《二次函数的图象》典型例题1

合集下载

专题1.1二次函数的图像与性质(一)(六大题型)(原卷版)

专题1.1二次函数的图像与性质(一)(六大题型)(原卷版)

专题1.1 二次函数的图像与性质(一)(六大题型)【题型1 判断二次函数的个数】【题型2 利用二次函数的概念求字母的值】【题型3 二次函数的一般式】【题型4根据实际问题列二次函数销售问题】【题型5 根据实际问题列二次函数面积类】【题型6 根据实际问题列二次函数几何类】【题型1 判断二次函数的个数】【典例1】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,⑥y=x2++5其中二次函数的个数为()A.1B.2C.3D.4【变式11】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式12】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式13】已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,二次函数的个数为()A.1个B.2个C.3个D.4个【变式14】下列函数中,是二次函数的有()①y=9x2﹣(3x﹣1)2;②;③y=x(1﹣x);④y=(1﹣2x)2A.1个B.2个C.3个D.4个【变式15】下列函数中,是二次函数的有()①y=1﹣3x2;②y=;③y=x(1+x);④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个【题型2 利用二次函数的概念求字母的值】【典例2】已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±1【变式21】有二次函数y=x m﹣2﹣2x+1,则m的值是()A.4B.2C.0D.4或2【变式22】已知y=mx|m﹣2|+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或4【变式23】若函数y=(a+1)x2+x+1是关于x的二次函数,则a的取值范围是()A.a≠0B.a≥1C.a≤﹣1D.a≠﹣1【变式24】如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为﹣.【变式25】若关于x的函数y=(2﹣a)x2﹣3x+4是二次函数,则a的取值范围是.【题型3 二次函数的一般式】【典例3】二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.3【变式31】将二次函数y=x(x﹣1)+3x化为一般形式后,正确的是()A.y=x2﹣x+3B.y=x2﹣2x+3C.y=x2﹣2x D.y=x2+2x【变式32】把二次函数y=﹣(x+3)2+11变成一般式是()A.y=﹣x2+20B.y=﹣x2+2C.y=﹣x2+6x+20D.y=﹣x2﹣6x+2【变式33】把二次函数y=﹣(x+3)(x+4)+11变成一般形式后,其二次项系数和一次项系数分别为()A.﹣1,﹣1B.﹣1,1C.﹣1,7D.﹣1,﹣7【变式34】二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)【变式35】把抛物线y=(x﹣1)2+1化成一般式是.【变式36】把y=(3x﹣2)(x+3)化成一般形式后,一次项系数与常数项的和为.【题型4根据实际问题列二次函数销售问题】【典例4】某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元,销售期间发现,当销售单价定为44元时,每天可售出300个;销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元(x>44),商家每天销售纪念品获得的利润w元,则下列等式正确的是()A.y=10x+740B.y=10x﹣140C.w=(﹣10x+700)(x﹣40)D.w=(﹣10x+740)(x﹣40)【变式41】某商品现在的售价为每件60元,每星期可销售300件.商场为了清库存,决定让利销售,已知每降价1元,每星期可多销售20件,那么每星期的销售额W(元)与降价x(元)的函数关系为()A.W=(60+x)(300+20x)B.W=(60﹣x)(300+20x)C.W=(60+x)(300﹣20x)D.W=(60﹣x)(300﹣20x)【变式42】“抖音直播带货”已经成为一种热门的销售方式,某抖音主播代销某一品牌的电子产品(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价99元时,日销售量为200件,当每件电子产品每下降5元时,日销售量会增加10件.已知每售出1件电子产品,该主播需支付厂家和其他费用共50元,设每件电子产品售价为x(元),主播每天的利润为w(元),则w与x之间的函数解析式为()A.w=(99﹣x)[200+10(x﹣50)]B.w=(x﹣50)[200+10(99﹣x)]C.w=(x﹣50)(200+×10)D.w=(x﹣50)(200+×10)【变式43】2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价每提高2元,则每天少卖4套.设冰墩墩和雪容融套件每套售价定为x元时,则该商品每天销售套件所获利润w与x之间的函数关系式为()A.w=(200+×4)(x﹣48)B.w=(200﹣×4)(x﹣48)C.w=(200﹣×4)(x﹣34)D.w=(200+×4)(x﹣48)【变式44】某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元,那么y与x的函数关系式是.【变式45】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.x(元∕件)15182022…y(件)250220200180…按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是.【变式46】某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发现,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x元/件(x是正整数),销售该商品一天的利润为y元,那么y与x的函数关系的表达式为.(不写出x的取值范围)【变式47】新华商场销售某种品牌的童装,每件进价为60元,市场调研表明:在一个阶段内销售这种童装时,当售价为80元,平均每月售出200件;售价每降低1元,平均每月多售出20件.设售价为x元,则这种童装在这段时间内,平均每月的销售量y(件)与x满足的函数关系式是;平均每月的销售利润W(元)与x满足的函数关系式是.【题型5 根据实际问题列二次函数面积类】【典例5】将一根长为50cm的铁丝弯成一个长方形(铁丝全部用完且无损耗)如图所示,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y 与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50xC.y=﹣x2+25x D.y=﹣2x2+25【变式51】长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2 C.y=(12﹣x)•x D.y=2(12﹣x)【变式52】长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【变式53】如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该农场计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m).则s关于x的函数关系式:(并写出自变量的取值范围)【变式54】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【变式55】如图,某农场要盖一排三间同样大小的长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,栅栏的总长为24m,设羊圈的总面积为S(不(m2),垂直于墙的一边长为x(m),则S关于x的函数关系式为.必写出自变量的取值范围)【变式56】有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm(x<6)的纸条(如图),则剩余部分(图中阴影部分)的面积y =,其中是自变量,是因变量.【题型6 根据实际问题列二次函数几何类】【典例6】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A 开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.【变式61】如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上,开始时点A与点N重合,让△ABC 以2cm/s的速度向左运动,最终点A与点M重合,求重叠部分的面积ycm2与时间ts之间的函数关系式.【变式62】如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.【变式63】如图,在Rt△ABC中,∠C=90°,AC=12mm,BC=24mm,动点P从点A开始沿边AC向C以2mm/s的速度移动,动点Q从点C开始沿边CB向B以4mm/s的速度移动.如果P、Q两点同时出发,那么△PCQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.【变式64】如图,正方形ABCD的边长为4cm,E,F分别是BC、DC边上的动点,点E,F同时从点C均以每秒1cm的速度分别向点B,点D运动,当点E与点B重合时,运动停止.设运动时间为x(s),运动过程中△AEF的面积为y(cm2),请写出用x表示y的函数表达式,并写出自变量x的取值范围.【变式65】如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E 出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,求y与x之间的函数关系式.。

九下期末复习资料(一)——《二次函数》

九下期末复习资料(一)——《二次函数》

九下期末复习资料(一)——《二次函数》【例题讲解】例1:二次函数y=a x 2+b x+c (a ≠0)的图象如图所示,根据图象回答下列问题.(1)如图1,若抛物线经过点A (-3,0),对称轴是直线x =-1,与y 轴的交点坐标为(0,3)①求抛物线的解析式;①写出它的顶点坐标;①写出它与坐标轴的交点坐标;①当x 取何值时,抛物线中y 随x 增大而增大;①已知A (-2, y 1),B (2, y 2)为函数图象上的两个点,请比较y 1和y 2的大小关系; ①已知-3≤x ≤-2,求y 的取值范围;①写出方程ax 2+bx +c =0的根;①写出不等式ax 2+bx +c <0的解集;①若方程ax 2+bx +c =k 无实数根,写出k 的取值范围.(2)二次函数y =ax 2+bx +c 的图象如图1所示,抛物线经过点A (-3,0),对称轴是直线x =-1,下列结论:①abc >0;①2a ﹣b <0;①a ﹣b +c <0;①9a +3b +c <0,其中正确的有 .(3)如图1,抛物线y =ax 2+bx +c (a <0)经过(2, n ),(-4, n )两点,若点M (x 1, y 1),点N (x 2, y 2)也在抛物线上,且满足x 1<x 2,x 1+x 2>-2,则 y 1,y 2的大小关系 . (4)如图2,抛物线y =ax 2+bx +c (a <0)与直线y =kx +n 相交于点C (−52,74)、C (0,3)两点,则关于x 的不等式ax 2+bx +c <kx +n 的解集是 .BC图1 图2例2:如图,抛物线y=a x2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.例3:如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面13米高处,隧道的宽度是多少?4(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【课内练习】1.已知函数y=(m−2)x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数2.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)23.抛物线y=ax2经过点(2,-8),则a=.4.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3,y3)三点,则y1,y 2,y3大小关系为.5.抛物线y=x2-4x+5,当0≤x≤3时,y的取值范围是.6.写出抛物线y=﹣x2+4x的开口方向、对称轴、顶点坐标和最大值.7.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米.(1)若两个鸡场的面积之和为S,求S关于x的关系式;(2)两个鸡场面积之和S有最大值吗?若有,求出这个最大值.【课后作业】1.抛物线y=−(x+1)2−1的顶点坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2.若二次函数y=2(x−1)2−1的图象如图所示,则坐标原点可能是()A.点A B.点B C.点C D.点D3. 某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x元,则依据题意可列方程为()A.(50−40+x)(500−x)=8000B.(40+x)(500−10x)=8000C.(50−40+x)(500−10x)=8000D.(50−x)(500−10x)=8000第2题图第4题图第5题图4.如图,将一个含45°的直角三角板ABC放在平面直角坐标系的第一象限,使直角顶点A的坐标为(1,0),点C在y轴上.过点A,C作抛物线y=2x2+bx+c,且点A为抛物线的顶点.要使这条抛物线经过点B,那么抛物线要沿对称轴向下平移()A.5个单位B.6个单位C.7个单位D.8个单位5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)和B,与y轴交于点C.下列结论:①abc<0;①2a+b>0;①4a-2b+c>0;①3a+c>0.其中错误的结论个数为()A.1个B.2个C.3个D.4个6.已知抛物线y=x2+bx+c经过点A(m,n),B(4﹣m,n),且抛物线与x轴有交点,则c的最大值为()A.0B.2C.4 D.87.已知二次函数y=﹣x2+2x+3,当自变量x的值满足a<x≤2时,函数y的最大值与最小值的差为1,则a的值可以为()A.−12B.12C.﹣1D.18.抛物线y=−(x+1)2−1的顶点坐标为.9.将二次函数y=−x2+6x−8用配方法化成y=(x−ℎ)2+k的形式为y=.10.已知二次函数y=ax2+4x+3(a≠0)的顶点在x轴上,则a= .11.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是.12.若关于x的函数y=x2−2x+k+1的图象与x轴只有1个交点,则k的值是.13.已知二次函数y=x2﹣x﹣6.求二次函数的图象与坐标轴的交点所构成的三角形的面积.14.已知二次函数y=C x2+bx+c(其中a、b、c为常数,且C≠0)的自变量x的值与它对应的函数值y如下表所示:(1)该二次函数图象的对称轴是直线.(2)如果n=−2,求此二次函数的解析式及其图像与y轴的交点坐标.15.已知抛物线y=−x2+bx+c如图所示,它与x轴的一个交点的坐标为A(−1,0),与y轴的交点坐标为C(0,3).(1)求抛物线对应的函数表达式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0;(3)在抛物线的对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

人教版九年级上《22.1二次函数的图象和性质》练习题含答案

人教版九年级上《22.1二次函数的图象和性质》练习题含答案

二次函数图象与性质(1)1. 二次函数的定义:一般地,形如()20y ax bx c a b c a =++≠,,为常数,且的函数叫做二次函数,其中a 为二次项系数,b 为一次项系数,c 为常数项。

2. 当b =0且c =0时:二次函数变为()20y ax a =≠, (1)当a >0时,其图象如下:xyy = 2∙x 2y = x 2y = 12∙x 2y =110∙x 2O(2)当a <0时,其图象如下:可以看到:对于抛物线2y ax =,a 越大,开口越小。

3. 二次函数()20y axa =≠的图象与性质()20y ax a =>()20y ax a =<开口方向上下例题1 已知函数42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大。

(1)求k 的值;(2)写出抛物线的顶点坐标和对称轴。

思路分析:由二次函数的定义,求出k 的值,然后写出顶点坐标和对称轴。

答案:(1)由二次函数的定义,得242k k +-=,解得13k =-,22k =;当3k =-时,原函数为2y x =-,当0>x 时,y 随x 的增大而减小,故3k =-不合题意,舍去; 当2k =时,原函数为24=y x ,当0>x 时,y 随x 的增大而增大,符合题意; 故2k =。

(2)抛物线24=y x 的顶点坐标为(0,0),对称轴为y 轴。

点评:注意对k 的值进行合理的取舍。

例题2 (1)已知A (1,y 1)、B (-2,y 2)、C (-2,y3)在函数y =241x 的图象上,则y 1、y 2、y 3的大小关系是 。

(2)(潍坊)已知函数y 1=x 2与函数y 2=- 12x +3的图象大致如图,若y 1<y 2,则自变量x的取值范围是 。

思路分析:(1)最直接的思路是将自变量的值代入函数表达式,求出每个点的相应的纵坐标,然后进行比较;当然也可以利用数形结合、以形助数的方法。

二次函数典型例题及练习题

二次函数典型例题及练习题

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移 2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了 下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 5.函数Y=X 2+2X-3(-2≦X ≦2)的最大值和最小值分别是_______. 6.已知二次函数y=-x 2+bx-8的最大值为8,则b 的值为_______. 7、已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是_______ 专题二:二次函数表达式的确定考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )图22- 1- 012 yx13x =ABC D图1菜园墙A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )2 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.练习:已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.考点3.抛物线的交点个数与一元二次方程的根的情况例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k的取值范围是________. 2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .图2图13.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<05. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题: (1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四 二次函数的应用例4 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 30…y (件) 25 20 10…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?练习:1、如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是【 】A .1<x<5-B .x>5C .x<1-且x>5D .1<x -或x>5x y33 2 2 1 14 1- 1- 2-O 图3x y3-2、教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。

二次函数经典例题及答案

二次函数经典例题及答案

例1 如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB =20米,顶点M 距水面6米(即MO =6米),小孔顶点N 距水面4.5米(NC =4.5米).当水位上涨刚好淹没小孔时,借助图2中的直角坐标系,求此时大孔的水面宽度EF .分析:如图2,由这个实际问题抽象出的数学模型题目已经给出,观察图象可知抛物线的对称轴为y 轴,顶点为(0,6),故可设函数关系式为y =ax 2+6.又因为AB =20,所以OB =10,故B (10,0)又在抛物线上,可代入求值.解:设抛物线所对应的函数关系式为y =ax 2+6. 依题意,得B (10,0). 所以a ×102+6=0.解得a =-0.06.即y =-0.06x 2+6.当y =4.5时,-0.06x 2+6=4.5,解得x =±5. 所以DF =5,EF =10. 即水面宽度为10米.例2 如图3所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的关系式. 分析:函数图象的对称轴为y 轴,故设篮球运行的路线所对应的函数关系式为y =ax 2+k (a ≠0,k ≠0). 解:设函数关系式为y =ax 2+k (a ≠0),由题意可知,A 、B 两点坐标为(1.5,3.05),(0,3.5). 则 1.52a+k=3.05,k=3.5.⎧⎨⎩解得a =-0.2,所以抛物线对应的函数关系式为y =-0.2x 2+3.5.二、在几何图形中,利用图形的面积、相似三角形等有关知识获得y 与x 的关系式例3 如图4,在矩形ABCD 中,AD =12,AB =8,在线段BC 上任取一点P ,连接DP ,作射线PE ⊥DP ,PE 与直线AB 交于点E .(1)设CP =x ,BE =y ,试写出y 关于x 的函数关系式. (2)当点P 在什么位置时,线段BE 最长?析解:在几何图形中,求函数关系式时,通常把两个变量放入两个图形,利用两个图形相似,或者在一个图形中利用面积建立它们之间的数量关系.本题要求y 与x 之间的关系式,通过观察可以发现y 、x 分别是△BPE 、△CDP 的边,而且由∠EPB +∠DPC =90°,∠DPC +∠PDC =90°,可得∠EPB =∠PDC ,又由∠B =∠C =90°,容易得到△BPE ∽△CDP .所以有BP BE CD CP =.即128x yx-=. 故y 关于x 的函数关系式为21382y x x =-+.当62bx a=-=时,y 有最大值,y 最大24942ac b y a -==最大. 即当点P 距点C 为6时,线段BE 最长.例4 某班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们设计了三种铝合金框架,图案如图5(1)、5(2)、5(3),请你根据以下图案回答下列问题:(题中的铝合金材料总长度均各指图11中所有黑线的长度和)(1)在图案(1)中,如果铝合金材料总长度为6m ,当AB 为1m 时,长方形框架ABCD 的面积是_____m 2;(2)图案(2)中,如果铝合金总长度为6m ,设AB 为x m ,长方形框架ABCD 的面积为S m 2,那么S =_______(用含x 的代数式表示);当AB =______m 时,长方形框架ABCD 的面积S 最大,在图案(3)中,如果铝合金材料总长度为lm ,当AB =______m 时,长方形框架ABCD 的面积S 最大.(3)在经过这三种情况的试验后,他们发现对于图案(4)这样的情形也存在着一定的规律.探索:如图(4),如果铝合金材料长度为lm ,共有n 条竖档,那么当竖档AB 长为多少时,长方形框架ABCD 的面积S 最大.分析:解此类问题通常是建立面积与线段长的函数关系式,然后利用二次函数的图象或性质求最大值(或最小值),在这类问题中常用到下列图形的面积公式:三角形、矩形、正方形、平行四边形、梯形和圆等. 解:(1)43; (2)22x x -+,1,8l ; (3)设AB 长为x cm ,那么AD 为3l nx-, 2333l nx n l S x x x -==-+.当2lx n =时,S 最大. 注:关于二次函数的实际应用,体现在生活中的方方面面,在此我们不再一一列举,关键是同学们掌握这种处理实际问题的思路,达到举一反三的效果,不管题目背景如何变化,但它万变不离其宗,只要我们有了这种方法,任何问题都可以迎刃而解. 25.(1)当0x =时,6y =,C ∴点坐标为(06),当0y =时,60x +=,6x ∴=- , A ∴点坐标为(60)-,………………………… 1分 (2)抛物线2(0)y ax bx a =+<经过(60)A -,,(00)O ,, ∴对称轴32bx a=-=-, ∴6b a =.① 当3x =-时,代入6y x =+得363y =-+=,∴B 点坐标为(33)-,. 点B 在抛物线2y ax bx =+上,∴393a b =-.②联立①、②解得1,23a b =-=-.∴该抛物线的函数关系式为2123y x x =--.……………………………………………3分(3)AC 与D 相切,理由如下:联结AD , AO OC =, 45ACO CAO ∴∠=∠=︒.B D x 与关于轴对称,∴45BAO DAO ==∠∠ .90BAD ∴=∠.又AD D 是的半径,AC ∴与D相切。

二次函数经典例题

二次函数经典例题

二次函数经典例题以下是几个经典的二次函数例题:1.已知二次函数f(x)的图像顶点坐标为(2, 3),过点(-1, 7),求该二次函数的解析式。

解答:设二次函数的解析式为f(x) = ax^2 + bx + c。

由已知条件可得到以下方程: f(-1) = 7,即 a(-1)^2 + b(-1) + c = 7 f(2) = 3,即a(2)^2 + b(2) + c = 3联立这两个方程,可以得到以下方程组: a - b + c = 7 -- 方程(1) 4a + 2b + c = 3 -- 方程(2)解方程组得到 a = -2,b = 7,c = -2。

所以该二次函数的解析式为f(x) = -2x^2 + 7x - 2。

2.求二次函数y = x^2 + 4x - 5的图像的对称轴和顶点。

解答:二次函数的对称轴公式为x = -b/2a。

将函数中的系数带入公式计算,即 -4 / (2*1) = -2。

所以对称轴的方程为 x = -2。

对称轴上的点的横坐标就是对称轴的x 值,所以顶点的横坐标为 -2。

将 -2 代入原函数,即可求得纵坐标: y = (-2)^2 + 4*(-2) - 5 = 4 - 8 - 5 = -9所以顶点坐标为 (-2, -9)。

3.已知二次函数图像经过点(1, 0),且在x轴上有两个零点,求该二次函数的解析式。

解答:因为在x轴上存在两个零点,即函数图像与x轴相交处,所以函数必然可以因式分解为二次多项式的形式。

设二次函数的解析式为 f(x) = a(x - r)(x - s),其中 r 和 s 分别是函数的两个零点。

由已知条件,可以得到以下方程:f(1) = 0,代入解析式可得如下方程: a(1 - r)(1 - s) = 0联立这个方程和已知条件,我们可以解出两个零点 r 和 s。

由于函数经过点 (1, 0),所以 1 是其中一个零点,可得 a(1 - s) = 0。

根据题目要求,另一个零点不等于 1,所以 a = 0。

九年级数学二次函数的图像解答题10道题专题训练.docx

九年级数学二次函数的图像解答题10道题专题训练.docx

九年级数学二次函数的图像解答题10道题专题训练学校: ____________ 姓名:_____________ 班级: ____________ 考号:_____________一、解答题1.如图,在平面直角坐标系中,二次函数的图像交坐标轴于A (-1, 0)、B (4, 0)、C(0, -4)三点,点P是直线BC下方抛物线上的一动点.(2)是否存在点P,使APOC是以OC为底边的等腰三角形?若存在,求出P点坐标; 若不存在,请说明理由;(3)动点P运动到什么位置时,四边形PBOC面积最大?求出此时点P坐标和四边形PBOC的最大面积.2.如图,二次函数y^-x^+bx + c的图像经过M(0,3), N(—2,—5)两点.(1)求该函数的解析式;(2)若该二次函数图像与x轴交于A、B两点,求的面积;(3)若点P在二次函数图像的对称轴上,当AMNP周长最短时,求点P的坐标.3.已知二次函数y = "(X - D(x-3)( a〉0)的图像与x轴交于A、B两点(A左B右), 与y轴交于C点(0, 3) .P为x轴下方二次函数y = a(x - 1)(尢-3) (a > 0)图像上一点,P点横坐标为加.(1)求a的值;(2)若P为二次函数y = a(x —l)(x —3) (a > 0)图像的顶点,求证:ZAC0=ZPCB;(3)Q ("7 + ",)'o)为二次函数歹=a(x - 1)0-3) (a > 0)图像上一点,且ZAC0 = ZQCB,求n的取值范围.4.如图,已知二次函数yi=ax2+bx + c的图像经过点4(—1,0), C(0,3),且对称轴为直线x = -2, 一次函数y2 =mx + n的图像经过4』两点.(2)若点5C关于抛物线的对称轴对称,根据图像直接写出满足^>y2时x的取值范围.5.已知如图,二次函数y="ax2"+bx+c的图像过A、B、C三点观察图像写出A、B、C三点的坐标求出二次函数的解析式6.已知二次函数y = -x2 +(m-2)x + 3(m + l)的图像如图所示.(1)当mM -4时,说明这个二次函数的图像与x轴必有两个交点;(2)如图情况下,若OAOB = 6,求点C的坐标.(1)求这个二次函数的解析式;(2)观察图像,直接写出:何时y随x的增大而增大?何时y<0?&已知二次函数的图像如图所示.(1)求这个二次函数的表达式;(2)观察图像,当-2<x< 1时,写出y的取值范围.9.如图,已知二次函数y=ax2+bx+3的图像经过点A (1, 0) , B (—2, 3).(1)求该二次函数的表达式;(2)求该二次函数的最大值;(3)结合图像,解答问题:当y>3时,x的取值范围是___________ .与y轴交于C点.(1)求A、8两点的坐标:(2)若P(m,-2)为二次函数y = x2-x-2图像上一点,求加的值.参考答案1. (1) y1=x2-3x-4; (2)存在满足条件的P点,其坐标为(3上価、_2); (3) 16.2【解析】【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE丄x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长, 则可表示出四边形PBOC的面积,利用二次函数的性质可求得四边形PBOC面积的最大值及P点的坐标【详解】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得a-b+c=O< 16a + 4b + c = 0 ,c = —4a = 1解得b = —3,c =-4抛物线解析式为y=x2-3x-4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图2,,-.PO=PC,此时P点即为满足条件的点,VC (0, -4),.•.D (0,-2),•°.P点纵坐标为-2,代入抛物线解析式可得x2-3x-4=-2,解得x上也(小于0,舍去)或x= 土位,2 2•••存在满足条件的P点,其坐标为(土戸,-2).2(3)•.•点P在抛物线上,可设P (t, t2-3t-4),过P作PE丄x轴于点E,交直线BC于点F,如图1,VB (4, 0), C (0, -4),直线BC解析式为y=x-4,.•.F (t, t-4),.•.PF= (t-4) - (t2-3t-4) =-t2+4t,• • S四边形PBOC = BCO = S pre + S PFB + S BCO=—PF«OE+ — PF«BE+ — xOC«BO= — PF(OE+BE)+ — x4x42 2 2 2 2 =丄PF9B+8 =丄(屮+盘)x4+8=-2 (t-2) 2+16,2 2.•.当t=2时,S㈣边形FBOC最大值为16,此时t2-3t-4=-6,.•.当P点坐标为(2,-6)时,四边形PBOC的最大面积为16.【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出四边形PBOC的面积是解题的关键.2. (1) y = -x2 +2x + 3 ; (2) 6; (3) P(l,l)【解析】【分析】(1)将M,N两点代入y = -.X2 + bx + c求出be值,即可确定表达式;(2)令y=0求x的值,即可确定A、B两点的坐标,求线段AB长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M关于对称轴的对称点G的坐标,直线NG与对称轴的交点即为所求P点,利用一次函数求出P点坐标.【详解】解:将点M(0,3)> N(-2,-5)代入y--x2+bx+c中得,1 = 3_4 - 2b + c = -5,b = 2解得,°,c = 3Ay与x之间的函数关系式为y = -x2 + 2x + 3;(2)如图,当y=0时,一干+2兀+ 3 = 0,.*.X1=3,X2= -1,・・・A(・l,0),B(3,0),・・・AB=4,1 o AS A ABM=— X4X3 = 6 .2即AAW 的面积是6.答案第3页,总11页(3)如图,抛物线的对称轴为直线% = - —= = 1 ,2a -2点M(0,3)关于直线x=l的对称点坐标为G(2, 3),.•.PM=PG,连MG交抛物线对称轴于点P,此时NP+PM=NP+PG最小,即AMNP周长最短.设直线NG的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,—2m+n = —52m+n=3m = 2解得,\ ° ,n = -ly=2m-l,・・・P点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x2 +bx+c的图像经过M(0,3), N(-2,-5炳点.3.(1) 1; (2)证明见解析;(3) -1<77<1 ^|<n< |【解析】试题分析:⑴把点C (0, 3)代Ay = a(x - l)(x - 3) (a > 0)即可求出a=l;(2)求出点P的坐标,再求出CP=2苗,BP=<2, CB=3近,判断出ABCP为直角三角形, 通过解直角三角形,得出tanZACO=tanZPCB,从而证出:ZACO=,PCB;(3)通过分类讨论,即可得出-l<n<l< n < |试题解析:(1)把点C (0, 3)代Ay = a(x - 1)(% - 3) (a > 0)得:3=3a•I a= 1即a的值为1(2) V a=l抛物线的解析式为:y = (% - 1)(% - 3) = %2 - 4x + 3 = (x — 2尸—1:.P (2, -1)•:B (3, 0) , C (0, 3):.CP=2 忑,BP^y/2, CB=3 近:.BP2 + BC2 = 20, CP? = (2A/5)2 = 20:.BP2 + BC2 = CP2.\ZCBP=90otanZPCB辔= ^ = | 连接AC•/tanZAOC=—=-OC 3tan ZPCB= tanZAOC・•・ ZAOC=ZPCB(3) ( i )当点0在BC左侧的抛物线上时由(2)可知Q (2, -1)m+n=2P为兀轴下方二次函数尸1 )(兀-3)(°>0)图像上一点l<m<3l<2-n<3 /.-l<n<l(ii)当点。

二次函数图像性质经典练习题(11套)附带详细答案

二次函数图像性质经典练习题(11套)附带详细答案

练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同3.两条抛物线与在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值4.在抛物线上,当y <0时,x 的取值范围应为( )A .x >0B .x <0C .x ≠0D .x ≥05.对于抛物线与下列命题中错误的是( )A .两条抛物线关于轴对称B .两条抛物线关于原点对称C .两条抛物线各自关于轴对称D .两条抛物线没有公共点6.抛物线y=-b +3的对称轴是___,顶点是___。

7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

8.抛物线的顶点坐标是( ) 2y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )A .y=3-2B .y=3+2C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -311.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )------2(1)x -2(1)x +2(1)x +2(1)x +2y ax =2(2)x -2(2)x -2(2)x +2(2)x +244y x x =--22(2)x -22(2)x -2x14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。

二次函数的性质与图像题目

二次函数的性质与图像题目

二次函数的性质与图像题目1. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像开口向上,则a的值应该是()A. a > 0B. a < 0C. a = 0D. 无法确定2. 二次函数f(x) = ax^2 + bx + c的图像与x轴相交的点,称为函数的()A. 顶点B. 零点C. 焦点D. 交点3. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像开口向下,则a的值应该是()A. a > 0B. a < 0C. a = 0D. 无法确定4. 二次函数f(x) = ax^2 + bx + c的图像与y轴相交的点,称为函数的()A. 顶点B. 零点C. 焦点D. 交点5. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像对称轴是x = 1,则b的值应该是()A. 1B. -1C. 0D. 无法确定6. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,开口向上,当a < 0时,开口向下,当a = 0时,函数是()A. 一次函数B. 常数函数C. 指数函数D. 对数函数7. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像顶点在点(1, -2),则c的值应该是()A. -2B. 2C. 0D. 无法确定8. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,函数在x轴下方的部分随着x的增加而()A. 增加B. 减少C. 保持不变D. 无法确定9. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像顶点在点(-1, 2),则b的值应该是()A. 2B. -2C. 0D. 无法确定10. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,函数在x轴上方的部分随着x的增加而()A. 增加B. 减少C. 保持不变D. 无法确定11. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

二次函数典型例题

二次函数典型例题

二次函数典型例题
例1一直二次函数的图像经过点(0,﹣1),(﹣2,0)和(1
2
,0)求这个二次函数的解析式。

例2如图中的抛物线是二次函数y=ax2+bx+c的图象,则下列不等式中:(1)abc>0 (2)b<a+c(3)a+b+c<0 (4)2c<3b (5)c>2b能成立的个数有()
A 、1个 B、2个 C、3个 D、4个
例3已知抛物线y=ax2+bx+c的顶点坐标为(3,-2),且与x轴两交点间的距离为4,求抛物线的解析式.
例4已知:二次函数y=x2-mx+m-2.
(1)求证:不论m为任何实数时,抛物线与x轴总有两个不同的交点;
(2)若抛物线过(3,6)点,求抛物线的解析式;
(3)若抛物线交x轴于A、B两点,顶点为C点,求△ABC的面积.
例5将抛物线y=-x2+2x+5先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的解析式.
例6已知:二次函数y=ax²+bx+c的图象经过点A(0,4),顶点在x轴上,且对称轴在y轴的右侧.设直线y=x与二次函数图象自左向右分别交于P
(x
1,y
1
),Q(x
2
,y
2
)两点,且OP:PQ=1:3.
(1)求二次函数的解析式;
(2)在线段PQ上是否存在一点D,使△APD∽△QPA,若存在,求出D点坐
标,若不存在,说明理由.。

人教版初中数学九年级二次函数(经典例题含答案)

人教版初中数学九年级二次函数(经典例题含答案)

二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。

二次函数知识点以及对应例题(一)

二次函数知识点以及对应例题(一)

第二十二章 二次函数的图象和性质(一)知识点一:二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数、和常数项. 注意:确定二次函数的“三要素”(1)含有自变量的代数式必须是整式; (2)化简后自变量的最高次数是2; (3)二次项系数不等于0. 示例: 二次项系数是1y x 2-x 4 常数项是-4一次项系数是-1任何一个二次函数的解析式都可化成y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的形式. 因此,把y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)叫做二次函数的一般形式. 二次函数也有特殊形式:1. 只含二次项,即y =ax 2(a ≠0,b =0,c =0);2. 不含一次项,即y =ax 2+c (a ≠0,c ≠0,b =0);3. 不含常数项,即y =ax 2+bx (a ≠0,b ≠0,c =0) 【例1】下列函数中,一定是二次函数的是( ) A. 22x xy -=B. y =3x 2-(3x 2+2x -1)C. y =-x 2+2xD. y =ax 2+bx +c【例1】【解析】判断一个函数是不是二次函数,先把关系式化简整理,再分三个步骤来判断:(1)看它的等号两边是否都是整式,如果不都是整式,则必不是二次函数;(2)当它的等号两边都是整式时,再看它是否含有自变量的二次式,如果含有自变量的二次式,那就可能是二次函数,否则就不是;(3)看它的二次项系数是否为0,如果不为0,那就是二次函数. 选项A :22y x x=-中,等号的右边不是整式,所以A 错误; 选项B :y =3x 2-(3x 2+2x -1)化简后是y =-2x +1,不含有自变量的二次式,所以B 错误;选项D :y =ax 2+bx +c ,二次项系数有可能为0,所以D 错误;选项C :y =-x 2+2x ,等号两边都是整式,含有自变量的二次式,且二次项系数不是0,所以是二次函数,故选C.【答案】C 【巩固】1. 函数()1222+++=+x x m y mm 是二次函数,则m 的值为( )A. -2B. 0C. -2或1D. 12. 已知二次函数y =1-3x +5x 2,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A. a =1,b =-3,c =5 B. a =1,b =3,c =5 C. a =5,b =3,c =1 D. a =5,b =-3,c =1 【巩固答案】 1. D 2. D知识点二:二次函数y =ax 2的图象和性质 1. 抛物线二次函数y =ax 2+bx +c 的图象是一条曲线,这条曲线叫做抛物线y =ax 2+bx +c . 抛物线是轴对称图形,抛物线与其对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.2. 用描点法画函数y =ax 2(a ≠0)的图象的一般步骤 (1)列表列表时,自变量x 的取值应有一定的代表性,并且所对应的函数值不能太大也不能太小,以便于描点和全面反映图象情况. 作图选点时,一般应先找出对称轴,然后在对称轴的两侧对称选取,应以计算简单,描点方便为原则.对于画函数y =ax 2(a ≠0)的图象时,一般先取原点(0,0),然后在y 轴两侧各取2个或3个点,注意对称取点. (2)描点一般来说,点取得越多、越密集,画出的图象就越准确. 实际画图时,一般取顶点及对称轴两侧对称的两对点,共5个点,用“五点法”快速准确地作出函数图象,有时也会在对称轴的两侧各取三个点画图.在平面直角坐标系内,画函数y =ax 2(a ≠0)的图象时,以自变量x 的值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,一般先描出y 轴一侧的几个点,再根据对称性找出y 轴另一侧的几个点. (3)连线按自变量由小到大的顺序,用平滑的曲线依次连接各点,并向两端无限延伸.3. 二次函数y =ax 2的图象和性质 二次函数y =ax 2(a ≠0)的图象与性质y =ax 2a >0 a <0图象开口方向 开口向上开口向下顶点坐标 (0,0) 对称轴y 轴(或x =0)增减性在对称轴的左侧,即x <0时,y 随x的增大而减小;在对称轴的右侧,即x >0时,y 随x 的增大而增大在对称轴的左侧,即x <0时,y 随x 的增大而增大;在对称轴的右侧,即x >0时,y 随x 的增大而减小最值 当x =0时,y 最小值=0当x =0时,y 最大值=0注意:1. 判断二次函数的增减性的技巧:从抛物线的对称轴分开,自左向右看,“上坡路”就是y 随x 的增大而增大,“下坡路”就是y 随x 的增大而减小.2. 在二次函数y =ax 2(a ≠0)中,a 的符号决定抛物线的开口方向,|a |的大小决定抛物线的开口程度,|a |越大,抛物线的开口越小,反之,|a |越小,抛物线的开口越大. |a |相等说明抛物线的开口大小相同.3. 二次函数y =-ax 2(a ≠0)与y =ax 2(a ≠0)的图象关于x 轴对称.【例2】在如图所示的同一直角坐标系中,画出函数y =4x 2,241x y =,y =-4x 2与241x y -=的图象并回答下列问题:x … -1 0 1 … y =4x 2... (24)1x y =… … y =-4x 2……y xOOy x241x y -=… …(1)抛物线y =4x 2的开口方向 ,对称轴是 ,顶点坐标是 ;抛物线y =-4x 2的开口方向 ,对称轴是 ,顶点坐标是 ;抛物线y =4x 2与y =-4x 2的图象关于 轴对称.(2)若点(-5,y 1)和点(-3,y 2)在抛物线y =4x 2上,则y 1与y 2的大小关系是 ; 若点(-5,y 1)和点(-3,y 2)在抛物线y =-4x 2上,则y 1与y 2的大小关系是 . (3)抛物线241x y =,当x 0时,抛物线上的点都在x 轴上方,当x 0时,抛物线从左向右逐渐上升,它的顶点是最 点;抛物线241x y -=,当x 0时,抛物线从左向右逐渐下降,它的顶点是最 点.【例2】【解析】按照列表、描点、连线的步骤画出函数图象,再根据函数图象即可得出每个函数图象的性质. 【答案】 解:列表如下:x … -1 0 1 … y =4x 2 (4)0 4 (2)41x y = (14)0 14… y =-4x 2… -40 -4… 241x y -=…14- 014-…连线:用平滑的曲线连接,如图所示:(1)向上 y 轴 (0,0); 向下 y 轴 (0,0); x .(2)y 1>y 2 ; y 1<y 2 .(3)≠ > 低; > 高. 【巩固】1. 函数()222--=mx m y 是二次函数,则下列关于它的图象说法:①开口向上;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0);⑤顶点坐标为(0,-4);⑥顶点坐标为(-4,0);⑦有最高点;⑧有最低点. 其中正确的有( ) A. 3个B. 4个C. 5个D. 6个2. 如图所示的四个二次函数图象分别对应①y =ax 2,②y =bx 2,③y =cx 2,④y =dx 2,则a ,b ,c ,d 的大小关系为 . (用“>”连接)3. 已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是( )A. y 1>0>y 2B. y 2>0>y 1C. y 1>y 2>0D. y 2>y 1>0【巩固答案】 1. B2. a >b >d >c3. Cxy y =-14x ²y =14x ²y =-4x ²y =4x ²–1–2–3–4–512345–1–2–3–4–5–6–7–812345678OOxy④③②①知识点三:二次函数y =ax 2+k 的图象和性质1. 二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象的关系二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象形状相同,只是位置不同. 抛物线y =ax 2+k 的图象可由抛物线y =ax 2的图象沿y 轴上(下)平移|k |个单位长度得到.(1)当k >0时:(2)当k <0时:2. 二次函数y =ax 2+k 的图象和性质y =ax 2+k (a ≠0) a >0 a <0 图象k >0 k <0k >0 k <0开口方向 开口向上开口向下顶点坐标 (0,k ) 对称轴 y 轴(或x =0)增减性 当x <0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大. 当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.最值当x =0时,y 最小值=k当x =0时,y 最大值=k2(1)它的开口向 ,对称轴为 ,顶点坐标为 ;(2)把抛物线y =2x 2 可得抛物线y =2x 2-3; (3)若点(-4,y 1),(-1,y 2)在抛物线y =2x 2-3上,则y 1 y 2(填“>”“<”或“=”).【例3】【解析】(1)在y =2x 2-3中,a =2>0,k =-3,所以该抛物线开口向上,对称轴为y 轴,顶点坐标为(0,-3).(2)y =2x 2-3的图象与y =2x 2的图象的形状、开口方向都相同,只是位置不同,抛物线y =2x 2-3是由抛物线y =2x 2向下平移3个单位长度得到的.(3)点(-4,y 1),(-1,y 2)都在y 轴左侧,y 随x 的增大而减小,由-4<-1,可知y 1沿y 轴向下平移k 个单位长度沿y 轴向上平移k 个单位长度抛物线y =ax 2+k抛物线y =ax2抛物线y =ax2抛物线y =ax 2+k沿y 轴向下平移k 个单位长度沿y 轴向上平移k 个单位长度yOxyO xOyxOyx>y 2. 【答案】(1)上 y 轴 (0,-3); (2)向下平移3个单位长度; (3)>. 【巩固】1. 在同一坐标系中,作y =3x 2+2,y =-3x 2-1,231x y 的图象,则它们( ) A. 都关于y 轴对称 B. 顶点都在原点 C. 都开口向上 D. 以上都不对2. 将抛物线y =x 2向下平移2个单位长度,得到的抛物线的表达式为( ) A. y =x 2+2B. y =x 2-2C. y =(x -2)2D. y =(x +2)23. 二次函数y =ax 2+c (a ≠0)中,当x 分别取x 1,x 2(x 1≠x 2)时,它们对应的函数值相等,则当x 取x 1+x 2时,函数值为( ) A. a +cB. a -cC. -cD. c【巩固答案】 1. A 2. B 3. D知识点四:二次函数y =a (x -h )2的图象和性质 1. 二次函数y =a (x -h )2与y =ax 2图象间的关系二次函数y =a (x -h )2与y =ax 2的图象形状相同,只是位置不同. 抛物线y =a (x -h )2可由抛物线y =ax 2沿x 轴向右(左)平移|h |个单位长度得到.(1)当h >0时:(2)当h <0时:2. 二次函数y =a (x -)2的图象和性质y =a (x -h )2(a ≠0)a >0a <0抛物线y =ax2沿x 轴向左平移h 个单位长度沿x 轴向右平移h 个单位长度抛物线y =a (x -h )2抛物线y =a (x -h )2沿x 轴向左平移h 个单位长度沿x 轴向右平移h 个单位长度抛物线y =ax 2图象h >0 h <0h >0 h <0开口方向 开口向上开口向下顶点坐标 (h ,0) 对称轴 直线x =h增减性 当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大. 当x <h 时,y 随x 的增大而增大;当x >h 时,y 随x 的增大而减小.最值当x =h 时,y 最小值=0当x =h 时,y 最大值=0【例4】已知二次函数()222--=x y . (1)画出函数图象,确定抛物线的开口方向,顶点坐标和对称轴.(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?【例4】【解析】(1)按照列表、描点、连线的步骤画出图象,再根据函数图象确定抛物线的开口方向,顶点坐标和对称轴即可.(2)由(1)所作图象观察图象可知:对称轴左侧,y 随x 的增大而增大;对称轴右侧,y 随x 的增大而减小. 【答案】 解:(1)先列表:x… -2 0 2 4 6 … ()2221--=x y …-8-2-2-8…连线:用平滑的曲线连接,如图所示:h yOx Oy xh由函数图象知:抛物线的开口向下,顶点坐标为(2,0),对称轴是直线x =2; (2)当x <2时,y 随x 的增大而增大;当x >2时,y 随x 的增大而减小. 【巩固】1. 关于x 的函数y =-2(x -3)2与y =2(x -3)2的性质中,下列说法错误的是( ) A. 开口方向相同 B. 对称轴相同 C. 顶点坐标相同D. 当x <3时,y =2(x -3)2随x 的增大而减小;y =-2(x -3)2随x 的增大而增大 2. 抛物线y =x 2+1经过平移得到抛物线y =(x +1)2,平移的方法是( ) A. 向左平移1个单位,再向下平移1个单位 B. 向右平移1个单位,再向下平移1个单位 C. 向左平移1个单位,再向上平移1个单位 D. 向右平移1个单位,再向上平移1个单位 【巩固答案】 1. A 2. A知识点五:二次函数y =a (x -h )2+k 的图象和性质 1. 二次函数y =a (x -h )2+k 与y =ax 2图象间的关系二次函数y =a (x -h )2+k 的图象是一条抛物线,可由二次函数y =ax 2的图象向右(左)平移|h |个单位长度,再向上(下)平移|k |个单位长度得到.8yx-376-8-7-6-5-4-3-1-2O-2-112345y =-12x -2()2由二次函数y =ax 2的图象得到y =a (x -h )2+k 的图象的具体平移过程如下:注意:抛物线y =a (x -h )2+k 左、右平移时,只有常数h 发生变化;上、下平移时,只有常数k 发生变化.活学巧记:函数平移规律,左加右减自变量,上加下减常数项. 2. 二次函数y =a (x -h )2+k 的图象和性质 函数y =a (x -h )2+k (a >0)y =a (x -h )2+k (a <0)图象h >0,k >0 h <0,k >0h <0,k <0 h >0,k <0h >0,k >0 h <0,k >0h <0,k <0 h >0,k <0开口方向 开口向上开口向下顶点坐标(h ,k ) 对称轴 直线x =h增减性 在对称轴左侧,即当x <h 时,y 随x 的增大而减小;在对称轴右侧,即当x >h 时,y 随x 的增大而增大.在对称轴左侧,即当x <h 时,y 随x 的增大而增大;在对称轴右侧,即当x >h 时,y 随x 的增大而减小.最值当x =h 时,y 最小值=k当x =h 时,y 最大值=k拓展:从y =a (x -h )2+k (a ≠0)中可以直接看出抛物线的顶点坐标是(h ,k ),所以通常把它称为二次函数的顶点式.【例5】在平面直角坐标系中,对于二次函数y =(x -2)2+1,下列说法中错误的是( ) A. y 的最小值为1y =ax 2+k y =ax 2向右(h >0)或向左(h <0)平移|h |个单位长度y =a (x -h )2向上(k >0)或向下(k <0)平移|k |个单位长度向上(k >0)或向下(k <0)平移|k |个单位长度 y =a (x -h )2+k 向右(h >0)或向左(h <0)平移|h |个单位长度 O yh x yhO x yO h xhyOxyOhxyO h xhOy xO yhxB.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x的值增大而增大,当x≥2时,y的值随x的值增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到【例5】【解析】对于二次函数y=(x-2)2+1,∵a=1>0,∴二次函数开口向上,∵h=2,k=1,∴顶点坐标为(2,1),对称轴为直线x=2,函数y有最小值为1,所以A、B选项正确;当x<2时,y的值随x的值增大而减小,当x>2时,y的值随x的值增大而增大,所以C选项错误;由平移规律左加右减,上加下减知D选项正确,故选C.【答案】C【巩固】1.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=3(x+1)2+4m(m为常数)上的三点,则y1,y2,y3的大小关系为.2.在平面直角坐标系上,将二次函数y=2(x-1)2-2的图象先向左平移1个单位长度,再向上平移1个单位长度,则其顶点为()A.(0,0)B. (1,-2)C. (0,-1)D. (-2,1)【巩固答案】1.y1<y2<y32. C。

专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)

专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)

专题1.2 二次函数的图象【六大题型】【浙教版】【题型1 二次函数的配方法】 (1)【题型2 二次函数的五点绘图法】 (4)【题型3 二次函数的图象与各系数之间的关系】 (9)【题型4 二次函数图象的平移变换】 (12)【题型5 二次函数图象的对称变换】 (14)【题型6 利用对称轴、顶点坐标公式求值】 (16)【题型1 二次函数的配方法】【例1】(2022秋•饶平县校级期末)用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:(1)y=12x2﹣2x+3=12(x﹣2)2+1,开口向上,对称轴是直线x=2,顶点坐标(2,1);(2)y=(1﹣x)(1+2x)=﹣2x2+x+1=﹣2(x―14)2+98,开口向下,对称轴是直线x=14,顶点坐标(14,98).【变式1-1】(2022•西华县校级月考)用配方法确定下列二次函数图象的对称轴与顶点坐标.(1)y=2x2﹣8x+7;(2)y=﹣3x2﹣6x+7;(3)y=2x2﹣12x+8;(4)y=﹣3(x+3)(x﹣5).【分析】(1)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(2)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(3)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(4)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标.【解答】解:(1)y=2(x2﹣4x)+7=2(x2﹣4x+4﹣4)+7=2(x﹣2)2﹣1,对称轴为x=2,顶点坐标为(2,﹣1);(2)y=﹣3(x2+2x)+7=﹣3(x2+2x+1﹣1)+7=﹣3(x+1)2+10,对称轴为x=﹣1,顶点坐标为(﹣1,10);(3)y=2x2﹣12x+8=2(x2﹣6x+9﹣9)+8=2(x﹣3)2﹣10,对称轴为x=3,顶点坐标为(3,﹣10);(4)y=﹣3(x+3)(x﹣5)=﹣3(x2﹣2x﹣15)=﹣3(x2﹣2x+1﹣1﹣15)=﹣3(x﹣1)2+16 3,对称轴为x=1,顶点坐标为(1,163).【变式1-2】(2021•邵阳县月考)把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+1 2 x2(2)y=﹣2x2﹣5x+7(3)y=ax2+bx+c(a≠0)【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式,从而求出函数图象的顶点坐标及最值.【解答】解:(1)y=﹣2x﹣3+1 2 x2=12(x2﹣4x+4)﹣2﹣3=12(x﹣2)2﹣5,顶点坐标是(2,﹣5),最小值是﹣5;(2)y=﹣2x2﹣5x+7=﹣2(x2+52x+2516)+258+7=﹣2(x+54)2+818,顶点坐标是(―54,818),最大值是818;(3)y=ax2+bx+c=a(x2+bax+b24a2)―b24a+c=a(x+b2a)2+4ac b24a,顶点坐标是(―b2a,4ac b24a),当a<0时,最大值是4ac b24a;当a>0时,最小值是4ac b24a.【变式1-3】(2022•监利市期末)用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x= 2 时,代数式﹣3(x﹣2)2+4有最 大 (填写大或小)值为 4 .(2)当x= 2 时,代数式﹣x2+4x+4有最 大 (填写大或小)值为 8 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【分析】(1)由完全平方式的最小值为0,得到x=2时,代数式的最大值为4;(2)将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为14m,表示出平行于墙的一边为(14﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【解答】解:(1)∵(x﹣2)2≥0,∴当x=2时,(x﹣2)2的最小值为0,则当x=2时,代数式﹣3(x﹣2)2+4的最小值为4;(2)代数式﹣x2+4x+4=﹣(x﹣2)2+8,则当x=2时,代数式﹣x2+4x+4的最大值为8;(3)设垂直于墙的一边为xm,则平行于墙的一边为(14﹣2x)m,∴花园的面积为x(14﹣2x)=﹣2x2+14x=﹣2(x2﹣7x+494)+492=―2(x―72)2+492,则当边长为3.5米时,花园面积最大为492m2.故答案为:(1)2,大,4;(2)2,大,8;【题型2 二次函数的五点绘图法】【例2】(2022•东莞市模拟)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…52125…(1)求该二次函数的表达式;(2)当x=6时,求y的值;(3)在所给坐标系中画出该二次函数的图象.【分析】(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,利用待定系数法即可解决问题.(2)把x=6代入(1)中的解析式即可.(3)利用描点法画出图象即可.【解答】解:(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,∵x=0时,y=5,∴5=4a+1,∴a=1,∴二次函数解析式为y=(x﹣2)2+1即y=x2﹣4x+5.(2)当x=6时,y=(6﹣2)2+1=17.(3)函数图象如图所示,.【变式2-1】(2022•竞秀区一模)已知抛物线y=x2﹣2x﹣3(1)求出该抛物线顶点坐标.(2)选取适当的数据填入表格,并在直角坐标系内描点画出该抛物线的图象.x……y……【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用描点法画出二次函数的图象.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故该抛物线顶点坐标为:(1,﹣4);(2)如图所示:x…﹣10123…y…0﹣3﹣4﹣30….【变式2-2】已知二次函数y=ax2﹣2的图象经过(﹣1,1).(1)求出这个函数的表达式;(2)画出该函数的图象;(3)写出此函数的开口方向、顶点坐标、对称轴.【分析】(1)直接把(﹣1,1)代入y=ax2﹣2中求出a的值即可得到抛物线解析式;(2)利用描点法画函数图象;(2)根据二次函数的性质求解.【解答】解:(1)把(﹣1,1)代入y=ax2﹣2得a﹣2=1,解得a=3,所以抛物线解析式为y=3x2﹣2;(2)如图:(3)抛物线的开口向上,顶点坐标为(0,﹣2),对称轴为y轴.【变式2-3】(2022•越秀区模拟如图,已知二次函数y=―12x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点;(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.【分析】(1)根据图象经过A (2,0)、B (0,﹣6)两点,把两点代入即可求出b 和c ,(2)把二次函数写成顶点坐标式,据此写出顶点坐标,对称轴等,(3)在坐标轴中画出图象即可.【解答】解:(1)∵的图象经过A (2,0)、B (0,﹣6)两点,∴―2+2b +c =0c =―6,解得b =4,c =﹣6,∴这个二次函数的解析式为y =―12x 2+4x ―6,(2)y =―12x 2+4x ―6=―12(x 2﹣8x +16)+8﹣6=―12(x ﹣4)2+2,∴二次函数图象的顶点坐标为(4,2)、对称轴为x =4、二次函数图象与x 轴相交时:0=―12(x ﹣4)2+2,解得:x =6或2,∴另一个交点为:(6,0),(3)作图如下.【题型3 二次函数的图象与各系数之间的关系】【例3】(2022春•玉山县月考)函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.【分析】根据题目中的函数解析式、二次函数的性质和一次函数的性质,利用分类讨论的方法可以得到函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是哪个选项中的图象.【解答】解:当a>0时,函数y=ax2﹣a的图象开口向上,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第一、二、三象限,故选项A、D错误;当a<0时,函数y=ax2﹣a的图象开口向下,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第二、三、四象限,故选项B错误,选项C正确;故选:C.【变式3-1】(2022•邵阳县模拟)二次函数y=ax2+b的图象如图所示,则一次函数y=ax+b的图象可能是( )A.B.C.D.【分析】直接利用二次函数图象得出a,b的符号,进而利用一次函数的图象性质得出答案.【解答】解:如图所示:抛物线开口向下,交y轴的正半轴,则a<0,b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:C.【变式3-2】(2022•凤翔县一模)一次函数y=kx+k与二次函数y=ax2的图象如图所示,那么二次函数y=ax2﹣kx﹣k的图象可能为( )A.B.C.D.【分析】由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,然后根据二次函数的性质即可得到结论.【解答】解:由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,∴二次函数y=ax2﹣kx﹣k的图象开口向上,对称轴x=―k2a在y轴的右侧,交y轴的负半轴,∴B选项正确,故选:B.【变式3-3】(2022•澄城县三模)已知m,n是常数,且n<0,二次函数y=mx2+nx+m2﹣4的图象是如图中三个图象之一,则m的值为( )A.2B.±2C.﹣3D.﹣2【分析】可根据函数的对称轴,以及当x=0时,y的值来确定符合题意的函数式,进而确定m的值.【解答】解:∵y=mx2+nx+m2﹣4,∴x=―n2m,因为n<0,所以对称轴不可能是x=0,所以第一个图不正确.二,三两个图都过原点,∴m2﹣4=0,m=±2.第二个图中m>0,开口才能向上.对称轴为:x=―n2m>0,所以m可以为2.第三个图,m<0,开口才能向下,x=―n2m<0,而从图上可看出对称轴大于0,从而m=﹣2不符合题意.故选:A.【题型4 二次函数图象的平移变换】【例4】(2022•绍兴县模拟)把抛物线y=ax2+bx+c的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y=(x﹣3)2+5,则a+b+c= 3 .【分析】先得到抛物线y=(x﹣3)2+5的顶点坐标为(3,5),通过点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),然后利用顶点式写出平移后的抛物线解析式,再把解析式化为一般式即可得到a、b和c的值.【解答】解:∵y=(x﹣3)2+5,∴顶点坐标为(3,5),把点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),∴原抛物线解析式为y=(x﹣1)2+3=x2﹣2x+4,∴a=1,b=﹣2,c=4.∴a+b+c=3,故答案为3.【变式4-1】(2022•澄城县二模)要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象( )A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【分析】根据抛物线顶点的变换规律得到正确的选项.【解答】解:抛物线y=﹣(x﹣3)2的顶点坐标是(3,0),抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3),所以将顶点(3,0)向左平移1个单位,再向上平移3个单位得到顶点(2,3),即将函数y=﹣(x﹣3)2的图象向左平移1个单位,再向上平移3个单位得到函数y=﹣(x﹣2)2+3的图象.故选:C.【变式4-2】(2022秋•滨江区期末)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则4a﹣2b﹣1的值是 2 .【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后整体代入求值即可.【解答】解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则4a﹣2b﹣1=3﹣1=2.故答案为:2.【变式4-3】(2022•澄城县二模)二次函数y=(x﹣1)(x﹣a)(a为常数)图象的对称轴为直线x=2,将该二次函数的图象沿y轴向下平移k个单位,使其经过点(0,﹣1),则k的值为( )A.3B.4C.2D.6【分析】根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值,结合抛物线解析式求平移后图象所对应的二次函数的表达式,利用待定系数法求得k的值.【解答】解:由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴1a2=2.解得a=3.则该抛物线解析式是:y=x2﹣4x+3.∴抛物线向下平移k个单位后经过(0,﹣1),∴﹣1=3﹣k.∴k=4.故选:B.【题型5 二次函数图象的对称变换】【例5】(2022•绍兴县模拟)在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为( )A.﹣5B.3C.5D.15【分析】根据关于x轴对称,函数y是互为相反数即可求得.【解答】解:∵抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,∴﹣y=﹣x2﹣(2a﹣b)x﹣b﹣1,∴―(2a―b)=a+b ―b―1=a―4,解得a=0,b=3,∴a+b=3,故选:B.【变式5-1】(2022•苍溪县模拟)抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为 y=﹣(x﹣2)2 .【分析】写出顶点关于y轴对称的点,把它作为所求抛物线的顶点,这样就可确定对称后抛物线的解析式.【解答】解:抛物线y=﹣(x+2)2顶点坐标为(﹣2,0),其关于y轴对称的点的坐标为(2,0),∵两抛物线关于y轴对称时形状不变,∴抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为y=﹣(x﹣2)2.故答案是:y=﹣(x﹣2)2.【变式5-2】(2022•蜀山区校级二模)在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是( )A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【分析】先利用配方法得到抛物线y=x2+2x+3的顶点坐标为(﹣1,2),再写出点(﹣1,2)关于原点的对称点为(1,﹣2),由于旋转180°,抛物线开口相反,于是得到抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.【解答】解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.故选:A.【变式5-3】(2022春•仓山区校级期末)在平面直角坐标系中,已知抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,且它们的顶点相距8个单位长度,则k的值是( )A.﹣1或3B.1或﹣2C.1或3D.1或2【分析】先求出抛物线L1的顶点坐标,再根据顶点相距8个单位长度列方程即可解得答案.【解答】解:∵y=kx2+4kx+8=k(x+2)2+8﹣4k,∴抛物线L1:y=kx2+4kx+8顶点为(﹣2,8﹣4k),∵抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,它们的顶点相距8个单位长度,∴8﹣4k=82或8﹣4k=―82,解得k=1或k=3,故选:C.【题型6 利用对称轴、顶点坐标公式求值】【例6】(2022•苍溪县模拟)已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为( )A.a=±1B.a=1C.a=﹣1D.a=0【分析】把(0,0)代入函数解析式求出a的值,再由a﹣1≠0求解.【解答】解:把(0,0)代入y=(a﹣1)x2﹣x+a2﹣1得0=a2﹣1,解得a=1或a=﹣1,∵a﹣1≠0,∴a=﹣1,故选:C.【变式6-1】(2022•合肥模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,则c的值等于 7或15 .【分析】根据抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,可知顶点的纵坐标的绝对值是4,然后计算即可.【解答】解:∵抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,∴|4×1×(c2)(6)24×1|=4,解得c1=7,c2=15,故答案为:7或15.【变式6-2】(2022•襄城区模拟)已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B (m+3,n)均在二次函数图象上,求n的值为 4 .【分析】根据题意得出b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A 的坐标代入即可求得n的值.【解答】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴―b2=m1m32,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴b2﹣4c=0,∴[﹣2(m +1)]2﹣4c =0,∴c =(m +1)2,∴y =x 2﹣2(m +1)x +(m +1)2,把A 的坐标代入得,n =(m ﹣1)2﹣2(m +1)(m ﹣1)+(m +1)2=4,故答案为:4.【变式6-3】(2022•公安县期中)已知二次函数y =x 2+mx +m ﹣1,根据下列条件求m 的值.(1)图象的顶点在y 轴上.(2)图象的顶点在x 轴上.(3)二次函数的最小值是﹣1.【分析】(1)将二次函数配方成顶点式y =(x +m 2)2―m 24m 44,由图象的顶点在y 轴上可得―m 2=0,即m =0;(2)由图象的顶点在x 轴上可得m 24m 44=0,解之即可;(3)由二次函数的最小值是﹣1可得―m 24m 44=―1,解之即可.【解答】解:(1)y =x 2+mx +m ﹣1=x 2+mx +m 24―m 24+m ﹣1=(x +m 2)2―m 24m 44,∴抛物线的顶点坐标为(―m 2,―m 24m 44)∵图象的顶点在y 轴上,∴―m 2=0,即m =0;(2)∵图象的顶点在x 轴上,∴m 24m 44=0,解得m =2;(3)∵二次函数的最小值是﹣1,∴―m 24m 44=―1,解得:m =0或m =4.。

二次函数的图象与性质大题(五大题型)学生版

二次函数的图象与性质大题(五大题型)学生版

二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a),对称轴直线x=-b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-b2a时,y随x的增大而减小;x>-b2a时,y随x的增大而增大;x=-b2a时,y取得最小值4ac-b24a,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-b2a时,y随x的增大而增大;x>-b2a时,y随x的增大而减小;x=-b2a时,y取得最大值4ac-b24a,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|-b2a|个单位,再向上或向下平移|4ac-b24a|个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1(2024•石景山区校级模拟)在平面直角坐标系xOy中,A(x1,y1),B(x2,y2)是抛物线y=-x2+bx(b ≠0)上任意两点,设抛物线的对称轴为直线x=h.(1)若抛物线经过点(2,0),求h的值;(2)若对于x1=h-1,x2=2h,都有y1>y2,求h的取值范围;(3)若对于h-2≤x1≤h+1,-2≤x2≤-1,存在y1<y2,直接写出h的取值范围.2(2024•鹿城区校级一模)已知二次函数y=-x2+2tx+3.(1)若它的图象经过点(1,3),求该函数的对称轴.(2)若0≤x≤4时,y的最小值为1,求出t的值.(3)如果A(m-2,n),C(m,n)两点都在这个二次函数的图象上,直线y=2mx+a与该二次函数交于M(x1,y1),N(x2,y2)两点,则x1+x2是否为定值?若是,请求出该定值;若不是,请说明理由.3(2024•拱墅区一模)在平面直角坐标系中,抛物线y=ax2-(a+2)x+2经过点A(-2,t),B(m,p).(1)若t=0,①求此抛物线的对称轴;②当p<t时,直接写出m的取值范围;(2)若t<0,点C(n,q)在该抛物线上,m<n且5m+5n<-13,请比较p,q的大小,并说明理由.题型二.二次函数图象与系数的关系(共8小题)4(2023•南京)已知二次函数y=ax2-2ax+3(a为常数,a≠0).(1)若a<0,求证:该函数的图象与x轴有两个公共点.(2)若a=-1,求证:当-1<x<0时,y>0.(3)若该函数的图象与x轴有两个公共点(x1,0),(x2,0),且-1<x1<x2<4,则a的取值范围是 a>3或a<-1 .5(2024•南京模拟)在平面直角坐标系xOy中,点(1,y1),(3,y2)在抛物线y=x2-2mx+m2上.(1)求抛物线的顶点(m,0);(2)若y1<y2,求m的取值范围;(3)若点(x0,y0)在抛物线上,若存在-1<x0<0,使y1<y0<y2成立,求m的取值范围.6(2024•北京一模)在平面直角坐标系中,已知抛物线y=ax2+bx+3经过点(-2a,3).(1)求该抛物线的对称轴(用含有a的代数式表示);(2)点M(t-2,m),N(t+2,n),P(-t,p)为该抛物线上的三个点,若存在实数t,使得m>n>p,求a的取值范围.7(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式y=x2 +bx+c,通过输入不同的b,c的值,在几何画板的展示区内得到对应的图象.(1)若输入b=2,c=-3,得到如图①所示的图象,求顶点C的坐标及抛物线与x轴的交点A,B的坐标;(2)已知点P(-1,10),Q(4,0).①若输入b,c的值后,得到如图②的图象恰好经过P,Q两点,求出b,c的值;②淇淇输入b,嘉嘉输入c=-1,若得到二次函数的图象与线段PQ有公共点,求淇淇输入b的取值范围.8(2024•浙江模拟)设二次函数y=ax2-4ax+c(a,c均为常数,a≠0),已知函数值y和自变量x的部分对应取值如下表所示:x⋯-1025⋯y⋯m3p n⋯(1)判断m,n的大小关系,并说明理由;(2)若3m-2n=8,求p的值;(3)若在m,n,p这三个数中,只有一个数是负数,求a的取值范围.9(2024•北京模拟)在平面直角坐标系xOy中,抛物线y=x2+(2m-6)x+1经过点(-m,y1),(m,y2 ),(m+2,y3).(1)若y1=y3,求抛物线的对称轴;(2)若y2<y3<y1,求m的取值范围.10(2024•浙江模拟)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A(-2,-4)和B(3,1)两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过C (2m -3,n ),D (7-2m ,n )两点,当k -3<x <k +3时,y 随x 的增大而减小,求k 的取值范围;(3)已知点M (-6,5),N (2,5),若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.11(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),(6,y 1)在抛物线y =ax 2+bx +c (a ≠0)上.(1)当y 1=3时,求抛物线的对称轴;(2)若抛物线y =ax 2+bx +c (a ≠0)经过点(-1,-1),当自变量x 的值满足-1≤x ≤2时,y 随x 的增大而增大,求a 的取值范围;(3)当a >0时,点(m -4,y 2),(m ,y 2)在抛物线y =ax 2+bx +c 上.若y 2<y 1<c ,请直接写出m 的取值范围.题型三.待定系数法求二次函数解析式(共3小题)12(2024•保山一模)如图,抛物线y =ax 2+bx +c 过A (-2,0),B (3,0),C (0,6)三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且12<m <3.(1)试求抛物线的表达式;(2)过点P 作PN ⊥x 轴并交BC 于点N ,作PM ⊥y 轴并交抛物线的对称轴于点M ,若PM =12PN ,求m的值.13(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线y =-2x +8与抛物线y =-x 2+bx +c 交于A ,B 两点,点B 在x 轴上,点A 在y 轴上.(1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当DE=38AB 时,求点C 的坐标.14(2024•南关区校级二模)已知二次函数y=x2+bx+c的图象经过点A(0,-3),B(3,0).点P在抛物线y=x2+bx+c上,其横坐标为m.(1)求抛物线的解析式;(2)当-2<x<3时,求y的取值范围;(3)当抛物线y=x2+bx+c上P、A两点之间部分的最大值与最小值的差为34时,求m的值;(4)点M在抛物线y=x2+bx+c上,其横坐标为1-m.过点P作PQ⊥y轴于点Q,过点M作MN⊥x轴于点N,分别连结PM,PN,QM,当ΔPQM与ΔPNM的面积相等时,直接写出m的值.题型四.抛物线与x轴的交点(共14小题)15(2024•秦淮区校级模拟)已知函数y=mx2-(m-2)x-2(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点.(2)不论m为何值,该函数的图象经过的定点坐标是 (1,0)(0,-2) .(3)在-2≤x≤2的范围中,y的最大值是2,直接写出m的值.16(2024•柳州模拟)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点D为抛物线的顶点.(1)求这个二次函数的解析式;(2)求ΔABD的面积17(2024•安阳模拟)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与抛物线y=-x2+x-1的形状相同,且与x轴交于点(-1,0)和(4,0).直线y=kx+2分别与x轴、y轴交于点A,B,交抛物线y =ax2+bx+c于点C,D(点C在点D的左侧).(1)求抛物线的解析式;(2)点P是直线y=kx+2上方抛物线上的任意一点,当k=2时,求ΔPCD面积的最大值;(3)若抛物线y=ax2+bx+c与线段AB有公共点,结合函数图象请直接写出k的取值范围.18(2024•西湖区校级模拟)已知y1=ax2+(a+b)x+b和y2=bx2+(a+b)x+a(a≠b且ab≠0)是同一直角坐标系中的两条抛物线.(1)当a=1,b=-3时,求抛物线y1=ax2+(a+b)x+b的顶点坐标;(2)判断这两条抛物线与x轴的交点的总个数,并说明理由;(3)如果对于抛物线y1=ax2+(a+b)x+b上的任意一点P(m,n)均有n≤2a+2b.当y2≥0时,求自变量x的取值范围.19(2024•三元区一模)抛物线y=ax2+bx+3与x轴相交于点A(1,0),B(3,0),与y轴正半轴相交于点C.(1)求抛物线的解析式;(2)点M(x1,y1),N(x2,y2)是抛物线上不同的两点.①当x1,x2满足什么数量关系时,y1=y2;②若x1+x2=2(x1-x2),求y1-y2的最小值.20(2024•黄山一模)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(4,0)两点,经过点D( -2,-3),与y轴交于点C.(1)求抛物线的函数解析式;(2)若点M是x轴上位于点A与点B之间的一个动点(含点A与点B),过点M作x轴的垂线分别交抛物线和直线BC于点E、点F.求线段EF的最大值.21(2024•碑林区校级模拟)在平面直角坐标系中,二次函数y=-14x2+bx+c的图象与x轴交于A、B两点,A(-2,0),与y轴交于点C(0,2),点P是抛物线上y轴左侧的一个动点.(1)求这个二次函数的表达式;(2)若点P关于直线BC的对称点P′恰好落在y轴上,求点P的坐标.22(2024•江西模拟)已知关于x的二次函数y=x2-(k+4)x+3k.(1)求证:无论k为何值,该函数的图象与x轴总有两个交点;(2)若二次函数的顶点P的坐标为(x,y),求y与x之间的函数关系及y的最大值.23(2024•峰峰矿区校级二模)如图,已知抛物线L:y=-x(x-3)+n与x轴交于A,B两点(点A在点B的左侧),与y轴交于点M.(1)若该抛物线过点(1,6);①求该抛物线的表达式,并求出此时A,B两点的坐标;②将该抛物线进行平移,平移后的抛物线对应的函数为y=-x(x-3)+6,A点的对应点为A′,求平移后顶点坐标和线段AA′的长;(2)点M关于L:y=-x(x-3)+n的对称轴的对称点的坐标为 (3,n) (用含n的代数式表示).24(2024•安徽模拟)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx-3与x轴分别交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图,点D、F分别是抛物线上第四象限、第二象限上的点,其中点F的横坐标为t,连接BF交y轴于点E,连接DC、DE,设ΔCDE的面积为s,且4s+9t=0,求点D的坐标.25(2024•宜昌模拟)如图,函数y=x2-5x+6的图象与x轴交于点A,B(点A在点B的左边),与y轴交于点C.(1)已知一次函数的图象过点B,C,求这个一次函数的解析式;(2)当0≤x≤3时,对于x的每一个值,函数y=-2x+b(b为常数)的值大于函数y=x2-5x+6的值,直接写出b的取值范围.26(2024•昆山市模拟)如图,已知抛物线L:y=ax2+bx+4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线L的表达式;(2)若抛物线L关于原点对称的抛物线为L′,求抛物线L′的表达式;(3)在抛物线L′上是否存在一点P,使得SΔABC=2SΔABP,若存在,求出点P的坐标;若不存在,请说明理由.27(2024•安徽模拟)已知抛物线y=-x2+bx+c(b,c是常数)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C,连接AC,点P是AC上方抛物线上的一点.(1)求b,c的值;(2)如图1,点Q是第二象限抛物线上的一点,且横坐标比点P的横坐标大1,分别过点P和点Q作PD⎳y 轴,EQ⎳y轴,PD与QE分别与AC交于点D,E,连接CQ,AP,求SΔAPD+SΔCEQ的值;(3)如图2,连接PB与AC交于点M,连接AP,BC,当SΔAPM-SΔBCM=2时,求点M的坐标.28(2024•西安校级一模)如图,在平面直角坐标系中,抛物线C1:y=ax2-x+c(a≠0)与x轴交于A( -1,0),B(3,0)两点,交y轴于点C.(1)求抛物线C1的解析式;(2)设抛物线C1关于坐标原点对称的抛物线为C2,点A,B的对应点分别为A ,B .抛物线C2的顶点为E,则在x轴下方的抛物线C2上是否存在点F,使得ΔABF的面积等于△B BE的面积.若存在,求出F点的坐标;若不存在,请说明理由.题型五.二次函数综合题(共3小题)29(2024•鄞州区模拟)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c 称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y =4ax2+ax+4a-3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a-4≤x≤a-2时,C2的最大值与最小值的差为2a,求a的值.30(2023•大庆)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,且自变量x的部分取值与对应函数值y如下表:x⋯-101234⋯y⋯0-3-4-305⋯(1)求二次函数y=ax2+bx+c的表达式;(2)若将线段AB向下平移,得到的线段与二次函数y=ax2+bx+c的图象交于P,Q两点(P在Q左边),R为二次函数y=ax2+bx+c的图象上的一点,当点Q的横坐标为m,点R的横坐标为m+2时,求tan∠RPQ的值;(3)若将线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y=1t(ax2+bx+c)的图象只有一个交点,其中t为常数,请直接写出t的取值范围.31(2024•历下区一模)在平面直角坐标系xOy中,直线y=12x+1与y轴交于点A,与x轴交于点B,抛物线M:y=ax2+bx+c经过点A,且顶点在直线AB上.(1)如图,当抛物线的顶点在点B时,求抛物线M的表达式;(2)在(1)的条件下,抛物线M上是否存在点C,满足∠ABC=∠ABO.若存在,求点C的坐标;若不存在,请说明理由;(3)定义抛物线N:y=bx2+ax+c为抛物线M的换系抛物线,点P(t,p),点Q(t+3,q)在抛物线N上,若对于2≤t≤3,都有p<q<1,求a的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数y=ax^2+bx+c的图象》典型例题
例1 已知二次函数,当x=4时有最小值-3,且它的图象与x轴交点的横坐标为1,求此二次函数解析式。

例2 如果以y轴为对称轴的抛物线y=ax2+bx+c的图象如图13-25所示,那么代数式b+c-a与零的关系是()
A.b+c-a=0; B.b+c-a>0;
C.b+c-a<0;D.不能确定。

例3 二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象大致是()
例4 如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b。

(1)求m的取值范围;
(2)若a∶b=3∶1,求m的值,并写出此时抛物线的解析式;
(3)设(2)中的抛物线与y轴交于点C,抛物线的顶点是M,问:抛物线上是
否存在点P,使△PAB的面积等于△BCM面积的8倍?若存在,求出P点坐标;若不存在,请说明理由。

例5 已知二次函数c bx ax y ++=2的图像与x 轴相交于点)0,6(A ,顶点B 的纵坐标是-3.
(1)求此二次函数的解析式;
(2)若一次函数m kx y +=的图像与x 的轴相交于)0,(1x D ,
且经过此二次函数的图像的顶点B ,当62
3≤≤m 时, (ⅰ)求1x 的取值范围;
(ⅱ)求BOD ∆(O 为坐标原点)面积的最小值与最大值.
例6 求函数解析式的题目
(1) 已知二次函数的图像经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式.
(2) 已知抛物线的顶点为)3,1(--,与y 轴交点为)5,0(-,求此抛物线的解析式.
(3) 已知抛物线与x 轴交于)0,1(-A ,)0,1(B ,并经过点)1,0(M ,求抛物线的解析式.
参考答案
例1 分析:因为二次函数当x=4时有最小值-3,所以顶点坐标为(4,-3),对称轴为x=4,抛物线开口向上.图象与x 轴交点的横坐标为1,即抛物线过(1,0)点.又根据对称性,图象与x 轴另一个交点的坐标为(7,0)有下面的草图:
解:此题可用以下四种方法求出解析式。

方法一:因为抛物线的对称轴是x =4,抛物线与x轴的一个交点为
(1,0),由对称性可知另一点为(7,0),同例1,抛物线y=ax 2+bx
+c 通过(4,-3)、(1,0)、(7,0)三点,由此列出一个含a 、b 、c 的三元一次方程组,可解出a 、b 、c 来。

方法二:由于二次函数当x=4时有最小值-3,又抛物线通过(1,0)点,所以
由上面的方程组解出a 、b 、c 。

方法三:由于抛物线的顶点坐标已知,可以设二次函数式为
y=a(x+h)2+k ,其中h=-4,k=-3即有y=a(x-4)2-3,式中只有一个待定系数a ,再利用抛物线通过(1,0)或通过(7,0)求出a 来. 即20(14)3a =--得出13a =. 所求二次函数解析式为221187(4)33333
y x x x =--=-+
方法四:由于抛物线与x 轴的两个交点的横坐标分别为x 1=1,x 2=7.可以采用双根式y=a(x-x 1)(x-x 2),其中x 1=1,x 2=7即有y=a(x-1)(x-7)式中只有待定系数a ,再把顶点(4,-3)代入上式得:13(41)(47),3a a -=--=所求二次函数解析式为21187(1)(7)3333
y x x x x =--=-+. 例2 解: 从图13-25上看出抛物线开口向下,所以a <0.当x=0时,y 的值为正,所以c >0.又因为抛物线以y 轴为对称轴,所以b=0。

综上分析知b+c-a >0,应选B 。

注意:这个题考察了二次函数中三个系数a 、b 、c 的含义,二次项系数a 决定抛
物线开口方向,c 为抛物线在y 轴上的截距即抛物线与y 轴交点的纵坐标,抛物线的对称轴方程为2b x a
=-
,要根据图象具体分析才能得出正确结论。

例3 解:图象大致是D 。

分析: 这一类题是考察数学逻辑推理能力.题目中a ,b ,c 均是变量,字母多不知从何下手考虑.考虑问题应该是有层次的,首先抓住两个函数共性的东西,如两个图象的交点中有一个是(0,c),也就是说两个图象的交点中有一个应在y 轴上,从而否定了A .和B .,且c >0.其次考虑完字母c 后,再考虑a 的取值.若a >0,则直线y=ax+c 与x 轴交点应在原点左边,这样否定了C .;再检验D .,从二次函数图象知a <0,且c >0,直线y=ax+c 与x 轴交点应在原点右边,所以D .是正确的.考虑变量的取值范围要先考虑第一个再考虑第二个、第三个有次序地进行,切忌无头绪地乱猜,思维混乱。

例4 解:(1)设A 、B 两点的坐标分别为(x 1,0),(x 2,0).因为A 、B 两点在原点的两侧,所以x 1·x 2<0,即-(m+1)<0。

当m >-1时,Δ>0,所以m 的取值范围是m >-1。

(2)因为a ∶b=3∶1,设a=3k ,b=k(k >0),则x 1=3k ,x 2=-k ,所以
所以m=2。

所以抛物线的解析式是y=-x 2+2x+3。

(3)易求抛物线y=-x 2+2x+3与x 轴的两个交点坐标是A(3,0),B(-1,0);抛物线与y 轴交点坐标是C(0,3);顶点坐标是M(1,4).设直线BM 的解析式为
y=px+q ,
所以直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2).所以
设P 点坐标是(x ,y),因为S △ABP =8S △BCM .所以
所以|y |=4,由此得y=±4。

当y=4时,P 点与M 点重合,即P(1,4);
所以满足条件的P 点存在。

注意:这一类题是探索性的,需要独立思考,前两问是为第三问作铺垫的,都是
常规的思路不太难.第三问是假设条件成立可导出什么结果,在求△BCM 的面积时要用分割法,因为△BCM 是任意三角形,它的面积不好求,而△BCN 和△CMN 的面积都好求,底都为CN=1,高都是
1.S △BCM =S △BCN +S △CMN 这样就化难为易了.方程-x 2+2x+3=±4有解则P 点存在,如果方程无解则P 点不存在,探索性题的思路都是这样的。

例5 分析:(1)由已知条件可知,抛物线的顶点坐标是(3,-3),所以可设出抛物线的顶点式,再把已知点的坐标代入解析式,即可求得。

(2)因为当m 取最小值时,1x 也取最小值;当m 取最大值时,1x 也取最大值。

所以把m 的最大值和最小值代入直线的解析式,即可求出1x 的取值范围。

解:(1)∵二次函数c bx ax y ++=2的图像经过原点O (0,0)与点A (6,0),∴它的对称轴是3=x .
∴它的顶点B 的坐标是(3,-3).
设此二次函数为3)3(3--=x a y ,把(6,0)代入解析式得039=-a ,∴3
1=a ,故所求二次函数的解析式为 x x x y 23
13)3(3122-=--=. (2)(ⅰ)令23=m 得直线1l 的解析式为2
31+=x k y ,把(3,-3)代入得231-=k ,故直线1l 的解析式为2
323+-=x y . 令0=y ,得)0,1(D .
令6=m 得直线2l 的解析式为62+=x k y ,把(3,-3)代入得32-=k ,故直线2l 的解析式为63+-=x y ,令0=y ,则得)0,2(D .
故1x 的取值范围是211≤≤x .
(ⅱ)∵BOD ∆的OD 边上的高(即B 点的纵坐标的绝对值)为定值3,故OD 最小,则BOD ∆面积最小,OD 最大,则BOD ∆面积最大.
∵OD 最小为1,最大为2,
故BOD ∆的面积最小是2
3,最大为3. 例6 (1)解:设二次函数的解析式为c bx ax y ++=2………①
将(-1,-6)、(1,-2)和(2,3)分别代入①,得
⎪⎩⎪⎨⎧=++-=++-=+-,324,2,6c b a c b a c b a 解得⎪⎩
⎪⎨⎧-===.5,2,1c b a
所以二次函数的解析式为.522-+=x x y
(2)解:因为抛物线的顶点为)3,1(--,
设其解析式为3)1(2-+=x a y ……①
将)5,0(-代入①得35-=-a ,2-=a ,
所求抛物线的解析式为.3)1(22-+-=x y
即.5422---=x x y
(3)解:因为点)0,1(-A ,)0,1(B 是抛物线与x 轴的交点,
所以设抛物线的解析式为)1)(1(-+=x x a y ………①
将)1,0(M 代入①,得1-=a ,
所求抛物线解析式为).1)(1(-+-=x x y
即12+-=x y
说明:此三题考查用待定系数法求抛物线的解析式,关键是根据已知条件选择正确解析式的三种形式,将给我们做题带来很大的方便.(1)中给出抛物线上任意三点,所以选择一般式;(2)中给出顶点,所以选择顶点式;(3) 中给出与x 轴的两个交点,所以选择两根式.。

相关文档
最新文档