材料科学基础1-3章复习

合集下载

材料科学基础-复习题纲

材料科学基础-复习题纲

第一部分材料的原子结构1、原子结构与原子的电子结构;原子结构、原子排列对材料性能的影响。

原子结构:原子由质子和中子组成的原子核以及核外的电子所构成。

原子核内的中子显电中性,质子带有正电荷。

对电子的描述需要四个量子数:主量子数n:决定原子中电子能量以及与核的平均距离.角动量量子数l:给出电子在同一个量子壳层内所处的能级,与电子运动的角动量有关。

磁量子数m:给出每个轨道角动量量子数的能级数或轨道数。

自旋角动量量子数s:反映电子不同的自旋方向。

原子排列对材料性能影响:固体材料根据原子的排列可分为两大类:晶体与非晶体。

(有无固定的熔点和体积突变)晶体:内部原子按某种特定的方式在三维空间呈周期性重复排列的固体。

(常考名词解释)非晶体:指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体.(名词解释)各向异性:晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。

(名词解释)2、材料中的结合键的类型、本质,各结合键对材料性能的影响,键-能曲线及其应用。

(常考简答题或是论述题,很重要)一次键离子键:离子键指正、负离子间通过静电作用形成的化学键。

(无方向性和饱和性)共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

(有方向性和饱和性)金属键:金属中的自由电子与金属正离子相互作用所构成的键合二次键范德瓦耳斯力:(又称分子间作用力)产生于分子或原子之间的静电相互作用。

氢键:与电负性大、半径小的原子X(氟、氧、氮等)以共价键结合,若与电负性大的原子Y(与X相同的也可以)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的键,称为氢键。

(X与Y可以是同一种类原子,如水分子之间的氢键)各结合键对材料性能的影响:1.金属材料:金属材料的结合键主要是金属键。

由于自由电子的存在,当金属受到外加电场作用时,其内部的自由电子将沿电场方向作定向运动,形成电子流,所以金属具有良好的导电性;金属除依靠正离子的振动传递热能外,自由电子的运动也能传递热能,所以金属的导热性好;随着金属温度的升高,正离子的热振动加剧,使自由电子的定向运动阻力增加,电阻升高,所以金属具有正的电阻温度系数;当金属的两部分发生相对位移时,金属的正离子仍然保持金属键,所以具有良好的变形能力;自由电子可以吸收光的能量,因而金属不透明;而所吸收的能量在电子回复到原来状态时产生辐射,使金属具有光泽.金属中也有共价键(如灰锡)和离子键(如金属间化合物Mg3Sb2).2.陶瓷材料:简单说来,陶瓷材料是包含金属和非金属元素的化合物,其结合键主要是离子键和共价键,大多数是离子键。

最全的大学材料科学基础复习要点

最全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础考研知识点总结

材料科学基础考研知识点总结

材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。

材料科学基础(各章总结)讲诉

材料科学基础(各章总结)讲诉

第一章:结晶学基础一、晶体的基本概念晶体:晶体是内部质点在三维空间按周期性重复排列的固体。

晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。

晶体的基本性质:晶体均一性、各向异性、自限性、对称性、最想内能性。

等同点:晶体结构中物质环境和几何环境完全相同的点。

空间格子:联结分布在三维空间内的结点就构成了空间格子。

单位平行六面体:在空间格子中,所选取的平行六面体的对称性符合整个空间点阵的对称性;棱与棱之间的直角应力求最多;在遵循上两个条件的前提下,所选取的平行六面体的体积应最小。

考虑到对称性不能为直角时,选结点间距最小的行列做平行六面体的棱,棱间交角接近直角。

按照上述选择原则选取的平行六面体称为单位平行六面体。

点群(对称型):结晶多面体中全部对称要素的组合,称为该结晶多面体的对称型。

由于在结晶多面体中,全部对称要素相交于一点(晶体几何中心),在进行对称操作时该点不移动,所以对称型也称为点群。

平移群:晶体结构中所有平移轴的结合。

空间群:在一个晶体结构中所存在的一切对称要素的集合。

二、晶体的对称要素对称中心(符号C):假想的几何点,相应的对称变换是对于这个点的倒反。

对称面(符号P):假想的平面,相应的对称变换是对此平面的反映。

对称轴(符号L n):假想的直线,相应的对称变换是绕此直线的旋转。

倒转轴(符号L i n):一种复合对称要素,由一根假想的直线和此直线上的一个定点构成。

相应的对称变换是绕此直线旋转一定角度以及对此定点的倒反。

映转轴(符号L s n):一种复合对称要素,由一根假想的直线和垂直此直线的一个平面构成。

相应的对称变换是绕此直线旋转一定角度以及对此平面的反映。

三、晶体的对称分类七个晶系包括:三斜晶系、单斜晶系、正交(斜方)、三方晶系、四方(正方)晶系、六方晶系和等轴(立方)晶系四、各晶系的几何常数五、结晶符号1、晶面符号(米氏符号也称晶面符号):(hkl)表示2、晶棱符号::[uvw]表示六、晶体的微观对称要素(1)平移轴:是一直线方向,相应的对称变换为沿此直线方向平移一定的距离。

材料科学基础复习

材料科学基础复习

第五章 固体材料中的扩散
扩散机制 间隙式扩散、置换式扩散
扩散的热力学理论
第五章 固体材料中的扩散
诱发原因:
1)弹性应力场的作用:应力梯度抵消了浓度梯度。 2)电场、磁场的作用:电场、磁场对带电粒子的运动产生影响。 3)晶界内吸附作用:溶质原子向晶界偏聚。 4)调 幅 分 解:典型的化学位梯度与浓度梯度方向相反。
为了便于对晶体进行描述,引出了空间点阵和晶胞两个概念。
空间点阵选取的一个重要原则: 每个阵点周围的环境(原子的种类以及分布)必须都是相同的。
阵点都是等同点。
第二章 晶体材料中的原子排列
根据六个点阵常数之间的相互关系,将空间点阵归属于 7大晶系: (三斜、单斜、正交、六方、菱方、四方、立方) 14种布拉维点阵 (简单三斜、简单单斜、底心单斜、简单正交、底心正交、 体心正交、面心正交、简单六方、简单菱方、简单四方、 体心四方、简单立方、体心立方、面心立方)。
例:(重点在习题的讲解)
z
[111]
o
y
x轴坐标——1 y轴坐标——1 z轴坐标——1
第三章 典型金属晶体结构
R 2a 4
1 /8 8 1 /2 6 4
R 3a 4
1/8812
R 1a 2
1 /6 1 1 2 /2 2 3 6
第三章 典型金属晶体结构
fcc
bcc
hcp
fcc {111} bcc {110} hcp {0001}
(2)伯氏矢量的确定与伯格斯回路的选择无关。
(但与伯格斯回路的方向,即位错线l正向的选择有关。b的正负受位 错线l正向规定的影响。但l正向的选择不会影响位错的类型)
(3)伯氏矢量的可加性
代表回路中所有矢量的总和(矢量和,既含方向、又含大小)。

《材料科学基础》复习

《材料科学基础》复习

第一章材料的结构与键合1、金属键、离子键、共价键、范德华力、氢键、分子键的特点,利用结合键解释材料的一些性能特点。

如用金属键的特征解释金属材料的性能—良好的延展性;良好的导电、导热性;具有金属光泽。

2、原子间的结合键对材料性能的影响。

3、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。

本章知识点:1、金属键、离子键、共价键、分子键、氢键的特点。

第二章 固体结构1、晶体与非晶体的区别(特别是在原子排列上的区别)。

2、空间点阵、晶格、晶胞及选取晶胞的的原则、七大晶系及各自的特点,14种布拉菲点阵、晶格常数、晶胞原子数。

3、晶面指数、晶面族、晶向指数、晶向族、晶带和晶带定理、晶面间距、配位数、致密度、八面体间隙、四面体间隙。

各向同性与各向异性、同素异构转变(重结晶、多晶型性转变) 。

(1)指数相同的晶向和晶面必然垂直。

(2)当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足晶带定理:h·w+k·v+l·w =0 4、三种典型晶体结构(1)能绘出三维的体心立方、面心立方和密排六方晶胞。

根据原子半径计算出金属的体心和面心立方晶胞的晶胞常数。

(2)三种典型晶体结构的特征[包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向(滑移方向)等]。

(3)能标注和会求上述三种晶胞的晶向和晶面指数。

晶向和晶面指数的一些规律。

求晶面间距d (hkl )、晶面夹角。

5、晶面间距:d (hkl ) 的求法:(1)立方晶系:222)(l k h ad hkl ++=(2)正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a hd hkl(3)六方晶系:2222)()(341⎪⎭⎫⎝⎛+++=c l a k hk hd hkl (4)四方晶系:2222)()/(/)(1c l a k hd hkl ++=以上公式仅适用于简单晶胞,复杂晶胞要考虑其晶面层数的增加。

材料科学基础复习要点

材料科学基础复习要点

材料科学基础复习要点第一章工程材料中的原子排列1、晶体中的原子键合方式?各种原子结合键的特点2、原子核外电子的能级排列?遵循的规律3、晶体和非晶体的区别?晶体的各向异性及各向同性4、晶体结构和空间点阵的联系及区别5、晶向指数和晶面指数的确定及表示方法,重点为面心立方晶体和体心立方晶体中密排面和密排方向的指数及其表示6、三种常见的晶体结构的特点,包括晶胞中的原子数、点阵常数与原子半径的关系、致密度、配位数、晶体中的间隙、原子堆垛方式、密堆程度、晶体的多晶型性7、铁的三种同素异构体的晶体结构类型8、空位的类型:肖脱基空位、弗兰克尔空位,空位浓度对晶体物理性能的影响9、位错的类型,刃位错、螺位错位错线与柏氏矢量间的关系,画图表示,位错密度对材料强度的影响10、位错环中位错类型的确定(如课本27页,图1-38,33页,图1-47)11、位错柏氏矢量的确定、柏氏回路与柏氏矢量的关系12、柏氏矢量的表示方法、柏氏矢量的模的计算13、柏氏矢量的守恒性及其推论14、作用在位错上的力的大小及方向15、位错的运动方式?刃、螺位错分别能如何运动,运动方向与位错线、柏氏矢量间的关系16、刃、螺位错应力场的特点?应变能与柏氏矢量的关系,不同类型位错应变的大小比较17、平行同号位错间的相互作用18、常见金属晶体中的位错:全位错、不全位错,位错稳定性的判定19、位错反应的判定20、晶界的类型及其位错模型,界面能与晶界位向差间的关系21、相界面的类型22、课后作业51页习题1、3、11,复习思考题1、2、9、10、12第二章固体中的相结构1、相的定义2、固溶体的晶体结构特点、分类及影响固溶体固溶度的因素3、金属原子间形成无限固溶体的条件4、间隙固溶体和间隙化合物的区别5、固溶体的性能特点6、金属间化合物的结构特点、分类、特性7、课后习题79页1、复习思考题1、2第三章凝固1、金属凝固的微观过程及宏观现象2、过冷现象与过冷度3、金属结晶的热力学条件、驱动力及其与过冷度间的关系4、金属结晶的结构条件5、晶核的形成方式6、均匀形核过程中系统能量的变化、临界晶核半径、形核功、临界晶核表面积、临界晶核体积间的关系推导7、均匀形核的条件8、均匀形核的形核率的受控因数、有效过冷度及其与熔点间的关系9、非均匀形核的形核功与均匀形核功间的比较10、晶体长大的条件、动态过冷度11、液固界面的微观结构及其宏观表象、常见金属的界面结构12、不同界面结构下晶体的长大方式13、液固界面的温度梯度与晶体长大形态间的关系14、铸态晶粒大小的控制措施15、课后习题109页1、6,复习思考题第四章相图1、相平衡及相律,相平衡的热力学条件,相率的表达式及其应用2、杠杆定律的计算3、固溶体非平衡凝固中固相、液相的成分变化规律,晶内偏析及其消除方法4、成分过冷的定义、表达式含义及成分过冷对固溶体生长形态及组织的影响5、典型二元共晶相图的分析,如Pb-Sn相图,包括典型合金的结晶过程分析、室温下组成相及组织组成的分析、相的相对含量、组织相对含量的计算(室温下)、非平衡凝固组织组成的分析6、伪共晶、离异共晶的定义,组织特征7、铁碳合金相图的基本相组成及其结构、性能特点8、铁碳合金相图中重要的点、线的含义、3个典型转变的方程式及其转变产物的相组成、组织名称。

I材料科学基础总复习

I材料科学基础总复习

第一章原子排列本章需掌握的内容:材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性;晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。

晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点;晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。

典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp;晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角晶体中原子堆垛方式,晶体结构中间隙。

了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb非晶态结构:非晶体与晶体的区别,非晶态结构分子相结构1. 填空1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为___________,原子的半径是____________。

2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。

材料科学基础复习提纲

材料科学基础复习提纲

材料科学基础复习提纲复习资料(修订版)修正部分错别字,增删部分重点内容(红字标出)材料科学基础Ⅰ(贵清部分)第⼀章晶体学基础1.1晶⾯指数、晶向指数(不包含四指数问题)的标定及晶⾯间距、晶向长度的计算(公式P40~P41)1.2晶体结构和空间点阵的区别?答:晶体结构是晶体中各原⼦的分布,种类丰富多样,⽽空间点阵是原⼦分布规律的代表点,由这些抽象出来的阵点构成,只有14种结构。

1.3 晶胞选择的条件?答:晶胞的选择要尽量满⾜以下三个条件:1)能反映点阵的周期性;2)能反映点阵的对称性;3)晶胞的体积最⼩。

1.4结构胞和原胞的联系和区别?答:结构胞和原胞必须都能反映点阵的周期性,结构胞是在保证对称性的前提下选取体积尽量⼩的晶胞;原胞是保证晶胞体积最⼩,⽽不⼀定反映对称性。

1.5 周期的概念?答:⽆论从哪个⽅向看去,总是相隔⼀定的距离就出现相同的原⼦或者原⼦集团,这个距离就是周期。

1.6 常见晶体结构中的重要间隙?答:FCC晶体中⼋⾯体间隙4个,四⾯体间隙8个;BCC晶体中⼋⾯体间隙6个,四⾯体间隙12个;HCP晶体中⼋⾯体间隙6个,四⾯体间隙12个。

1.7 常见晶体结构的堆垛⽅式?答:BCC和HCP晶体的堆垛⽅式是ABABAB……;FCC晶体的堆垛⽅式是ABCABC……。

1.8 晶带⽅程的表达式?答:hu+kv+lw=0。

第⼆章固体材料的结构2.1 什么是合⾦、组元、合⾦相、组织以及组元、合⾦相、组织之间的关系?答:合⾦:由⾦属和其他⼀种或⼏种元素通过化学键合⽽形成的材料;组元:组成合⾦的每种元素称为组元;合⾦相:具有相同的成分、结构和性能的部分称为合⾦相或简称相;组织:在⼀定外界条件下,⼀定成分的合⾦可以由若⼲不同的相组成,这些相的总体便称为组织。

关系:合⾦相由组元构成,⽽组织⼜由合⾦相组成,单⼀元素即可以称之为组元⼜可以称之为相⼜也可以称之为组织。

2.2 固溶体和化合物的区别?答:固溶体的溶质和溶剂占据⼀个共同的布拉菲点阵,且此点阵类型和溶剂的点阵类型相同,固溶体有⼀定的成分范围,组元含量在⼀定范围内可以变化⽽点阵类型不变,由于成分可变,固溶体不能⽤⼀个化学式表达;化合物是由两种或多种组元按⼀定⽐例构成⼀个新的点阵,它既不是溶剂的点阵也不是溶质的点阵,化合物通常可以⽤⼀个化学式表达,⾦属与⾦属形成的化合物往往有⼀定的成分范围,但⽐固溶体范围⼩得多。

全的大学材料科学基础复习要点

全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

石德珂《材料科学基础》(第2版)配套题库【章节题库】第1章~第3章【圣才出品】

石德珂《材料科学基础》(第2版)配套题库【章节题库】第1章~第3章【圣才出品】

3.原子的结合键有哪几种?各有什么特点? 答:原子的结合键有: (1)离子键。其特点是:正负离子相互吸引;键合很强,无饱和性,无方向性;熔点、
2 / 47
圣才电子书 十万种考研考证电子书、题库视频学习平台

硬度高,固态不导电,导热性差。 (2)共价键。其特点是:相邻原子通过共用电子对结合;键合强,有饱和性,有方向
一、简答题 1.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或 从上到下元素结构有什么区别?它的性质如何递变? 答:同一周期元素具有相同原子核外电子层数,但从左→右,核电荷依次增多,原子半 径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强; 同一主族元素最外层电子数相同,但从上→下,电子层数增多,原子半径增大,电离能降低, 失电子能力增加,得电子能力降低,金属性增加,非金属性降低。
2.金属的加工硬化特性对金属材料的使用带来哪些利弊? 答:有利方面:作为提高金属材料强度的一种手段;便于金属材料塑性成形;使金属零 件得以抵抗偶然过载。不利方面:使金属难以进一步冷塑性变形。
1 / 47
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 1 章 材料结构的基础知识
圣才电子书

十万种考研.什么是金属的加工硬化现象? 答:金属材料在塑性变形过程中,所施加的流变应力随应变量的增大而不断增大的现象, 称为加工硬化。或金属材料经冷塑性变形后,其强度、硬度升高,塑性、韧性下降的现象, 称为加工硬化。
2.与(211)和(101)同属一晶带的有( )。 A. (0 11) B. (121) C. (010) D. (221) 【答案】A
3.两晶体的空间点阵相同,则( )。 A.它们的晶体结构相同 B.它们的对称性相同 C.它们所属的晶系相同 D.它们所属的空间群相同 【答案】C

材料科学基础1-3章复习

材料科学基础1-3章复习

7/4=21/12
密排六方 (c/a约为1.55~1.58 )
•间隙化合物
RX/RM=0.23,
占据四面体间隙, CN=4
RX/RM=0.41~0.59, 占据八面体间隙, CN=6
晶体结构 bcc hcp
fcc
六方P
间隙化合物/金属
Ti, Zr, Hf
V, Nb, Ta
Gr, Mo, W
V2C, Nb2C, Ta2C Nb2N, Ta2N Mo2C, W2C TiC, ZrC, HfC
空间点阵的定义:
单胞的三个矢量(三个棱)a,b,c的长度a,b,c以及 三个棱之间的夹角α(b∧c),β(c∧a),γ(a∧b)这6个参数称为 点阵常数(Lattice Parameter),它们是描述单胞特征的基本参 数。
1.3 对称性
1.3.1 对称变换(操作) 对称变换实际上就是一种对称操作。从几何意义考察 物体的对称性就是考察变换前后物体是否自身重合,如 果重合了,这种变换就是一种对称操作。
/Re
/RuOs /Fe
Mo2N, W2N VC,NbC,TaC
/Co, Rh, Ir
TiN, ZrN, HfN
VN, NbN0.94 WC, NbN
/Ni, Pd, Pt
电子浓度
4 5 6 7 7.5 8 8 8.5 9 9 10 10
3.5.1.3有序固溶体(超结构) 1. Cu3Au型
结构符号是LI2,Pearson符号是cP4
α=β=90° , γ =120 °
α=β=γ≠90 °
十 四 种 布 喇 菲 点 阵
1.4.5 晶带(Zone)及晶带(WEISS)定律
1.4.3 方向指数,平面指数

材料科学基础一 1-3-new

材料科学基础一 1-3-new
为什么要再分出四面体?
rx 0.291 r
这个比值大于八面体间隙。但是研究发现,极少 量的C原子仍然存在于α-Fe八面体间隙中。原因是C原 子进入八面体间隙只需要推开上下二个Fe原子。
密排六方点阵中的间隙——其中八面体间 隙6个,四面体间隙12个
间隙大小的表示方法:令金属原子的半径为rA,各 种间隙的间隙半径为rB——实际是能放入间隙内的 小球的最大半径,则用间隙半径rB与原子半径rA之 比rB / rA来表示。
面心立方晶胞示意图
体心立方晶胞示意图
密 排 六 方 晶 胞 示 意 图
1、晶胞中的原子数
FCC structure BCC structure
2、点阵常数和原子半径
体心立方结构:点阵常数为a,且r =
3a 4
面心立方结构:点阵常数为a,且r = 2 a
4
a 2 2r
密排六方结构:点阵常数为a和c, 在理想情况下,把原子看作等径 的刚球,可算得 c/a=1.633, 此时,
合金组元之间的相互作用及其所形成的合金相的 性质主要由三个因素所控制:它们各自的电化学因素、 原子尺寸因素和电子浓度。
1、固溶体
凡溶质原子完全溶于固态溶剂中,并能保持溶 剂元素的晶格类型所形成的合金相称为固溶体。
固溶强化:通常把形成固溶体而使强度、硬度升高 的现象叫固溶强化。
固溶体分类:
(1)置换固溶体和间隙固溶体:根据溶质原子是占据 结点位置还是间隙位置分类;
1.3.3 离子晶体的晶体结构
离子键化合物的晶体结构必须确保电中性,而 又能使不同尺寸的离子有效地堆积在一起。离子半 径比的大小,决定了配位数的多少,并显著影响晶 体结构。
通常正离子因失去电子而离子半径较小,负离 子因获得电子而离子半径较大。离子晶体中的离子 半径不是绝对不变的,同一离子随价态、配位数不 同,离子半径将发生变化。

材料科学基础前三章课程要点总结

材料科学基础前三章课程要点总结

1.绪论材料科学基础的核心问题:材料结构和性能的关联2. 第一章第1节(1)晶体和非晶体的区别(2)空间点阵和结点的定义(3)点阵的基本特征:周期性和等同性(4)晶胞和晶格常数的定义(5)七大晶系的名称、结构特征和对称性规律(要求记忆)(6)14种布拉维点阵并理解其来源(去掉重复的和保持对称性)(7)布拉维点阵和晶体结构的关系,如何从晶体结构获得点阵信息(熟悉ɑ铀, NaCl, Zn三个例子)(8)掌握密排六方HCP的结构,画出完整的中间层原子结构图,掌握c/a比值(9)晶胞与原胞的区别3. 第一章第2节(1)掌握三种晶体结构FCC,BCC,HCP并记住代表性材料(2)理解钢球模型,掌握原子半径、晶胞原子数、配位数、堆垛密度的计算方法(3)间隙的概念和种类,间隙大小的定义(4)掌握FCC,BCC,HCP三种晶体结构中八面体、四面体间隙的位置(坐标),数量以及尺寸。

4. 第三章第3节(1)晶面指数的标定步骤及立方晶系常见的晶面指数(2)掌握晶面族的概念,能写出{100},{110},{111},{112}, {123}晶面族所包含的晶面(3)掌握晶向指数的标定方法,常见的晶向指数,了解行走法确定晶向指数,能写出<100>, <111>, <110>, <112>晶向族所包括的晶向;(4)六方晶系四指数晶面指数标定方法,能写出底面、侧面、对角面的晶面指数;掌握四指数晶向指数的标定方法,熟记轴向、角二等分线方向的晶向的写法及长度,基于此能够熟练写出特殊晶向的指数。

掌握六方晶系的中由三指数晶向变换为四指数的方法;(5)面密度和线密度的概念及计算方法。

5. 第一章第4节(1)掌握晶体的堆垛方式和堆垛次序的概念;(2)简单立方沿{100},{110}晶面的堆垛次序;(3)HCP{0001}面的堆垛次序以及错位矢量;(4)FCC{200}面的堆垛次序以及错位矢量,重点掌握{111}面的堆垛次序及错位矢量。

《材料科学基础》考研复习知识点

《材料科学基础》考研复习知识点

《材料科学基础》考研复习知识点浙江大学《材料科学基础》第一章晶体结构§1-1晶体学基础一、空间点阵空间点阵:晶体中原子或分子的空间规则排列。

图1- 1点阵特点:各阵点为彼此等同的原子群或分子群的中心,周围环境都相同,在空间的位置是一定点阵基本要素:阵点(二)晶胞晶胞:点阵中取出的一个反映点阵对称性的代表性基本单元(通常取最小平行六面体)。

点阵的组成单元图1- 2晶胞描述:1晶轴X、Y、Z;2点阵常数a、b、c;3晶轴夹角α、β、γ 图1- 3 晶胞的原子、体积与密度计算(三)晶系7个晶系:按晶胞外形即棱边长度之间的关系和晶轴夹角情况归类,每一类别即一个晶系。

晶系只有七种!表1- 1(四)布拉菲点阵14种布拉菲点阵的晶胞:1-简单三斜;2-简单单斜;3-底心单斜;4-简单正交;5-底心正交;6-体心正交;7-面心正交;8-简单六方;9-菱形(三角);10-简单四方;11-体心四方;12-简单立方;13-体心立方;14-面心立方3个晶族:表示晶体结构对称性高低。

三、晶向指数和晶面指数晶向:晶体的方向晶面:原子所构成的平面晶向指数:确定晶向的一组数[uvw],表示所有相互平行、方向一致的晶向。

晶向族:晶体中因对称关系而等同的各晶向的归并,表为。

(二)晶面指数晶面指数:确定晶面方位的一组数,代表一组相互平行的晶面晶面族:具等同条件,而空间位向不同的各组晶面的归并晶面指数的确定步骤:(1)对晶胞作晶轴X 、Y 、Z ,以晶胞的边长作为晶轴上的单位长度。

(2)求出晶面在三个晶轴上的截距(如该晶面与某轴平行,则截距为∞)。

例如1、1、∞,1、1、1,1、1、1/2等。

(3)取这些截距数的倒数。

例如110,111,112等。

(4)将上述倒数化为最小的简单整数,并加上圆括号,即表示该晶面的指数,一般记为(hkl)。

例如(110),(111),(112)等。

如果所求晶面在晶轴上的截距为负数,则在相应的指数上方加一负号,如(1-10)、(11-1)、(112-)等。

材料科学基础各章复习要点2021.12

材料科学基础各章复习要点2021.12

材料科学基础各章复习要点2021.12材料科学基础各章复习要点第一章晶体结构名词解释:(1)同构同质多晶(2)萤石型和反萤石型(3)二八面体和三八面体(4)正尖晶石和反尖晶石主要内容:1.元素金属原子形成晶体的结构差异(A1、A2、A3类型)2、从晶体结构特点说明金属或合金在力学性能上表现出良好的塑性和延展性3、通过8-m规则说明金刚石的晶体结构特点4.NaCl型晶体结构的特征,为什么大多数ax型化合物具有NaCl型结构?在ax型晶体结构中,一般阴离子x的半径较大,而阳离子a的半径较小,所以x做紧密堆积,a填充在其空隙中。

大多数ax型化合物的r+/r-在0.414~0.732之间,应该填充在八面体空隙,即具有nacl型结构;并且nacl型晶体结构的对称性较高,所以ax型化合物大多具有nacl型结构。

5.CSCL型结构特点;立方ZnS和六方ZnS晶体结构的差异;6、金红石和萤石型晶体结构特点。

caf2晶体结构与性能的关系。

7、刚玉(?-al2o3)型结构特点。

8.ABO3(钙钛矿、钛铁矿、碳酸钙)的晶体结构特征;ab2o4尖晶石结构特征9。

钛酸钡的铁电效应,为什么钛酸钙没有自发极化?10.硅酸盐晶体结构的共同特征11、五类硅酸盐晶体结构特点,si/o,典型代表名称和分子式12、绿宝石、堇青石结构与性能关系13.滑石和叶蜡石的晶体结构特征以及结构与性能的关系14。

高岭石和蒙脱石的晶体结构特征及其与性能的关系15-方石英-鳞片石英的晶体结构差异16、o2-作而心立方堆积时,根据电价规则,在下面情况下,空隙内各需填入何种价态的阳离子,并对每一种结构举出一个例子。

(a)所有四面体空隙位置均填满;(b)所有八而体空隙位置均填满;(c)填满一半四面体空隙位置;(d)填满一半八面休空隙位置。

第二章晶体结构缺陷名词解释(1) Frenkel缺陷和肖特基缺陷(2)刃位错和螺位错(3)热缺陷和杂质缺陷(4)置换型固溶体和填隙型固溶体(5)点缺陷和线缺陷主要内容:1.缺陷反应方程的编写方法2、热缺陷浓度计算3.杂质缺陷、固溶体及固溶体分子式4、非化学计量化合物结构缺陷(半导体)种类、形成条件、缺陷浓度、电导率与气体压力的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正离子配位数
12 8 6 4
(正三角形)
3
鲍林第二规则(电价规则)。是
电中性的要求。在一个稳定的离
∑ ∑ 子晶体结构中每个负离子的电价
Z−等于或近似等于从邻近正离子 Z − = 到该负离子各静电键强度Si的总iSFra bibliotek =i
Z
+ i
CN i
和:
最小的正负离子 半径比r+/r− 1.000 0.732 0.414 0.225 0.155
α=β=90° , γ =120 °
α=β=γ≠90 °
十 四 种 布 喇 菲 点 阵
1.4.5 晶带(Zone)及晶带(WEISS)定律
1.4.3 方向指数,平面指数
(110) (1100)
(100) (1010)
[010] [110] [1210] [11 2 0 ]
1.4.7 倒易点阵
⎧a ⋅ a∗ = b ⋅ b∗ = c ⋅ c∗ = 1
材料科学基础I
晶体学与晶体结构 两章总结
金属材料生产的一般过程
熔炼 铸造 热加工 机加工 热处理 检验出厂
用于制造饮料罐的深冲铝板的生产过程
电子理论 非晶/半晶 晶体学 晶体结构
完整性/静
不 完 整 性 /静+动
扩散 位错 界面
相图
凝固 形变 再结晶 固态相变
宏观过程/动态/转变
最基本的物理冶金过程及各章节的关系
3.1.4 面心立方结构 结构符号是A1,Pearson符号是cF4。
结构符号是A4,Pearson符号是cF8
3 晶体结构
第一章 本章
晶体=点阵+基元 基元内容?
本章涉及内容:
基本几何参数:原子离子堆垛和配位;晶体结构 分类和晶体结构符号;原子离子半径;
结构单元整体特征:单质的晶体结构;化合物和中间相的 晶体结构;固溶体的晶体结构;准晶;
因此,r到r’变换的解析式是∶
⎡ x'1 ⎤ ⎡cosθ
⎢ ⎢
x'2
⎥ ⎥
=
⎢⎢sin
θ
⎢⎣x'3 ⎥⎦ ⎢⎣ 0
− sinθ cosθ
0
0⎤ ⎡ x1 ⎤
0⎥⎥
⎢ ⎢
x2
⎥ ⎥
1⎥⎦ ⎢⎣x3 ⎥⎦
旋转操作
1.4 晶系及点阵几何
七种晶系的对称性及点阵常数间的关系
晶系
三斜
对称性
1(E)
轴长关系
a≠b≠c
相结构的影响因素及变化:3大要素及同素异构现象;
3.5.1 金属键化合物结构
•电子化合物
电子浓度 相 晶体结构
出现的条件
β
bcc 组成电子相的2个组元的原子尺寸相差大时
3/2=21/14 ζ
hcp 组成电子相的2个组元的原子尺寸相差小时
β-Mn 复杂立方 少数合金出现
21/13
γ相 复杂立方 (γ黄铜结构)



/布






阵 代数
几何
数字描述: 图形描述: 点阵几何 晶体投影
7/14, 两者差异? 能否再分?
晶面/向 意义
面间距 法线夹角 倒易点阵
极射赤面 投影
制作/用途
1.1晶体的基本特征
(1)自限性。 (2)均匀性。 (3)各向异性。 (4)对称性。
一个晶体周期结构抽象为点阵的基本规则是: 它们各自的物理和几何环境应该完全相同,这些点 称为等同点 。
7/4=21/12
密排六方 (c/a约为1.55~1.58 )
•间隙化合物
RX/RM=0.23,
占据四面体间隙, CN=4
RX/RM=0.41~0.59, 占据八面体间隙, CN=6
晶体结构 bcc hcp
fcc
六方P
间隙化合物/金属
Ti, Zr, Hf
V, Nb, Ta
Gr, Mo, W
V2C, Nb2C, Ta2C Nb2N, Ta2N Mo2C, W2C TiC, ZrC, HfC
鲍林第三规则:在一个配位多面 体结构中,共用的棱特别是共用 的面会降低结构的稳定。
3.5.2.3 硅酸盐结构
硅酸盐中硅氧四面体最普通的连接方式有四种:
①零维硅氧四面体团(岛状硅酸 盐)—硅氧四面体是孤立或有限个 四面体组成; ②一维硅氧团结构(链状硅酸 盐)—硅氧四面体间共享一个顶点 构成单链结构; ③二维层状结构(层状硅酸盐)— 硅氧四面体有三个顶点共用的层结 构的硅酸盐; ④三维硅氧四面体空间网络(骨架 状硅酸盐)—硅氧四面体所有顶点 都共用,形成三维骨架结构。
2、体心立方结构为基的超结构
CuZn型(B2型)
结构符号是B2,Pearson符号是cP2
Zn Cu
•尺寸因素化合物 Laves相
AB2型密堆结构。半径比rA/rB为1.255。 典型代表:MgCu2(立方)型、MgZn2(六方)型和MgNi2(六 方)型。
MgCu2
一次固溶体
一次固溶体分为:置换(或代位)固溶体;填隙固溶体。 控制固溶体的固溶度的因素Hume-Ruthery规律: ①尺寸因素δ=(r质−r剂)/r剂 小于~15%。
②电负性价效应:电负性差 小于0.4~0.5。 ③价电子浓度:VEC=Nv+(1-N)V 。 ④相对价效应
3.7 同素异构和多型性
鲍林第一规则 结构中每一个 正离子周围形成负离子多面 体,正负离子间的距离取决于 离子半径之和,而配位数取决 于正负离子半径比r+/r−。
配位多面体
二十面体 立方体
正八面体 正四面体






宏为 规

何 如

特此 排
性? 列
从外形引 入本质;
规则外形 /对称
/各向异性 /均匀
第一章 晶体学
点 阵
结 构
规 则 排 列 的 差 异 /特
对 称 性 /要 素
规 则 排 列 的 分 类


力图总 结排列 的规律
性.
找出以 对称性 分类。
有哪些? 有多少? 数学问题 我们需要 的部分。
/Re
/RuOs /Fe
Mo2N, W2N VC,NbC,TaC
/Co, Rh, Ir
TiN, ZrN, HfN
VN, NbN0.94 WC, NbN
/Ni, Pd, Pt
电子浓度
4 5 6 7 7.5 8 8 8.5 9 9 10 10
3.5.1.3有序固溶体(超结构) 1. Cu3Au型
结构符号是LI2,Pearson符号是cP4
a2
1.5 极射赤面投影
制作方法
A’ ●
● B’
一个立方P点阵的晶带的倒易点例子
[00晶 1] 带 轴
各类几何关系
极点绕位于投影面上的轴转动
1.5.4 标准投影图、标准极图
标准极图的例子 立方系001极图
作出h0k0l0标准极图:
在投影图上任一个极点对应 的密勒指数的确定:
3.4单质的晶体结构
每个晶胞含4个原子
3.5.2.2 氧化物结构
简单金属氧化物的结构特点:氧离子排成密堆或接近密堆结构,尺 寸小的金属离子排列在间隙中。
1、岩盐(NaCl) 结构
2、纤维锌矿 (六方ZnS)结构
3、闪锌矿(立 方ZnS)结构
10、立方结构氯 化铯(CsCl)
7、FCC结构的萤石(CaF2)
空间点阵的定义:
单胞的三个矢量(三个棱)a,b,c的长度a,b,c以及 三个棱之间的夹角α(b∧c),β(c∧a),γ(a∧b)这6个参数称为 点阵常数(Lattice Parameter),它们是描述单胞特征的基本参 数。
1.3 对称性
1.3.1 对称变换(操作) 对称变换实际上就是一种对称操作。从几何意义考察 物体的对称性就是考察变换前后物体是否自身重合,如 果重合了,这种变换就是一种对称操作。
轴夹角关系
α≠β≠γ
单斜
正交 四方 立方 六方 菱方
2(C2)
两个2(C2) 4(C4)
四个3(C3) 6(C6) 3(C3)
a≠b≠c
a≠b≠c a=b≠c a=b=c a=b≠c a=b=c
第一定向:α =β=90°≠γ 第二定向:α =γ=90°≠β
α=β=γ=90 °
α=β=γ=90 °
α=β=γ=90 °
=1 d hkl
倒易阵点[(hkl)]∗消失。 体心点阵,倒易点 [(hkl)]∗ 的h+k+l必须等于偶数,否则倒易阵点将消 失。 面心点阵,倒易点 [(hkl)]∗ 的h、k和l必须同时为奇数或同时为偶数, 否则倒易阵点将消失。
1.4.7.5 晶带与倒易面
1 = h2 + k2 + l2
d
2 hkl
⎨ ⎩a
⋅ b∗
=
a
⋅c∗
=
b⋅a∗
=
b⋅c∗
=
c
⋅a∗
=
c ⋅b∗
=
0
倒易点阵两个重要的基本性质
•在倒易点阵中,倒易矢量 Hhkl = ha∗ + kb∗ + lc∗
必和正点阵的(hkl)面垂直,即倒易点阵的阵点方向 [hkl]∗ 和正点阵 的(hkl)面垂直:[hkl]∗⊥(hkl)。
H hkl
相关文档
最新文档