线代第三章

合集下载

线性代数第三章

线性代数第三章

11 + 22 + …+ ss = 0
与 1 , 2 ,…, s 线性无关矛盾,故
1 s1
1
s
2
1
2 s s 1 s
即 β 可以由1 , 2 ,…, s的线性表示. 若存在1,2,… ,s和 t1,t2,… ,ts
使得 β = 11 + 22 + …+ ss
= t11 + t22 + …+ tss 则11 + 22 + …+ ss = t11 + t22 + …+ tss
(1) , V, 有 + V (2) V ,k R, 有 k V
则称 V 是一个向量空间.
例1 (1) 全体 n 维向量构成一个向量空间,称 为 n维向量空间:记作 Rn ;
(2) V = {0},由于 0 + 0 = 0,k·0 = 0, V = {0} 构成一个向量空间,称为零空间.
3. 线性方程组Ax=0的解集合S构成一个向量空
p73li7
间,其中A为已知m×n矩阵,x为n维未知列向量.
首先S非空,由于齐次线性方程组总有0解.
另外, x,yS,kR,由Ax=0,Ay=0,有
A(x+y)=Ax+Ay=0, A(kx)=0 从而S关于加法和数乘封闭,故S构成一个向量空间.
解空间
11 + 22 + …+ mm = 0
不妨设 m 0,则
m m1
1
2 m
2 mm 1 m 1
即: m是1 , 2 ,…, m-1的线性组合.
充分性:
设 m 是其余向量的线性组合,即存在 数1,2,… ,m-1 ,使得

线性代数第三章总结

线性代数第三章总结

第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。

线性代数第三章

线性代数第三章

Am n 的各阶子式的总数:
min( m , n )

k 1
k k CmCn .
任意非零矩阵都至少有一个1阶非零子式(其每个非零元都可构成一个
1阶非零子式), 更高阶子式(如有)中还可能有非零的.
一个矩阵所具有的非零子式的最高阶数这一 数字与该矩阵的多方面性质有关, 将这一数字定
1 A 0 0 2 2 0 1 8 0 0 8 0
0
由此知A可逆, 故系数 行列式非零,于是克莱 默法则也适用本题.
3
行最简形矩阵
2
(29,16, 3)
1
x1 2 x2 x3 0 x2 4 x3 4 . 例3.4.2 求解线性方程组 4 x 5 x 8 x 9 1 2 3
由性质 5
ci c n i i 1, 2,, n
~
( A, B )

R ( A) R ( B ).
证毕.
例3.3.4 设A为n阶方阵,证明: R( A E) R( A E) n. 证明:
A E
ri ( 1) i 1, 2, , n
~
EA
练习 设A2=E,证明: R(A+E)+R(A-E)=n.
B的各非零行的首个非零元处在第1,2,3行、第1,2,4列, 分别对应于A 的第4,2,3行、第1,2,4列, 其交叉点处的元素构成的行列式
3 2 D 2 1 0 6
6 5 1
A的第2,3,4行、第1,3,4 列交叉点处的元素也可构成A 的最高阶非零子式.想想为什 么?还可以怎么取?
就是A的一个最高阶非零子式.
R( A) R( B) 3 .
例3.3.2 解:(2)求A的一个最高阶非零子式.事实上

线代第三章

线代第三章

n 阶行列式. 阶行列式.
定义
对(3-1) 的 n 阶矩阵 A,把删去第 i (3-
行及第 j 列后所得的 ( n – 1 ) 阶子矩阵称为对应 于元 aij 的余子矩阵, 并以 Sij 记之. 记之.
定义
一阶矩阵 [aij ]的行列式之值定义为数a11 的行列式之值定义为数a det [ a11 ] def a11
定理 数α乘行列式 detA,等于用α乘它的某 detA 等于用α
一列(或行)的所有元: 一列(或行)的所有元:
α det[a1 Lai Lan ] = det[a1 Lαai Lan ]
上式同时指出行列式某列(行 元的公因子可提出 上式同时指出行列式某列 行)元的公因子可提出
定理
对换两列 ( 或行 )的位置,行列式值反号: 的位置,行列式值反号:
(3 - 5 )
阶行列式值的计算公式. 并可以下表的形式记 3 阶行列式值的计算公式
a11 a12 a13 a21 a22 a23 a31 a32 a33
— —

+
+
+
其中每一条实线上的三个元素的乘积带正号, 其中每一条实线上的三个元素的乘积带正号 每一 条虚线上的三个元素的乘积带负号, 条虚线上的三个元素的乘积带负号 所得六项的代 数和就是三阶行列式的展开式. 数和就是三阶行列式的展开式.
值为零. 值为零.
推论 定理
对 n 阶 矩阵 A 有 detαA = (α )n det A 若将 detA的某一列 (或行) ai 写成两个向 detA 或行)
detA等于两个行列式之和, 量之和,ai = ci + di , 则 detA等于两个行列式之和, 量之和, 这两个行列式分别是在detA 这两个行列式分别是在detA中用 ci 及 di 代替ai的 代替a 结果, 结果,

线性代数 第三章

线性代数  第三章

( b1 , b2 ,, bm 为不全为零的常数) (3-1-1)
在上一章知道,它的矩阵表达式为 常数项与未知阵。
a11 a 21 A , B 将系数矩阵与常数项矩阵放在一起构成的矩阵 ~ 称为方程组(3-1-1)的增广矩阵(也可记作 A )。 a m1
第三章 向量组与线性方程组
• 3.1 线性方程组及其矩阵表示
设非齐次线性方程组的一般形式为
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m1 x1 a m 2 x 2 a mn x n bm
Ax B与 Sx T 同解。(证)
证明 由于对矩阵作一次初等行变换等价于矩阵左乘一个初等矩阵,因此存在初等矩 阵 P 记 Pk Pk 1 P1 P 显然 P 可逆。 1, P 2 ,, P k 使得 P kP k 1 P 1 ( A, B) ( S , T )
x x1 为 Ax B 的解,即 Ax1 B Sx1 T 于是 x x1 为 Sx T 的解。
21 1
22
2
2n
n
x1 2 x 2 2 x3 x 4 1 【例1】把线性方程组 2 x1 x 2 2 x 2 5 x 4 2 表示为矩阵方程的形式。 x 3 x 7 x 4 x 0 2 3 4 1 x1 1 2 2 1 1 解 设 A x2 B 2 1 2 5 2 则原方程组可表示为 Ax B x 1 3 7 4 0 x3 x 4
Ax B 其中 A, B, x 分别是系数阵、

线性代数第三章

线性代数第三章

线性代数第三章1.【线性无关与线性相关】要点重点记住线性相关与线性无关的定义式,其他种种皆可由此推导引申出来。

这节希望大家能理解向量从二三维扩展到n维的思路过程,当对于空间的理解不能再用几何意义来描述时,代数的表示就扩展了向量的深度与广度,从而可以满足工程和经济模型分析的需要。

从几何到代数,就是从低维到高维抽象的线性代数方法论。

本节需要大家掌握的要点是:2.【向量组的秩】要点我们说过,如果一个向量组中向量的个数非常多时,要去研究这个庞大的向量组是很困难的。

此时,如果有一个向量个数较少的向量组同样能反映这个大向量组的性质,那么我们在实际工程计算中就可以大大简化计算量和工作量了。

极大无关组就是属于向量组中与其等价的无关向量组中向量最少的一个,我们可以通过研究该向量组的极大无关组来研究这个大向量组。

而我们在这节课学的一系列定理和证明,其实就是证明以上的思路是可行的,且还推导得出一个求极大无关组和秩比较简便的算法。

看了基的定义,是不是非常眼熟啊??对了,就是跟极大无关组相同哦,不过一个是以空间阐述,一个是代数上的阐述。

此处,注意把单个向量分量的维度与空间的维度区分开。

比如,u=(2,1),v=(4,2)都是2维向量,可是因为他俩线性相关,张成的空间降维了,构成的却是一维空间。

以上基与维数的定义就解答了以下几个问题:空间的维度是几维?空间又是由什么生成的呢?可以生成空间的基不唯一,而每一组基一旦确定,其余向量在这组基中的坐标也就唯一确定了。

那么,既然基不唯一,如果我换一组基,某向量原来在这组基的坐标是不是也就转换了呢?基与坐标的含义呢,其实就可以理解为,如果我们在一个空间中找的参照物不同,那么对应该参照物角度的坐标就会不同的意思。

线性代数_第三章

线性代数_第三章
lts ks 0
这与1,2, . . .,s与线性无关矛盾.

推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。

推论2 等价的向量组有相同的秩。

推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1

显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.

证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。

线代第三章

线代第三章
母, , , 等(或带小标).
只讨论与起点无关的向量.
当建立了平面坐标系以后,该平面内的 向量的起点可以认为均在平面坐标原点, 于是可以用该向量的终点坐标表示该向 量,见图3.1. 在空间坐标系中有类似处 理,见图3.2.
a (x, y)
a (x, y, z)
在空间向量(x, y, z)中,它是x, y, z按一定 顺序的一个排列,分别表示该向量终点 的横坐标、纵坐标和竖坐标. 实际上, 对于含n个未知量x1, x2, …, xn的n元线性 方程组, 其一个解可以按x1, x2, …, xn的 顺序依次表示出来.
,
α3
1
11
计算3α1 2α2 5α3. Solution
2 10 4
3α1
2α2
5α3
3
5 13
21150
5
1 11
6 20 20 6
15
3 9
2 1200
5 55
12
8 24
.
由于 + = + 及 + (- ) = 0,所以
(3) + 0 = . (加法单位元)
(4) + (- ) = 0 .(加法逆元)
为了方便,将 + (-) 记为 - ,称为 向量和的差(subtraction of and ),
它是向量的减法运算. 两个向量相减就 是对应的分量分别相减.
a1 b1
a1 b1
α
a2
,
β
b2
α
β
a2
b2
am
bm
am bm
2、向量的数乘运算
向量和数的数乘是一个向量,其大小 为| |与向量的大小乘积,其方向当 > 0 时与相同,当 < 0 时与相反,当 = 0 时是零向量,这时其方向可以是

线性代数 第三章

线性代数 第三章

第三章 向量组与矩阵的秩§1 n 维向量在平面几何中,坐标平面上每个点的位置可以用它的坐标来描述,点的坐标是一个有序数对(,)x y .一个n 元方程1122n n a x a x a x b +++=可以用一个1n -元有序数组12(,,,,)n a a a b来表示.1n ⨯矩阵和1n ⨯矩阵也可以看作有序数组.一个企业一年中从1月到12月每月的产值也可用一个有序数组1212(,,,)a a a 来表示.有序数组的应用非常广泛,有必要对它们进行深入的讨论.定义 1 n 个数组成的有序数组12(,,,)n a a a (3.1)或12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3.2)称为一个n 维向量,简称向量.一般,我们用小写的粗黑体字母,如,α,β,γ等来表示向量,(3.1)式称为一个行向量,(3.2)式称为一个列向量.数12,,,n a a a 称为这个向量的分量.i a 称为这个向量的第i 个分量或坐标.分量都是实数的向量称为实向量;分量是复数的向量称为复向量.实际上,n 维行向量可以看成1n ⨯矩阵,n 维列向量也常看成1n ⨯矩阵.下面我们只讨论实向量.设k 和l 为两个任意的常数.α,β和γ为三个任意的n 维向量,其中12(,,,)n a a a =α, 12(,,,)n b b b =β.定义 2 如果α和β对应的分量都相等,即,1,2,,i i a b i n ==就称这两个向量相等,记为α=β.定义 3 向量(a 1+b 1,a 2+b 2,…,a n +b n )称为α与β的和,记为α+β.称向量(ka 1,ka 2,…,ka n )为α与k 的数量乘积,简称数乘,记为k α.定义 4 分量全为零的向量(0, 0, …, 0)称为零向量,记为0.α与-1的数乘(-1)α=(-a 1,-a 2,…,-a n )称为α的负向量,记为-α.向量的减法定义为α-β=α+(-β).向量的加法与数乘具有下列性质: (1) α+β=β+α;(交换律) (2) (α+β)+γ=α+(β+γ);(结合律) (3) α+0=α;(4) α+(-α)=0; (5) k (α+β)=k α+k β; (6) (k +l )α=k α+l α; (7) k (l α)=(kl )α; (8) 1α=α; (9) 0α=0; (10) k 0=0.在数学中,满足(1)-(8)的运算称为线性运算.我们还可以证明:(11) 如果k ≠0且α≠0, 那么k α≠0.显然n 维行向量的相等和加法、减法及数乘运算的定义,与把它们看作1×n 矩阵时的相等和加法、减法及数乘运算的定义是一致的.对应地,我们也可以定义列向量的加法、减法和数乘运算,这些运算与把它们看成矩阵时的加法、减法和数乘运算也是一致的,并且同样具有性质(1)-(11).§2线性相关与线性无关通常把维数相同的一组向量简称为一个向量组,n 维行量组α1,α2,…,αs 可以排列 成一个s ×n 分块矩阵12s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦a a A a ,其中αi 为由A 的第i 行形成的子块,α1,α2,…,αs 称为A的行向量组.n 维列向量组β1,β2,…,βs 可以排成一个n ×s 矩阵B=(β1,β2,…,βs ),其中βj 为B的第j 列形成的子块,β1,β2,…,βs 称为B 的列向量组.很多情况下,对矩阵的讨论都归结于对它们的行向量组或列向量组的讨论.定义 5 向量组α1,α2,…,αs 称为线性相关的,如果有不全为零的数k 1,k 2,…,k s , 使1si ii k =∑a=k 1α1+k 2α2+…+k s αs =0. (3.3)反之,如果只有在k 1= k 2 = … =k s =0时(3.3)才成立,就称α1,α2,…,αs 线性无关. 换言之,当α1,α2,…,αs 是行向量组时,它们线性相关就是指有非零的1×s 矩阵 (k 1,k 2,…,k s )使1212(,,,)s s k k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0a a a .当α1,α2,…,αs 为列向量组时,它们线性相关就是指有非零的s ×1矩阵(k 1,k 2,…,k s )′使1212(,,,)s s k k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0a a a .显然单个零向量构成的向量组是成性的相关的. 例1 判断向量组12(1,0,,0),(0,1,,0),(0,0,,1)n =⎧⎪=⎪⎨⎪⎪=⎩εεε 的线性相关性.解 对任意的常数k 1,k 2,…,k n 都有k 1ε1+k 2ε2+…+k n εn =(k 1,k 2,…,k n ).所以k 1ε1+k 2ε2+…+k n εn =0当且仅当k 1=k 2=…=k n =0.因此ε1,ε2,…,εn 线性无关.ε1,ε2,…,εn 称为基本单位向量. 例2 判断向量组α1=(1,1,1), α2=(0,2,5), α3=(1,3,6)的线性相关性.解 对任意的常数k 1,k 2, k 3都有k 1α1+k 2α2+ k 3α3=(k 1+k 3,k 1+2k 2+3k 3,k 1+5k 2+6k 3).所以k 1α1+k 2α2+ k 3α3=0当且仅当131231230,230,560.k k k k k k k k +=⎧⎪++=⎨⎪++=⎩ 由于k 1=1,k 2=1,k 3=-1满足上述的方程组,因此1α1+1α2+(-1)α3=α1+α2-α3=0.所以α1,α2,α3线性相关.例3 设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1, 试证向量组β1,β2,β3也线性无关.证 对任意的常数都有k 1β1+k 2β2+k 3β3=(k 1+k 3)α1+(k 1+k 2)α2+(k 2+k 3)α3 .设有k 1,k 2,k 3使k 1β1+k 2β2+k 3β3=0.由α1,α2,α3线性无关, 故有1312230,0,0.k k k k k k +=⎧⎪+=⎨⎪+=⎩ 由于满足此方程组的k 1,k 2,k 3的取值只有k 1=k 2=k 3=0,所以β1,β2,β3线性无关.定义 6 向量α称为向量组β1,β2,…,βt 的一个线性组合,或者说α可由向量组β1,β2,…,βt 线性表出(示),如果有常数k 1,k 2,…,k t 使α=k 1β1+k 2β2+…+k t βt . 此时,也记1ti ii k ==∑a β.例4 设α1=(1,1,1,1),α2=(1,1,-1,-1),α3=(1,-1,1,-1),α4=(1,-1,-1,1), β=(1,2,1,1).试问β能否由α1,α2,α3,α4线性表出?若能,写出具体表达式.解 令β=k 1α1+k 2α2+k 3α3+k 4α4于是得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 因为1111111116011111111D ⎡⎤⎢⎥--⎢⎥==-≠⎢⎥--⎢⎥--⎣⎦, 由克莱姆法则求出1234511,,444k k k k ====-所以12345111,4444=+--βαααα即β能由α1,α2,α3,α4线性表出.例5 设α=(2,-3,0),β=(0,-1,2),γ=(0,-7,-4),试问γ能否由α,β线性表出? 解 设 γ=k 1α+k 2β 于是得方程组1122203724k k k k =⎧⎪--=-⎨⎪=-⎩由第一个方程得k 1=0,代入第二个方程得k 2=7,但k 2不满足第三个方程,故方程组无解.所以γ不能由α,β线性表出.定理 1 向量组α1,α2,…,αs (s ≥2) 线性相关的充要条件是其中至少有一个向量能由其他向量线性表出.证 设α1,α2,…,αs 中有一个向量能由其他向量线性表出,不妨设α1=k 2α2+k 3α3+…+k s αs ,那么-α1+k 2α2+…+k s αs =0,所以α1,α2,…,αs 线性相关.反过来,如果α1,α2,…,αs 线性相关,就有不全为零的数k 1,k 2,…,k s , 使k 1α1+k 2α2+…+k s αs =0.不妨设k 1≠0, 那么32123111.ss k k k k k k =----αααα 即α1能由α2,α3,…,αs 线性表出.例如,向量组α1=(2,-1,3,1),α2=(4,-2,5,4),α3=(2,-1,4,-1) 是线性相关的,因为α3=3α1-α2.显然,向量组α1,α2线性相关就表示α1=k α2或者α2=k α1(这两个式子不一定能同时成立).此时,两向量的分量成正比例.在三维的情形,这就表示向量α1与α2共线.三个向量α1,α2,α3线性相关的几何意义就是它们共面.定理 2 设向量组β1,β2,…,βt 线性无关,而向量组β1,β2,…,βt ,α线性相关,则α能由向量组β1,β2,…,βt 线性表出,且表示式是惟一的.证 由于β1,β2,…,βt ,α线性相关,就有不全为零的数k 1,k 2,…,k t ,k 使k 1β1+k 2β2+…+k t βt +k α=0.由β1,β2,…,βt 线性无关可以知道k ≠0. 因此1212tt k k kk kk=----αβββ, 即α可由β1,β2,…,βt 线性表出.设α=l 1β1+l 2β2+…+l t βt =h 1β1+h 2β2+…+h t βt为两个表示式.由α-α=(l 1β1+β2+…+l t βt )-(h 1β1+h 2β2+…+h t βt )=(l 1-h 1)β1+(l 2-h 2)β2+…+(l t -h t )βt =0和β1,β2,…,βt 线性无关可以得到l 1=h 1, l 2=h 2, …, l t =h t .因此表示式是惟一的.定义 7 如果向量组α1,α2,…,αs 中每个向量都可由β1,β2,…,βt 线性表出,就称向量组α1,α2,…,αs 可由β1,β2,…,βt 线性表出,如果两个向量组互相可以线性表出,就称它们等价.显然,每一个向量组都可以经它自身线性表出.同时,如果向量组α1,α2,…,αt 可以经向量组β1,β2,…,βs 线性表出,向量组β1,β2,…,βs 可以经向量组12,,,p γγγ线性表出,那么向量组α1,α2,…,αt 可以经向量组12,,,p γγγ线性表出.事实上,如果1,1,2,,,si ij j j k i t ===∑αβ1,1,2,,,pj jmm m lj s ===∑βγ那么111111pppsss i ij jm m ij jm m ij jm m j m j m m j k l k l k l ======⎡⎤===⎢⎥⎣⎦∑∑∑∑∑∑αγγγ.这就是说,向量组α1,α2,…,αt 中每一个向量都可以经向量组12,,,p γγγ线性表出.因而,向量组α1,α2,…,αs 可以经向量组12,,,p γγγ线性表出.由上述结论,得到向量组的等价具有下述性质:(1) 反身性:向量组α1,α2,…,αs 与它自己等价.(2) 对称性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,那么β1,β2,…,βt 也与α1,α2,…,αs 等价.(3) 传递性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,而向量组β1,β2,…,βt 又与12,,,p γγγ等价,那么α1,α2,…,αs 与12,,,p γγγ等价.§ 3线性相关性的判别定理利用定义判断向量组的线性相关性往往比较复杂,我们有时可以直接利用向量组的特点来判断它的线性相关性,通常称一个向量组中的一部分向量组为原向量组的部分组.定理 3 有一个部分组线性相关的向量组线性相关. 证 设向量组α1,α2,…,αs 有一个部分组线性相关.不妨设这个部分组为α1,α2,…,αr .则有不全为零的数k 1,k 2,…,k r 使1110,s r si ii iji i j r k k ===+=+=∑∑∑0ααα因此α1,α2,…,αs 也线性相关.推论 含有零向量的向量组必线性相关. 定理 4 设p 1,p 2,…,p n 为1, 2, …,n 的一个排列,α1,α2,…,αs 和β1,β2,…,βs 为两向量组,其中1212n ip i ip i i i in ip ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααααα=,βαα, 即β1,β2,…,βs 是对α1,α2,…,αs 各分量的顺序进行重排后得到的向量组,则这两个向量组有相同的线性相关性.证 对任意的常数k 1,k 2,…,k s 注意到列向量111221*********1122s s ss s i i i n n s sn k k k k k k k k k k =+++⎡⎤⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎣⎦∑αααααααααα和1112221122112211122n n n p p s sp sp p s sp i i i p p s sp k k k k k k k k k k =+++⎡⎤⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦∑ααααααβααα 只是各分量的排列顺序不同,因此k 1β1+k 2β2+…+k s βs =0当且仅当k 1α1+k 2α2+…+k s αs =0.所以α1,α2,…,αs 和β1,β2,…,βs 有相同的线性相关性.定理4 是对列向量叙述的.对行向量也有相同的结论.类似这样的情形,今后不再说明.定理 5 在r 维向量组α1,α2,…,αs 的各向量添上n -r 个分量变成n 维向量组β1,β2,…,βt .(1)如果β1,β2,…,βs t 线性相关,那么α1,α2,…,αs 也线性相关. (2) 如果α1,α2,…,αs 线性无关,那么β1,β2,…,βs 也线性无关. 证 我们对列向量来证明定理,设(α1,α2,…,αs )=A1,(β1,β2,…,βs )=12⎡⎤⎢⎥⎣⎦A A ,如果β1,β2,…,βs 线性相关,就有一个非零的s ×1矩阵X使(β1,β2,…,βs )X=12⎡⎤⎢⎥⎣⎦A A X=12⎡⎤⎢⎥⎣⎦X X A A =0. 从而(α1,α2,…,αs )X =A1X=0.因此α1,α2,…,αs 也线性相关,即(1)成立.利用(1),用反证法容易证明(2)也成立.引理 1 如果n 阶方阵A 的行列式等于零,那么A 的行(列)向量组线性相关.证 因|A |=0,由上章内容,用初等行变换把A 化成上三角矩阵D ,主对角线上至少有一个元素为零,即11121222000n n nn d d d dd d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦D中至少有一个d ij =0.如果d nn =0,那么D 最后一行元素全为零,可见A 中有一行可由其余行线性表出,因此,A 的行向量组线性相关.如果d nn ≠0,设D 的主对角线上元素d 11,d 22,…,d nn 中从后起第一个等于零的数为d jj .易见,对D 再施行几次初等行变换后,可得到第j 行全为零的矩阵.同样得出A 中有一行可由其余行线性表出.因此,A 的行向量组线性相关.当|A|=0时,|A′|=0,A 的列向量组可看成A ′的行向量组,得A 的列向量组也线性相关.定理 6 n 维向量组α1,α2,…,αn 线性无关的充要条件是矩阵11112122122212n n n n n nn a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A ααα 的行列式不为零(A 可逆).此时,矩阵A 的n 个列向量也线性无关.证 如果|A|≠0,(k 1,k 2,…,k n )A =0,两边同时右乘A-1得(k 1,k 2,…,k n )=0,所以α1,α2,…,αn 线性无关.反过来,如果α1,α2,…,αn 线性无关.反设|A|=0,由引理1,A 的行向量组α1,α2,…,αn 线性相关,矛盾.由上面证明可以看出,当|A|≠0时,|A′|≠0,可见A 的n 个列向量也线性无关.例6 试证明n 维列向量组α1,α2,…,αn 线性无关的充分必要条件是行列式1112121222120n n nn nn '''⎡⎤⎢⎥'''⎢⎥=≠⎢⎥⎢⎥'''⎣⎦D αααααααααααααααααα证 令矩阵A ={α1,α2,…,αn }则向量组α1,α2,…,αn 线性无关⇔行列式|A |≠0.由于[]1111212212221212n n n nnn nn ''''⎡⎤⎡⎤⎢⎥⎢⎥''''⎢⎥⎢⎥'==⎢⎥⎢⎥⎢⎥⎢⎥''''⎣⎦⎣⎦A ααααααααααααααA αααααααααα在上式两端取行列式,得|A |2=|A ′||A |=D故|A |≠0⇔D ≠0,所以α1,α2,…,αn 线性无关⇔D ≠0.定理 7 n +1个n 维向量α1,α2,…,αn +1必线性相关.证 对每个αs 添加等于零的第n +1个分量,得到n +1维向量β1,β2,…,βn +1.易见,由β1,β2,…,βn +1构成的方阵的行列式等于零,因而β1,β2,…,βn +1线性相关,由αi 与βi 的关系,易知α1,α2,…,αn +1也线性相关.推论 当m >n 时,m 个n 维向量线性相关. 讨论下列矩阵的行向量组的线性相关性:123132221;021.343201-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B C由于|B|=2≠0,因此B的行(列)向量组线性无关; 由于|C|=0,所以C 的行(列)向量组线性相关.定理 8 如果向量组α1,α2,…,αs 可由β1,β2,…,βt 线性表出且s >t ,那么α1,α2,…,αs 线性相关.证 我们不妨假定讨论的是列向量,如果α1,α2,…,αs 可由β1,β2,…,βt 线 性表出,那么()()121212i i i n n i it p p p ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦αββββββγ.令A=(γ1,γ2,…,γs ),有(α1,α2,…,αs )=(β1,β2,…,βt )A,这里γ1,γ2,…,γs 为由s 个向量组成的t 维向量组.注意到s >t ,根据推论,它们必线性相关.因此有非零s ×1矩阵(k 1,k 2,…,k s )′使112212(,,,)s s s k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0A γγγ.从而()11221212(,,,)s s s s k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0αααβββA .即有α1,α2,…,αs 线性相关.推论 1 如果向量组α1,α2,…,αs ,可由向量组β1,β2,…,βt 线性表出,且α1,α2,…,αs 线性无关,那么s ≤t .推论 2 两个线性无关的等价的向量组必含有相同个数的向量.§ 4向量组的秩与矩阵的秩定义 8 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中向这部分组任意添一个向量(如果还有的话),所得的部分组都线性相关.例7 在向量组α1=(2,-1,3,1),α2=(4,-2,5,4),α3=(2,-1,4,-1)中,α1,α2为它的一个极大线性无关组.首先,由α1与α2的分量不成比例,所以α1,α2线性无关,再添入α3以后,由α3=3α1-α2可知所得部分组线性相关,不难验证α2,α3也为一个极大线性无关组.我们容易证明定义8与下列定义8′等价.定义 8′ 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且这向量组中任意向量都可由这部分组线性表出.向量组的极大线性无关组具有以下性质:性质 1 一向量组的极大线性无关组与向量组本身等价. 性质 2 一向量组的任意两个极大线性无关组都等价.性质 3 一向量组的极大线性无关组都含有相同个数的向量.性质3表明向量组的极大线性无关组所含向量的个数与极大线性无关组的选择无关,它反映了向量组本身的特征.定义 9 向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 例如,例7中向量组α1,α2,α3的秩为2. 线性无关向量组本身就是它的极大线性无关组,所以我们有:一向量组线性无关的充要条件为它的秩与它所含向量的个数相同.我们知道每个向量组都与它的极大线性无关组等价,由等价的传递性可知任意两个等价的向量组的极大线性无关组也等价,根据定理8的推论1就有等价的向量组必有相同的秩.如果向量组α1,α2,…,αs 能由向量组β1,β2,…,βt 线性表出,那么α1,α2,…,αs的极大线性无关组可由β1,β2,…,βt 的极大线性无关组线性表出.因此α1,α2,…,αs 的秩不超过β1,β2,…,βt 的秩.定理 9 向量组的任意线性无关的部分组都可扩充为一个极大线性无关组.证 设,i i i 12καα,,α是向量组α1,α2,…,αs 中的一个线性无关的部分组,如果α1,α2,…,αs 中每个向量都可由这个部分组线性表出,那么这个部分组就是一个极大线性无关组,如果还有某向量αik +1不能被这个部分组线性表出,那么由121121i i k i l l l κ+++++ααα=0就有l k +1=0.再由原部分组线性无关就可得l 1=l 2=…=l k =l k +1=0.这样,我们就得到了一个含k +1个向量的线性无关的部分组121,i i i κ+αα,,α.重复这个过程,最后必可得到α1,α2,…,αs 的一个线性无关的部分组使向量组中每个向量都可由这个部分组线性表出,这个部分组就是一个极大线性无关组.推论 秩为r 的向量组中任意含r 个向量的线性无关的部分组都是极大线性无关组. 例8 求向量组α1=(1,-1,0,3),α2=(0,1,-1,2),α3=(1,0,-1,5),α4=(0,0,0,2)的一个极大线性无关组及秩.解 α1是α1,α2,α3,α4的一个线性无关的部分组,显然α2不能由α1线性表示,所以α1可以扩充为一个线性无关的部分组α1,α2,容易证明α3=α1+α2,但α4不能由α1,α2线性表出,所以α1,α2又可扩充为一个线性无关的部分组α1,α2,α4,从而α1,α2,α3,α4的秩为3,α1,α2,α4是它的一个极大线性无关组. 定义 10 矩阵的行秩是指它的行向量组的秩,矩阵的列秩是指它的列向量组的秩.为了证明一个矩阵的行秩等于列秩,我们引入矩阵的子式的概念.定义 11 在一个s ×n 矩阵A 中任意选定k 行和k 列,位于这些选定的行和列的交点上的k 2个元素按原来的次序所组成的k ×k 级矩阵的行列式,称为A 的一个k 级子式.在定义中,当然有k ≤m in (s ,n )(s ,n 中较小的一个). 例9 在矩阵11361012400005301102⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A 中,选第1,第3行和第3,第4列,它们交点上的元素所组成的二级行列式361505⎡⎤=⎢⎥⎣⎦就是一个2级子式,易见,A 共有2级子式的个数为2245C C 60=.引理 2 设r ≤n .n 维向量组α1,α2,…,αr 线性无关的充要条件是:矩阵111212122212n n r r rn r a a a a a a a a a 12⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααA α 中存在一个不为零的r 级子式.证 充分性 当A 中存在一个不为零的r 级子式时,由定理6,定理5易知,A 的r 个行向量α1,α2,…,αr 线性无关.必要性 对向量的个数r 用数学归纳法证明.当r =1时,因α1线性无关,故α1≠0,A 中有一个不为零的1级子式. 假设当r =k 时,结论成立.当r =k +1≤n 时,因α1,α2,…,αk +1线性无关,其部分组也线性无关.由归纳假设,矩阵111212122212n n k k k kn a a a a a a a a a 12⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααB α 中存在不为零的k 级子式,不妨设1112121222120k k k k kk a a a aa a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦, 令γi =(a i 1,a i 2,…,a ik ),k 12⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦γγγC 是一个k 阶可逆矩阵,i =1,2,…,k+1.显然,γi 是由αi 的前k 个分量构成,设()11,,,k κc c c -2+1=γC ,易见()1,,,k c c c 2是一组确定的数,且()()111,,,,,,κk k k c c c c c c 2+122⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦γγγγC ,即()11,,,κk k c c c +122-=0γγγγ.(3.4) 令()()111,,,κk k n c c c b b b +1222=-+++=βαααα,即有b j =a k +1,j -(c 1a 1j +c 2a 2j +…+c k a kj ), j =1,2,…,n .由于γ1,γ2,…,γk ,γk +1分别由α1,α2,…,αk ,αk +1的前k 个分量构成,根据(3.4)式,β的前k 个分量应为零,即b 1=b 2=…=b k =0.又因为α1,α2,…,αk ,αk +1线性无关,所以β≠0. 因此,必有某b j ≠0(k <j ≤n ).于是有k +1级子式11121111121121222221222212121,11,21,1,0000k j kj k j k j j k k kk kj k k kk kj k k k kk j j a a a a a a a a a a a a a a a a b a a a a a a a a a a a a b ++++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==≠⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦C . 由定理6及引理2,可以看出,如果A 有一个k 级子式不为零,那么这个k 级子式所在的行向量组线性无关,所在的列向量组也线性无关.定理 10 矩阵的行秩等于列秩.证 设矩阵A 的行秩为r 1,A 的列秩为r 2,那么,A 中有r 1个行向量线性无关,由引理2,A 中有一个r 1级子式D 不为零,那么A 中子式D 所在的r 1个列向量也线性无关;因而,r 1≤r 2.这说明,任意矩阵的列秩大于或等于行秩,由此,A ′的列秩(A 的行秩r 1)≥A ′的行秩(A 的列秩r 2),即有r 1≥r 2.因此r 1=r 2.下面统称矩阵的行秩和列秩为矩阵的秩.矩阵A 的秩一般记为R (A).规定零矩阵的秩为0,由引理2,可得定理 11 矩阵A 的秩为r 的充要条件是它有一个不为零的r 阶子式,而所有r +1阶子式全为零,这时,这个非零的r 级子式所在的行和列就分别为A 的行向量组和列向量组的极大线性无关组.例10 已知矩阵111111111111αa a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 的秩为3,求a 的值. 解 R (A )=3,即A 中非零子式的最高阶数为3,故有1111111111111(3)111111111111αa a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A 11110100(3)00100001a a a a ⎡⎤⎢⎥-⎢⎥=+⎢⎥-⎢⎥-⎣⎦=(a +3)(a -1)2=0 由此得a =-3或a =1.当a =1时,显然有R (A )=1;而当a =-3时,A 的左上角的3阶子式为311131160113-⎡⎤⎢⎥-=-≠⎢⎥⎢⎥-⎣⎦即A 中存在非零的3阶子式,且不存在更高阶的非零子式,故当且仅当a =-3时,R (A )=3.§5 矩阵的初等变换由上节介绍的方法求阶数较高的矩阵的秩的计算量很大,本节来介绍一种简单有效的求矩阵的秩的方法,即利用矩阵的初等变换求出矩阵的等价标准型,矩阵的秩就等于它的等价标准型的秩.下面我们回顾一下矩阵的初等行变换.定义 12 下面的三种变换称为矩阵的初等行变换:(1) 对换矩阵两行的位置(对换第i 行和第j 行的位置记为r (i ,j )).(2)矩阵的某行所有元素同乘以一个非零常数(第i 行乘以k 记为r (i (k ))).(3) 把矩阵一行所有元素的k 倍加到另一行对应的元素上去[第i 行的k 倍加到第j 行上去记为r (j +i (k ))].显然,矩阵的初等行变换都是可逆的,且其逆变换也是同类的初等行变换.r (i ,j )的逆变换仍为r (i ,j );r (i (k ))的逆变换为r (i (1/k ));r (j +i (k ))的逆变换为r (j +i (-k )).定理 12 如果矩阵A经过有限次初等行变换变为B ,则A 的行向量组与B 的行向量组等价,而A 的任意k 个列向量与B中对应的k 个列向量有相同的线性关系.证 当A 经过一次初等行变换变为B 时,B 的行向量组显然可由A 的行向量组线性表出,对A 的任意k 个列向量α1,α2,…,αk ,设它们所对应的B 的列向量依次为12k'''a ,a ,,a ,如果α1,α2,…,αk 线性相关,就有不全为零的常数12,,,k l l l 使1122k k l l l +++a a a =0.由12k'''a ,a ,,a 各分量与α1,α2,…,αk 各分量的关系容易得出 1122k kl l l '''+++a a a =0, 因此12k'''a ,a ,,a 也线性相关.由初等行变换的逆变换也是初等行变换可以知道A的行向量组也可由B的行向量组线性表出,并且由12k'''a ,a ,,a 线性相关也可以导出α1,α2,…,αk 线性相关,此时命题成立.当A要经若干个初等变换变为B时,用数学归纳法容易证明命题也成立.例11 求下列向量组α1=(1,-2,2,3), α2=(-2,4,-1,3), α3=(-1,2,0,3), α4=(0,6,2,3),α5=(2,-6,3,4) 的一个极大线性无关组与秩.解 作12102242662102333334--⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥⎣⎦A , 对A作初等行变换得(21(2))(31(2))(2,3)(41(3))(3,4)121212102000620322103021096320933200062r r r r r ++-+-----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦A (32(3))12102032210003100062r +---⎡⎤⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥-⎣⎦(43(2))12102032210003100000r +--⎡⎤⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥⎣⎦. (3.5) 上面最后一个矩阵(3.5)满足:从每一行的第一个元素到第一个非零元素下面全为零,这些零的排列像一个阶梯,每个阶梯都只有一行,它称为一个行阶梯矩阵.易见,行阶梯矩阵(3.5)中有一个3级子式不为零,而所有4级子式全为零,故矩阵(3.5)的秩为3,它的第1、2、4列线性无关,所以R (A)=3,且R (α1,α2,α3,α4,α5)=3,α1,α2,α4为该向量组的一个极大线性无关组.对(3.5)继续进行初等行变换还可化为更简单的形式:1(2())31(3())312102221013331000130000r r ---⎡⎤⎢⎥⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦矩阵(3.5) (12(2))2(23())311610039210103910001300000r r ++-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥−−−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦.(3.6) (3.6)仍是一个行阶梯形矩阵,但它的每一非零行的第一个非零元素为1,且这些元素所在的列的其他元素都为0,这个矩阵称为矩阵A的行最简形.例12 求向量组α1=(1,4,1,0,2),α2=(2,5,-1,-3,2),α3=(0,2,2,-1,0), α4=(-1,2,5,6,2)的一个极大无关组,并把不属于极大无关组的向量用该极大无关组线性表出.解 把向量组按列排成矩阵A ,利用初等行变换把A 化为行最简形矩阵B .1201120145220326112503260316031622020204⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A1201100301020102001000100000000000000000-⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦B 易见B 的第1,2,3列线性无关,由于A 的列向量组与B 的对应的列向量组有相同的线性组合关系,故与其对应的矩阵A 的第1,2,3列线性无关,即α1,α2,α3是该向量组成的一个极大无关组.由矩阵B 易得α4=3α1-2α2.求向量组的极大无关组时,不管所给的是行向量组还是列向量组,都要按列排成矩阵再进行初等行变换.对应于矩阵的初等行变换,我们还可以定义矩阵的初等列变换.对矩阵的初等列变换c (i ,j ),c (i (k ))和c (j +i (k ))也有类似于矩阵的初等行变换的结论.所以,我们同样可以通过求矩阵的列阶梯形矩阵和列最简形来求矩阵的秩以及行向量组的极大线性无关组.矩阵的初等行变换和初等列变换统称为初等变换.事实上,我们在求矩阵的秩时,经常对矩阵既进行初等行变换也进行初等列变换,使计算过程得到简化.定义 13 如果矩阵A 经有限次初等变换化成B ,就称矩阵A 与B 等价. 我们容易证明,矩阵的等价关系具有下列性质: (1) 反身性: A 与A 等价.(2) 对称性: 如果A 与B 等价,那么B 与A 等价.(3) 传递性: 如果A 与B 等价,B 与C 等价,那么A 与C 等价. 定理 13 如果矩阵A 与B 等价,那么R (A )=R (B). 对矩阵(3.6)再进行初等列变换可得1(31())316(51())92(32())31(52())(3,4)91(54())31000010000010000100000010001000000000000r r r r c r +-+-+-++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵(3.6). (3.7)矩阵(3.7)的左上角为一个单位矩阵E 3,它的阶数就是A 的秩,其他各分块矩阵都是零矩阵, 矩阵(3.7)就称为A 的等价标准型.事实上,我们有如下定理定理 14 每个矩阵都有等价标准型,矩阵A 与B 等价,当且仅当它们有相同的等价标准型.推论 两个同型矩阵等价的充分必要条件是它们的秩相等.当A 为n 阶可逆方阵时,R (A)=n ,所以A 的等价标准型为n 阶单位矩阵.由于可逆方阵的秩等于阶数,所以可逆方阵又称为满秩方阵,而奇异方阵就称为降秩方阵.§ 6初等矩阵与求矩阵的逆这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在此基础上给出用初等变换求逆矩阵的方法.定义 14由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.显然,初等矩阵都是方阵.互换E 的第i 行与第j 行(或者互换E的第i 列和第j 列)的位置,得11011(,)11011i i j j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行第行E ; 用常数k 乘E 的第i 行(或第i 列)得11(())11i k i k ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行E ; 把E的第j 行的k 倍加到第i 行(或把第i 列的k 倍加到第j 列)得11(())11i k i j k j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行第行E . 这三类矩阵就是全部的初等矩阵,显然111()(),(())(())i j i j i k i k--==,,E E E E ,1(())(())i j k i j k -+=+-E E .定理15 对一个s ×n 矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s ×s 初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n ×n 初等矩阵.证 我们只看行变换的情形,列变换的情形可同样证明.令B=(b ij )s ×s 为任意一个s ×s 矩阵,A1,A2,…,As 为A 的行向量组,由矩阵的分块乘法,得111122121122221122s s s s s s ss s b b b b b b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A +A ++A A +A ++A BA A +A ++A ,令B=E (i ,j ),得1()j i s i j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,A A E A A A ,这相当于把A 的i 行与j 行互换;令B=E (i (k )),得1(())i s i k k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦A E A A A ,这相当于用k 乘A 的第i 行;令B=E (i +j (k )),得1(())i j j s k i j k ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A A +A E A A A ,这相当于把A 的第j 行的k 倍加到第i 行.推论1 矩阵A 与B 等价的充分必要条件是:有初等方阵P1,P2,…,Ps ,Q1,…,Qt使A=P1P2…Ps BQ1Q2…Qt.推论2 n×n矩阵A 可逆的充分必要条件是:它能表成一些初等矩阵的乘积. 推论3 两个s×n矩阵A 、B 等价的充分必要条件是:存在可逆的s×s矩阵P 与可逆的n ×n 矩阵Q 使A=PBQ.推论4 可逆矩阵总可以经过一系列初等行变换化成单位矩阵.证 如果A 是可逆方阵,由推论2知道它可以写成一些初等矩阵的乘积:A=Q1Q2…Qm.因此11121m---=Q Q Q A E .由于初等矩阵的逆矩阵仍为初等矩阵,而A 左乘初等矩阵就相当于对A 施行初等行变换,所以A 可以经初等行变换化为单位矩阵.值得注意的是,如果有初等矩阵P1,…,Pm使Pm…P1A=E,那么A-1=Pm…P1=Pm…P1E,这说明,如果用一系列初等行变换可把可逆矩阵A 化为单位矩阵,那么同样地用这一系列初等行变换去化单位矩阵,就得到A -1.如果我们把A ,E 这两个矩阵凑在一起作成一个n ×2n 矩阵.(A┊E),按矩阵的分块乘法可得Pm…P1(A┊E)=(Pm…P1A┊Pm…P1E )=(E ┊A-1).这就给我们提供了一个具体的求可逆矩阵A 的逆矩阵的方法:作n×2n 矩阵(A ┊E ),用初等行变换把它的左边一半化成E ,这时,右边的一半就是A -1.例13 设012114210⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A ,求A-1.解 对(A┊E)作初等行变换012100()114010210001⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A E(1,2)114010012100210001r ⎡⎤⎢⎥−−−→⎢⎥⎢⎥-⎣⎦ (31(2))114010012100038021r +-⎡⎤⎢⎥−−−−→⎢⎥⎢⎥---⎣⎦ (32(3))114010012100002321r +⎡⎤⎢⎥−−−−→⎢⎥⎢⎥--⎣⎦(23(1))(13(2))(12(1))100211010421002321r r r +++--⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥--⎣⎦1(3())210021101042131001122r -⎡⎤⎢⎥-⎢⎥−−−−→-⎢⎥⎢⎥--⎢⎥⎣⎦.于是121142131122-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎣⎦A .当然,同样可以证明,可逆矩阵也能用初等列变换化成单位矩阵,这就给出了用初等列变换求逆矩阵的方法.§7 向量空间定义15 设V 为n 维向量组成的集合.如果V 非空,且对于向量加法及数乘运算封闭,即对任意的α,β∈V 和常数k 都有α+β∈V,kα∈V,就称集合V 为一个向量空间.例14 n 维向量的全体R n构成一个向量空间.特别地,三维向量可以用有向线段来表示,所以R 3也可以看作以坐标原点为起点的有向线段的全体.例15 n 维零向量所形成的集合{0}构成一个向量空间.例16 集合V ={(0,x2,x3,…,xn)}|x2,x3,…,xn∈R }构成一个向量空间.例17 集合V ={(x1,x2,…,xn)|x1+x2+…+xn=1}不构成向量空间. 例18 设α1,α2,…,αm为一个n 维向量组,它们的线性组合V={k1α1+k2α2+…+k m αm |k 1,k 2,…,k m ∈R }构成一个向量空间.这个向量空间称为由α1,α2,…,αm所生成的向量空间,记为L (α1,α2,…,αm).例19 证明由等价的向量组生成的向量空间必相等.证 设α1,α2,…,αm和β1,β2,…,βs 是两个等价的向量组.任意的α∈L(α1,α2,…,αm)都可经α1,α2,…,αm线性表出.由向量组α1,α2,…,αm又可经β1,β2,…,βs 线性表出可以知道α也能经β1,β2,…,βs 线性表出,即有α∈L(β1,β2,…,βs ).由α的任意性得L (α1,α2,…,αm)⊆L (β1,β2,…,βs ).同理可证L (β1,β2,…,βs )⊆L ().于是L (α1,α2,…,αm)=L (β1,β2,…,βs ).定义16 如果V 1和V2都是向量空间且V 1⊆V2,就称V1是V2的子空间.任何由n 维向量所组成的向量空间都是R n的子空间.R n和{0}称为R n的平凡子空间,其他子空间称为R n的非平凡子空间.定义17 设V 为一个向量空间.如果V 中的向量组α1,α2,…,αr 满足(1)α1,α2,…,αr 线性无关;(2) V 中任意向量都可经α1,α2,…,αr 线性表出,那么,向量组α1,α2,…,αr 就称为V 的一个基,r 称为V 的维数,并称V 为一个r 维向量空间.如果向量空间V 没有基,就说V 的维数为0,0维向量空间只含一个零向量.如果把向量空间V 看作向量组,那么V 的基就是它的极大线性无关组,V 的维数就是它的秩.当V 由n 维向量组成时,它的维数不会超过n .例20 设 ()123221212122-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A a ,a ,a , ()12140342⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦B ,ββ, 验证α1,α2,α3是R 3的一个基并将β1,β2用这个基线性表出.解 由|A|≠0可以知道α1,α2,α3线性无关,因此α1,α2,α3是R 3的一个基.设β1=x11α1+x21α2+x31α3,β2=x12α1+x22α2+x32α3,即(β1,β2)=(α1,α2,α3)111221223132x x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 那么 ()1112112122123132x x x x x x --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,=AB ββ.如果P 1,P2,…,Pl为初等矩阵,使P1P2…PlA=E,则 A-1=P1P2…Pl且11122122123132l x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P P P B .因此只需对矩阵(A┊B)作初等行变换,当把A 变为E 时,B 就变成了A-1B.(A┊B)=221142*********-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦(1,3)122422*********r --⎡⎤⎢⎥−−−→-⎢⎥⎢⎥-⎣⎦(21(2))(31(2))122420368706378r r ++--⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥-⎣⎦(1(1))(32(2))122420368700996r r -+----⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥--⎣⎦1(3())9(23(6))(13(2))21202303023200113r r r -+-+⎡⎤--⎢⎥⎢⎥−−−−→-⎢⎥⎢⎥-⎢⎥⎣⎦1(2())3(12(2))2410033201013200113r r +⎡⎤⎢⎥⎢⎥⎢⎥−−−−→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以 112321232242,3333--++=a a a =a a a ββ. 习 题 三1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3.2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.3. 判断下列命题是否正确:(1) 若向量组α1,α2,…,αm线性相关,那么其中每个向量可经其他向量线性表示.(2) 如果向量β1,β2,…,βs 可经向量组α1,α2,…,αm线性表示且α1,α2,…,αm 线性相关,那么β1,β2,…,βs 也线性相关.(3) 如果向量β可经向量组α1,α2,…,αm线性表示且表示式是惟一的,那么α1,α2,…,αm线性无关.(4) 如果当且仅当λ1=λ2=…=λm=0时才有λ1α1+λ2α2+…+λm αm +λ1β1+λ2β2+…+λmβm=0,那么α1,α2,…,αm线性无关且β1,β2,…,βm 也线性无关.(5) α1,α2,…,αm线性相关,β1,β2,…,βm 也线性相关,就有不全为0的数λ1, λ2,…,λm使λ1α1+λ2α2+…+λm αm =λ1β1+λ2β2+…+λmβm.(6) 如果R (A )=r,则A 的r-1阶子式全为0.(7) 如果R (A )=r,则A 的r阶子式不为0.(8) 如果由矩阵A 划去一行得到B ,则R (A )>R (B ).(9) 如果P 为一个可逆s×s方阵,Q 为一个可逆n×n方阵,A 为一个s×n阵,那么R (A )=R (PAQ).4. 判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3);(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).5. β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1,证明向量组β1,β2,β3,β4线性相关.6. 设向量组α1,α2,…,αr 线性无关,证明向量组β1,β2,…,βr 也线性无关,这里βi=α1+α2+…+αi.7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵.8. αi=(αi1,αi2,…,αin),i =1,2,…,n.证明:如果|aij|≠0,那么α1,α2,…,αn 线性无关.。

线性代数 第3章 主要学习内容

线性代数 第3章 主要学习内容

求解线性方程组 首先要判断线性 方程组是否有解
若无解则结束
若有解则利用高斯消 元法化简方程组并求 得全体未知数的取值
实际上,高斯消元法通过对线性方程 组进行行变换,将其转化为三角形方 程组,然后再通过回代法求解出未知 数的值,由以下例题加以说明。
3.1 高斯消元法求解线性方程组
例1.《九章算术》第八章中介绍“方程术”的案例为:
方程组(3-11)的解为:
3.3 高斯消元法求逆矩阵
思考:可逆矩阵的乘积矩阵是否可逆?
3.3 高斯消元法求逆矩阵
解:由题意 根据例8的结果知
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
回顾与小结
1.逆矩阵的定义; 2.用逆矩阵的定义求方阵的逆矩阵; 3.用高斯消元法求方阵的逆矩阵。
“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉, 实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾实一秉各几何?”
将其翻译过来就是:现有上等谷子3捆,中等谷子2捆,下等谷子1捆,果实共计39斗; 上等谷子2捆,中等谷子3捆,下等谷子1捆,果实共计34斗;上等谷子1捆,中等谷子2捆, 下等谷子3捆,果实共计26斗,问上等、中等、下等谷子1捆分别是几斗?
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:
求解线性方程组首先要 判断线性方程组是否有 解,若无解则结束;若 有解,则利用高斯消元 法化简方程组并求得全 体未知数的取值
3.1 高斯消元法求解线性方程组
例3 求解线性方程组
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:

《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答

《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答

⎯r⎯→
⎢⎢0
−1
2
6 −4⎥⎥ ⎯r⎯→
⎢⎣−1 0 2 5 −3⎥⎦
⎢⎣0 0 1 7 −3⎥⎦
⎡1 0 0 9 −3⎤ ⎢⎢0 1 0 8 −2⎥⎥ ⎢⎣0 0 1 7 −3⎥⎦
5
⎡9 −3⎤ 所以 X = (E − A)−1 B = ⎢⎢8 −2⎥⎥
⎢⎣7 −3⎥⎦

3.9
方程组
⎪⎨⎧ax1x1++axx22
⎢⎣1 0 1⎥⎦ 可得 R( A) = 2 .故 R( A2 + 2A) = R( A( A + E)) = R( A) = 2 .
例 3.6 设 A* 是 n 阶矩阵 A 的伴随矩阵,证明
(1) A* = A n−1 ,
⎧n, R( A) = n; (2) R( A*) = ⎨⎪1, R( A) = n −1;
⎢ ⎢
M
M
M
M
⎥ ⎥
⎢⎣a a a L a⎥⎦
(A) 1
1
(B)
1− n
(C) -1
1
(D)
n −1
解 因 为 R( A) = n −1 , 所 以 A = 0 . 又 A = (1− a)n−1[(n −1)a +1] , 故 a = 1 或
a = 1 .当 a = 1 时,易知 R( A) = 1 ,当 a = 1 时, R( A) = n −1.
⎡ x1 ⎤ ⎡− 2c1 + c2 − 1⎤
⎢ ⎢
x2
⎥ ⎥
⎢ ⎢
4c1 − 2c2
⎥ ⎥
⎡− 2⎤
⎢ ⎢
4
⎥ ⎥
⎡ 1 ⎤ ⎡− 1⎤
⎢⎢− 2⎥⎥

线性代数第三章

线性代数第三章

例4 向量组 α1 , α 2 ,⋯ , α s 中的 任意一个向量 α j ( j = 1, 2,⋯ , s ) 都可 由该向量线性表示, 由该向量线性表示,因为 α j = 0α1 + ⋯+ 1α j + ⋯+ 0αs
例题4 例题 详见教材85页 详见教材 页
(例5 + 例6) )
定义3.3.2给定向量组 给定向量组 定义
例6
设有线性方程组
x1 + x2 − 2 x3 + 3x4 = 0 2 x + x − 6 x + 4 x = −1 1 2 3 4 3x1 + 2 x2 + ax3 + 7 x4 = −1 x1 − x2 − 6 x3 − x4 = b
讨论当 a , b 为何值时, 为何值时, 方程组有解?( ?(2 无解? (1) 方程组有解?(2)无解? (3)当有解时,试求出其解。 当有解时,试求出其解。
0 = (0, 0,⋯ , 0)
n维向量 α = (a1 , a2 ,⋯ , an ) 的各分量都取相反数组成的向 维向量 量称为的负向量, 量称为的负向量,记作
−α = (−a1 , −a2 ,⋯ , −an )
α 定义3.2.3 如果 维向量 = (a1 , a2 ,⋯ , an ) 如果n维向量 定义
3、仅含有两个向量的向量组线性相关的充分必要条件是这两个向量的 、 对应分量成比
定理3.3.1 向量组 A : α 1 , α 2 , ⋯ , α m 线性相关当且仅当以 A = (α1 , α 2 ,⋯ , α m ) 定理 为系数矩阵的齐次线性方程组 AX
=0
有非零解。 有非零解。
推论3.3.1向量组 A : α 1 , α 2 , ⋯ , α n 线性相关当且仅当矩阵 A = (α1 , α 2 ,⋯ , α n ) 向量组 推论 的行列式值为零。 的行列式值为零。 定理3.3.2向量组 A : α1 , α2 ,⋯, αm (m ≥ 2) 线性相关的充要条件是向量组A: α1,α2 ,⋯,αm 向量组 定理 中至少有一个向量可由其余向量线性表示。 中至少有一个向量可由其余向量线性表示。

线性代数课件第三章

线性代数课件第三章
的元素都为零, 则称这个矩阵为标准形矩阵.
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.

①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中

线代第三章

线代第三章
例1:3维向量的全体 R3 是一个向量空间。 n维向量的全体 Rn ,也是一个向量空间。
6
例2: 判别下列集合是否为向量空间.
(1)V1 x 0, x2, , xn T x2, , xn R
(2)V2 x 1, x2, , xn T x2, , xn R
解: (1) 0,a2, ,an T , 0,b2, ,bn T V1 有 0,a2 b2 , ,an bn T V1 R,有 0,a2, ,an T V1.
分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量.
以后我们用小写希腊字母 , , 来代表向量。
2
向量通常写成一行: a1,a2 , ,an 称为行向量。
有时也写成一列:
a1
a2
an
称为列向量。 它们的区别 只是写法上 的不同。
分量全为零的向量 0,0, ,0 称为零向量。
所以V是一个向量空间。 (这个向量空间成为由向量a,b生成的向量空间)
一般地,由向量组 a1,a2 , ,am所生成的向量空间为
V x 1a1 2a2 mam 1 ,2 ,,m R
8
1.线性组合与线性表示
二. 线性相关性 1. 线性组合与线性表示
定义1:给定向量组 A :1,2 ,
2.向量组等价 3.线性相关、无关 4.判断线性相关性的定理
所以,V1 是向量空间。
(2) V2 不是向量空间。
因为若 1,a2 ,,an T V2 ,
则2 2,2a2 ,,2an T V2 . 7
例3:设 a,b为两个已知的n维向量,判断集合
V x a b , R 是否为向量空间.
解: x1 1a 1b, x2 2a 2b V 有x1 x2 (1 2 )a (1 2 )b V , k R,有kx1 (k1 )a (k1 )b V .

线代第三章教材

线代第三章教材

(I)
x1
6x1
− −
8
x2 x2
+ +
3x3 20x3
= 3, = 12,


5x1 −
x2
+
6 x3
= 2.

1 −1 3 3
= A1
6
−8
20
12

5 −1 6 2
显然,交换方程①与方程③的位置 ⇔ 交换 A 的第 1、3 行.
99
(2)在方程组(I)中,方程②两端乘以
பைடு நூலகம்1 2
.
am1 am2 amn
xn
bm
显然,线性方程组的解由其系数矩阵 A 及常数项矩阵 b 唯一确定.

a11 a12 a1n b1
=A
(= A b)
a21
a22
a2n
b2

am1 am2 amn bm
A 称为线性方程组(3.1)的增广矩阵.
(3.1)
对于方程组(3.1),若以 n 个数组成的有序数组 k1, k2 ,, kn 替代未知量 x1, x2 ,, xn 使方程
此外,若将方程组中的某两个方程交换位置,也不会改变方程组的同解性. 因此以下三 种变换统称为线性方程组的同解变换:
(1)交换某两个方程的位置 (2)方程组两端同乘以某一非零数; (3)将某一方程两端乘以非零数,再加到另一方程上去.
3.1.3 线性方程组的同解变换与其增广矩阵变化的对应关系
对线性方程组实施同解变换,方程组的增广矩阵将发生相应的改变.

(3)在方程组(II)中,方程③两端乘以 (−3) ,再加到方程④上,得方程组(III).方程

线性代数第三章

线性代数第三章

一、 引例ຫໍສະໝຸດ 例 求解线性方程组 2 x1 − x2 − x3 + x4 = 2 , x + x − 2x + x = 4 , 1 2 3 4 4 x1 − 6 x2 + 2 x3 − 2 x4 = 4, 3x1 + 6 x2 − 9 x3 + 7 x4 = 9.

(1) ①↔② ③÷2
1 2 1 0 0 0 − 1 3 0 0 0 5
1 3 0 − 2 0 0 0 0 1 4 0 0 0 0 3 0 0 1 3 0 1 0 0 0
2. 重要结论 定理 每一个矩阵都可以经过单纯的初等行
变换化为行阶梯形矩阵. 变换化为行阶梯形矩阵.
二、 初等变换的定义
定义1 下面三种变换称为矩阵的初等行变换 定义1 下面三种变换称为矩阵的初等行变换: 初等行变换:
(i) 对调两行(对调 i, j 两行, 记作 ri ↔ rj ); 对调两行( 两行, (ii) 以数 k ≠ 0 乘以某一行中的所有元素 (第 i 行乘以 k , 记作 ri × k ); (iii) 把某一行所有元素的 k倍加到另一行对应 的元素上去 (第 j 行的 k倍加到第 i 行上,记作 ri +krj). 行上,
五、行最简形矩阵和标准形矩阵
定义 一个行阶梯矩阵若满足
(1) 每个非零行的第一个非零元素为 1 ; (2) 每个非零行的第一个非零元素所在列 的其它元素全为零, 的其它元素全为零, 则称之为行最简形矩阵.
定义 如果一个矩阵的左上角为单位矩阵, 如果一个矩阵的左上角为单位矩阵,
其它位置的元素都为零, 其它位置的元素都为零, 则称这个矩阵为标准形
如果矩阵 A 经有限次初等列变换变成矩阵 B , 就称

线性代数第3章

线性代数第3章
第三章 n维向量
与线性方程组解的结构
第一节 第二节 第三节 第四节 第五节
n维向量及其线性运算 向量组的线性相关性和线性无关性 向量组的秩 齐次线性方程组 非齐次线性方程组
第一节 n维向量及其线性运算
线性代数
第三章 n维向量与线性方程组解的结构
第1节 n维向量
定义1 设 a1,a2 ,,an 为数域F中的n个数,则由这
因此结论成立. 此例的结果表明了向量的线性表出关系具有传递性.
线性代数 第三章 n维向量与线性方程组解的结构 第2节 向量组线性关系
定义2 一个向量组 α1,α2 ,,αs (s ≥ 1),如果存在
一组不全为零的常数 k1, k2 ,, ks,使得
k1α1 + k2α2 + + ksαs = 0,就称向量组 α1,α2 ,,αs 线性相关. 若 α1,α2 ,,αs 不线性相关,就称 α1,α2 ,,αs 线性无关.
n个数组成的有序数组 (a1,a2 ,,an ) 称为n维向量,
数 a1,a2 ,,an 为该向量的分量,
记作α
(= a1,a2 ,,an )行向量,或α
a1
a2
列向量
an
注(1):分量均为0的n维向量称为n维零向量, 记作 0n = (0,0,,0) T.
线性代数
第三章 n维向量与线性方程组解的结构
线性表出? = 设 αi
a1i = a2i , (i
ani
1,= , s) β
b1
b2
bn
线性代数 第三章 n维向量与线性方程组解的结构 第2节 向量组线性关系
b1 = b2
bn
a11 a12
ans

线性代数第三章知识要点

线性代数第三章知识要点

本若请本若请本若请节想本单若请节想本单若请节想本单若内请结节击想本单若内请结节击想本单若内请结节击想本 本容单若 若束内请 请返结本 本若 若节击想请 请本容单若束内请返结本 本若 若节击想请 请本容单若束内请返结节 节已击想 想本本容单 单若回束节 节想想内请返结单单节已击想本本容单若回束节 节想想内请返结单 单节已击想本本容单若回束内 内结请返结 结堂节已击 击想按本内 内结结本容单若回束击击内结请返结堂节已击想按本内 内结结本容单若回束击 击内结请返结堂节已击想按本本容 容束单若回束 束课内结请返 返结钮堂容 容束束节已击想按本返返本容束单若回束课内结请返结钮堂容 容束束节已击想按本返 返本容束单若回束课内结请返结钮堂节已 已击想按本 本,容束单回 回束课.已 已本本内结!返结钮堂回回节已击想按本,容束单回束课.已 已本本内结!返结钮堂回 回节已击想按本,容束单回束课.内结 结!返结钮堂 堂已击按 按本,结 结堂堂容束回束课.按按内结!返结钮堂已击按本,结 结堂堂容束回束课.按 按内结!返结钮堂已击按本,容束 束回束课 课.结!返钮 钮堂束 束课课已按本,钮钮容束回束课.结!返钮堂束 束课课已按本,钮 钮容束回束课.结!返钮堂已按本,,束回课..,,结!!钮堂..已按本,!!束回课.,,结!钮堂..已按本,!!束回课.结!钮堂按,束课.结!钮堂按,束课.结!钮堂按,束课.!钮,束课.!钮,束课.!钮,.!,.!,.!
2. 矩阵的秩 (1) 定义 定义 8 设在矩阵 A 中有一个不等于0 的 r 阶 子式 D, 且所有 r + 1 阶子式(如果存在的话)全等 于 0 , 那么 D 称为矩阵 A 的最高阶非零子式, 数 r 称为矩阵A 的秩, 记作 R(A),并规定零矩阵的秩等 于0. (2) 定理 定理 3 若 A ~ B , 则 R(A) = R(B).

线性代数第三章3.1,3.2,3.3

线性代数第三章3.1,3.2,3.3


an1 an, j1 bnn an, j1 ann

Aj
线性代数 第三章 §3.1,3.2,3.3 (行列式展开法则)
xj

Aj A
3
例1 用Cramer则解方程组
2 x1 x2 5 x3 x4 8,

x1 3 x2 6 x4 9, 2 x2 x3 2 x4 5,
7 7 12
c1 2c2 c3 2c2
3 5 3 0 1 0
7 7 2
3 3

27,
7 2
8 1 5 1 9 3 0 6 D1 5 2 1 2 0 4 7 6
81,
线性代数 第三章 §3.1,3.2,3.3
2 8 5 1 1 9 0 6 D2 0 5 1 2 1 0 7 6 108,
本节主要讨论方程的个数与未知量的个数相等时
线性方程组解的解法.
方程的个数与未知量的个数不相等时线性方程组 解的解法在3.3节讨论 .
线性代数 第三章 §3.1,3.2,3.3
1
定理3.1 (克莱姆法则 )如果方程组系数行列式
a11 a12 ... a1n
A a21 a22 ... a2n 0 ... ... ... ...
2
证明: 对于该线性方程组Ax b,若 A 0, A可逆,且
A1
A A
,由Ax b得x
A1b
A b A
(左乘)
A11
而Ab A12
A1n
A21 A22
A2n

An1 An2
Ann

b1 b2
所以,线性方 程组的解唯一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程组向量形式 x11+x22+…+xnn =0 令 Amn =(1,2,…,n) ,x=(x1,x2,…,xn)T
方程组矩阵形式 Amn x = 0
首页 上页 返回
… amn
a1n a2n
=0
(2)
(3)
下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
一. 齐次线性方程组有非零解的条件
首页
上页
返回
下页
结束

第三章 线性方程组
§3.2 齐次线性方程组
小练习 设A为sn矩阵,则齐次线性方程组Ax = 0有非
零解的充分必要条件是
(
D
)
(A) A的行向量组线性无关;(B) A的列向量组线性无关; (C) A的行向量组线性相关;(D) A的列向量组线性相关; 齐次线性方程组Amn x = 0有非零解的判定过程 行 初等 阶 A 行变换 梯 形
首页 上页 返回 下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
思考本节开始时提出的第二个问题
若齐次方程组有解, 则解是否唯一? 分析:若Ax = 0有非零解, 则对任意数k, k 都是 Ax = 0的解, 即此时方程组的解是不唯一的. 若Ax = 0的解是唯一的, 则此时方程组只有零解.
非齐次线性方程组(nonhomogeneous ~) 解(to solve, solution) 解集(solution set),
首页 上页 返回
解向量(solution vector), 相容(consistent)
下页 结束 铃
a11 a12 … a1n a21 a22 … a2n 设A = … … … … , x = am1 am2 … amn
定理3.1. Amn x = 0有非零解 1,2,…,n 线性相关 r(A) < n. 推论3.1. m < n Amn x = 0有非零解. 推论3.2. Ann x = 0有非零解|A| = 0. 问:定理3.1的逆否命题形式如何? Amn x = 0只有零解 1,2,…,n 线性无关 r(A) = n.
首页 上页
第三章 线性方程组 §3.1 线性方程组和Gauss消元法
3. 阶梯阵的形状与线性方程组的解. ~ ~ Ax = b Ax = b 解的数目 [A, b]
~ ~ [A, b ]
2 3 4 1 2x1+3x2 x3 = 1 0 2 1 2 2x2+x3 = 2 无解 0 0 0 1 0 = 1此时,虽然系数矩阵和增广矩 r2 = r1+1
通解:线性方程组全部解的表达式
同解方程组(having the same set of solutions);
首页 上页 返回 下页 结束 铃
第三章 线性方程组 §3.1 线性方程组和Gauss消元法
a11 a12 … a1n a21 a22 … a2n 称A = … … … … 为(3.1)的系数矩阵 am1 am2 … amn (coefficient matrix),
首页 上页 返回 下页 结束

第三章 线性方程组
§3.2 齐次线性方程组
定理3.2. 设ARmn, 秩(A) = r. (1) 若r = n, 则Ax = 0没有基础解系; (2) 若r < n, 则Ax = 0确有基础解系, 且任 一基础解系中均含有nr个解向量. x1 c1,r+1 c1,r+2 c1n x2 c2,r+1 c2,r+2 c2n … … … … xr cr,r+1 cr,r+2 crn xr+1 = xr+1 1 + xr+2 0 + … + xn 0 xr+2 0 1 0 … … … … xn 0 0 1
a11 a12 … a1n a21 a22 … a2n [A, b] = … … … … am1 am2 … amn
(augmented matrix).
首页 上页 返回
b1 b2 为(3.1)的增广矩阵 … bm
下页 结束 铃
第三章 线性方程组 §3.1 线性方程组和Gauss消元法
二. Gauss消元法(Gauss’ method) 2x13x2+4x3 = 4 对换变换(swapping) x1+2x2 x3 = 3 2x1+2x2 6x3 = 2 1/2 倍乘变换(rescaling) 倍加变换(pivoting) x1+2x2 x3 = 3 2 (1) 2x13x2+4x3 = 4 阶梯形方程组 x1 + x2 3x3 = 1 (echelon form) x1+2x2 x3 = 3 x2+2x3 = 2 x22x3 = 2
(2)
最简形 (reduced echelon form)
x1
5x3 = 1 x2+2x3 = 2 0=0
由此可得原方程组的通解(general solution)
5c+1 或写成向量形式 x = 2c2 , c
自由未知量
返回 下页 结束 铃
其中c为任意数.
首页 上页
第三章 线性方程组 §3.1 线性方程组和Gauss消元法
(1)
3. 若方程组有解且不唯一, 则通解表达式如何?
一定有解
首页
零(平凡解)
上页 返回 下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
齐次方程组何时有 非零/非平凡解(nontrivial solution)? a11x1+a12x2+… +a1nxn = 0 a21x1+a22x2+… +a2nxn = 0 (1) … … … … … … … am1x1+am2x2+…+amnxn = 0 a11 x1 a21 + x2 … am1 a12 a22 +… + x n … am2
首页 上页
1
返回
x1+2x2 x3 = 3 x2+2x3 = 2 0=0
下页 结束 铃
第三章 线性方程组 §3.1 线性方程组和Gauss消元法
阶梯形
(echelon form) x1+2x2 x3 = 3 x2+2x3 = 2 0=0
x1 = 5x3+1 x2 = 2x32 x3 = x3(任意)
首页 上页 返回 下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
定理3.2. 设ARmn, 秩(A) = r. (1) 若r = n, 则Ax = 0没有基础解系; (2) 若r < n, 则Ax = 0确有基础解系, 且任 一基础解系中均含有nr个解向量.
2. 阶梯形线性方程组的有三种基本类型.
例如:
2x1+3x2 x3 = 1 2x2+x3 = 2 0=1
x1x2+2x3 = 8 2x2 +x3 = 1 x3 = 5 x1+2x2+x3 + x4 = 2 x3+4x4 = 3
返回 下页 结束 铃
leading variables
free variables
其中k1, k2, …, ks为常数.
首页 上页
返回
下页
结束

第三章 线性方程组
§3.2 齐次线性方程组
定理3.2. 设ARmn, 秩(A) = r, 对Ax = 0, (1) 若r = n, 则Ax = 0没有基础解系;
(2) 若r < n, 则Ax = 0有基础解系, 且任一基础解系中均含有nr个解向量. x1 = c1,r+1xr+1 + c1,r+2xr+2 + … + c1nxn x2 = c2,r+1xr+1 + c2,r+2xr+2 + … + c2nxn … … … … … … … … … xr = cr,r+1xr+1 + cr,r+2xr+2 + … + crnxn xr+1 = xr+1 xr+2 = xr+2 … … … … … … … … … xn = xn
第三章 线性方程组
教学内容和基本要求
教 学 内 容 §3.1 线性方程组和高斯消元法
§3.2 齐次线性方程组 §3.3 非齐次线性方程组
难度
首页
上页
返回
下页
结束

§3.1 线性方程组和高斯消元法 本节内容 一. 线性方程组的概念
二. 高斯消元法
首页
上页
返回
下页
结束

第三章 线性方程组 §3.1 线性方程组和Gauss消元法
提示 (1) r(A),更方便 λ 1 1
A = 1 λ 1 =(+2)(-1)2 1 1 λ
首页 上页 返回 下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
二. 齐次线性方程组的解的性质
性质1. 若, 都是Ax = 0的解向量, 则 +也 是Ax = 0的解向量.
第三章 线性方程组 §3.1 线性方程组和Gauss消元法
x1 x2 , b= … xn
b1 b2 , … bm
vector of unknowns
vector of constants

a11x1+a12x2+…+a1nxn = b1 a21x1+a22x2+… a2nxn = b2 Ax = b. … … … … … … … am1x1+am2x2+…+amnxn = bm
相关文档
最新文档