大学本科解析几何考题

合集下载

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。

选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。

2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。

对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。

二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。

答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。

将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。

2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。

答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。

这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。

三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。

解析几何试题库完整

解析几何试题库完整

解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B.22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D.22(1)(1)2x y +++=[解析]圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径错误!即可. [答案]B 2.直线1y x =+与圆221x y +=的位置关系为〔A .相切B .相交但直线不过圆心C .直线过圆心D .相离 [解析]圆心(0,0)为到直线1y x =+,即10x y -+=的距离1222d ==,而2012<<,选B 。

[答案]B 3.圆心在y 轴上,半径为1,且过点〔1,2的圆的方程为〔A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1〔直接法:设圆心坐标为(0,)b ,则由题意知2(1)(2)1o b -+-=,解得2b =,故圆的方程为22(2)1x y +-=。

解法2〔数形结合法:由作图根据点(1,2)到圆心的距离为1易知圆心为〔0,2,故圆的方程为22(2)1x y +-=解法3〔验证法:将点〔1,2代入四个选择支,排除B,D,又由于圆心在y 轴上,排除C 。

[答案]A4.点P 〔4,-2与圆224x y +=上任一点连续的中点轨迹方程是〔A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=[解析]设圆上任一点为Q 〔s,t,PQ 的中点为A 〔x,y,则⎪⎪⎩⎪⎪⎨⎧+-=+=2224t y s x ,解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得〔2x -42+〔2y +22=4,整理,得:22(2)(1)1x y -++=[答案]A5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是〔A. 1或3B.1或5C.3或5D.1或2 [解析]当k =3时,两直线平行,当k ≠3时,由两直线平行,斜率相等,得:kk --43=k -3,解得:k =5,故选C 。

大学大一解析几何真题

大学大一解析几何真题

y tg x 0
z a
1 : (z a) u( y tg x) 0
2 : l( z a) m( y tg x) 0
二平面的交线为:
(z a) y tg x) 0 l(z a) m( y tg x) 0

t(1
y) b
将两方程化为标准式,得:
x a(u 2 w 2 )
2uw

y
z u 2 w2

2uw
a(u 2 w 2 )
2buw
c(u 2 w 2 )
x a(t 2 v 2 )
2vt

y
z a(v 2 t 2 )

2vt
a(v 2 t 2 )
2bvt
c(v 2 t 2 )
由此求出二直线的交点坐标为:
x a(uv wt) , y b(vw ut) , z c(uv wt)
vw ut
vw ut
vw ut
又二直线垂直,
a 2 (u 2 w2 )(v 2 t 2 ) 4b 2uvwt c 2 (u 2 w2 )(v 2 t 2 ) 0
(1)
3
2
1
x1 y1 8 z1 4
(2)
3
2
21
又动直线与平面
2x 3y 5 0 平行,所以,
2(x0 x1 ) 3( y0 y1 ) 0
(3)
对动直线上任一点
M (x, y, z) ,有:
x x0 y y0 z z0 x1 x0 y1 y0 z1 z0

解析几何练习题及答案

解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。

大学本科解析几何考题

大学本科解析几何考题
考试方式:闭卷
太原理工大学解析几何试卷(B)
题 号




总 分
得 分
适用专业:2013级数学学院各专业考试日期:2014.1.14时间:120分钟 共8页
得 分
评卷人
一.本题共5小题,每小题2分,满分10分。
1.将椭圆T: 绕长轴旋转,所得旋转曲面方程为。
2.点 到直线 的距离是。
3.已知 , , ,则 。
4.已知向量 = , = ,且 ,则 =。
5.已知三点 ,则 的面积为。
得 分
评卷人
二.本题共8小题,满分70分。
6.(10分)化平面的一般方程 为法式方程、并求原点到其上的距离。
7.(10分)求准线为 母线方向是 的柱面方程。
8.(6分)求二次曲线 的共轭于非渐进方向 的直径。
9.(10分)求过点 且与两直线 , 都
14.(10分)证明:点 是二次曲线 的中心的充要条件是 , 。
15(10分)证明三个向量 共面,其中 能否用 线性表示?如能表示写出线性表示关系式。
相交的直线方程。
10.(10分)已知平面 : ,
(1)点 与平面 的离差为2,求点 的轨迹;
(2)点 与平面 的距离为2,求点 的轨迹。
11 (8分)求二次曲线 的中心和渐近线。
12 (6分)求过直线 和点 的平面方程。
13(10分)求两直线 与 之间的距离。
得 分
评卷人

解析几何习题及答案

解析几何习题及答案

解析几何习题一、选择题(本大题共12个小题在每小题给出的四个选项中,只有一项是符合题目要求的)1. 平面上有两个定点A 、B 及动点P ,命题甲:“|P A |-|PB |是定值”,命题乙“点P 的轨迹是以A 、B 为焦点的双曲线”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 如果双曲线经过点(6,3),且它的两条渐近线方程是y =±13x ,那么双曲线方程是( ) A.x 236-y 29=1 B.x 281-y 29=1 C.x 29-y 2=1 D.x 218-y 23=1 3. 点(a ,b )关于直线x +y +1=0的对称点是( )A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )4. 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1 5. 椭圆x 29+y 24+k =1的离心率为45,则k 的值为( ) A .-21 B .21 C .-1925或21 D.1925或21 6. 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .127. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 8. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ). A. 2 B. 3 C.3+12 D.5+129. 若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( ) A .(-3,3) B .[-3,3] C .(-2,2) D .[-2,2]10. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A.172 B .3 C. 5 D.9211. 已知F (c,0)是椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,F 与椭圆上点的距离的最大值为m ,最小值为n ,则椭圆上与点F 的距离为m +n 2的点是( ) A .(c ,±b 2a ) B .(c ,±b a) C .(0,±b ) D .不存在12. A (x 1,y 1),B ⎝⎛⎭⎫22,53,C (x 2,y 2)为椭圆x 29+y 225=1上三点,若F (0,4)与三点A 、B 、C 的距离为等差数列,则y 1+y 2的值为( )A.43B.103C.163D.223二、填空题(本大题共4小题,将正确的答案填在题中横线上)13. 设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于________.14. 平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.15. 在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________.16. 点P 是双曲线x 24-y 2=1上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是________.三、解答题(本大题共5个小题,解答应写出文字说明、证明过程或演算步骤)17. 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.18. 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围.(2)求被椭圆截得的最长弦所在的直线方程.19. 已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.20. 在面积为1的△PMN 中,tan ∠PMN =12,tan ∠MNP =-2,建立适当的坐标系,求以M ,N 为焦点且过点P 的双曲线方程.。

大学线性代数与解析几何习题

大学线性代数与解析几何习题
(2)detA≠0→A可逆
→齐次线性方程组Ax=0只有零解
AB=0→B的列向量是齐次线性方程组Ax=0的解→B=0
或:A可逆,即A-1存在→根据AB=0→A-1A B= A-10→B= A-1
三、空间解析几何部分
(一)填空题
1.已知 ,则 .
提示:a0=a/|a|
2.设 则 =.
提示:|a×b|=|a||b|sin→cos→a.b=|a||b|cos
2.
(A) (B)
(C) (D)
提示:|AB|=|A||B|=|BA|
3.设 阶矩阵 ,若矩阵 的秩为 ,则 必为
()
提示:参见书本及作业上的例子。
4.
提示:参见前面的内容。
5. ()
提示:(AB)2=I→ABAB=I→A(BAB)=I→A-1=BAB
(AB)2=I→ABAB=I→(ABA)B=I→B-1=ABA
4.设 ,则 .
提示:对矩阵A施行初等行变换,非零行的行数即为矩阵A的秩。
5.设 ,则当 满足条件时, 可逆.
提示:矩阵A的行列式detA≠0时,矩阵可逆。
(二)选择题
1.设 阶矩阵 ,则必有()
(A) (B) (C) (D)
提示:A的逆矩阵为BC
2. ()
提示:P的列为齐次线性方程组Qx=0的解,P非零,Qx=0有非零解,故Q的行列式detQ=0
2.设向量 ( )
提示:Prjba=|a|cos,|a|=3→cos→cosa.b)/(|a||b|)
3. ( )
提示:向量平行,对应坐标分量成比例。
4.设向量 且 ( )
提示:向量混合积的计算方法。
5. ( )
提示:根据向量乘法运算律展开,并考察向量积的方向特性。

大一解析几何试题及答案

大一解析几何试题及答案

大一解析几何试题及答案一、选择题(每题3分,共15分)1. 已知点A(1,2),B(3,4),C(5,6),则直线AB与直线BC的交点坐标为()。

A. (2,3)B. (4,5)C. (6,7)D. (7,8)答案:B解析:直线AB的斜率为(4-2)/(3-1)=1,直线BC的斜率为(6-4)/(5-3)=1,由于斜率相等,直线AB与直线BC平行,无交点。

因此,本题无正确答案。

2. 已知直线l的方程为2x+3y-6=0,点P(1,1),则点P到直线l 的距离为()。

A. 1B. 2C. 3D. 4答案:B解析:点P到直线l的距离公式为d=|Ax+By+C|/√(A²+B²),代入得d=|2*1+3*1-6|/√(2²+3²)=2。

3. 已知平面α的方程为x+y+z=1,平面β的方程为2x-y+z=3,两平面的交线方程为()。

A. x-y+2z=4B. x+2y-z=2C. 3x-2y+z=4D. 3x+2y-z=2答案:C解析:联立平面α和平面β的方程,得到交线方程为3x-2y+z=4。

4. 已知椭圆的方程为x²/4+y²/3=1,焦点为F₁(-1,0),F₂(1,0),则椭圆的离心率为()。

A. 1/2B. √2/2C. √3/2D. 2/3答案:C解析:椭圆的离心率公式为e=c/a,其中a为长半轴,c为焦距。

由椭圆方程可知a=2,c=1,代入得e=√3/2。

5. 已知双曲线的方程为x²/4-y²/3=1,焦点为F₁(-√7,0),F₂(√7,0),则双曲线的离心率为()。

A. 2/3B. √2/2C. √3/2D. 2答案:D解析:双曲线的离心率公式为e=c/a,其中a为实半轴,c为焦距。

由双曲线方程可知a=2,c=√7,代入得e=2。

二、填空题(每题4分,共20分)6. 已知直线l的方程为3x-4y+5=0,求直线l的斜率k=________。

大学解析几何考试题及答案

大学解析几何考试题及答案

大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。

专升本高等数学(一)-空间解析几何

专升本高等数学(一)-空间解析几何

专升本高等数学(一)-空间解析几何(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:16,分数:35.00)1.______∙ A.过原点,且垂直于x轴∙ B.过原点,且平行于x轴∙ C.不过原点,且垂直于x轴∙ D.不过原点,且平行于x轴(分数:2.00)A. √B.C.D.解析:[解析] 直线的方向向量为s={0,4,-3},x轴上的方向向量为i={1,0,0},由于0×1+4×0+(-3)×0=0,所以已知直线垂直于x轴.又原点(0,0,0)代入直线方程[*],等式成立,所以直线又过原点.(答案为A)2.平面π1:2x+3y+4z+4=0与平面π2:2x-3y+4z-4=0的位置关系是______∙ A.相交且垂直∙ B.相交但不重合,不垂直∙ C.平行∙ D.重合(分数:2.00)A.B. √C.D.解析:[解析] 依题意有,平面π1的法向量n1={2,3,4},平面π2的法向量n2={2,-3,4},因为n1与n2的对应分量不成比例,且2×2+3×(-3)+4×4=11≠0,所以给定两平面π1与π2相交但不重合,不垂直.(答案为B)3.平面π:x+2y-z+3=0与直线l______∙ A.互相垂直∙ B.互相平行但直线不在平面上∙ C.即不平行也不垂直∙ D.直线在平面上(分数:2.00)A.B.C.D. √解析:[解析] 平面π的法向量n={1,2,-1},直线l的方向向量s={3,-1,1},因为1×3+2×(-1)-1×1=0[*]n⊥s,即直线l与平面π平行.又直线l上取点M0(1,-1,2)代入平面π的方程,有1+2×(1)-2+3=0,即点M0在平面π上,则直线l在平面π上.(答案为D)4.过点M(0,2,-1),且与平面π:x-y+3z+4=0垂直的直线方程为______ A. B. C.D(分数:2.00)A. √B.C.D.解析:[解析] 依题意,已知平面π的法向量n={1,-1,3}即为所求直线l的方向向量,所以所求直线方程为[*],即为[*](答案为A)5.______∙ A.过原点,且垂直于y轴∙ B.过原点,且平行于y轴∙ C.不过原点,且垂直于y轴∙ D.不过原点,且平行于y轴(分数:2.00)A.B.C. √D.解析:6.平面π1:x+3y-2z+5=0与平面π2:2x+6y-4z-3=0的位置关系是______∙ A.相交且垂直∙ B.相交但不重合,不垂直∙ C.平行但不重合∙ D.重合(分数:2.00)A.B.C. √D.解析:7.平面π:2x-3y+5z+1=0与直线l______∙ A.互相垂直∙ B.互相平行但直线不在平面上∙ C.即不平行也不垂直∙ D.直线在平面上(分数:2.00)A.B. √C.D.解析:8.已知直线l1:;l2______∙ A.垂直∙ B.平行但不重合∙ C.重合∙ D.相交(分数:2.00)A. √B.C.D.解析:9.方程z=x2+y2表示的二次曲面是______∙ A.椭球面∙ B.柱面∙ C.圆锥面∙ D.抛物面(分数:2.00)A.B.C.D. √解析:[解析] 参看常用的二次曲面标准方程及相应图形表,可知,方程z=x2+y2表示旋转抛物面.(答案为D)10.方程x2+y2-z2=0表示的二次曲面是______∙ A.球面∙ B.旋转抛物面∙ C.圆锥面∙ D.圆柱面(分数:2.00)A.B.C. √D.解析:[解析] 参看常用的二次曲面标准方程及相应图形表,可知,方程x2+y2-z2=0表示正圆锥面.(答案为C)11.在空间直角坐标系中,方程x2-4(y-1)2=0表示______∙ A.两个平面∙ B.双曲柱面∙ C.椭圆柱面∙ D.圆柱面(分数:2.00)A. √B.C.D.解析:[解析] 方程x2-4(y-1)2=0中不含z,所以其方程为柱面方程.又由于x2-4(y-1)2=0[*]x=±2(y-1),即等价于x=2(y-1)与x=-2(y-1),亦即x-2y+2=0与x+2y-2=0,表示两个相交的平面.(答案为A).12.方程z=x2+2y2表示的二次曲面是______∙ A.椭球面∙ B.旋转抛物面∙ C.圆锥面∙ D.椭圆抛物面(分数:2.00)A.B.C.D. √解析:13.方程z2=x2+y2表示的二次曲面是______∙ A.椭球面∙ B.柱面∙ C.圆锥面∙ D.抛物面(分数:3.00)A.B.C. √D.解析:14.方程x2+4y2+9z2=9表示的二次曲面是______∙ A.球面∙ B.椭球面∙ C.圆锥面∙ D.圆柱面(分数:3.00)A.B. √C.D.解析:15.在空间直角坐标系中,表示圆柱面的方程是______∙ A.x2-4y2=0∙ B.x2+4y2=0∙ C.x2+4y2=z∙ D.4x2+4y2=1(分数:2.00)A.B.C.D. √解析:16.在空间直角坐标系中,方程x2-2y2=-1表示的二次曲面是______∙ A.两个平面∙ B.抛物柱面∙ C.双曲柱面∙ D.椭圆抛物面(分数:3.00)A.B.C. √D.解析:二、{{B}}填空题{{/B}}(总题数:16,分数:40.00)17.过点(1,0,0)且以向量n={2,-3,1}为法向量的平面方程为______.(分数:2.00)填空项1:__________________ (正确答案:2x-3y+z-2=0)解析:[解析] 因为有直线经过的已知点坐标和平面的法向量,用点法式平面方程解之得2(x-1)-3(y-0)+(z-0)=0,即2x-3y+z-2=0为所求平面的方程.18.过原点且与平面2x-y+3z+5=0平行的平面方程为______.(分数:2.00)填空项1:__________________ (正确答案:2x-y+3z=0)解析:[解析] 由两个平面平行的充分必要条件可知,已知平面的法向量{2,-1,3}就是所求平面的法向量.又所求平面过原点(0,0,0),由点法式平面方程有 2(x-0)-(y-0)+3(z-0)=0,即2x-y+3z=0为所求平面的方程.19.过点(1,2,0)且与向量a={-1,-3,2}垂直的平面方程为______.(分数:2.00)填空项1:__________________ (正确答案:x+3y-2z-7=0)解析:[解析] 依题意,已知向量就是所求平面方程的法向量,用点法式平面方程解之得-(x-1)-3(y-2)+2(z-0)=0,即x+3y-2z-7=0为所求平面的方程.20.过点A(1,3,-2)和B(1,0,-4)的直线方程为______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 因为向量[*]=(0,-3,-2)就是所求直线的方向向量,用标准式直线方程解之得 [*],即为所求的直线方程.21.设平面π过点(1,0,-1)且与平面4x-y+2z-8=0平行,则平面π的方程为 1.(分数:2.00)填空项1:__________________ (正确答案:4x-y+2z-2=0)解析:22.点(1,-1,0)到平面x-2y+3z-2=0的距离为 1.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:23.过x轴和点(2,-4,1)的平面方程为 1.(分数:2.00)填空项1:__________________ (正确答案:y+4z=0)解析:24.过点(1,-2,0)且与向量{1,-1,2}垂直的平面方程为 1.(分数:2.00)填空项1:__________________ (正确答案:x-y+2z-3=0)解析:25.在直角坐标系O-xyz中,xOz平面上的抛物线z=4x2绕z轴旋转一周所生成的曲面方程为______.(分数:2.00)填空项1:__________________ (正确答案:z=4(x2+y2))解析:[解析] 在xOz平面上的曲线[*]以Oz轴为旋转轴的旋转曲面方程为[*],于是可得z=4(x2+y2)为旋转曲面方程.26.空间直角坐标系中,方程y=x2表示的二次曲面是 1.(分数:2.00)填空项1:__________________ (正确答案:母线平行于Oz轴的抛物柱面)解析:[解析] 空间直角坐标系中,方程y=x2表示的二次曲面是母线平行于Oz轴的抛物柱面.27.空间直角坐标系中,方程y2+z2=4表示的二次曲面是 1.(分数:2.00)填空项1:__________________ (正确答案:以Ox轴为轴的圆柱面)解析:[解析] 空间直角坐标系中,方程y2+z2=4表示的二次曲面是以Ox轴为轴的圆柱面.28.球面方程为x2+y2+z2-2x+4y-6z=0,则球心为______,半径为______.(分数:2.00)填空项1:__________________ (正确答案:(1,-2,3),[*])解析:[解析] 用配方法,将球面方程变形为球面的标准方程(x2-2x+1)+(y2+4y+4)+(z2-6z+9)=1+4+9,即(x-1)2+(y+2)2+(z-3)2=[*],所以球心为(1,-2,3),半径R=[*]29.在直角坐标系O-xyz中,yOz平面上的抛物线z2=2y绕y轴旋转一周所生成的曲面方程为 1.(分数:4.00)填空项1:__________________ (正确答案:[*])解析:30.空间直角坐标系中,方程y2+4z2=4表示的二次曲面是 1.(分数:4.00)填空项1:__________________ (正确答案:椭圆柱面)解析:31.空间直角坐标系中,方程x2-z2=0表示的二次曲面是 1.(分数:4.00)填空项1:__________________ (正确答案:两个平面)解析:32.球心为点(1,2,3) 1.(分数:4.00)填空项1:__________________ (正确答案:(x-1)2+(y-2)2+(z-3)2=8)解析:三、{{B}}解答题{{/B}}(总题数:10,分数:25.00)33.求过点M0(1,-1,2)且垂直于直线l(分数:2.00)__________________________________________________________________________________________ 正确答案:(依题意,直线l的方向向量s={2,3,1}即为所求平面的法向量,又平面过点M0(1,-1,2),由平面的点法式方程可得2(x-1)+3(y+1)+(z-2)=0,即所求平面方程为2x+3y+z-1=0.)解析:34.求过两点A(1,1,1),B(0,1,-1)且垂直于平面x+y+z=0的平面方程.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所求平面的法向量为n={A,B,C},因所求平面通过点A(1,1,1),则平面方程为A(x-1)+B(y-1)+C(z-1)=0.又所求平面过点B(0,1,-1),则有A(0-1)+B(1-1)+C(-1-1)=0,即A+2C=0.由两平面垂直的充要条件,则有A+B+C=0.解方程组得A:B:C=2:-1:-1,即所求平面的法向量为{2,-1,-1},所求平面方程为2(x-1)-(y-1)-(z-1)=0,即2x-y-z=0.)解析:35.求过点A(1,-2,1),B(5,4,3)的直线方程.(分数:2.00)__________________________________________________________________________________________ 正确答案:(所求直线的方向向量[*],则[*]={(5-1),(4+2),(3-1)}={4,6,2},直线的标准式方程为[*].)解析:36.求过点M1(1,-1,-2),M2(-1,2,0),M3(1,3,1)的平面方程.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所求的平面方程为 Ax+By+Cz+D=0,将已知三点坐标代入方程,得 [*] 解得[*],所求的平面方程为[*],即为x+6y-8z-11=0.)解析:37.求过点M0(1,2,-3),与直线l(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所求的直线方向向量为s,s∥l,平面π1的法向量为n1={1,1,-2},平面π2的法向量为n2={1,2,-1},则[*],得s={3,-1,1},所求的直线方程为[*].)解析:38.已知直线lπ过点M(2,1,-5)且与l垂直,求平面π的方程.(分数:3.00)__________________________________________________________________________________________ 正确答案:(直线l的方向向量s={3,2,-1}即为所求平面的法向量,平面π过点M(2,1,-5),所求平面方程为3(x-2)+2(y-1)-(z+5)=0,即3x+2y-z-13=0.)解析:39.求过点M0(2,1,3)且垂直于直线l(分数:3.00)__________________________________________________________________________________________ 正确答案:(直线l的方向向量{3,2,-1},为所求平面的法向量,又平面过点M0(2,1,3),由平面的点法式方程可得3(x-2)+2(y-1)-(z-3)=0,即所求平面方程为3x+2y-z-5=0.)解析:40.求过两点A(0,1,1),B(1,2,1)(分数:3.00)__________________________________________________________________________________________ 正确答案:(设所求平面的法向量为n={A,B,C},因平面过点A(0,1,1),则平面方程为A(x-0)+B(y-1)+C(z-1)=0.又平面过点B(1,2,1),则有A(1-0)+B(2-1)+C(1-1)=0,即A+B=0.由于n 与向量(1,-2,1)垂直,则有A-2B+C=0,解方程组得A:B:C=-1:1:3,即平面的法向量为{-1,1,3},所求平面方程为-(x-0)+(y-1)+3(z-1)=0,即x-y-3z+4=0.)解析:41.求过点A(1,3,-2),B(2,-4,3)的直线方程.(分数:3.00)__________________________________________________________________________________________ 正确答案:(所求直线的方向向量[*],则[*]={(2-1),(-4-3),(3+2)}={1,-7,5},直线的标准式方程为[*].)解析:42.求过点M0(1,-2,1)且与直线l(分数:3.00)__________________________________________________________________________________________ 正确答案:(由于所求直线与已知直线平行,所以已知直线的方向向量即为所求直线的方向向量.平面π1的法向量为n1={1,-1,2},平面π2的法向量为n2={4,1,-1},则[*],得s={-1,9,5},所求的直线方程为[*].)解析:。

大一下学期解析几何考试试卷及答案

大一下学期解析几何考试试卷及答案

一、填空题(共7题,2分/空,共20分)1、四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积就是______、2、已知向量(1,1,1)a →=,)3,2,1(=→b ,(0,0,1)c →=,则→→→⨯⨯c b a )(=__(-2,-1,0)____、3、点)1,0,1(到直线⎩⎨⎧=-=03z x y x 的距离就是___6611___________、4、点)2,0,1(到平面321x y z ++=的距离就是__3147___________、 5、曲线C:2201x y z z x ⎧+-=⎨=+⎩对xoy 坐标面的射影柱面就是___2210x x y -+-=____,对yoz 坐标面的射影柱面就是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面就是____10z x --=__________、6、曲线C:220x yz ⎧=⎨=⎩绕x 轴旋转后产生的曲面方程就是__4224()x y z =+_____,曲线C 绕y 轴旋转后产生的曲面方程就是___222x z y +=_______________、7、椭球面12549222=++z y x 的体积就是_________________、二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分)1、 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程、这里,,a b c 就是3个非零实数、解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r于就是1M ,12M M u u u u u u r ,13M M u u u u u u r所确定的平面方程就是000x ay b z ac bc---=-即 ()()0bc x a ac y b abz -+-+= 、2、已知空间两条直线:1l 010x y z +=⎧⎨+=⎩,:2l 010x y z -=⎧⎨-=⎩、 (1)证明1l 与2l 就是异面直线;(2)求1l 与2l 间的距离;(3)求公垂线方程、证明:(1) 1l 的标准方程就是1110x y z +==-,1l 经过点1(0,0,1)M -,方向向量1{1,1,0}v =-2l 的标准方程就是2110x y z -==,2l 经过点2(0,0,2)M ,方向向量2{1,1,0}v =,于就是1212003(,,)1106110M M v v =-=u u u u u u r0≠,所以1l 与2l 就是异面直线。

大学解析几何试卷及答案(一)

大学解析几何试卷及答案(一)

《空间解析几何》期末考试试卷(A)考试形式:闭卷考试 考试时间:120分钟班号 学号 姓名 得分1 下列等式中正确的是 ( ) A a (b c )= (a b )c B (a ⨯b )c =a (b ⨯c ) C (a b )2 =a 2b 2 D a ⨯b =c ⨯b ,b ≠0,则a =c2 已知向量a 与b 的夹角为23π, 且||3a =, ||4b =, 则2()a b +为 ( )A 14B 13C 12D 11 3 点(1,2,3)M -和平面:5340x y z π-++=间的离差为 ( )A1δ=- B 1δ= C 0δ= D 12δ=-4 直线320:0x y z l x y z +--=⎧⎨-+=⎩与平面:230x y z π+--=的交点和夹角分别为 ( )A (1,0,1)--,3π B (1,0,1)--, 6π C (1,0,1), 3π D (1,0,1)-, 6π 5 方程2350x my z ++-=与6620lx y z --+=表示二平行平面,则,l m 为 ( ) A 4,3l m =-= B 3,3l m ==- C 4,3l m ==- D 3,4l m =-= 6 二次曲线223426250x xy y x y ++--+=属于 ( ) A 抛物型 B 椭圆型 C 双曲型 D 不能确定.二 填空题(每空3分,共18分)1 中心在点(3,1,1)-且通过点(2,3,5)-的球面方程为 .2 在直角坐标系下, 通过点(1,5,3)--且与平面63520x y z --+=垂直的直线方程为 .3 与平面2340x y z -+-=平行, 且在y 轴上截距等于3-的平面方程为 .4 曲线⎩⎨⎧=++=+222222:a z y x axy x L 在xOz 面上的投影曲线方程为 . 5 二次曲线222430x xy y x y -++--=上过点()2,1的切线方程是 .6 设一条二次曲线通过两条二次曲线222610x xy y x +-+-=与2220x y x y ---=的交点,并且还通过点(2,2)-,这条二次曲线的方程为 .三 试用两种方法求过点)2,0,0(0-M ,与平面1:32180x y z ∏-+-=平行,且与直线12341:1zy x l =--=-相交的直线l 的方程. (10分)四 在空间直角坐标系中,直线1l 和2l 的方程分别为1l :11142412x t y t z t=-+⎧⎪=-⎨⎪=--⎩和2l :222545355x t y t z t=-+⎧⎪=-⎨⎪=-⎩(1)求过1l 且平行于2l 的平面方程;(2)求1l 和2l 的距离;(3)求1l 和2l 的公垂线方程.(15分) 五 求直线01xy zβα-==绕z 轴旋转所得旋转曲面的方程,并就α与β可能的值讨论曲面类型.(15分)六 将二次曲线22230x xy y x y ++++=化成标准型,并作出它的图形.(14分)七 求与两直线161:321x y z l --==和284:322x y z l -+==-都相交,且与平面:2350x y ∏+-=平行的直线的轨迹. (10分)《空间解析几何》期末考试试卷答案(A)考试形式:闭卷考试 考试时间:120分钟班号 学号 姓名 得分1 下列等式中正确的是 ( B ) A a (b c )= (a b )c B (a ⨯b )c =a (b ⨯c ) C (a b )2 =a 2b 2 D a ⨯b =c ⨯b ,b ≠0,则a =c2 已知向量a 与b 的夹角为23π, 且||3a =, ||4b =, 则2()a b +为 ( B )A 14B 13C 12D 11 3 点(1,2,3)M -和平面:5340x y z π-++=间的离差为 ( C )A1δ=- B 1δ= C 0δ= D 12δ=-4 直线320:0x y z l x y z +--=⎧⎨-+=⎩与平面:230x y z π+--=的交点和夹角分别为 ( D )A (1,0,1)--,3π B (1,0,1)--, 6π C (1,0,1), 3π D (1,0,1)-, 6π 5 方程2350x my z ++-=与6620lx y z --+=表示二平行平面,则,l m 为 ( A ) A 4,3l m =-= B 3,3l m ==- C 4,3l m ==- D 3,4l m =-= 6 二次曲线223426250x xy y x y ++--+=属于 ( B ) A 抛物型 B 椭圆型 C 双曲型 D 不能确定.二 填空题(每空3分,共18分)1 中心在点(3,1,1)-且通过点(2,3,5)-的球面方程为222(3)(1)(1)21x y z -+++-=.2 通过点(1,5,3)--且与平面63520x y z --+=垂直的直线方程为153635x y z -++==--. 3 与平面2340x y z -+-=平行, 且在y 轴上截距等于3-的平面方程为2360x y z -+-=.4 曲线⎩⎨⎧=++=+222222:az y x ax y x L 在xOz 面上的投影曲线方程为220:0z ax a L y ⎧+-=⎨=⎩.5 二次曲线222430x xy y x y -++--=上过点()2,1的切线方程是5460x y --=.6 设一条二次曲线通过两条二次曲线222610x xy y x +-+-=与2220x y x y ---=的交点,并且还通过点(2,2)-,这条二次曲线的方程为2224527340x xy y x y -+--+=.三 试用两种方法求过点)2,0,0(0-M ,与平面1:32180x y z ∏-+-=平行,且与直线12341:1zy x l =--=-相交的直线l 的方程. (10分)解法一 先求l 的一个方向向量),,(Z Y X υ。

大学解析几何

大学解析几何

大学解析几何(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--100100空间解析几何基本知识一、向量1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量12212121(,,)M M x x y y z z =---2、已知向量),,(321a a a a =→、),,(321b b b b =→,则(1)向量→a 的模为232221||a a a a ++=→(2)),,(332211b a b a b a b a ±±±=±→→(3)),,(321a a a a λλλλ=→3、向量的内积→→⋅b a(1)><⋅⋅=⋅→→→→→→b a b a b a ,cos ||||(2)332211b a b a b a b a ++=⋅→→其中><→→b a ,为向量→→b a ,的夹角,且π>≤≤<→→b a ,0注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。

4、向量的外积→→⨯b a (遵循右手原则,且→→→⊥⨯a b a 、→→→⊥⨯b b a ) 321321b b b a a a k j i b a →→→→→=⨯101101 5、(1)332211//b a b a b a b a b a ==⇔=⇔→→→→λ (2)00332211=++⇔=⋅⇔⊥→→→→b a b a b a b a b a二、平面1、平面的点法式方程已知平面过点),,(000z y x P ,且法向量为),,(C B A n =→,则平面方程为 0)()()(000=-+-+-z z C y y B x x A注意:法向量为),,(C B A n =→垂直于平面2、平面的一般方程0=+++D Cz By Ax ,其中法向量为),,(C B A n =→3、(1)平面过原点)0,0,0(⇔ 0=++Cz By Ax(2)平面与x 轴平行(与yoz 面垂直)⇔法向量→n 垂直于x 轴0=++⇔D Cz By (如果0=D ,则平面过x 轴)平面与y 轴平行(与xoz 面垂直)⇔法向量→n 垂直于y 轴0=++⇔D Cz Ax (如果0=D ,则平面过y 轴)平面与z 轴平行(与xoy 面垂直)⇔法向量→n 垂直于z 轴0=++⇔D By Ax (如果0=D ,则平面过z 轴)(3)平面与xoy 面平行⇔法向量→n 垂直于xoy 面0=+⇔D Cz102102 平面与xoz 面平行⇔法向量→n 垂直于xoz 面0=+⇔D By平面与yoz 面平行⇔法向量→n 垂直于yoz 面0=+⇔D Ax注意:法向量的表示三、直线1、直线的对称式方程过点),,(000z y x P 且方向向量为),,(321v v v v =→直线方程302010v z z v y y v x x -=-=- 注意:方向向量),,(321v v v v =→和直线平行 2、直线的一般方程⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A ,注意该直线为平面01111=+++D z C y B x A 和02222=+++D z C y B x A 的交线3、直线的参数方程⎪⎩⎪⎨⎧+=+=+=t v z z t v y y t v x x 3020104、(1)方向向量),,0(32v v v =→,直线垂直于x 轴(2)方向向量),0,(31v v v =→,直线垂直于y 轴(3)方向向量)0,,(21v v v =→,直线垂直于z 轴5、(1)方向向量),0,0(3v v =→,直线垂直于xoy 面(2)方向向量)0,,0(2v v =→,直线垂直于xoz 面(3)方向向量)0,0,(1v v =→,直线垂直于yoz 面应用一、柱面1031031、设柱面的准线方程为⎩⎨⎧==0),,(0),,(21z y x f z y x f ,母线的方向向量),,(321v v v v =→,求柱面方程方法:在准线上任取一点),,(111z y x M ,则过点),,(111z y x M 的母线为312111v z z v y y v x x -=-=- 又因为),,(111z y x M 在准线上,故0),,(1111=z y x f (1) 0),,(1112=z y x f (2)令 t v z z v y y v x x =-=-=-312111 (3) 由(1)、(2)、(3)消去111,,z y x 求出t ,再把t 代入求出关于z y x ,,的方程0),,(=z y x F ,则该方程为所求柱面方程例1:柱面的准线为⎩⎨⎧=++=++2221222222z y x z y x ,而母线的方向为{}1,0,1-=v ,求这柱面方程。

解析几何专项训练试题答案

解析几何专项训练试题答案

解析几何专项训练试题答案一、选择题1. 若点A(2,3)关于直线x=3的对称点为A',则A'的坐标为:A. (4,3)B. (2,3)C. (1,3)D. (5,3)答案:D解析:点A(2,3)关于直线x=3的对称点A'的横坐标为3-(2-3)=4,纵坐标不变,因此A'的坐标为(4,3)。

2. 已知圆的标准方程为$(x-a)^2+(y-b)^2=r^2$,则其圆心坐标为:A. (a, b)B. (a, r)C. (b, r)D. (r, a)答案:A解析:根据圆的标准方程$(x-a)^2+(y-b)^2=r^2$,可知圆心坐标为(a, b)。

3. 直线2x-3y=6的斜率为:A. 2/3B. -2/3C. 3/2D. -3/2答案:B解析:直线方程2x-3y=6可以转化为y=(2/3)x-2,其斜率为2/3,因此答案为-2/3。

4. 已知三角形ABC的三个顶点分别为A(1,2),B(4,6),C(7,2),求三角形ABC的面积。

A. 4B. 6C. 8D. 10答案:C解析:首先计算线段AB和AC的斜率,分别为1和-1,说明AB和AC 垂直。

然后计算AB的长度为3,由于AC与AB垂直,所以三角形ABC 为直角三角形,其面积为1/2 * AB长度 * BC长度 = 1/2 * 3 * 5 = 7.5。

选项中没有7.5,但最接近的是8,因此选择C。

5. 已知椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,则其焦点坐标为:A. (a, 0)B. (0, b)C. (a, b)D. (0, 0)答案:D解析:椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其焦点位于y轴上,且焦距为2c,因此焦点坐标为(0, c)或(0, -c)。

由于题目未给出具体数值,无法确定c的值,但焦点坐标的形式为(0, c),因此答案为D。

大一下学期解析几何考试试卷及答案.doc

大一下学期解析几何考试试卷及答案.doc

一、填空题(共 7 题, 2 分 / 空,共 20 分)1. 四点 O (0,0,0) , A(1,0,0) , B(0,1,1) , C (0,0,1) 组成的四面体的体积是 ___ ___.2. 已知向量 a (1,1,1)(1,2,3) , c (0,0,1) , 则 ( a b ) c =__(-2,-1,0)____. , b3. 点 (1,0,1) 到直线x y 的距离是 ___ 66 ___________. 3x z114. 点 (1,0,2) 到平面 3x y2z 1的距离是 __314 ___________.75. 曲线 C:x 2y 2z对 xoy 坐标面的射影柱面是 ___ x 2 x y 21 0 ____,z x 1对 yoz 坐标面的射影柱面是 __ ( z 1)2 y 2 z 0 _________, 对 xoz 坐标面的射影柱面是 ____ z x 1 0 __________.6. 曲线 C:x 22 y绕 x 轴旋转后产生的曲面方程是 __ x 44( y 2 z 2 ) _____,曲线z 0C 绕 y 轴旋转后产生的曲面方程是 ___ x 2 z 2 2y _______________.7. 椭球面 x2y 2 z 2 1 的体积是 _____ ____________.94 25二、计算题(共 4题,第 1题10分,第 2题15分,第 3题20分, 第4题 10分,共55分)1. 过点 P(a, b, c) 作 3 个坐标平面的射影点 , 求过这 3 个射影点的平面方程 . 这里a, b, c 是 3 个非零实数 .解 : 设点 P( a, b, c) 在平面 z 0 上的射影点为 M 1 (a,b,0) ,在平面 x0 上的射影点为 M 2 (0, a, b) ,在平面上的射影点为 M 3 (a,0, c)uuuuuur( a,0, c) ,y0 ,则MM12uuuuuurM 1M 3 (0, b, c)uuuuuur uuuuuurx a y b z于是 M 1 所确定的平面方程是 a 0 c 0, M M 2, M M 3110 b c即 bc( x a)ac( y b) abz.2. 已知 空间 两 条直 线 l 1 :x y 0 x y 0z 1 0 , l 2 : 1 .z 0(1) 证明 l 1 和 l 2 是 异面 直 线 ;(2) 求 l 1 和 l 2 间的 距离 ;(3) 求公 垂线 方程 . 证明: (1) l 1 的 标准 方程 是xyz 1, l 1 经 过点 M 1 (0,0,1),方向向量11v 1 {1, 1,0}l 2 的标准方程是xy z 2, l 2 经过点 M 2 (0,0, 2) ,方 向 向量 v 2 {1,1,0} ,于1 1是uuuuuur0 0 3( M 1M 2 , v 1 , v 2 ) 1 10 6 0 ,所以 l 1 和 l 2 是 异面 直 线 。

大学考试解析几何试题答案

大学考试解析几何试题答案

大学考试解析几何试题答案一、选择题1. 若一条直线过点A(2,3),且与直线2x-y=0垂直,求该直线的方程。

解析:已知直线2x-y=0的斜率为2,与其垂直的直线斜率为-1/2(因为垂直直线的斜率互为负倒数)。

设所求直线方程为y=kx+b,代入点A(2,3)和斜率-1/2,得到方程为y=-1/2x+7/2。

2. 圆的一般方程为x^2+y^2+Dx+Ey+F=0,若该圆过点(1,2),且其圆心在直线2x-y=0上,求D、E、F的值。

解析:将点(1,2)代入圆的一般方程得1^2+2^2+D+2E+F=0。

又因为圆心(-D/2, -E/2)在直线2x-y=0上,代入得-D/2*2-E/2=0,解得D=E。

将D=E代入前面的方程,解得D=-6,E=-6,F=-7。

所以圆的方程为x^2+y^2-6x-6y-7=0。

二、填空题1. 已知三角形ABC的三个顶点坐标分别为A(1,2),B(4,5),C(7,3),求三角形ABC的面积。

解析:首先计算三条边的长度,|AB|=√[(4-1)^2+(5-2)^2]=√10,|BC|=√[(7-4)^2+(3-5)^2]=5,|AC|=√[(7-1)^2+(3-2)^2]=2√5。

然后利用海伦公式计算面积,p=(|AB|+|BC|+|AC|)/2=(√10+5+2√5)/2,面积S=√[p(p-|AB|)(p-|BC|)(p-|AC|)]=√[(9+2√10)(4+√10)(4+2√5)(4+√5)]。

2. 已知椭圆的长轴为2a,短轴为2b,且a>b,若椭圆的周长为P,求P的近似值。

解析:椭圆的周长没有精确公式,但可以用Ramanujan的近似公式计算:P≈π[3(a+b)-√{(3a-b)(a+3b)}]。

这个公式在大多数情况下都能给出较为精确的结果。

三、解答题1. 已知锥体的高为h,底面为正方形,边长为a,求锥体的侧面积。

解析:锥体的侧面积可以通过底面周长与斜高之积的一半来计算。

解析几何大题精选四套(答案)

解析几何大题精选四套(答案)

解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。

大一解析几何期末考试试题

大一解析几何期末考试试题
在上述
3.对于二矢量 ,等式 成立的充要条件是()
A、 = B) 与 同向C、 与 反向D、 与 垂直
4.参数方程 ( 为参数)的普通方程是()
A、 B、
C、 D、
5.两平面 与 平行的充要条件是()
A、 B、
C、 D、
6.平面 ,如在 轴上的截距为2,则 ()
A、3:2 B、2:3 C、1:3 D、3:1
7.直线 与平面 的交点坐标为()
A、 B、 C、 D、
8.曲线 绕 轴旋转所得的曲面叫做()
A、圆锥面B、圆柱面C、球面D、椭球面
9.平面 与 相交成一双曲线。则这条双曲线的顶点是()
A、 B、 C、 D
10.二次曲线 的类型是()
A、椭圆型曲线B、双曲型曲线
3.求直线L: 在平面 上的投影直线的方程。(10分)
4.求 的主方向与主直径。(10分)
四、证明题(每小题10分,共20分)
1.试证明双曲抛物面 上的两直母线直交时,其交点必在一双曲线上。(10分)
2.证明曲面S: 是一个柱面。(10分)
1.矢量 若 与 均垂直,且 与 轴所成角为锐角, =26,则 的坐标为()
A、 B、 C、 D、
2.给出5个命题:(1)若 ,则一定有 = 或 = 。
(2)若 ,则三矢量 , , 共面。
(3)与平面平行的两个非零矢量可作为平面的方位矢量。
(4)直线的方向矢量是不唯一的。
(5)空间中的任意四点都可以确定一个球面。
7.曲面 是由曲线绕轴旋转而产生的。
8.曲面 被 坐标面截得的曲线方程为,
图形是。
9.二次曲面 关于轴对称。
10.二次曲线 的中心为。
三、计算题(每小题10分,共40分)

大同大学解析几何考试题及答案

大同大学解析几何考试题及答案

大同大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是平面直角坐标系中的点的坐标形式?A. (x, y)B. (r, θ)C. (a, b)D. (x, z)答案:D2. 已知点A(2, 3)和点B(5, 6),线段AB的中点M的坐标是多少?A. (3, 4)B. (4, 5)C. (3.5, 4.5)D. (4, 4)答案:B3. 如果一个椭圆的长轴是短轴的两倍,那么椭圆的离心率是多少?A. 1/2B. √2C. 2D. √3答案:A4. 直线l1: y = 2x + 3与直线l2: y = -x + 1平行吗?A. 是答案:B5. 下列哪个方程表示的是一个双曲线?A. x^2 + y^2 = 1B. x^2 - y^2 = 1C. y^2 = xD. x^2 = y答案:B6. 抛物线y^2 = 4ax的准线方程是什么?A. x = -aB. x = aC. y = -2aD. y = 2a答案:A7. 点P(-1, 4)关于直线y = x的对称点是什么?A. (4, -1)B. (1, -4)C. (4, 1)D. (-4, 1)答案:A8. 已知椭圆方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a > b > 0,如果椭圆通过点(2, 3),则a的最小值是多少?A. 3C. 5D. 6答案:A9. 直线l: ax + by + c = 0始终经过哪个定点?A. (0, 0)B. (1, 1)C. (-b/a, c/b)D. (0, c)答案:D10. 下列哪个方程表示的是一个圆?A. x^2 + y^2 - 2x - 2y - 3 = 0B. x^2 + y^2 + 2x + 4y - 8 = 0C. x^2 + y^2 + 4x - 6y + 13 = 0D. x^2 + y^2 - 6x + 8y + 16 = 0答案:D二、填空题(每题4分,共20分)11. 如果一个圆的圆心在原点,半径为5,那么这个圆的标准方程是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.(10分)证明:点 是二次曲线 的中心的充要条件是 , 。
15(10分)证明三个向量 共面,其中 能否用 线性表示?如能表示写出线性表示关系式。
4.已知向量 = , = ,且 ,则 =。
5.已知三点 ,则 的面积为。
得 分
评卷人
二.本题共8小题,满分70分。
6.(10分)化平面的一般方程 为法式方程、并求原点到其上的距离。
7.(10分)求准线为 母线方向是 的柱面方程。
8.(6分)求二次曲线 的共轭于非渐进方向 的直径。
9.(10分)求过点 且与两直线 , 都
考试方式:闭卷
太原理工大学解析几何试卷(B)
题 号




总 分
得 分
适用专业:2013级数学学院各专业考试日期:2014.1.14时间:120分钟 共8页
得 分
评卷人
一.本题共5小题,每小题2分,满分10分。
1.将椭圆T: 绕长轴旋转,所得旋转曲面方程为。
2.点 到直线 的距离是。
3.已知 , , ,则 。
相交的直线方程。
10.(10分)已知平面 : ,
(1)点 与平面 的离差为2,求点 的轨迹;
(2)点 与平面 的距离为2,求点 的轨迹。
11 (8分)求二次曲线 的中心和渐近线。
12 (6分)求过直线 和点 的平面方程。
1ቤተ መጻሕፍቲ ባይዱ(10分)求两直线 与 之间的距离。
得 分
评卷人
三.本题共2小题,满分20分。
相关文档
最新文档