm 2的绿化,根据工作时间=工作总量÷工作效率结合在两队各自独立完成面积为600m 2区域的绿化时甲队比乙队少用6天,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设乙工程队每天能完成xm 2的绿化,则甲工程队每天能完成2xm 2的绿化, 依题意,得:60060062x x -=, 解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m 2的绿化,乙工程队每天能完成50m 2的绿化.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.注意分式方程的解要检验.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)

一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数 2.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等3.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5 4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .115.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定 6.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( ) A .112m ≤< B .312m ≤< C .322m ≤< D .522m ≤< 7.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .758.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x ≠D .x 取任意实数9.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 10.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( ) A .12 B .2 C .12- D .2-11.如果a ,b ,c 是正数,且满足1a b c ++=,1115a b b c a c++=+++,那么a b a b b a c c c +++++的值为( ) A .1- B .1 C .2 D .1212.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .3二、填空题13.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.14.计算:111x x---的结果是________. 15.若分式方程13322a x x x--=--有增根,则a 的值是________. 16.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 17.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.18.当x _______时,分式22x x -的值为负. 19.对于每个非零自然数n ,x 轴上有(,0)n A x ,(,0)n B y 两点,以n n A B 表示这两点间的距离,其中n A ,n B 的横坐标分别是方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩的解,则112220202020A B A B A B +⋅⋅⋅++的值等于_______.20.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .三、解答题21.先化简,再求值:2231693x x x x x x x x -++÷+-+-,其中x =. 22.一个电器超市购进A ,B 两种型号的电风扇后进行销售,若一台A 种型号的电风扇进价比一台B 种型号的电风扇进价多30元,用2000元购进A 种型号电风扇的数量是用3400元购进B 种型号电风扇的数量的一半.(1)求每台A 种型号电风扇和B 种型号的电风扇进价分别是多少?(2)该超市A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A 种型号的电风扇至少是多少台?23.先化简,再求值:()232284422a a a a a a -⎛⎫÷-+⋅- ⎪+⎝⎭,其中12020a =. 24.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?25.为切实做好新冠肺炎的防控工作,贯彻落实“预防为主,安全第一”的方针,某学校计划购买A 、B 两种品牌的消毒液,已知B 品牌消毒液每瓶的价格是A 品牌消毒液每瓶价格的2倍少20元,用600元买A 品牌消毒液的数量与用800元购买B 品牌消毒液的数量相同.(1)求A 、B 两种品牌消毒液每瓶的价格各是多少元?(2)若该校一次性购买A 、B 两种品牌的消毒液分别为20瓶和30瓶,请问该校此次购买消毒液花费为多少元?26.今年我市某公司分两次采购了一批金丝小枣,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨金丝小枣的价格比去年的平均价格上涨了1000元,第二次采购时每吨金丝小枣的价格比去年的平均价格下降了1000元,第二次的采购数量是第一次采购数量的2倍.试问去年每吨金丝小枣的平均价格是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.C解析:C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.3.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.4.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.5.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 6.C解析:C【分析】 先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】 ∵211x x ++=22-12(1)-112111x x x x x ++==-+++, 又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32,又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C .【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键.7.D解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.8.C解析:C【分析】根据分式有意义的基本条件计算即可.【详解】∵分式12x -有意义, ∴x-2≠0, ∴2x ≠,故选C .【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键. 9.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题;【详解】∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.A解析:A【分析】根据新定义,把2x y *=转化为分式的运算即可.【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xy x y-得, 122xy xy =, 故选:A .【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.11.C解析:C【分析】先根据题意得出a=1-b-c ,b=1-a-c ,c=1-a-b ,再代入原式进行计算即可.【详解】解:∵a ,b ,c 是正数,且满足a+b+c=1,∴a=1-b-c ,b=1-a-c ,c=1-a-b ,∴a b a b b a c c c +++++ =111a c a b b c a c a b b c ----++--+++ =1113a b b c a c++-+++ =53-=2故选:C【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.12.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.二、填空题13.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键解析:21xx -.【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】解:111xx---=()111111x xxx x x-------=2 111x x xx-+-+-=2 1xx -故答案为21xx -.【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.15.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x的值代入整式方程计算即可求出a的值【详解】去分母得:1-3x+6=-3a+x由分式方程有增根得到x−2=0即x=2把x=2代入得:1-6+6解析:1 3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 17.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.18.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.19.【分析】将n 看做已知数求出方程组的解表示出x 与y 列举出所求式子各项拆项后抵消即可得到结果【详解】解:方程组①+②得即将代入①得:∴∵n >0∴是该方程组的根∴则原代数式故答案为:【点睛】此题考查了分式 解析:20202021【分析】将n 看做已知数求出方程组的解表示出x 与y ,列举出所求式子各项,拆项后抵消即可得到结果.【详解】 解:方程组1121111n x y x y⎧+=+⎪⎪⎨⎪-=-⎪⎩①②,①+②得22n x =,即1x n =, 将1x n =代入①得:11y n =+, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩, ∵n >0, ∴111x n y n ⎧=⎪⎪⎨⎪=⎪+⎩是该方程组的根, ∴111n n A B n n =-+, 则原代数式1111112020112232020202120212021=-+-+⋯+-=-=. 故答案为:20202021. 【点睛】 此题考查了分式的加减法,解二元一次方程组,以及坐标与图形性质,熟练掌握运算法则是解本题的关键.20.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+,设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.三、解答题21.11x -,1-2【分析】通过约分和通分对分式进行化简,再代入求值,即可求解.【详解】原式=()23(1)133x x x x x x x -++÷+-- =()2331(1)3x x x x x x x ---⋅++- =11(1)x x x x -++ =21(1)(1)x x x x x -++ =(1)(1)(1)x x x x +-+ =1x x- =11x-,当x 时,原式=1=1-2.【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.22.(1)每台A 种型号电风扇的进价为200元,则B 种型号的电风扇进价是170元;(2)20台【分析】(1)合理引进未知数,列分式方程求解即可;(2)把问题转化为不等式问题求解即可.【详解】解:(1)设每台A 种型号电风扇的进价为x 元,则B 种型号的电风扇进价是()30x -元,根据题意可得:200013400230x x =⨯- 解得:200x =,经检验得:200x =是原方程的根,则30170x -=,答:每台A 种型号电风扇的进价为200元,则B 种型号的电风扇进价是170元;(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇()30a -台,根据题意可得:()()()260200190170301400a a -+--≥解得:20a ≥,答:该超市本次购进A 种型号的电风扇至少是20台.【点睛】本题考查了分式方程,不等式的整数解,熟练掌握分式应用题的求解法,不等式的整数解求解方法是解题的关键.23.2a,4040. 【分析】 利用分式的性质先化简,在将12020a =代入即可解答. 【详解】 原式()()()()222224422a a a a a a a a+--+=÷⋅-+ ()()()2222222a a a a a a -=⋅⋅-=-. 当12020a =时,原式4040=. 【点睛】本题考查了分式的化简求值,熟练掌握分式的性质是解题关键.24.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.25.(1)A 种品牌消毒液每瓶的价格是30元,B 种品牌消毒液每瓶的价格是40元;(2)1800元【分析】(1)设A 种品牌消毒液每瓶的价格是x 元,则B 种品牌消毒液每瓶的价格是(220)x -元;根据题意列分式方程并求解,即可得到答案;(2)结合(1)的结论,根据题意计算A 、B 两种品牌的消毒液花费,即可得到答案.【详解】(1)设A 种品牌消毒液每瓶的价格是x 元,则B 种品牌消毒液每瓶的价格是(220)x -元 根据题意得:600800220x x =- 解得:30x =经检验,30x =是原方程的解∴22040x -=元∴A 种品牌消毒液每瓶的价格是30元,B 种品牌消毒液每瓶的价格是40元; (2)A 种品牌的消毒液花费为:2030600⨯=(元)B 种品牌的消毒液花费为:30401200⨯=(元)共花费为: 60012001800+=(元),∴该校此次购买消毒液花费为1800元.【点睛】本题考查了分式方程、有理数运算的知识;解题的关键是熟练掌握分式方程、有理数运算的性质,从而完成求解.26.7000元【分析】设去年每吨金丝小枣的平均价格为x 元,根据“第二次的采购数量是第一次采购数量的2倍” 得:400000600000210001000x x ⨯=+-. 【详解】解:设去年每吨金丝小枣的平均价格为x 元,则可列方程 400000600000210001000x x ⨯=+- 解得7000x =经检验:7000x =是原分式方程的解答:去年每吨金丝小枣的平均价格为7000元.【点睛】本题考查了分式方程的应用.理解题意,根据等量关系列出方程是关键.。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(有答案解析)(1)

一、选择题1.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( )A .1010302x x -= B .102010602x x += C .1010302x x += D .102010602x x-= 3.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b + A .4 B .3 C .2 D .14.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .285.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2B .3C .6D .11 6.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 7.下列式子的变形正确的是( )A .22b b a a = B .22+++a b a b a b=C .2422x y x y x x --=D .22m n n m-=- 8.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x =9.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭10.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=- B .420420200.5x x -=+ C .420420200.5x x-=+ D .420200.5x =- 11.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题 13.若113m n +=,则分式225m n mn m n +---的值为________ . 14.计算22a b a b a b-=-- _________. 15.计算:111x x---的结果是________. 16.观察给定的分式,探索规律: (1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数).17.当x _______时,分式22x x -的值为负. 18.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.19.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 20.如果分式126x x --的值为零,那么x =________ . 三、解答题21.计算:2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 22.解方程:(1)81877--=--x x x ; (2)21124x x x -=--. 23.(1)化简分式:11222x x x -+---; (2)判断方程112022x x x-+-=--是否有解?_____(填“是”或“否”) 24.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?25.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?26.(1(1018223202023-⎛⎫--+ ⎪⎝⎭.(2)先化简,再求值:21211x x ++-,其中2021x =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>- 综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.2.D解析:D【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得: 102010602x x-=, 故选:D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.A解析:A【分析】分母是整式且整式中含有字母,根据这点判断即可.【详解】 ∵3x 中的分母是3,不含字母, ∴3x 不是分式; ∵1n 中的分母是n ,是整式,且是字母, ∴1n 是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b +中的分母是15,不含字母, ∴15a b +不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y 是分式; ∵()22ab a b +中的分母是2()a b +,是整式,含字母a ,b , ∴()22ab a b +是分式;共有4个,故选A .【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键. 4.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 5.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>,∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.6.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 7.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.8.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.9.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 10.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.11.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13-【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=, ∴=3m n mn +,即m+n=3mn , ∴225m n mn m n +--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn- =13-. 故答案为:13-. 【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 14.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.15.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键 解析:21x x-. 【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】 解:111x x --- =()111111x x x x x x------- =2111x x x x-+-+- =21x x- 故答案为21x x-. 【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.16.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n n b a-- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键17.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.18.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.19.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x+≠,解得:1x≠-,故答案为:1x≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.20.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x-=,解方程即可得.【详解】由题意得:10x-=,解得1x=,分式的分母不能为零,260x∴-≠,解得3x≠,1x∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.三、解答题21.33 m-【分析】根据分式的性质化简即可;【详解】原式()()()2333333mm mm m m m+⎛⎫+=-⎪+++-⎝⎭,()()()233333m m m m +=++-, 33m =-; 【点睛】本题主要考查了分式的化简,准确计算是解题的关键.22.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解. 【点睛】 本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.23.(1)1;(2)否.【分析】(1)原式通分并利用同分母分式的加减法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可. 【详解】 解:(1)11222x x x -+--- =12(2)1222x x x x x --++---=12412x xx-+-+-=22 xx--=1;(2)去分母得:1-x+2x-4+1=0,解得:x=2,经检验x=2是增根,分式方程无解.故答案为:否.【点睛】此题考查了分式方程的解,以及解分式方程,熟练掌握运算法则是解本题的关键.24.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.25.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x =0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m 台,则购买甲种电脑(80﹣m )台,根据题意得:()()1.5800.3800.534m m m m -⎧⎪⎨-+≤⎪⎩≥ , 解得:48≤m≤50.又∵m 为整数,∴m 可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键; 26.(1)-1;(2)11x -;12020【分析】(1)根据绝对值化简、负指数幂和零指数幂计算即可;(2)先化简分式,再代入求解即可;【详解】(1)解:原式331=--, 1=-;(2)解:原式221211x x x -=+-- 1(1)(1)x x x +=+- 11x =-, 当2021x =时,原式11202112020==-; 【点睛】本题主要考查了实数的混合运算和分式化简求值,准确计算是解题的关键.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)

一、选择题1.下列各分式中是最简分式的是( ) A .2-1-1x x B .42xC .22-1xx D .-11-x x2.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数 C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为03.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10B .15C .18D .204.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31xx+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式5.下列命题中,属于真命题的是( ) A .如果0ab =,那么0a = B .253xx x-是最简分式 C .直角三角形的两个锐角互余 D .不是对顶角的两个角不相等6.下列变形不正确...的是( ) A .1a b a b a b -=-- B .1a b a b a b +=++ C .221a b a b a b+=++D .221-=-+a b a b a b7.若关于x 的方分式方程222x m x x=---有非负整数解,且关于y 的不等式组()()2123513yy y y m +⎧+≥⎪⎨⎪-<-+⎩有且只有2个整数解,则所有符合条件的正整数m 的和为( ) A .5 B .7 C .8 D .9 8.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④9.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-10.已知2,1x y xy +==,则y xx y+的值是( ) A .0 B .1C .-1D .211.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .7512.据悉,华为Mate40 Pro 和华为Mate40 Pro+搭载业界首款5nm 麒麟90005GSoC 芯片,其中5nm 就是0.000000005m .将数据0.000000005用科学记数法表示为( ) A .9510-⨯B .80.510-⨯C .7510-⨯D .7510⨯二、填空题13.化简:211x xx x +++=_____. 14.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.15.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a-=;⑤()()321m m mm a a a -÷=-.其中运算正确的有______.(填序号即可)16.关于x 的方程53244x mxx x++=--无解,则m =________. 17.计算:22112a a a a a--÷+=____. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克. 19.要使分式3x 2-有意义,则x 的取值范围是___________.20.计算:22x x xy x y x-⋅=-____________________. 三、解答题21.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式中,_____是和谐分式(填写序号即可);①211x x -+;②222a ba b --;③22x y x y +-;④222()a b a b -+ (2)若分式219x x ax -++为和谐分式,且a 为整数,请写出所有a 的值; (3)在化简22344a a bab b b -÷-时,小东和小强分别进行了如下三步变形: 小东:原式()()22232223232232444444a b a ab ba a a a ab b b b ab b b ab b b--=-⨯=-=--- 小强:原式22223222444444()()()a a a a a a a b ab b b b b a b b a b b --=-⨯=-=--- 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:____,请你接着小强的方法完成化简.22.解方程:125133x x x-=---. 23.解下列方程:(1)322x x=-;(2)214111x x x +-=-- 24.根据已知条件,求下列各式的值:()1已知3,2m n x x ==,求32m n x +的值;()2先化简:2211121x x x x x x ⎛⎫⎪+++÷--⎝+⎭,然后从22x -≤≤中选取一个合适的整数作为x 的值代入求值.25.(1(101320203-⎛⎫--+ ⎪⎝⎭.(2)先化简,再求值:21211x x ++-,其中2021x =. 26.今年我市某公司分两次采购了一批金丝小枣,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨金丝小枣的价格比去年的平均价格上涨了1000元,第二次采购时每吨金丝小枣的价格比去年的平均价格下降了1000元,第二次的采购数量是第一次采购数量的2倍.试问去年每吨金丝小枣的平均价格是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据最简分式的定义即可求出答案. 【详解】 解:A 、211()111)(11x x x x x x -==+--+-,故选项A 不是最简分式,不符合题意; B 、42=2x x ,故选项B 不是最简分式,不符合题意; C 、22-1xx ,是最简二次根式,符合题意;D 、1111(1)x x x x --==----,故选项D 不是最简分式,不符合题意. 故选:C . 【点睛】本题考查最简分式,解的关键是正确理解最简分式的定义,本题属于基础题型.2.B解析:B 【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案. 【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误; 当2x <-时,20x +<,分式的值为正数,选项C 正确; 当2x =-时,20x +=,分式的值为0,选项D 正确; 故选:B . 【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.3.D解析:D 【分析】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.A解析:A 【分析】根据题意得出xy =1,可以用1x表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x, 把 y =1x,代入22x x y ++22y y x +,得: 原式=221xx x++221x x x+=3321x x ++321x +=2∴22x x y +与22y y x +互为“2阶分式”, 故选A . 【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.5.C解析:C 【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可. 【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意;B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意; 故选:C . 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.6.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.7.B解析:B 【分析】由题意根据分式方程去分母转化为整式方程,由解为非负整数以及不等式组只有2个整数解,确定出符合条件m 的值,求出它们的和即可. 【详解】解:去分母得:()22x x m =-+, 解得:4x m =-,由解为非负整数解,得到40m -≥,且42m -≠, 解得:4m ≤且2m ≠,不等式组整理得:242y y m ⎧⎪⎨-⎪≥-⎩<,由不等式组只有2个整数解,得到y=-2,-1,即1024m--≤<, 解得:2≤m <6,综上:2<m≤4则符合题意m=3,4,它们的和为7. 故选:B . 【点睛】本题考查分式方程的解以及一元一次不等式组的整数解,熟练掌握相关运算法则是解答本题的关键.8.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.9.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.10.D解析:D 【分析】 将y xx y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D . 【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.11.D解析:D 【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D . 【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.12.A解析:A 【分析】绝对值小于1的正数用科学记数法表示,一般形式为10n a -⨯,其中110a ≤<; 【详解】0.000000005=9510-⨯ , 故选:A . 【点睛】本题考查了科学记数法的形式,正确理解科学记数法是解题的关键;二、填空题13.x【分析】按照分式加减法则计算即可【详解】解:===x故答案为:x 【点睛】本题考查了分式的加减解题关键是熟练运用分式加减法则进行计算注意:最终结果要化为最简分式解析:x.【分析】按照分式加减法则计算即可.【详解】解:211 x x x x+++=21 x x x+ +=(1)1 x xx++=x.故答案为:x.【点睛】本题考查了分式的加减,解题关键是熟练运用分式加减法则进行计算,注意:最终结果要化为最简分式.14.6【分析】先设第一组有x人则第二组人数是15x人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x人.根据题意,得242711.5x x-=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.15.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤. 【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可. 【详解】 解:3110=0.0011000-=;故①计算错误; ()0.00011=;②计算正确;()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mmm m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确故答案为:②⑤. 【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.16.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答. 【详解】解:方程两边都乘以(x-4)得,5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=- 当30m -=时,即m=3,方程无解; 当30m -≠时,53x m =-, ∵分式方程无解, ∴x-4=0, ∴x=4,∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.17.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22112a a a a a--÷+ ()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键. 18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2【分析】根据分式有意义得到分母不为0,即可求出x 的范围.【详解】 解:要使分式3 x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0. 20.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x -⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.三、解答题21.(1)②;(2)10或6或-6;(3)小强通分找的是最简公分母,化简见解析【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题; (2)根据和谐分式的定义可以得到a 的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】解:(1)211x x -+不符合和谐分式的定义,故①不是和谐分式,2222()()a b a b a b a b a b --=-+-,故②是和谐分式, 221()()x y x y x y x y x y x y++==-+--,故③不是和谐分式, 2222()()()()a b a b a b a b a b a b a b-+--==+++,故④不是和谐分式, 故答案为:②;(2)分式219x x ax -++为和谐分式,且a 为整数, 10a ∴=,6a =,6a =-;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分找的是最简公分母,故答案为:小强通分找的是最简公分母;小强: 原式22344a a ab b b b=-⨯- 22244()a a b a b b=-- 2244()()a a a b a b b --=- 24[()]()a a a b a b b --=- 24()()a a a b a b b -+=- 24()ab a b b =- 4()a a b b=-. 【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22.无解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:两边同乘(3)x -得125(3)x x -=---,1253x x -=--+,2513x x -+=--+,3x -=-,解得3x =,检验:当3x =时,30x -=,因此,3x =不是原分式方程的解.所以,原分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)4x =-;(2)无解.【分析】(1)去分母转化为整式方程,求出整式方程的解,检验即可得到分式方程的解. (2)去分母转化为整式方程,求出整式方程的解,检验即可得到分式方程的解.【详解】(1)解:方程两边同乘()2x x -得:()322x x =-,解得4x =-,检验:当4x =-时,()()24420x x -=-⨯--≠,∴4x =-是原方程的解.(2)解:去分母得:()()()()11411x x x x ++-=+-去括号得:222141x x x ++-=-移项、合并同类项得:22x =解得:1x =当1x =时,()()110x x +-=,∴原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.()1108;()2221x x -+;x=-2时,6或x=2时,23 【分析】(1)利用幂指数运算的逆运算原式()()32mn x x =⋅,当3,2m n x x ==时,整体代入求值即可;(2)先化简分式,从不等式中可选取-2或2,可任选一个代入求值即可.【详解】解: ()1原式=32m n x x ⋅()()32m n xx =⋅, 当3,2m n x x ==时,原式108=;()2原式=22112111x x x x x x x x ⎛⎫ +--+⎝⨯-⎭+-+⎪,=()()21211x x x x x -⨯-+, 221x x -=+, 在22x -≤≤范围内有整数x=-2,-1,0,1,2,使分式有意义的x 的值:x=-2,2,当2x =-时,原式6=;当2x =时,原式23=. 【点睛】本题考查幂指数运算求值,和分式化简求值,掌握幂指数运算求值的方法,和分式化简求值方法是解题关键.25.(1)-1;(2)11x -;12020【分析】(1)根据绝对值化简、负指数幂和零指数幂计算即可;(2)先化简分式,再代入求解即可;【详解】(1)解:原式331=--, 1=-;(2)解:原式221211x x x -=+-- 1(1)(1)x x x +=+- 11x =-, 当2021x =时,原式11202112020==-; 【点睛】本题主要考查了实数的混合运算和分式化简求值,准确计算是解题的关键.26.7000元【分析】设去年每吨金丝小枣的平均价格为x 元,根据“第二次的采购数量是第一次采购数量的2倍” 得:400000600000210001000x x ⨯=+-. 【详解】解:设去年每吨金丝小枣的平均价格为x 元,则可列方程 400000600000210001000x x ⨯=+-x=解得7000x=是原分式方程的解经检验:7000答:去年每吨金丝小枣的平均价格为7000元.【点睛】本题考查了分式方程的应用.理解题意,根据等量关系列出方程是关键.。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(1)

一、选择题1.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 2.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度3.下列变形不正确...的是( ) A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b4.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .3 5.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2 B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣2 6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 7.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 8.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 9.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=-- 10.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题13.化简2242()44224x x x x x x -+÷++++的结果是_______. 14.已知5,3a b ab -==,则b a a b +的值是__________. 15.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 16.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.17.当x _______时,分式22x x-的值为负. 18.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 19.如果分式126x x --的值为零,那么x =________ .20.()052019π-+- =__________三、解答题21.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1.23.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送)24.(建构模型)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为零,则x a =或x b =.因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以,关于x 的方程ab x a b x+=+的两个解分别为:1x a =,2x b =. (应用模型)利用上面建构的模型,解决下列问题: (1)若方程p x q x+=的两个解分别为11x =-,24x =.则p =___,q =___;(直接写结论)(2)已知关于x 的方程222221n n x n x +-+=+的两个解分别为1x ,()212x x x <.求12223x x -的值. 25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.2.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.3.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A.=1a b a b a b a b a b --=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.4.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 5.C解析:C【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可.【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1, ∴满足条件的整数x 可能是0、﹣2、﹣3,故选:C .【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键. 6.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.8.A解析:A【分析】先设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 11.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】 ∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.2【分析】先约分再算加法然后把除法化为乘法进而即可求解【详解】原式=====2故答案是:2【点睛】本题主要考查分式的化简掌握分式的四则混合运算法则是解题的关键解析:2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦=()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.15.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.18.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 19.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 20.-2【分析】直接利用算术平方根的意义绝对值和零指数幂的性质分别化简得出答案【详解】原式=2−5+1=−3+1=−2故答案为:-2【点睛】点评:此题主要考查了实数运算正确化简各数是解题关键解析:-2【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=2−5+1=−3+1=−2.故答案为:-2【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.三、解答题21.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+,整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.24.(1)4-,3;(2)1【分析】(1)根据材料可得:p=-1×4=-4,q=-1+4=3,计算出结果;(2)将原方程变形后变为:22212121n n x n x +-++=++,未知数变为整体2x+1,根据材料中的结论可得:122n x -=,212n x += ,代入所求式子可得结论; 【详解】 解:(1)∵方程p x q x+= 的两个解分别为:121=4x x =-, , ∴p=-1×4=-4,q=-1+4=3,故答案为:-4,3. (2)由222221n n x n x +-+=+,可得 22212121n n x n x +-++=++. ∴()()()()21212121n n x n n x +-++=++-+.故212x n +=+,解得12n x +=. 或211x n +=-,解得22n x -=. ∵12x x <, ∴122n x -=,212n x +=. ∴122222221123132232n x n n n x n n -⋅--====+-+--⋅-.【点睛】本题考查了分式方程的解,弄清题中的规律是解题的关键;25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】(1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可; (2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天,根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)

①=②,故A正确;
B、当a取互为倒数的值时,即取m和 ,则 ,
当a取m时,① ,当a取 时,②
①=②,故B正确;
C、可举例判断,由 >1得,取a=2,3(2<3)
则 < ,
故C正确;
D、可举例判断,由 得,取a= , ( > )
,
故D错误;
故选:D.
【点睛】
本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.
【详解】
25.计算题:
(1)因式分解: ;
(2)计算: ;
(3)解分式方程: ;
(4)先化简 ,然后从 , ,1,2中选择一个合适的整数作为 的值代入求值.
26.列分式方程解应用题:
2020年玉林市倡导市民积极参与垃圾分类,某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元,求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?
9.B
解析:B
【分析】
最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;
【详解】
A、 ;
B、 的分子分母不能再进行约分,是最简分式;
C、 ;
D、 ;
故选:B.
【点睛】
本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.
A.1个B.2个C.3个D.4个
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(含答案解析)

一、选择题1.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( ) A .93010-⨯米 B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米2.使分式21xx -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数3.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变4.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .55.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯8.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a cN b+=,a bP c+=,则M ,N ,P 之间的大小关系是( ) A .M P N << B .M N P <<C .N P M <<D .P M N <<9.若ab ,则下列分式化简中,正确的是( )A .22a ab b +=+ B .22a ab b-=- C .33a a b b = D .22a a b b=10.不改变分式的值,下列各式变形正确的是( )A .11x x y y +=+B .1x yx y-+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭11.若数a 使关于x 的分式方程2311ax x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .812.若分式211a a +-的值等于0,则a 的值为( )A .±1B .0C .1-D .无解二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______.14.若分式11x -值为整数,则满足条件的整数x 的值为_____. 15.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.16.若113m n+=,则分式225m n mn m n +---的值为________ .17.计算:()1211xx x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.计算:22112a a a a a--÷+=____.19.如果2y =,那么y x =_______________________. 20.如果方程322x mx x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:2111224x x x -⎛⎫+÷⎪--⎝⎭,其中3x =.22.先化简,再求值:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中2x =.23.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 24.清江山水华府小区物业,将对小区内部非活动区域进行绿化.甲工程队用m 天完成这项工程的三分之一,为加快工程进度,乙工程队参与绿化建设,两队合作用5天完成这一项工程.(1)若10m =,求乙工程队单独完成这项工程所需的时间; (2)求m 的取值范围. 25.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+.原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可. 【详解】解:1纳米=0.000 000 001米=10-9米, 30纳米=30×10-9米=3×10-8米. 故选:B . 【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数.2.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2, 解不等式②得:x≥2a -, ∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<,解分式方程132211y ay y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.5.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0, 解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.6.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】0.0000025=62.510-⨯,故选:D . 【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.A解析:A 【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答. 【详解】 解:∵a+b+c=1,∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c ,∴1110,0,c b b c bc a --=>< ∴111a c b <<, ∴M<P<N ,故选A . 【点睛】本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.B解析:B 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、11x x y y ++≠,不符合题意; B 、=1x yx y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意;故选:B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.11.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.12.D解析:D 【分析】根据分式的值为零的意义具体计算即可. 【详解】∵分式211a a +-的值等于0,∴21a +=0, ∵21a +≥1>0,∴21a+=0是不可能的,∴无解,故选D.【点睛】本题考查了分式的值为零的条件,熟记基本条件和实数的非负性是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键解析:16 3【分析】将原分式化简得163n m mn-=,再两边同时除以mn即可得结果.【详解】由22227m mn nm n mn--=-+得24414m mn n m n mn--=-+所以163n m mn-=,则11163m n-=故答案为:16 3【点睛】本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键.14.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】解:因为分式11x-有意义,所以x-1≠0,即x≠1,当分式11x-值为整数时,有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.15.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a |<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13- 【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=, ∴=3m n mn +,即m+n=3mn , ∴225m n mn m n+--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn -=13-. 故答案为:13-.【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22112a a a a a--÷+()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】 本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键. 19.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.21x +,12. 【分析】 先把括号里的式子通分进行减法计算,再把除法转化成乘法进行计算,最后把x 的值代入计算即可.【详解】 解:原式()()()222212412221111x x x x x x x x x x --+--=⋅=⋅=---++-, 当3x =时,原式2112x ==+. 【点睛】 本题考查分式的化简求值,解题的关键是掌握运算法则进行计算.22.2x --;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】 解:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭ =222244(2)22x x x x x x--+++- =222(2)(2)22x x x x x x --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=, ∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.24.(1)乙工程队单独完成这项工程需要10天;(2) 2.5m >【分析】(1)甲工程队用10天完成这项工程的三分之一,则每天完成130的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程求解即可; (1)甲工程队用m 天完成这项工程的三分之一,则每天完成13m的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程,结合x 和m 都是正数,即可求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天. 由题意,得11151330x ⎛⎫++⨯= ⎪⎝⎭, 解得10x =.经检验10x =是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要10天;(2)由题意,得1115133m x ⎛⎫++⨯= ⎪⎝⎭, 解得1525m x m =-. 0x ,0m >,250m ∴->,2.5m ∴>.即m的取值范围是 2.5m>.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.25.(1);(2)3 2【分析】(1)变形已知条件得到x+1x2+2x=1,再利用降次和整体代入的方法把原式化为−x+1,然后把x的值代入计算即可;(2)变形已知条件,把2x=+x2−4x=−1或x2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
第5章 分式与分式方程 北师大版数学八年级下册单元检测(含答案)

2023年北师大版数学八年级下册《分式与分式方程》单元检测一、选择题(共12小题)1.下列式子是分式的是( )A.a-b2 B.5+yπ C.x+3x D.1+x2.下列是分式方程的是( )A.xx+1+x+43B.x4+x-52=0 C.34(x-2)=43x D.1x+2+1=03.若分式x+12-x有意义,则x满足的条件是( )A.x≠-1B.x≠-2C.x≠2D.x≠-1且x≠24.方程2x+1x-1=3的解是( )A.-45B.45C.-4D.45.下列计算错误的是( )A.0.2a+b0.7a+b=2a+b7a+bB.x3y2x2y3=xyC.a-bb-a=﹣1 D.1c+2c=3c6.下列等式成立的是( )A.(-3)-2=-9B.(-3)-2=19C.(a-12)2=a14D.(-a-1b-3)-2=-a2b67.化简:等于( ).A. B.xy4z2 C.xy4z4 D.y5z8.化简:-x-2y2xy+x+6y2xy=( )A.2xB.4xC.-2xD.-4x9.解分式方程2x-1+x+21-x=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A.180x+6=120x-6B.180x-6=120x+6C.180x+6=120xD.180x=120x-611.若a+b=2,ab=﹣2,则ab +ba的值是( )A.2B.﹣2C.4D.﹣412.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.y2+y﹣3=0B.y2﹣3y+1=0C.3y2﹣y+1=0D.3y2﹣y﹣1=0二、填空题(共6小题)13.若分式的值为0,则x= .14.若关于x的方程«Skip Record If...»的解为x=4,则m= .15.计算:(﹣2xy﹣1)﹣3=.16.已知1a-1b=12,则aba-b的值是________.17.已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是.18.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.三、解答题(共8小题)19.计算:(a 2+3a)÷a 2-9a -3;20.计算:«Skip Record If...».21.解分式方程:x x -1-1=2x 3x -3.22.解分式方程:2x +2x-x +2x -2=x 2-2x 2-2x.23.先化简,再求值:1﹣÷,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.24.在解分式方程2-xx -3=13-x-2时,小玉的解法如下:解:方程两边都乘以x-3,得2-x=-1-2.①移项,得-x=-1-2-2.②解得x=5.③(1)你认为小玉从哪一步开始出现了错误________(只填序号),错误的原因是________________;(2)请你写出这个方程的完整解题过程.25.贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.26.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?答案1.C2.D3.C.4.D5.A6.B7.B8.A9.D10.A.11.D.12.A13.答案为:2.14.答案为:3;15.答案为:﹣y3 8x3.16.答案为:-2;17.答案为:k>﹣12且k≠0.18.答案为:520+45x=1.19.解:原式=a.20.解:原式=«Skip Record If...».21.解:方程两边同乘以3(x-1),得3x-3(x-1)=2x,解得x=1.5.检验:当x=1.5时,3(x-1)=1.5≠0,所以原方程的解为x=1.5.22.解:原方程可化为2(x+1)x-x+2x-2=x2-2x(x-2),方程两边同时乘x(x-2),得2(x+1)(x-2)-x(x+2)=x2-2,整理得-4x=2.解得x=-1 2 .经检验,x=-12是原方程的解.23.解:原式=1﹣•=1﹣==﹣,∵|x﹣2|+(2x﹣y﹣3)2=0,∴,解得:x=2,y=1,当x=2,y=1时,原式=﹣1 3 .24.解:(1)① 去分母时漏乘常数项 (2)去分母,得2-x=-1-2(x-3).去括号,得2-x=-1-2x+6.移项,合并,得x=3.检验,将x=3代入x-3=0,所以原方程无解.25.解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.26.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意得202x3+60×(12x3+1x)=1,解得x=180.经检验,x=180是原分式方程的根,且符合题意,∴2x3=120,则甲、乙两队单独完成这项工程分别需120天、180天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(1120+1180)=1,解得y=72,需要施工费用72×(8.6+5.4)=1008(万元),∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元。
北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)

第五章 分式与分式方程 达标测试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列代数式,是分式的是( ) A.3x 2π B.m +n m C.ab 25 D.52.【2022·天津】计算a +1a +2+1a +2的结果是( ) A .1 B .2a +2 C .a +2 D .a a +23.【2022·佛山禅城区期末】如果分式|m +4|m -4的值为0,那么m 的值为( ) A .不存在 B .±4 C .4 D .-44.运用分式的性质,下列计算正确的是( )A.-x +y 2=-x +y 2B.x -3x 2-9=1x -3C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =x x -y5.若将分式3m m +n 与4n 2(m -n )通分,则分式3m m +n的分子应变为( ) A .6m 2-6mn B .6m -6n C .2(m -n ) D .2(m -n )(m +n )6.若关于x 的分式方程3x +ax x +1=2-3x +1有增根x =-1,则2a -3的值为( ) A .2 B .3 C .4 D .67.【2022·德阳】关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.已知x 2-4x -3÷是一道分式化简题,其中一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A .x -3B .x -2C .x +3D .x +29.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做( )A .12个B .18个C .20个D .24个10.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)>-2,a +x 2<x 有解,关于y 的分式方程ay -14-y +3y -4=-2有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5二、填空题:本大题共5小题,每小题3分,共15分.11.分式m m 2-n 2和n 3m +3n的最简公分母为__________. 12.用换元法解分式方程x +1x -2x x +1=1时,如果设x x +1=y ,那么原方程可以化为关于y 的整式方程是________.13.【2022·成都】已知2a 2-7=2a ,则代数式⎝⎛⎭⎪⎫a -2a -1a ÷a -1a 2的值为________. 14.【2022·江西】甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为________________.15.对于两个非零的实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.计算:(1)x 2x -3÷34x 2-9·12x +3; (2)⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1).17.解分式方程:(1)1-x x -2=12-x -2; (2)4x 2-9-x 3-x=1.18.已知x (x -1)-(x 2-y )=-6,求x 2+y 22-xy 的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -2+4x 2-4x +4÷x x -2,其中-1<x ≤2且x 为整数.请你选一个合适的x 值代入求值.20.【原创题】北京首条全封闭马拉松路线是冬奥公园的一大亮点,这条“特色最鲜明、体验最丰富、服务最专业”的42公里滨河马拉松路线,充分融合“永定河”“西山”“首钢工业”“冬奥”元素,构建畅通无阻的慢行绿道,具备“智慧跑”“滨水跑”“公园跑”“堤上跑”等多功能特色。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(答案解析)

一、选择题1.已知112a b -=,则a b ab-的值是( ) A .2B .2-C .12D .12- 2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .43.下列各分式中是最简分式的是( ) A .2-1-1x x B .42x C .22-1x x D .-11-x x4.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .35.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( )A .3B .4C .5D .6 6.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .37.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定 8.如果分式11m m -+的值为零,则m 的值是( )A .1m =-B .1m =C .1m =±D .0m =9.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 10.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=-B .420420200.5x x -=+C .420420200.5x x -=+D .420200.5x =- 11.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若分式11x -值为整数,则满足条件的整数x 的值为_____. 14.在围棋盒中有x 颗白色棋子和若干颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25;如果再往盒中放进9颗黑色棋子,取得白色棋子的概率是14.则原来围棋盒中有白色棋子________颗. 15.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 16.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 17.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______. 18.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.19.当x _______时,分式22x x -的值为负. 20.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 三、解答题21.先化简,再求值:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,其中a 是4的平方根. 22.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式中,_____是和谐分式(填写序号即可); ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+ (2)若分式219x x ax -++为和谐分式,且a 为整数,请写出所有a 的值; (3)在化简22344a ab ab b b -÷-时,小东和小强分别进行了如下三步变形: 小东:原式()()22232223232232444444a b a ab b a a a a ab b b b ab b b ab b b --=-⨯=-=--- 小强:原式22223222444444()()()a a a a a a a b ab b b b b a b b a b b --=-⨯=-=--- 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:____,请你接着小强的方法完成化简.23.解分式方程:1212x x x -+=- 24.若甲做400个机器零件与乙做300个机器零件的时间相等,又知每小时甲比乙多做10个机器零件,求甲,乙每小时各做多少个机器零件?25.(1(101320203-⎛⎫--+ ⎪⎝⎭. (2)先化简,再求值:21211x x ++-,其中2021x =.26.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+. 原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据分式的运算法则即可求出答案.【详解】解:∵112a b -=, ∴2b a ab-=, ∴原式=﹣2,故选:B .【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.C解析:C【分析】根据最简分式的定义即可求出答案.【详解】解:A 、211()111)(11x x x x x x -==+--+-,故选项A 不是最简分式,不符合题意; B 、42=2x x ,故选项B 不是最简分式,不符合题意; C 、22-1x x ,是最简二次根式,符合题意; D 、1111(1)x x x x --==----,故选项D 不是最简分式,不符合题意. 故选:C .【点睛】本题考查最简分式,解的关键是正确理解最简分式的定义,本题属于基础题型. 4.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】 由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.5.A解析:A【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 6.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 7.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 10.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.11.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x 的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】 解:因为分式11x -有意义,所以x-1≠0,即x≠1,当分式11x-值为整数时,有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.14.6【分析】先根据白色棋子的概率是得到一个方程再往盒中放进9颗黑色棋子取得白色棋子的概率变为再得到一个方程解方程组即可求得答案【详解】解:设原来盒中有白色棋子x颗黑色棋子y颗则有解得则原来围棋盒中有白解析:6【分析】先根据白色棋子的概率是25,得到一个方程,再往盒中放进9颗黑色棋子,取得白色棋子的概率变为14,再得到一个方程,解方程组即可求得答案.【详解】解:设原来盒中有白色棋子x颗,黑色棋子y颗,则有25194xx yxx y⎧=⎪+⎪⎨⎪=⎪++⎩,解得69 xy=⎧⎨=⎩.则原来围棋盒中有白色棋子6颗.故答案为:6.【点睛】本题考查概率的应用问题,利用概率公式求数量,掌握列举法求概率的方法,通过黑、白两色棋子设未知数,利用概率构造方程组是解题关键.15.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.16.5【分析】根据已知有增根即使分式方程分母为0的根即满足x-2=0;解题中分式方程先通分再去分母化成整式方程后用x 表示出未知参数m 最后将x 的值代入即可求得m 的值【详解】解:分式方程有增根得:x=2通分解析:5【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 18.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 19.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.20.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.三、解答题21.22a a +--,0 【分析】 先根据分式的运算法则和顺序化简,再求出a 值代入即可.【详解】 原式()2311112-+⎛⎫=-⋅ ⎪+⎝⎭-a a a a ()2231112-++=⋅+-a a a a ()()()22212122+-++=-⋅=-+--a a a a a a a ∵a 是4的平方根, ∴2a ==±当2a =时,分式无意义,当2a =-时,原式2220222+-+=-=-=---a a . 【点睛】本题考查了分式的化简求值,解题关键是熟练的运用分式运算法则进行化简,准确代入求值,注意:代入的值要使原分式有意义.22.(1)②;(2)10或6或-6;(3)小强通分找的是最简公分母,化简见解析【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题; (2)根据和谐分式的定义可以得到a 的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】解:(1)211x x -+不符合和谐分式的定义,故①不是和谐分式, 2222()()a b a b a b a b a b --=-+-,故②是和谐分式, 221()()x y x y x y x y x y x y++==-+--,故③不是和谐分式, 2222()()()()a b a b a b a b a b a b a b-+--==+++,故④不是和谐分式, 故答案为:②;(2)分式219x x ax -++为和谐分式,且a 为整数, 10a ∴=,6a =,6a =-;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分找的是最简公分母,故答案为:小强通分找的是最简公分母;小强: 原式22344a a ab b b b=-⨯- 22244()a a b a b b=-- 2244()()a a a b a b b --=- 24[()]()a a a b a b b --=- 24()()a a a b a b b -+=- 24()ab a b b =- 4()a a b b=-. 【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.23.2x =-【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到方程的解.【详解】解:1212x x x -+=- 两边同时乘以()2x x -得:223222x x x x x -++=-移项得:223 2 2 2x x x x x -+-+=-合并同类项得:2x =-检验:当2x =-时,(2)0x x -≠所以,原分式方程的解为2x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.甲每小时做40个机器零件,乙每小时做30个机器零件.【分析】首先设乙每小时做x 个机器零件,则甲每小时做()10x +个机器零件,再根据关键词语:“甲做400个机器零件与乙做300个机器零件的时间相等,又知每小时甲比乙多做10个机器零件,”列出方程即可.【详解】解:设乙每小时做x 个机器零件,则甲每小时做()10x +个机器零件, 由题意得40030010x x=+,解得30x =, 经检验得:30x =是原方程的解,则甲每小时做301040+=(个).答:乙每小时做30个机器零件,则甲每小时做40个机器零件.【点睛】本题考查分式方程的应用,解题的关键是正确理解题意,找出等量关系.25.(1)-1;(2)11x -;12020【分析】(1)根据绝对值化简、负指数幂和零指数幂计算即可;(2)先化简分式,再代入求解即可;【详解】(1)解:原式331=--, 1=-;(2)解:原式221211x x x -=+-- 1(1)(1)x x x +=+- 11x =-,当2021x =时,原式11202112020==-; 【点睛】 本题主要考查了实数的混合运算和分式化简求值,准确计算是解题的关键.26.(1);(2)32 【分析】(1)变形已知条件得到x +1x 2+2x =1,再利用降次和整体代入的方法把原式化为−x +1,然后把x 的值代入计算即可;(2)变形已知条件,把2x =+x 2−4x =−1或x 2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x =,∴x +1,∴(x +1)2=2,即x 2+2x +1=2,∴x 2+2x =1,∴原式=2x (x 2+2x )−3x +1=2x−3x +1=−x +1=−−1)+1=;(2)∵2x =+∴x−2,∴(x−2)2=3,即x 2−4x +4=3,∴x 2−4x =−1或x 2=4x−1, ∴原式=()()()241419415513x x x x x -------++ =12(16x 2−8x +1−4x 2+x−36x +9−5x +5) =12 [12(4x−1)−48x +15] =12(48x−12−48x +15) =12×3 =32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新八年级数学下册第五单元《分式与分式方程》
检测试题及答案(100 分)
一.选择题(共8小题,每题4分共32分)
1.在代数式 中,是分式的个数为( ) A .1个 B .2个 C .3个 D .4个
2.如果代数式有意义,那么x 的取值范围是( )
A .x ≥0
B .x ≠1
C .x >0
D .x ≥0且x ≠1
3将分式2
x x y +中的x 、y 的值同时扩大2倍,则分式的值( )
A.扩大2倍
B.缩小到原来的21
C.保持不变
D.无法确定
4.化简+的结果是( )
A .x ﹣2
B .
C .
D .
5.已知是正数,那么x 的取值范围是( )
A .x >0
B .x >﹣4
C .x ≠0
D .x >﹣4且x ≠0
6.如果分式方程的解是x =3,则a 的值是( )A .3
B .2
C .﹣2
D .﹣3
7.若关于x 的分式方程+=1有增根,则m 的值是(
)
A .m =0
B .m =﹣ 1 π)5(72)4(4)3(3)2(1)1(b
a xy y x x a +--
C .m =0或m =3
D .m =3 8.已知关于x 的分式方程
的解是非负数,则a 的取值范围是( ) A .a >﹣3
B .a >﹣3且a ≠﹣2
C .a ≥﹣3
D .a ≥﹣3且a ≠﹣2
二.填空题(共4小题,每题4分共16分)
9.若分式的值为0,则x=__________
10.已知,则=____________ 11.用换元法解方程﹣=3时, 设=y ,则原方程可化为______________
12.若)2)(1(43---x x x =1-x A +2
-x B 则A=____________ __, B=_ ____.
三.解答题(共52分)
13.计算(每小题4分,共16分)
(1)x ÷(x −2)· 1x−2 (2)÷.
(3)﹣a +1 (4)+﹣
14.(每题5分,共10分)先化简,再求值:
(1)(﹣a+1)÷,其中a满足|a|=1.
(2)()÷,从1、2、﹣2中选择一个合适的x值代入求值.
15.解下列分式方程.(每小题4分,共16分)
(1)(2)=2
(3)﹣=1 (4)﹣1=
16.列方程解应用题(10分)
(2019•济南)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.
(1)求A和B两种图书的单价;
(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?
答案见下页
数学八年级下册第五章检测参考答案
一.选择题(共8小题,每小题4分,共32分)
1. B. 2. D. 3. A. 4. B. 5. D.
6. C. 7. B. 8. D.
二.填空题(共4小题,每小题4分,共16分)
(9).x=﹣2;(10).6;(11).2y﹣﹣3=0(或者2y﹣=3);(12).A =1,B=2
三.解答题
13.计算(共4小题每题4分,共16分)
(1)x÷(x−2)·
1
x−2
(2)÷.
解:原式=x·1
x−2·
1
x−2
解:原式=
a−1
a2−4a+4
×a2−4
a−1
=
1
(x−2)2=
a−1
(a−2)2
×(a+2)(a−2)
a−1
=
a+2
a−2
(3)﹣a+1
解:原式=﹣(a-1)
=﹣
=
(4)+﹣
解:原式=+﹣
=
=.
14.(每题5分共10分):
(1)(﹣a+1)÷,其中a满足|a|=1.
解:原式=•
=﹣•
=﹣,
∵,
∴a=1,
则原式=﹣=3.
(2)()÷,从1、2、﹣2中选择一个合适的x值代入求值.解:原式=•=x﹣2,
当x=2时,原式=0.
15.解下列分式方程.(每小题4分,共16分)
(1)
解:去分母得:x-2=3x
解得:x=-1
经检验x=-1是分式方程的解(2)=2
解:移项得x
x−3+4−x
x−3
=2
去分母得:x+4﹣x=2(x-3)
x+4﹣x=2x﹣6
解得:x=5,
经检验x=5是分式方程的解;(3)﹣=1
解:移项得x−2
5−2x +1
5−2x
=1
去分母得x-2+1=5-2x
解得:x=2
经检验x=2是分式方程的解(4)﹣1=
解:去分母得:(x-2)2﹣(x2-4)=16
x2﹣4x+4﹣x2+4=16,
解得:x=﹣2,
经检验x=﹣2是增根,分式方程无解.
16.(10分)
解:(1)设B种图书的单价为x元,则A种图书的单价为1.5x元,依题意,得:﹣=20,
解得:x=20,
经检验,x=20是所列分式方程的解,且符合题意,
∴1.5x=30.
答:A种图书的单价为30元,B种图书的单价为20元.
(2)30×0.8×20+20×0.8×25=880(元).
答:共花费880元.。