多波形发生器的设计
多波形信号发生器的设计 -回复
多波形信号发生器的设计-回复多波形信号发生器的设计。
第一步:理解多波形信号发生器的概念和原理多波形信号发生器是一种电子设备,用于生成不同波形的信号。
这些信号可以是正弦波、方波、三角波、锯齿波等,并且可以在不同的频率范围内进行调节。
多波形信号发生器在电子测试和测量、音频设备等领域中具有广泛的应用。
第二步:确定设计要求和功能在设计多波形信号发生器之前,我们需要确定所需的设计要求和功能。
这包括频率范围、输出幅度调节范围、波形选择和切换等。
同时,还需要考虑设备的可靠性、稳定性和可控性。
第三步:选择合适的电路拓扑结构根据设计要求和功能,可以选择合适的电路拓扑结构。
常见的多波形信号发生器电路包括集成电路实现的数字波形生成器和基于模拟电路的波形发生器。
集成电路实现的数字波形生成器通常使用数字信号处理器(DSP)或可编程逻辑器件(FPGA)来生成不同的波形。
这种方式具有较高的灵活性和精确性,但也需要较高的设计和调试成本。
基于模拟电路的波形发生器通常使用运算放大器、晶体管和电容器等基本器件来实现。
不同波形的发生可以通过改变电路中的电阻、电容和电压等参数来实现。
这种方式相对简单,但仍需注意电路的稳定性和精度。
第四步:设计电路图和PCB 布局根据选定的电路拓扑结构,可以开始设计电路图和PCB 布局。
电路图要包括全部的电路连接和元器件数值。
在布局时,需要注意各电路模块之间的信号干扰和互相影响,合理分配元器件的位置和布线。
第五步:选择适当的元器件和芯片在设计中,需要根据电路参数和性能要求来选择适当的元器件和芯片。
这包括运算放大器、晶体管、电容器、电阻器等。
需要选择具有稳定性和可靠性的元器件,并在性能和价格方面进行权衡。
第六步:PCB 制造和焊接设计完成后,可以将电路图和PCB 布局文件交给PCB 制造商进行制造。
制造完成后,需要进行焊接并完成设备的组装。
第七步:测试和调试在完成设备组装后,需要进行测试和调试。
这包括检查电路连接和元器件的正确性,检查电路各模块之间的信号传递情况,并进行波形输出和参数测试。
(完整word版)多波形发生器的设计
基于51单片机的多波形发生器
return da;
}
void DAC_write(unsigned char dat)
{
IIC_Start();
IIC_SendByte(0x90);
IIC_WaitAck();
IIC_SendByte(0x40);
IIC_WaitAck();
IIC_SendByte(dat);
IIC_WaitAck();
IIC_Stop();
}
3.实验结果与分析
3.1 实验结果
将程序下载到单片机开发板上,示波器接PCF8591模块的UOUT引脚,初始状态下,示波器显示方波,可以通过KEY1/KEY5调节幅度,KEY2/KEY6调节频率,KEY3/KEY7调节占空比.按下KEY4,每按一下,波形变化一次,循环显示正弦波、三角波、锯齿波、方波、梯形波,如下面图片所示。
第一次按下KEY8显示方波频率信息,再次按下,数码管闪烁,表示此时可以通过按键KEY2/KEY6设置任意频率,设置完成后,再次按下KEY8,保存设置的频率,退出数码管显示界面,数码管全部熄灭,数码管显示部分如下图13。
实物连接图如图14。
图8 方波
图9 三角波图10 锯齿波图11正弦波
图12 梯形波
图13 频率显示界面
图 14 实物连接图
3.2实验中遇到的问题
(1)在设计独立按键部分时,出现一段时间按键有效,一段时间按键无效,。
多波形信号发生器设计实验报告
多波形信号发生器实验报告1. 背景多波形信号发生器是一种用于产生不同形状、频率和幅度的信号的设备。
它在各种领域中都有广泛的应用,包括电子工程、通信和音频领域。
在实验室中,多波形信号发生器通常用于测试和验证电路的性能。
本实验旨在设计一个多波形信号发生器,并对其进行性能测试和分析。
通过实际搭建和测试,我们将评估所设计的信号发生器的波形质量、频率稳定性、幅度准确性等关键指标,同时寻找可能的改进方向。
2. 设计与分析2.1 设计思路我们的设计思路是基于数字信号处理技术,使用微处理器控制和生成不同波形的信号。
具体来说,我们采用以下步骤来设计多波形信号发生器:1.选择合适的数字信号处理芯片,并与微处理器进行连接。
2.在微处理器上编程,实现不同波形信号的生成算法,如正弦波、方波、三角波等。
3.通过微处理器控制模拟输出电路,将数字信号转换为模拟信号。
4.设计合适的幅度控制电路,使得可以精确控制信号的幅度。
5.设计合适的频率控制电路,使得可以通过微处理器对信号的频率进行调节。
2.2 组件选择和连接首先,我们选择了一款高性能的数字信号处理芯片,并将其与微处理器进行连接。
通过对芯片的编程,我们可以实现生成不同波形的功能。
然后,我们将芯片的数字输出连接到模拟电路的输入端,通过合适的滤波电路进行信号滤波。
同时,将微处理器的控制端与模拟电路的控制电路相连接,以实现对幅度和频率的控制。
2.3 算法设计在微处理器上编写程序,实现不同波形信号的生成算法。
以正弦波为例,我们可以使用如下的算法:#define PI 3.1415926float sin_wave(float amplitude, float frequency, float time){return amplitude * sin(2 * PI * frequency * time);}对于方波和三角波等其他波形,我们可以采用类似的算法进行设计。
2.4 电路设计由于波形质量是信号发生器的重要性能指标之一,我们需要设计合适的模拟电路来提供稳定的、低噪声的模拟输出信号。
多波形信号发生器的设计
多波形信号发生器是一种电子仪器,用于生成不同形状和频率的电信号。
设计多波形信号发生器通常涉及以下几个关键步骤:
1. 需求分析:定义你的多波形信号发生器的主要用途和要求。
确定需要支持的波形类型、频率范围、精度等。
2. 信号类型选择:选择要生成的信号类型,例如正弦波、方波、锯齿波、三角波等。
一些高级信号发生器还支持复杂的波形,如脉冲、噪声、任意波形等。
3. 频率控制:确定需要覆盖的频率范围,并设计频率控制电路,可以通过数字或模拟方式实现。
4. 振幅控制:实现振幅的控制电路,以便用户可以调整输出信号的振幅。
5. 相位控制:对于一些应用,可能需要控制信号的相位。
设计相位控制电路,确保用户可以调整相位。
6. 波形切换:如果你的发生器支持多种波形,设计一个切换电路,使用户能够选择所需的波形。
7. 数字控制:对于一些高级的信号发生器,可能需要数字控制。
这可以通过微控制器或数字信号处理器来实现。
8. 稳定性和精度:考虑频率的稳定性和波形的精度,确保在不同条件下输出的信号
质量始终保持在可接受的水平。
9. 输出电路:设计一个适当的输出电路,确保信号可以以合适的电平输出,同时避免信号失真。
10. 校准和测试:在最终设计中包括校准电路,以确保信号发生器的输出与预期值一致。
进行必要的测试,以验证性能。
在设计多波形信号发生器时,需要充分了解电子电路设计、信号处理、数字电路和控制系统等相关知识。
此外,确保符合相关的电磁兼容性(EMC)和安全标准,以确保设备的正常运行和用户的安全。
课题设计 基于FPGA的多功能波形发生器的设计
课题实训基于FPGA的多功能波形发生器的设计一、实训目的1.懂得利用FPGA芯片实现多种波形的产生方法2.懂得多功能波形发生器的结构组成3.懂得一种复杂FPGA电路的设计二、实训器材1.EDA实验箱1台2.微型计算机1台3.MAX+PLUSII10.2软件1套4.下载电缆1条三、实训原理设计一个多功能波形发生器。
该波形发生器能产生正弦波、方波、三角波和由用户编辑的特定形状波形。
具体要求如下:(1)具有产生正弦波、方波、三角波、锯齿波4种周期性波形的功能。
(2)用键盘输入编辑生成上述4种波形(同周期)的线性组合波形。
(3)具有波形存储功能。
(4)输出波形的频率范围为100Hz~200kHz;重复频率可调,频率步进间隔≤100Hz。
(5)输出波形幅度范围0~5V(峰-峰值),可按步进0.1V(峰-峰值)调整。
(6)具有显示输出波形的类型、重复频率(周期)和幅度的功能。
(7)用键盘或其他输入装置产生任意波形。
多功能波形发生器系统由以下四部分组成.输入部分、FPGA部分、DAC、显示部分组成。
多功能波形发生器方框图四、设计程序(参考程序)--功能:实现4种常见波形正弦、三角、锯齿、方波(A、B)的频率、幅度可控输出(方波--A的占空比也是可控的),可以存储任意波形特征数据并能重现该波形,还可完成--各种波形的线形叠加输出。
--说明:SSS(前三位)和SW信号控制4种常见波形种哪种波形输出。
4种波形的频率、--幅度(基准幅度A)的调节均是通过up、down、set按键和4个BCD码置入器以及一--个置入档位控制信号(ss)完成的(AMP的调节范围是0~5V,调节量阶为1/51V)。
--其中方波的幅度还可通过u0、d0调节输出数据的归一化幅值(AMP0)进行进一步--细调(调节量阶为1/(51*255)V)。
方波A的占空比通过zu、zp按键调节(调节--量阶1/64*T)。
系统采用内部存储器——RAM实现任意输入波形的存储,程序只支--持键盘式波形特征参数置入存储,posting 为进入任意波置入(set)、清除(clr)状态--控制信号,SSS控制存储波形的输出。
多波形发生器的设计
基于51单片机的多波形发生器
return da;
}
void DAC_write(unsigned char dat)
{
IIC_Start();
IIC_SendByte(0x90);
IIC_WaitAck();
IIC_SendByte(0x40);
IIC_WaitAck();
IIC_SendByte(dat);
IIC_WaitAck();
IIC_Stop();
}
3.实验结果与分析
3.1 实验结果
将程序下载到单片机开发板上,示波器接PCF8591模块的UOUT引脚,初始状态下,示波器显示方波,可以通过KEY1/KEY5调节幅度,KEY2/KEY6调节频率,KEY3/KEY7调节占空比.按下KEY4,每按一下,波形变化一次,循环显示正弦波、三角波、锯齿波、方波、梯形波,如下面图片所示。
第一次按下KEY8显示方波频率信息,再次按下,数码管闪烁,表示此时可以通过按键KEY2/KEY6设置任意频率,设置完成后,再次按下KEY8,保存设置的频率,退出数码管显示界面,数码管全部熄灭,数码管显示部分如下图13。
实物连接图如图14。
图8 方波
图9 三角波图10 锯齿波图11正弦波
图12 梯形波
图13 频率显示界面
图 14 实物连接图
3.2实验中遇到的问题
(1)在设计独立按键部分时,出现一段时间按键有效,一段时间按键无效,。
多种波形发生器课程设计
多种波形发生器课程设计一、课程目标知识目标:1. 学生能够理解并掌握多种波形发生器的原理及其功能。
2. 学生能够识别并描述方波、三角波、正弦波等基本波形的特点。
3. 学生能够解释波形发生器在电子技术中的应用。
技能目标:1. 学生能够运用所学知识,设计简单的波形发生器电路图。
2. 学生能够操作示波器等实验设备,观察并分析不同波形的特点。
3. 学生能够通过小组合作,完成波形发生器的搭建和调试。
情感态度价值观目标:1. 学生能够认识到波形发生器在科技发展中的重要性,增强对电子技术的兴趣。
2. 学生在学习过程中,培养合作精神、探究精神和创新意识。
3. 学生能够遵循实验操作规范,树立安全意识,养成严谨的科学态度。
课程性质:本课程为电子技术课程的一部分,旨在帮助学生了解并掌握波形发生器的原理和应用。
学生特点:学生为高中年级,具备一定的电子基础知识和实验操作能力。
教学要求:结合学生特点和课程性质,通过理论讲解、实验演示和小组合作,使学生能够达到上述课程目标。
在教学过程中,注重培养学生的动手能力、思考能力和创新能力,将知识目标、技能目标和情感态度价值观目标分解为具体的学习成果,以便后续的教学设计和评估。
二、教学内容1. 理论知识:- 波形发生器的原理及其分类- 方波、三角波、正弦波等基本波形的数学表达式和特点- 波形发生器在电子电路中的应用实例2. 实践操作:- 示波器的使用方法- 波形发生器电路图设计- 波形发生器电路的搭建与调试3. 教学大纲:- 第一课时:波形发生器原理及分类介绍,示波器使用方法讲解- 第二课时:方波、三角波、正弦波等基本波形特点及数学表达式分析- 第三课时:波形发生器应用实例分析,电路图设计方法讲解- 第四课时:小组合作,进行波形发生器电路搭建与调试4. 教材章节:- 教材第四章:波形发生器- 教材第五章:示波器及其应用教学内容根据课程目标进行选择和组织,确保科学性和系统性。
在教学过程中,教师需按照教学大纲安排教学内容和进度,结合教材章节,使学生在掌握理论知识的同时,能够进行实践操作,提高学生的综合能力。
多波形信号发生器设计
多波形信号发生器设计一、简介设计一个能够产生多个信号输出的信号发生器,要求输出波形分别为方波、三角波、正弦波。
特别适合电子爱好者或学生用示波器来做观察信号波形实验。
该信号发生器电路简单、成本低廉、调整方便。
它是基于ne555计时器接成振荡器工作形式和电容积分而产生的波形。
其工作频率为1KHz左右,调节滑动变阻器可改变振荡器的频率。
波形发生器是信号源的一种,主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和试验测试处理中,它的应用非常广泛。
它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
目前我国己经开始研制波形发生器,并取得了可喜的成果。
但总的来说,我国波形发生器还没有形成真正的产业。
就目前国内的成熟产品来看,多为一些PC仪器插卡,独立的仪器和VXI系统的模块很少,并且我国目前在波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。
二、设计目的1、掌握方波—三角波——正弦波函数发生器的原理及设计方法。
2、掌握ne555计时器工作原理和各种电子器件的简单认识。
3、能够独立的进行电路板焊接和电路检查与故障排除。
4、学会用示波器来观察发生器的波形输出并作出判断。
三、硬件介绍及其原理1、元件列表ne555是一种应用特别广泛作用很大的的集成电路,属于小规模集成电路,在很多电子产品中都有应用。
ne555的作用是用内部的定时器来构成时基电路,给其他的电路提供时序脉冲。
ne555时基电路有两种封装形式有,一是dip双列直插8脚封装,另一种是sop-8小型(smd)封装形式。
其他ha17555、lm555、ca555分属不同的公司生产的产品。
内部结构和工作原理都相同。
ne555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k 电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.ne555属于cmos工艺制造.NE555引脚图介绍如下1地GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛.下面是一个简单的ne555电路应用内部结构几种工作形式第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。
多路波形发生器的设计与实现
多路波形发生器的设计与实现引言多路波形发生器是一种能够同时输出多种不同信号波形的设备。
它的设计与实现涉及到信号发生器、电路设计以及软件编程等多个方面的知识。
本文将详细探讨多路波形发生器的设计与实现过程。
设计要求在设计多路波形发生器时,需要满足以下要求: 1. 能够同时输出多路信号波形;2. 支持多种常见的信号波形,例如正弦波、方波、三角波等;3. 能够调节不同信号波形的频率、幅度和相位等参数;4. 需要提供友好的用户界面,方便用户进行操作;5. 设备的输出稳定性和精度要求较高。
设计方案基于以上设计要求,我们可以采用以下设计方案来实现多路波形发生器:电路设计模拟信号生成电路1.使用数字模拟转换器(DAC)将数字信号转换为模拟信号;2.通过运放电路放大模拟信号,并根据用户设置的幅度参数进行调节;3.按照用户设置的频率参数生成模拟信号的周期性变化。
控制电路设计1.使用微控制器或FPGA作为控制核心,负责接收用户的输入,控制信号的生成和输出等操作;2.通过按键、旋钮或者触摸屏等输入设备与用户进行交互;3.控制电路还需要生成相位差来实现多路信号波形的同步输出。
软件编程1.使用适当的编程语言开发控制软件,实现用户界面的设计和数据的处理;2.根据用户输入的参数,生成对应的波形参数,并通过控制电路输出;3.控制软件还需要实现相位差的计算和同步输出的控制。
实现步骤下面将介绍具体的实现步骤:步骤一:电路设计与组装1.根据电路设计方案,选择合适的元器件,设计并制作模拟信号生成电路;2.设计并制作控制电路,使其能够与模拟信号生成电路有效地协作;3.对于大规模的多路波形发生器,可能需要使用多个模块进行串联或并联。
步骤二:软件编程与调试1.根据设计方案,使用适当的编程语言进行控制软件的开发;2.实现用户界面的设计,包括输入参数的显示和调节;3.编写波形参数生成的算法,并将生成的参数发送给控制电路;4.调试软件功能及与控制电路之间的通信问题。
简易多波形信号发生器电路设计
简易多波形信号发生器电路设计信号发生器在电子实验中作为信号源,通常用得多的是正弦波、三角波、方波以及用作触发信号的脉冲波。
本次制作的是能产生九种波形的信号发生器。
设计目标是简单易制、工作可靠、信号频率在音频范围连续可调,即20Hz~20KHz,输出信号电压能与TTL电平兼容。
电路中采用了两块CMOS数字集成电路74C04(内含六个反相器)和74C14(内含六个带施密特电路的反相器)。
电路见图1,由反相器IC1的a、b、c三个并连,和电阻W1+R1、电容C1、C2、C3构成振荡器以产生三角波,振荡频率计算公式为f=1/1.7RC。
振荡频率分为×10、×100、×1k三段、用开关K2改变接入的电容量粗调频率,由电位器W1细调20~200Hz、200~2kHz、2k~20kHz,覆盖音频频段。
三角波经射极跟随器T2输出,约3VP-P。
此三角波经施密特触发器IC2a整形为方波,再经IC2b~f并联输出(多个门电路并联以提高驱动能力),其电平兼容TTL。
IC1d、IC1e~f构成两级线性放大器,用于将三角波整形为模拟正弦波,原理是利用放大器饱和将三角波的尖端限幅为圆形,再经射极跟随器T1输出,约6.5VP-P。
当波形选择开关K3将电阻R2和二极管D1或D2接入电路时,输出的方波被整流为正电压或负电压加到三角波发生器的输入端,构成压控振荡器(VCO),从而获得极性不同的锯齿波或脉冲波,脉冲宽度取决于电阻R2和积分电容的大小。
如此构成一个实用的多波形信号发生器,开关K3是波形选择开关,其位置与波形的关系见附表。
积分电容C1、C2、C3选用温度特性好的薄膜电容,容量值要求准确,每组电容器由两个电容器并联以得到需要的数值,需用数字万用表的电容档精选,才能保证三条频率刻度的—致性。
电容C4、C5一定要用无极性电容,可用两个4.7μ有极性电介电容同极性串连代替。
电容C6、C7用钽电介。
图1中未注明电压的电容器均选用50V。
多路波形发生器的设计与实现
多路波形发生器的设计与实现一、引言多路波形发生器是一种能够同时输出多种波形信号的电子设备,广泛应用于科学研究、工业控制、音频处理等领域。
本文将介绍多路波形发生器的设计和实现过程。
二、设计思路多路波形发生器的设计需要考虑以下几个方面:1. 信号源:需要选择合适的信号源,可以是数字信号处理器(DSP)、单片机(MCU)或者模拟电路。
2. 输出接口:需要选择合适的输出接口,可以是直流电压输出接口、交流电压输出接口或者数字信号输出接口。
3. 波形生成算法:需要选择合适的波形生成算法,可以是直接计算法、表格查找法或者插值法。
三、硬件设计1. 信号源:本文采用STM32F103C8T6单片机作为信号源。
该单片机具有丰富的外设资源和高性能,可以满足多路波形发生器的要求。
2. 输出接口:本文采用了直流电压输出接口和交流电压输出接口。
直流电压输出通过PWM模块实现,交流电压输出通过DAC模块实现。
3. 波形生成算法:本文采用了表格查找法。
将波形数据存储在查找表中,通过查找表的方式实现波形输出。
四、软件设计1. 系统框图:多路波形发生器的系统框图如下所示。
2. 程序流程:(1)初始化:设置时钟、GPIO口、PWM模块和DAC模块等。
(2)生成波形数据:通过表格查找法生成正弦波、方波和三角波等。
(3)输出波形信号:通过PWM模块和DAC模块输出波形信号。
五、实验结果本文设计并实现了一款多路波形发生器。
经过测试,该多路波形发生器能够同时输出正弦波、方波和三角波等多种类型的信号,并且输出精度高,稳定性好。
六、总结本文介绍了多路波形发生器的设计和实现过程。
通过选择合适的信号源、输出接口和算法,可以实现高精度、高稳定性的多路波形发生器。
未来,可以进一步优化算法,增加更多类型的信号输出,并且将其应用于更广阔的领域中。
3-多波形信号发生器的设计
值总是小于 1 的小数, 而 DSP 是 16 位的定点处理器, 同时 D/A 转换器可以接收 16bit 的数据, 所以要将其乘以 32767, 变为 Q15 的数据格式,才能够在 DSP 中送到 D/A 转换器进行数模转换 处理。 要产生正弦信号,其信号频率F可以表达为F=Fs/N,其中Fs是D/A转换器的转换频率,N是 一个周期内信号的样点数。所以DSP能够产生的正弦信号的最高频率为Fs/2。DSP实验板上的 TLV320AIC23 立体声音频Codec芯片A/D和D/A转换速率可设置为8K到96KHz, 故本DSP实验板 理论上可产生的信号的频率最高为48KHz。 4.要求完成的任务 (1)掌握CCS的安装、设置,工程的建立、工程设置、编译运行和调试方法 (2)编写C语言程序实现设计要求,并在CCS集成开发环境下调试通过,实现设计所要求 的各项功能。 (3)按要求撰写课程设计报告。 5. 评分标准 基本要求 序号 测试项目 CCS 设置 (1) CCS 的 使 用 工程的打开、编译 链接、装载及运行 工程的调试,单步 运行、全速运行、 断点运行 变量观察、图形观 察窗的使用 重新建立工程 编译、装载并运行 多种信号波形 信号频率可变 信号幅度可变 答辩 设计报告 总分 满分 10 5 5 5 10 5 5 5 10 10 70 300~16000Hz 0~1 VRMS 评分 备注
3. 设计思路 产生连续信号的方法通常有两种:查表法和计算法,查表法不如计算法使用灵活。计算法 可以使用泰勒级数展开法进行计算,也可以使用差分方程进行迭代计算或者直接使用三角函数 进行计算。计算结果可以边计算边输出,也可以先计算后输出。 正弦函数和余弦函数的泰勒级数数学表达式为:
sin x x
如果要计算一个角度ⅹ的正弦和余弦值,可以取其前五项进行近似计算。 或使用下面递归的差分方程进行计算。 y[n]=A*y[n-1]-y[n-2] 其中:A=2cos(x),x=2πF/FS。F—信号频率,FS—D/A 转换频率。 利用递推公式计算正弦和余弦值需要已知 cos(x)和正弦、余弦的前两个值。计算时所需的 计算量小,但有累积误差。要得到精确的计算结果,可以使用泰勒级数展开法进行计算,当然 计算时所需的计算量很大。在实际应用时可以根据需要选择相应的算法。对于周期信号,一般 先使用计算法算出多个周期内的样点值,再将样点逐个循环发送到 D/A 转换器。因为 sin(x)的
多种波形发生器课程设计按键电路
多种波形发生器课程设计按键电路一、引言波形发生器是电子工程中常用的一种电路,它可以产生多种不同的波形信号,如正弦波、方波、三角波等。
在电子设计和测试中,波形发生器通常被用来产生标准信号或者测试信号。
本文将介绍多种波形发生器的课程设计,并着重介绍按键电路的设计。
二、多种波形发生器课程设计1. 正弦波发生器正弦波发生器是最基本的波形发生器之一,它可以产生一个连续变化的正弦信号。
在实际应用中,正弦波信号通常被用来作为参考信号或者测试信号。
正弦波发生器的基本原理是利用RC振荡电路来产生一个稳定的振荡频率,并且通过运算放大器对其进行放大。
具体实现方式可以采用集成电路或者离散元件进行搭建。
2. 方波发生器方波发生器可以产生一个由高低两个电平构成的方形脉冲信号。
在数字系统中,方波信号通常被用来表示“0”和“1”两个状态。
方波发生器的基本原理是利用开关电路来控制电路的通断,从而实现高低电平的切换。
具体实现方式可以采用集成电路或者离散元件进行搭建。
3. 三角波发生器三角波发生器可以产生一个由上升和下降两个斜率构成的三角形信号。
在音频系统中,三角波信号通常被用来作为音乐合成的基础信号。
三角波发生器的基本原理是利用积分电路来对方波信号进行积分,从而得到一个连续变化的三角形信号。
具体实现方式可以采用集成电路或者离散元件进行搭建。
4. 锯齿波发生器锯齿波发生器可以产生一个由上升和下降两个斜率构成的锯齿形信号。
在测试系统中,锯齿波信号通常被用来作为测试信号。
锯齿波发生器的基本原理是利用反向比例积分电路来对方波信号进行积分和反向放大,从而得到一个连续变化的锯齿形信号。
具体实现方式可以采用集成电路或者离散元件进行搭建。
三、按键电路设计在波形发生器的实际应用中,通常需要对波形信号进行调节和控制。
按键电路可以实现对波形发生器的控制和调节,使其更加灵活和方便。
按键电路的基本原理是利用开关电路来控制电路的通断,从而实现对波形发生器的控制。
多种波形发生器的设计与制作
课题三 多种波形发生器的设计与制作方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。
本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。
电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。
通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。
1、 设计任务设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。
图3-3-1 波形图设计要求:⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。
⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。
⑶ 只允许采用通用器件,如集成运放,选用F741。
要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。
2、设计方案的选择由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。
属于环形多种波形发生器,原理框图可用3-3-2表示。
图3-3-2 多种波形发生器的方框图仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。
三角波可由方波通过积分电路来实现,选用一个积分电路来完成。
图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。
脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。
锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。
多种波形发生器_设计论文正稿
《电子技术》课程设计说明书题目名称:多种波形发生器的设计姓名:xxx学号:xxx班级:xxx指导教师:xxx2013年 1 月 4 日摘要波形发生器是一种能够产生大量标准信号和用户定义信号,具有高精度、可重复性、易操作性、对频率、幅值、相移、波形进行动态及时的控制的一类新型信号源。
本设计的设计方案是把滞回比较器和积分器首尾相接组成一个正反馈闭环系统,则比较器输出的方波经过积分器可得到三角波,三角波又触发比较器自动翻转形成法波;三角波—正弦波的转换电路主要由差分放大电路来完成,差分放大电路具有工作点稳定,输入阻抗高,抗干扰能力强等优点。
特别是作为直流放大器,可以有效抑制零点漂移,因此可以将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
关键词:信号源;滞回比较器;积分器;波形发生器多种波形发生器的设计背景波形发生器是随着众多领域对于复杂的、可由用户定义的测试波形的需要而形成和发展起来的,它的主要特点是可以产生任何一种特殊波形,输出信号的频率、电平以及平滑低通滤波的截至频率也可以作到程序设置,因此在机械性能分析、雷达和导航、自动测试系统等方面得到广泛的应用。
而对AWG的控制、数据传输、输出信号的频率和电平设置都可以通过微机打印口在EPP工作模式下设计完成。
这样不仅具有设计简单,占用微机资源较少的优点,而且操作简单,使用方便,易于硬件升级。
波形发生器是能够产生大量的标准信号和用户定义信号,具有高精度、可重复性、易操作性、连续的相位变换和频率稳定性,还可以对频率、幅值、相移、波形进行动态及时的控制。
随着不断进步的计算机技术和微电子技术在测量仪器中的应用而形成和发展起来的一类新型信号源。
目录1.摘要 (2)1.设计目的 (4)2.设计任务、要求及设计容 (4)2.1任务 (4)2.2要求 (4)2.3设计方案 (5)3. 多种波形发生器原理电路设计 (5)3.1各方案原理框图及论证 (5)3.2电路图和接线图及工作原理 (6)3.3各部分电路设计 (8)3.4 电路的参数选择及计算 (13)3.5电路仿真 (15)3.6系统仿真结果、数据分析和处理结果、报告 (17)3.7 方波---三角波发生电路的实验结果 (19)3.8三角波---正弦波发转换电路的实验结果 (19)3.9 实测电路波形、误差分析及改进方法 (20)4. 仪器仪表明细清单 (20)5.总结 (21)6. 主要参考文献 (21)一、设计目的(1)对波形的产生及与变换电路有关的电子电路知识有大致的理解。
基于NE555的多波形发生器的设计
引言锯齿波发生器是一种常用的信号发生电路,广泛地应用于各种电路中,如示波器,开关电源等。
它已有相当成熟的电路:根据对锯齿波形不同的要求,用不同的方法求设计不同的锯齿波发生器。
既有数字的,也有模拟的。
模拟的锯齿波发生器的线路很多,当线性度要求很高时,一般都很复杂。
本文介绍的锯齿波发生器是基于价廉物美的555定时器时基电路,用性能稳定的恒流源对电容的充放电而得到的高精度锯齿波发生器。
第一章设计任务及要求1.设计任务及要求1.1 设计任务利用555定时器和结型场效应管构成的恒流源设计一高线性度的锯齿波发生器。
1.2 设计要求用555定时器和结型场效应管构成的恒流源设计出一个高线性度的锯齿波发生器。
第二章设计思路及各原理1.555定时器555定时器是一种数字电路与模拟电路相结合的中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳态触发器和多谐振荡器等,因而广泛用于信号的产生、变换、控制与检测。
1.1 555定时器的工作原理555定时器产品有TTL型和CMOS型两类。
TTL型产品型号的最后三位都是555,CMOS型产品的最后四位都是7555,它们的逻辑功能和外部引线排列完全相同。
555定时器的电路如图2-1所示。
它由三个阻值为5kΩ的电阻组成的分压器、两个电压比较器C1和C2、基本RS触发器、放电晶体管T、与非门和反相器组成。
图2-1-1分压器为两个电压比较器C1、C2提供参考电压。
如5端悬空,则比较器C1的参考电压为,加在同相端;C2的参考电压为,加在反相端。
是复位输入端。
当=0时,基本RS触发器被置0,晶体管T导通,输出端u0为低电平。
正常工作时,=1。
u11和u12分别为6端和2端的输入电压。
当u11>,u12> 时,C1输出为低电平,C2输出为高电平,即=0,=1,基本RS触发器被置0,晶体管T导通,输出端u0为低电平。
当u11<,u12< 时,C1输出为高电平,C2输出为低电平,=1,=0,基本RS触发器被置1,晶体管T截止,输出端u0为高电平。
8.23 多功能波形发生器的系统设计
3.DAC和显示部分
波形DAC:根据输入的波形数据(即FPGA输出的 数据),产生相应的模拟波形的输出。调幅DAC: 根据输入的幅度调节数据(即FPGA输出的数据), 用来调节波形DAC的基准电压,到达输出波形幅 度调节的目的。 波形指示:每种波形具有一个选择开关,而每 个选择开关与FPGA接口的一端都并有一个发光二 极管,发光二极管起指示作用。 频率显示:频率可以直接用4位BCD拨盘开关上 的数字和档位开关位置一起来表示频率。 幅度显示:用4个数码管来显示输出波形的幅度。
显示部分组成fpga时钟调幅1分频器系统控制器存储器2方波a方波b正弦波三角波锯齿波任意波加法器数据波形dac调幅dac存储器1滤波输出波形确认设定档位清除运算译码幅度显示频率显示调幅2占空比显示波形指示1
8.23 多功能波形发生器设计
设计要求
设计一个多功能波形发生器。 该波形发生器能产生正弦波、方波、三角波 和由用户编辑的特定形状波形。
2.FPGA部分
FPGA是整个系统的核心 构成系统控制器 波形数据生成器 加法器 运算/译码 分频器等电路
系统控制器:控制系统的每个部分状态及之间 的协调。 加法器:是10位的。当只选择1种波形时,加法 器等效于传输线,不对波形数据做处理;当选 择2种或2种以上波形时,加法器先把送进来的 数据进行叠加,把最后的数据的最低2位舍去, 把剩下位送到波形DAC中。 运算/译码:正弦波、三角波、锯齿波和叠加的 波形的幅值算法都是相同的。方波A和方波B的 波形的幅值算法是相同的。
加DAC
多 功 能 波 形 发 生 器 系 统 框 图
运算/译码
幅度显示
1.输入部分
多功能波形发生器的设计及实现
《微型计算机原理及应用》课程设计报告题目多功能波形发生器的设计及实现学院自动化科学与工程学院班级自动化08(3)班提交日期 2011年1月14日目录一、引言1.1、设计目的1.2 、设计意义二、课程设计内容2.1设计任务2.2设计要求三、选用器材四、设计原理及其整体框图五、原理图设计5.1 核心芯片8086CPU5.2时钟发生器5.3地址锁存器电路图5.4总线收发器电路图5.5存储器单元电路的设计5.6键盘扫描及译码电路5.7 DAC0832数模转换电路六、程序设计流程图6.1 矩形波流程图6.2锯齿波流程图6.3三角波波形6.4 正弦波波形七、课程设计过程中的主要难点及解决方法八、收获、体会和建议九、程序清单十、参考文献多功能波形发生器的设计及实现摘要:本系统以8086CPU为核心器件组成的一个带有64K的微机系统,并采用DAC0832作为输出制作一种函数信号发生器。
8086CPU是微处理器中最古老最基础的一块芯片,而DAC0832又是其他的数模转换芯片中最简单的一块,这两块芯片的的原理都比较简单,适合学生学习电子技术测测使用。
本系统通过用汇编语言将已经编写好的数字量转换为模拟量,输出正弦波、三角波、矩形波等波形信号。
采用软件控制波形有个好处,可以方便控制输出波形的幅度和频率。
关键词:8086CPU;波形发生器;DAC0832;微机;一引言信号发生器是用来提供各种测量所需波形信号的电子仪器,是一种常用的信号源,可广泛应用于自动控制、科学试验和电子电路等相关领域。
但在分析电路时。
也常常需要了解输出信号与输入信号之间的关系,为此,常用信号发生器来产生信号以激励系统,同时观察和分析系统对激励信号的响应。
现如今,信号发生器的应用越来越广,同时也对信号发生器的频率稳定度、频率范围和输出信号的频率分辨率提出了越来越高的要求。
因此,国内外纷纷采用直接数字频率合成技术来设计制作先进的信号发生器。
本文正是基于数模转换原理,采用8086最小系统已经数模转换芯片DAC0832设计并制作出了多功能信号发生器。
多种波形发生器设计论文
摘要随着电子技术的飞快发展,单片机也应用得越来越广泛,基于单片机的智能仪器的设计技术不断成熟。
单片机构成的仪器具有高可靠性,高性价比。
单片机技术在智能仪表和自动化等诸多领域有了极为广泛的应用,并用到各种家庭电器,单片机技术的广泛应用推动了社会的进步。
利用单片机采用程序设计方法来产生波形,线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强等优点,而且还能对波形进行细微的调整,改良波形,易于程序控制。
只要对电路稍加修改,调整程序,就能实现功能的升级。
本系统利用单片机AT89C52采用程序设计方法产生锯齿波、三角波、正弦波、梯形波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,并通过按键来控制四种波形的类型选择。
本次设计主要由信号发生模块、数模转换模块和仿真模块。
关键词 AT89C52单片机,DAC0832,独立式键盘,Proteus,Keil目录1绪论 (3)1.1波形发生器的概述 (3)1.2各种设计方案的比较 (3)1.2.1纯硬件设计法 (3)1.2.2纯软件设计法 (4)1.2.3软硬件结合设计法 (4)2硬件电路设计 (5)2.1主要芯片介绍 (5)2.1.1单片机AT89C52 (5)2.1.2 DAC0832数模转换器 (8)2.1.3其他器件 (9)2.2硬件连接图 (9)2.2.1主控电路 (9)2.2.2 独立式键盘 (10)2.2.3数模转换电路 (11)2.2.4驱动电路 (12)2.3总电路图 (12)3 程序设计 (13)3.1主流程图的设计 (13)3.2 子程序的设计 (14)3.2.1锯齿波的产生 (14)3.2.2三角波的产生 (14)3.2.3梯形波的产生 (15)3.2.4正弦波的产生 (16)3.2.5主程序 (17)4应用软件 (18)4.1 Proteus (18)4.2 KeilC51 (20)5调试与仿真结果 (21)6总结 (24)参考文献 (25)附录 (26)1绪论1.1波形发生器的概述在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机的多波形发生器
return da;
}
void DAC_write(unsigned char dat)
{
IIC_Start();
IIC_SendByte(0x90);
IIC_WaitAck();
IIC_SendByte(0x40);
IIC_WaitAck();
IIC_SendByte(dat);
IIC_WaitAck();
IIC_Stop();
}
3.实验结果与分析
3.1 实验结果
将程序下载到单片机开发板上,示波器接PCF8591模块的UOUT引脚,初始状态下,示波器显示方波,可以通过KEY1/KEY5调节幅度,KEY2/KEY6调节频率,KEY3/KEY7调节占空比.按下KEY4,每按一下,波形变化一次,循环显示正弦波、三角波、锯齿波、方波、梯形波,如下面图片所示。
第一次按下KEY8显示方波频率信息,再次按下,数码管闪烁,表示此时可以通过按键KEY2/KEY6设置任意频率,设置完成后,再次按下KEY8,保存设置的频率,退出数码管显示界面,数码管全部熄灭,数码管显示部分如下图13。
实物连接图如图14。
图8 方波
图9 三角波图10 锯齿波图11正弦波
图12 梯形波
图13 频率显示界面
图 14 实物连接图
3.2实验中遇到的问题
(1)在设计独立按键部分时,出现一段时间按键有效,一段时间按键无效,。