(完整版)、年山东省中考数学考试试题
2024年山东省东营市中考数学试题 (解析版)
![2024年山东省东营市中考数学试题 (解析版)](https://img.taocdn.com/s3/m/09dd856b3868011ca300a6c30c2259010302f317.png)
秘密★启用前 试卷类型:A二〇二四年东营市初中学业水平考试数学试题(总分120分 考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 3−的绝对值是( )A. 3B. 3−C. 3±D. 【答案】A【解析】【分析】本题考查了绝对值求法.绝对值是指一个数在数轴上对应的点与原点的距离,正数和零的绝对值是它本身,负数的绝对值是它的相反数. 【详解】33−=, 故选:A .2. 下列计算正确的是( )A. 236x x x ⋅=B. ()2211x x −=−C. ()2224xy x y =D. 2142− −=−【答案】C【解析】【分析】本题考查了同底数幂的乘法,完全平方公式,积的乘方,负整数幂,根据相关运算法则逐个判断即可.【详解】解:A 、235x x x ⋅=,故A 不正确,不符合题意;B 、()22121x x x −=−+,故B 不正确,不符合题意;C 、()2224xy x y =,故C 正确,符合题意;D 、2142− −=,故D 不正确,不符合题意; 故选:C .3. 已知,直线a b ∥,把一块含有30°角的直角三角板如图放置,130∠=°,三角板的斜边所在直线交b 于点A ,则2∠=( )A. 50°B. 60°C. 70°D. 80°【答案】B【解析】 【分析】本题考查了平行线的性质,根据两直线平行,内错角相等,得出90CAD ACB ∠=∠=°,即可解答.【详解】解:∵a b ∥,∴90CAD ACB ∠=∠=°,∴2180160CAD ∠=°−∠−∠=°,故选:B .4. 某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是( )A. B. C. D.【答案】C【解析】【分析】本题考查了三视图的判断,根据图形特点,正确的确定出俯视图是关键.首先由俯视图可知该几何体共两列,左边一列最底层共三个正方体,右边一列最底层共一个正方体,找出正确的答案即可.【详解】解:由俯视图可知该几何体共两列,左边一列最底层共三个正方体,右边一列最底层共一个正方体,由此可得只有C 符合题意,故选:C .5. 用配方法解一元二次方程2220230x x −−=时,将它转化为2()x a b +=的形式,则b a 的值为( ) A. 2024−B. 2024C. 1−D. 1【答案】D【解析】 【分析】本题主要考查了配方法解一元二次方程.熟练掌握配方法步骤,是解出本题的关键.用配方法把2220230x x −−=移项,配方,化为()212024x −=,即可. 详解】解:∵2220230x x −−=,移项得,222023x x −=,配方得,22120231x x −+=+, 即()212024x −=,∴1a =−,2024b =,∴()202411b a =−=.故选:D .6. 如图,四边形ABCD 是矩形,直线EF 分别交AD ,BC ,BD 于点E ,F ,O,下列条件中,不能证【明BOF DOE △△≌的是( )A. O 为矩形ABCD 两条对角线的交点B. EO FO =C. AE CF =D. EEEE ⊥BBBB【答案】D【解析】 【分析】本题考查了矩形的性质、平行线的性质、全等三角形的判定,熟练掌握矩形的性质和全等三角形的判定是解题的关键.由矩形的性质得出AD BC = AD BC ∥,再由平行线的性质得出OBF ODE ∠=∠,OFB OED ∠=∠,然后由全等三角形的判定逐一判定即可.【详解】解:∵四边形ABCD 是矩形,∴AD BC = AD BC ∥,∴OBF ODE ∠=∠,OFB OED ∠=∠,A 、∵O 为矩形ABCD 两条对角线的交点,∴OB OD =,在BOF 和DOE 中,OFB OED OBF ODE OB OD ∠=∠ ∠=∠ =, ∴()AAS BOF DOE ≌,故此选项不符合题意;B 、在BOF 和DOE 中,OFB OED OBF ODE FO EO ∠=∠ ∠=∠ =, ∴()AAS BOF DOE ≌,故此选项不符合题意;C 、∵AE CF =,∴BC CF AD AE −=−,即BF DE =,在BOF 和DOE 中,OFB OED BF DEOBF ODE ∠=∠ = ∠=∠, ∴()ASA BOF DOE ≌,故此选项不符合题意;D 、∵EEEE ⊥BBBB ,∴90BOF DOE ∠=∠=°,两三角形中缺少对应边相等,所以不能判定BOF DOE △△≌,故此选项符合题意;故选:D .7. 如图,四边形ABCD 是平行四边形,从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为( )A. 23B. 12C. 13D. 56【答案】A【解析】【分析】本题考查了正方形的判定,用概率公式求概率,掌握正方形的判定方法和概率公式是解题的关键. 根据从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形.再根据概率公式求解即可.【详解】解:从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形. ∴ABCD ,从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为23. 故选:A .8. 习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,20cm OA =,5cm OB =,纸扇完全打开后,外侧两竹条(竹条宽度忽略不计)的夹角120AOC ∠=°.现需在扇面一侧绘制山水画,则山水画所在纸面的面积为( )2cm .A. 25π3B. 75πC. 125πD. 150π【答案】C【解析】【分析】将山水画所在纸面的面积转化为大小两个扇形的面积之差即可解决问题.本题主要考查了扇形面积的计算,熟知扇形面积的计算公式是解题的关键.【详解】解:由题知,()2212020400cm 3603OAC S ππ⋅⋅==扇形, ()22120525cm 3603OBD S ππ⋅⋅==扇形, 所以山水画所在纸面的面积为:240025125(cm )33πππ−=. 故选:C . 9. 已知抛物线2(0)y ax bx c a ++≠的图像如图所示,则下列结论正确的是( )A. 0abc <B. 0a b −=C. 30a c −=D. 2am bm a b +≤−(m 为任意实数)【答案】D【解析】 【分析】本题考查了二次函数的图象和性质,熟知二次函数的图象和性质及巧用数形结合的思想是解题的关键;由图象可知:0a <,0c >,根据抛物线的与x 轴的交点可求对称轴,根据对称轴及a 与b 的符号关系可得20b a =<,则可判断选项A 、B 、C ,由当=1x −时,函数有最大值,可判断选项D .【详解】解:A 、 抛物线开口往下,∴0a <,抛物线与y 轴交于正半轴,∴0c >抛物线的与x 轴的交点是:()3,0−和(1,0)∴对称轴为=1x −, ∴12b a−=−, 20b a ∴=<,0abc ∴>,故选项A 错误.∵2b a =,∴20a b −=,故选项B 错误(否则可得0a =,不合题意). 0a <,0c >,∴30a c −<,故选项C 错误.抛物线的对称轴为直线=1x −,且开口向下,∴当=1x −时,函数值最大为y a b c =−+,∴当x m =时,2y am bm c ++,∴2am bm c a b c ++≤−+,∴2am bm a b +≤−,故选项D 正确.故选:D .10. 如图,在正方形ABCD 中,AC 与BD 交于点O ,H 为AB 延长线上的一点,且BH BD =,连接DH ,分别交AC ,BC 于点E ,F ,连接BE ,则下列结论:①CF BF =;②tan 1H ∠−;③BE平分CBD ∠;④22AB DE DH =⋅.其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据正方形的性质结合勾股定理可知,AB BD CD AD a ====,BD =,AB CD ∥,AC 与BD 互相垂直且平分,进而可求得)1AH a =,根据正切值定义即可判断②;由AB CD ∥,可知DCF HBF △∽△,由相似三角形的性质即可判断①;由BH BD =,可求得22.5H BDH ∠=∠=°,再结合AC 与BD 互相垂直且平分,得DE BE =,可知22.5DBE BDE ∠=∠=°,进而可判断③;再证BDE HDB △∽△,即可判断④.【详解】解:在正方形ABCD AB CD ∥,AB BD CD AD a ====,90BAD ∠=°,45ABD CBD DAC BAC ∠=∠=∠=∠=°,AC 与BD 互相垂直且平分,则BD ===,∵BH BD ==,则)1AH a =+,∴tan 1AD H AH ==,故②不正确; ∵AB CD ∥,则H CDF ∠=∠,DCF HBF ∠=∠, ∴DCF HBF △∽△,∴CFCD BF BH == ∵BH BD =,∴H BDH ∠=∠,∵45H BDH ABD ∠+∠=∠=°,∴22.5H BDH ∠=∠=°, 又∵AC 与BD 互相垂直且平分,∴DE BE =,∴22.5DBE BDE ∠=∠=°,则22.5CBE CBD DBE ∠=∠−∠=°, ∴DBE CBE ∠=∠,∴BE 平分CBD ∠,故③正确;由上可知,22.5DBE H ∠=∠=°,∴BDE HDB △∽△, ∴BD DE DH BD=,则2BD DE DH =⋅,又∵BD =,∴22AB DE DH =⋅,故④正确;综上,正确的有③④,共2个,故选:B .【点睛】本题考查正方形的性质,相似三角形的判定及性质,勾股定理,解直角三角形等知识,熟练掌握相关图形的性质是解决问题的关键.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共811-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 从2024年一季度GDP 增速看,东营市增速位居山东16市“第一方阵”,一季度全市生产总值达到957.2亿元,同比增长7.1%,957.2亿用科学记数法表示为_______.【答案】109.57210×【解析】【分析】本题考查了把绝对值大于1的数用科学记数法表示,关键是确定 n 与a 的值.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,它等于原数的整数数位与1的差.据此即可完成作答.【详解】解:957.2亿10957200000009.57210=×,故答案为:109.57210×.12. 因式分解:2aa 3−8aa =______. 【答案】2aa (aa +2)(aa −2)【解析】【分析】本题考查了因式分解,掌握提公因式法和公式法是解题关键.先提公因式2a ,再利用平方差公式分解因式即可.【详解】解:2aa 3−8aa=2aa (aa 2−4)=2aa (aa +2)(aa −2), 故答案为:2aa (aa +2)(aa −2).13. 4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是_______小时. 时间(小时)0.5 1 1.5 2 2.5人数(人)1018 12 6 4【答案】1【解析】【分析】本题考查了众数:一组数据中出现次数最多的数据叫做众数.直接根据众数的定义求解.【详解】解:由统计表可知,每天阅读1小时的人数最多,为18人,所以学生每天的平均阅读时间的众数是1小时.故答案为:1.14. 在弹性限度内,弹簧的长度(cm)y 是所挂物体质量(kg)x 的一次函数.一根弹簧不挂物体时长12.5cm ,当所挂物体的质量为2kg 时,弹簧长13.5cm .当所挂物体的质量为5kg 时,弹簧的长度为_______cm ,【答案】15【解析】【分析】本题考查了用待定系数法求一次函数的解析式、由自变量求函数值的知识点,解答时求出函数的解析式是关键.设y 与x 的函数关系式为()0y kx b k =+≠,由待定系数法求出解析式,并把5x =代入解析式求出对应的y 值即可.【详解】解:设y 与x 的函数关系式为()0y kx b k =+≠, 由题意,得12.513.52b k b = =+, 解得:0.512.5k b = =, 故y 与x 之间的关系式为:0.512.5y x =+, 当5x =时,0.5512.515y =×= . 故答案为:15.15. 如图,将DEF 沿FE 方向平移3cm 得到ABC ,若DEF 的周长为24cm ,则四边形ABFD 的周长为_______cm .【答案】30【解析】【分析】本题主要考查了平移的性质、三角形周长等知识点,掌握平移的性质及等量代换成为解题的关键. 由平移的性质可得3cm AD BE ==,DE AB =,再根据DEF 的周长为24cm 可得24AB EF DF ++=,然后根据四边形的周长公式及等量代换即可解答.【详解】解:∵将DEF 沿FE 方向平移3cm 得到ABC ,∴3cm AD BE ==,DE AB =,∵DEF 的周长为24cm ,∴24DE EF DF ++=,即24AB EF DF ++=,∴四边形ABFD 的周长为()243330cm AB BF DF AD AB BE EF DF AD AB EF DF BE AD +++=++++=++++=++=. 故答案为:30.16. 水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的14.小丽家去年5月份的水费是28元,而今年5月份的水费则是24.5元.已知小丽家今年5月份的用水量比去年5月份的用水量少33m .设该市去年居民用水价格为3/m x 元,则可列分式方程为_______. 【答案】2824.5354x x −= 【解析】【分析】本题主要考查了分式方程的应用,设该市去年居民用水价格为3/m x 元,则今年居民用水价格为35/m 4x 元,根据小丽家今年5月份的用水量比去年5月份的用水量少33m ,列出方程即可. 【详解】解:设该市去年居民用水价格为3/m x 元,则今年居民用水价格为311/m 4x +元,根据题意得: 2824.5354x x −=. 故答案为:2824.5354x x −=. 17. 我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416,如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得π内接正八边形近似估计O 的面积,可得π的估计值为_________.【答案】【解析】【分析】本题考查了圆内接正多边形的性质,三角形的面积公式,勾股定理等,正确求出正八边形的面积是解题的关键.过点A 作AM OB ⊥,求得360845AOB ∠=°÷=°,根据勾股定理可得222AM OM OA +=,即可求解.【详解】如图,AB 是正八边形的一条边,点O 是正八边形的中心,过点A 作AM OB ⊥,在正八边形中,360845AOB ∠=°÷=°∴AM OM =∵1OA =,222AM OM OA +=,解得:AM =∴12OAB S OB AM =××∴正八边形为8∴21π×∴π=∴π的估计值为故答案为:.18. 如图,在平面直角坐标系中,已知直线l 的表达式为y x =,点1A 的坐标为,以O 为圆心,1OA 为半径画弧,交直线l 于点1B ,过点1B 作直线l 的垂线交x 轴于点2A ;以O 为圆心,2OA 为半径画弧,交直线l 于点2B ,过点2B 作直线l 的垂线交x 轴于点3A ;以O 为圆心,3OA 为半径画弧,交直线l 于点3B ,过点3B 作直线l 的垂线交x 轴于点4A ;……按照这样的规律进行下去,点2024A 的横坐标是_______.【答案】10122【解析】【分析】本题考查的是一次函数性质应用,等腰直角三角形的判定与性质及点的坐标规律问题,作1B H x ⊥轴于点H ,依次求出234OA OA OA ,,,找出规律即可解决.【详解】解:作1B H x ⊥轴于点H ,12345,,,,B B B B B 均直线y x =上,1OH B H ∴=,145B OH ∴∠=︒,)1A ,11OA OB =,11OB OA ∴==,121,45B A l B OH ⊥∠=︒ ,112OB B A ∴==2112OA ∴===,()22,0A ∴,同理,22232OA OB B A ===,在332OA ∴===,同理,44OA = 55OA = 2024101220242OA ∴==,即点2024A 的横坐标是10122,故答案为:10122.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (10(π 3.14)|22sin 60−−°+−;(2)计算:2443111a a a a a −+ ÷+− −−. 【答案】(1)1;(2)22a a −+. 【解析】【分析】(1)先化简,然后计算乘法,最后算加减法即可;(2)先通分括号内的式子,同时将括号外的除法转化为乘法,然后约分即可.【详解】解:(10(π 3.14)|2|2sin 60−−°+−122=−+−−12=−+−1=;(2)2443111a a a a a −+ ÷+− −−()2221311a a a a −−−÷−− ()()()221122a a a a a −−×−+− 22a a −=+.【点睛】本题考查分式的混合运算、特殊三角形函数值、零次幂、实数的运算,熟练掌握运算法则是解答本题的关键.20. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,东营市某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间x 分成五档:A 档:01x ≤<;B 档:12x ≤<;C 档:23x ≤<;D 档:34x ≤<;E 档:4x ≤).调查的八年级男生、女生劳动时间的不完整统计图如下: 根据以上信息,回答下列问题:(1)本次调查中,共调查了_______名学生,补全条形统计图;(2)调查的男生劳动时间在C 档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.(3)学校为了提高学生的劳动意识,现从E 档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.【答案】(1)50,见详解(2)2.5 (3)16【解析】【分析】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,中位数的定义,熟练掌握各知识点是解题的关键.(1)运用D 档人数除以D 百分比,得出调查的学生总数,再运用总数乘上E 档的百分比,即可作答. (2)根据中位数的定义,排序后位于中间位置的数为中位数,据此即可作答.(3)依题意,得出E 档有2名男学生,有2名女学生,运用列表法得共有12种等可能的结果,再运用概率公式列式计算,即可作答.【小问1详解】 解:依题意,()6726%50+÷=(名) ∴本次调查中,共调查了50名学生;的则508%4×=(名)∴422−=(名)则E 档有2名男学生,有2名女学生,补全条形统计图如图所示:【小问2详解】解:依题意,5376223++++=(名)本次调查的男学生的总人数是23名∴则调查的全部男生劳动时间的中位数位于第12名,∵53853715+=++=,∴第12名位于C 档∵调查的男生劳动时间在C 2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为2.5小时,故答案为2.5;【小问3详解】解:用A ,B 表示2名男生,用C ,D 表示两名女生,列表如下:共有12种等可能的结果,其中所选两名学生恰好都是女生的结果有2种, ∴21126P ==.21. 如图,ABC 内接于O ,AB 是O 的直径,点E 在O 上,点C 是 BE的中点,AE CD ⊥,垂足为点D ,DC 的延长线交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若CD =60ABC ∠=°,求线段AF 的长. 【答案】(1)见解析 (2)6【解析】【分析】本题主要考查了圆与三角形综合.熟练掌握圆周角定理及推论,圆切线的判定.含30°的直角三角形性质,是解决问题的关键.(1)连接OC ,由OA OC =,BC CE =,推出OCA DAC ∠=∠,得到OC AD ∥,由AE CD ⊥,得到CD OC ⊥,即得;(2)由直径性质可得90ACB ∠=°,推出30DAC BAC ∠=∠=°,根据含30°的直角三角形性质得到3AD =,根据30F ∠=°,得到6AF =.【小问1详解】证明:∵连接OC ,则OA OC =,∴OAC OCA ∠=∠,∵点C 是 BE的中点, ∴BC CE =,∴OAC DAC ∠=∠,∴OCA DAC ∠=∠,∴OC AD ∥,∵AE CD ⊥,∴CD OC ⊥,∴CD 是O 的切线;【小问2详解】解:∵AB 是O 的直径,∴90ACB ∠=°,∵60ABC ∠=°,∴9030BAC ABC ∠=°−∠=°,∴30DAC ∠=°,∵CD =∴3AD =,∵()9030FBAC DAC ∠=°−∠+∠=°, ∴26AF AD ==.22. 如图,一次函数y mx n =+(0m ≠)的图象与反比例函数k y x=(0k ≠)的图象交于点(3,)A a −,()1,3B ,且一次函数与轴,y 轴分别交于点C ,D .(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出不等式k mx n x+>的解集; (3)在第三象限的反比例函数图象上有一点P ,使得4=△△OCP OBD S S ,求点P 的坐标.【答案】(1)3y x=,yy =xx +2 (2)30x −<<或1x >(3)点P 坐标为3,44 −−【解析】【分析】本题主要考查了反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象与性质是解题的关键.(1)将点B 坐标代入反比例函数解析式,求出k ,再将点A 坐标代入反比例函数解析式,求出点A 坐标,最后将A ,B 两点坐标代入一次函数解析式即可解决问题;(2)利用反比例函数以及一次函数图象,即可解决问题;(3)根据OCP △与OBD 的面积关系,可求出点P 的纵坐标,据此可解决问题.【小问1详解】解:将()1,3B 代入k y x =得,31k = ∴3k =, ∴反比例函数的解析式为3y x =,将(3,)A a −代入3y x =得,313a ==−−, ∴点A 的坐标为(3,1)−−.将点A 和点B 的坐标代入y mx n =+得, 313m n m n −+=− +=, 解得12m n = =, ∴一次函数的解析式为yy =xx +2;【小问2详解】解:根据所给函数图象可知,当30x −<<或1x >时,一次函数的图象在反比例函数图象的上方,即k mx n x+>, ∴不等式k mx n x+>的解集为:30x −<<或1x >. 【小问3详解】 解:将0x =代入yy =xx +2得,2y =,∴点D 的坐标为(0,2), ∴12112=××=△OBD S , ∴44OCP OBD S S ==△△.将0y =代入yy =xx +2得,2x =−,∴点C 的坐标为(2,0)−, ∴1242OCP P S y =××= , 解得4P y =.∵点P 在第三象限,∴4P y =−,将4P y =−代入3y x =得,34P x =−, ∴点P 坐标为3,44 −−. 23. 随着新能源汽车的发展,东营市某公交公司计划用新能源公交车淘汰“冒黑烟”较严重的燃油公交车.新能源公交车有A 型和B 型两种车型,若购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元.(1)求购买A 型和B 型新能源公交车每辆各需多少万元?(2)经调研,某条线路上的A 型和B 型新能源公交车每辆年均载客量分别为70万人次和100万人次.公司准备购买10辆A 型、B 型两种新能源公交车,总费用不超过650万元.为保障该线路的年均载客总量最大,请设计购买方案,并求出年均载客总量的最大值.【答案】(1)购买A 60万元,购买B 型新能源公交车每辆需80万元;(2)方案为购买A 型公交车8辆, B 型公交车2辆时.线路的年均载客总量最大,最大在客量为760万人. 【解析】【分析】本题考查二元一次方程组和一元一次不等式及一次函数的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组及一次函数是解题的关键.(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元”列出方程组解决问题即可;(2)设购买A 型公交车a 辆,则B 型公交车()10a −辆,由“公司准备购买10辆A 型、B 型两种新能源公交车,总费用不超过650万元”列出不等式求得a 的取值,再求出线路的年均载客总量为w 与a 的关系式,根据一次函数的性质求解即可.【小问1详解】解:设购买A 型新能源公交车每辆需x 万元,购买B 型新能源公交车每辆需y 万元,由题意得:326023360x y x y += +=, 解得6080x y = =, 答:购买A 型新能源公交车每辆需60万元,购买B 型新能源公交车每辆需80万元;【小问2详解】解:设购买A 型公交车a 辆,则B 型公交车()10a −辆,该线路年均载客总量为w 万人,由题意得()608010650a a +−≤,解得:7.5a ≥,∵10a ≤,∴7.510a ≤≤,∵a 是整数,∴8a =,9,10;∴线路的年均载客总量为w 与a 的关系式为()7010010301000w a a a =+−=−+, ∵300−<,∴w 随a 的增大而减小,∴当8a =时,线路的年均载客总量最大,最大载客量为3081000760w =−×+=(万人次) ∴1082−=(辆)∴购买方案为购买A 型公交车8辆,则B 型公交车2辆,此时线路的年均载客总量最大时,且为760万人次,24. 在Rt ABC △中,90ACB ∠=°,1AC =,3BC =.(1)问题发现如图1,将CAB △绕点C 按逆时针方向旋转90°得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系是______,AD 与BE 的位置关系是______;的(2)类比探究将CAB △绕点C 按逆时针方向旋转任意角度得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系、位置关系与(1)中结论是否一致?若AD 交CE 于点N ,请结合图2说明理由;(3)迁移应用如图3,将CAB △绕点C 旋转一定角度得到CDE ,当点D 落到AB 边上时,连接BE ,求线段BE 的长.【答案】(1)3BE AD =;AD BE ⊥(2)一致;理由见解析(3)BE =【解析】【分析】(1)延长DA 交BE 于点H ,根据旋转得出1CD AC ==,3CE BC ==,90ACD ACB ∠=∠=°,根据勾股定理得出AD,BE ,根据等腰三角形的性质得出190452ADC DAC ∠=∠=×°=°,190452CBE CEB ∠=∠=×°=°,根据三角形内角和定理求出180454590BHD ∠=°−°−°=°,即可得出结论;(2)延长DA 交BE 于点H ACD BCE ∽△△,得出13AD AC BE BC ==,ADC BEC ∠∠=,根据三角形内角和定理得出90EHN DCN ∠=∠=°,即可证明结论; (3)过点C 作CN AB ⊥于点N ,根据等腰三角形性质得出12AN ND AD ==,根据勾股定理得出AB ==,证明ACN ABC ∽,得出AN AC AC AB =,求出AN =,根据解析(2)得出3BE AD == 【小问1详解】解:延长DA 交BE 于点H ,如图所示:的∵将CAB △绕点C 按逆时针方向旋转90°得到CDE ,∴1CD AC ==,3CE BC ==,90ACD ACB ∠=∠=°,∴根据勾股定理得:AD,BE∴3BE AD =,∵CD AC =,CE BC =,90ACD ACB ∠=∠=°, ∴190452ADC DAC ∠=∠=×°=°,190452CBE CEB ∠=∠=×°=°, ∴180180454590BHD ADC CBE ∠=°−∠−∠=°−°−°=°,∴AD BE ⊥.【小问2详解】解:线段AD 与BE 的数量关系、位置关系与(1)中结论一致;理由如下:延长DA 交BE 于点H ,如图所示:∵将CAB △绕点C 旋转得到CDE ,∴1CD AC ==,3CE BC ==ACD BCE =∠,90DCE ACB ∠=∠=°, ∴13ACCD BC CE ==, ∴ACD BCE ∽△△, ∴13ADAC BE BC ==,ADC BEC ∠∠=, ∴3BE AD =;又∵ENH CND ∠=∠,180HEN ENH EHN ∠+∠+∠=°,180CND CDN DCN∠+∠+∠=°, ∴90EHN DCN ∠=∠=°,∴AD BE ⊥;【小问3详解】解:过点C 作CN AB ⊥于点N ,如图所示:根据旋转可知:AC CD =, ∴12AN ND AD ==, ∵在Rt ABC △中,90ACB ∠=°,1AC =,3BC =,∴根据勾股定理得:AB ==∵90ANC ACB ∠=∠=°,∠AA =∠AA ,∴ACN ABC ∽, ∴AN AC AC AB=,即1AN =,解得:AN =,∴2AD AN ==根据解析(2)可知:3BE AD==. 【点睛】本题主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.25. 如图,在平面直角坐标系中,已知抛物线2y x bx c =++与x 轴交于(1,0)A −,(2,0)B 两点,与y 轴交于点C ,点D 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点D 在直线BC 下方的抛物线上时,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t ,DE 的长为l ,请写出l 关于t 的函数表达式,并写出自变量t 的取值范围;(3)连接AD ,交BC 于点F ,求DEF AEFS S △△的最大值. 【答案】(1)2y x x 2−− (2)()2202l t t t =−+<< (3)1()3DEF AEF S S = 最大 【解析】【分析】(1)用待定系数法求出函数解析式即可;(2)先求出(0,2)C −,再用待定系数法求出直线BC 的解析式为:2y x =−,可得出()2,2D t t t −−,(),2E t t −,从而可得()22222l DE t t t t t ==−−−−=−+,再求出自变量取值范围即可; (3)分四种情形:当02t <<时,作AG DE ∥,交BC 于G ,可得出DEF AGF ∽,从而DF DE AF AG=,进而得出22211(1)333DF t t t AF −+==−−+,进一步得出结果;当1t <−,10t −<<和2t >时,可得出DEF AEF S S △△没有最大值.【小问1详解】解: 抛物线2y x bx c =++与x 轴交于(1,0)A −,(2,0)B 两点,∴10420b c b c −+= ++=, 解得12b c =− =−, ∴该抛物线的解析式为:2y x x 2−−;【小问2详解】解:二次函数2y x x 2−−中,令0x =,则2y =−,(0,2)C ∴−,设直线BC 的解析式为:y kx m =+.将(2,0)B ,(0,2)C −代入得到:202k m m += =−,解得12k m = =− , ∴直线BC 的解析式为:2y x =−,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t ,()2,2D t t t ∴−−,(),2E t t −,()22222l DE t t t t t ∴==−−−−=−+,点D 在直线BC 下方的抛物线上,02t ∴<<;【小问3详解】解:如图1,当02t <<时,作AG DE ∥,交BC 于G ,DEF AGF ∴ ∽, ∴DFDEAF AG =,把1x =−代入2y x =−得,=3y −,3AG ∴=, ∴22211(1)333DF t t t AF −+==−−+,当1x =时,1()3DFAF =最大, DEFAEFS DFAF S = , ∴1()3DEFAEFS S = 最大,当2t >时,此时222(2)2DE t t t t t =−−−−=−, ∴222(1)133DF t t t AF −−−==, 1t > 时,22t t −随着t 的增大而增大, ∴DF AF没有最大值, ∴()DEF AEF S S 没有最大值, 如图3,当10t −<<时,222(1)133DF t t t AF −−−==, 当10t −<<时,22t t −随着t 的增大而减小, ∴DF AF没有最大值, ∴()DEF AEF S S 没有最大值u ,当1t <−时,由上可知,()DEF AEFS S 没有最大值, 综上所述:当02t <<时,1()3DEF AEF S S = 最大. 【点睛】本题考查了二次函数及其图象的性质,求一次函数的解析式,相似三角形的判定和性质等知识,解决问题的关键是分类讨论.。
山东省德州市2024年中考数学真题试题含解析
![山东省德州市2024年中考数学真题试题含解析](https://img.taocdn.com/s3/m/2edf1c3926d3240c844769eae009581b6ad9bd56.png)
2024年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分) 1. -12的倒数是( )A. −2B. 12C. 2D. 12. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 据国家统计局统计,我国2024年国民生产总值(GDP )为900300亿元.用科学记数法表示900300亿是( ) A. 9.003×1012 B. 90.03×1012 C. 0.9003×1014 D. 9.003×1013 4. 下列运算正确的是( )A. (−2a )2=−4a 2B. (a +a )2=a 2+a 2C. (a 5)2=a 7D. (−a +2)(−a −2)=a 2−45. 若函数y =aa 与y =ax 2+bx +c 的图象如图所示,则函数y =kx +b 的大致图象为( )A. B.C. D.6. 不等式组{5a +2>3(a −1)12a −1≤7−32a 的全部非负整数解的和是( )A. 10B. 7C. 6D. 0 7. 下列命题是真命题的是( )A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {a −a =4.5a −12a =1B. {a −a =4.5a −12a =1C. {a −a =4.512a −a =1D. {a −a =4.512a −a =19. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透亮的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个嬉戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ) A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),肯定能使a 2−a 1a 2−a 1<0成立的是( )A. a =3a −1(a <0)B. a =−a 2+2a −1(a >0)C. a =−√3a(a >0)D. a =a 2−4a −1(a <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,全部正确结论的序号是( ) A. ①② B. ①③ C. ①②③ D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(a +1)(a −1)-3a −1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,假如梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.17. 如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,aa ⏜=aa ⏜,CE =1,AB =6,则弦AF 的长度为______. 18. 如图,点A 1、A 3、A 5…在反比例函数y =aa (x >0)的图象上,点A 2、A 4、A 6……在反比例函数y =−aa (x >0)的图象上,∠OA 1A 2=∠A 1A 2A 3=∠A 2A 3A 4=…=∠α=60°,且OA 1=2,则A n (n 为正整数)的纵坐标为______.(用含n 的式子表示)三、计算题(本大题共1小题,共10.0分)19. 习近平总书记说:“读书可以让人保持思想活力,让人得到才智启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面对社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同. (1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳实力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.四、解答题(本大题共6小题,共68.0分) 20. 先化简,再求值:(2a -1a )÷(a 2+a 2aa-5aa )•(a 2a +2a a +2),其中√a +1+(n -3)2=0.21.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康状况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成果进行分析.成果如下:七年级80 74 83 63 90 91 74 61 82 62 八年级74 61 83 91 60 85 46 84 74 82 (1)依据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级 2 3 5 0八年级 1 4 ______ 1分析数据:年级平均数众数中位数七年级76 74 77八年级______ 74 ______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康状况更好,并说明理由.22.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)依据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.23.下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30 25 0.1B50 50 0.1C100 不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.24.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请干脆写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转肯定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有改变吗?假如有改变,干脆写出改变后的结果(不必写计算过程);若无改变,请说明理由.mx-4与x轴交于A(x1,0),B(x2,25.如图,抛物线y=mx2-52.0)两点,与y轴交于点C,且x2-x1=112(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;2(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.依据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.依据轴对称图形的概念先求出图形中轴对称图形,再依据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:假如一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,假如把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.依据积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,驾驭各运算法则是关键,还要留意符号的处理.5.【答案】C【解析】解:依据反比例函数的图象位于二、四象限知k<0,依据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先依据二次函数及反比例函数的图象确定k、b的符号,然后依据一次函数的性质确定答案即可.本题考查了函数的图象的学问,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解:,解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的全部非负整数解是:0,1,2,3,4,∴不等式组的全部非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,精确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、依据全等三角形的判定方法,推断即可.B、依据垂径定理的推理对B进行推断;C、依据平行四边形的判定进行推断;D、依据平行线的判定进行推断.本题考查了命题与定理:推断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证明的,这样的真命题叫做定理.8.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.依据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,娴熟驾驭圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.首先依据题意画出树状图,然后由树状图求得全部等可能的结果,利用一元二次方程根的判别式,即可判定各种状况下根的状况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事务;解题时要留意此题是放回试验还是不放回试验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.依据各函数的增减性依次进行推断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,须要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可推断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可推断.本题考查正方形的性质,全等三角形的判定和性质,相像三角形的判定和性质等学问,解题的关键是娴熟驾驭基本学问,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;依据肯定值的意义,肯定值表示距离,所以3-x≥0,即可求解;本题考查肯定值的意义;理解肯定值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;依据分式方程的解法,先将式子通分化简为=1,最终验证根的状况,进而求解;本题考查分式方程的解法;娴熟驾驭分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.干脆利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;依据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7依据题意列出代数式解答即可.此题考查解一元一次不等式,关键是依据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,依据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√a−√a−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,-),依据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发觉点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×278=432<500 答:校图书馆能接纳第四个月的进馆人次. 【解析】 (1)先分别表示出其次个月和第三个月的进馆人次,再依据第一个月的进馆人次加其次和第三个月的进馆人次等于608,列方程求解; (2)依据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2a -1a )÷(a 2+a 2aa -5a a )•(a 2a +2a a +2) =2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −a aa •aa (a +2a )(a −2a )•(a +2a )22aa=-a +2a 2aa .∵√a +1+(n -3)2=0.∴m +1=0,n -3=0,∴m =-1,n =3.∴-a +2a 2aa =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m 和n 的值,最终代回化简后的分式即可.本题是分式化简求值题,须要娴熟驾驭通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)依据以上数据可得:七年级学生的体质健康状况更好.(1)依据平均数和中位数的概念解答即可;(2)依据样本估计总体解答即可;(3)依据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,驾驭众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD =120°,点A 、C 分别在射线PB 、PD 上,∠PAC =30°,AC =2√3,过A 、C 分别作PB 、PD 的垂线,它们相交于O ,以OA 为半径作⊙O ,OA ⊥PB ,求证:PB 、PC 为⊙O 的切线;证明:∵∠BPD =120°,PAC =30°,∴∠PCA =30°,∴PA =PC ,连接OP ,∵OA ⊥PA ,PC ⊥OC ,∴∠PAO =∠PCO =90°,∵OP =OP ,∴Rt △PAO ≌Rt △PCO (HL )∴OA =OC ,∴PB 、PC 为⊙O 的切线;(3)∵∠OAP =∠OCP =90°-30°=60°,∴△OAC 为等边三角形, ∴OA =AC =2√3,∠AOC =60°,∵OP 平分∠APC ,∴∠APO =60°,∴AP =√33×2√3=2,∴劣弧AC 与线段PA 、PC 围成的封闭图形的面积=S 四边形APCO -S 扇形AOC =2×12×2√3×2-60⋅a ⋅(2√3)2360=4√3-2π. 【解析】(1)过A 、C 分别作PB 、PD 的垂线,它们相交于O ,然后以OA 为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP ,先证明Rt △PAO ≌Rt △PCO ,然后依据切线的判定方法推断PB 、PC 为⊙O 的切线;(3)先证明△OAC 为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后依据扇形的面积公式,利用劣弧AC 与线段PA 、PC 围成的封闭图形的面积进行计算. 本题考查了作图-困难作图:困难作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟识基本几何图形的性质,结合几何图形的基本性质把困难作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x ≤853 853≤x ≤1753 x >1753【解析】解:(1)∵0.1元/min=6元/h ,∴由题意可得,y 1=, y 2=,y 3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)依据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)依据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题须要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC ⊥MN ,∠NGO =∠AGE =30°, ∴aa aa =cos30°=√32,∵GC =2OG ,∴aa aa =1√3,∵HGND 为平行四边形,∴HD =GN ,∴HD :GC :EB =1:√3:1.(2)如图2,连接AG ,AC ,∵△ADC 和△AHG 都是等腰三角形,∴AD :AC =AH :AG =1:√3,∠DAC =∠HAG =30°,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√3,∵∠DAB =∠HAE =60°,∴∠DAH =∠BAE ,在△DAH 和△BAE 中, {aa =aa∠aaa =∠aaaaa =aa∴△DAH ≌△BAE (SAS )∴HD =EB ,∴HD :GC :EB =1:√3:1.(3)有改变.如图3,连接AG ,AC ,∵AD :AB =AH :AE =1:2,∠ADC =∠AHG =90°,∴△ADC ∽△AHG ,∴AD :AC =AH :AG =1:√5,∵∠DAC =∠HAG ,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√5,∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,∵DA :AB =HA :AE =1:2,∴△ADH ∽△ABE ,∴DH :BE =AD :AB =1:2,∴HD :GC :EB =1:√5:2【解析】(1)连接AG ,由菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD=60°,易得A ,G ,C 共线,延长HG 交BC 于点M ,延长EG 交DC 于点N ,连接MN ,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线相互垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相像三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相像三角形的性质可得结论.本题是菱形与相像三角形,全等三角形,三角函数等学问点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-a 2a =54=a 1+a 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6),即:-6a =-4,解得:a =23, 故抛物线的表达式为:y =23x 2-53x -4;(2)当x 2=94时,y 2=2,①当a ≤a +2≤54时(即:a ≤-34), y 1≤y 2,则23a 2-53a -4≤2,解得:-2≤a ≤-92,而a ≤-34,故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时,则23(a +2)2-53(a +2)-4≤2,同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点, 点H (12,-92), 将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得:直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①,直线DC ⊥MH ,则直线MH 表达式中的k 值为1,同理可得直线HM 的表达式为:y =x -5…②,联立①②并解得:x =52,故点M (52,-52).【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种状况,分别求解即可; (3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要留意分类求解,避开遗漏.。
2023年山东省中考数学真题(附答案解析)
![2023年山东省中考数学真题(附答案解析)](https://img.taocdn.com/s3/m/58cce0d450e79b89680203d8ce2f0066f4336456.png)
(满分:120分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
温馨提示:
1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.
【解析】根据从上边看得到的图形是俯视图,可得答案.
【详解】解:俯视图是从上面看到的图形,应该是:
故选:D.
【点睛】本题主要考查简单几何体的三视图,掌握俯视图是从上边看得到的图形是解题的关键.
4.一元二次方程 根的情况为( )
A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定
【答案】A
如图,连接 ,则 , 是等边三角形
∴ ,弓形 的面积相等
∴阴影 的面积=扇形 的面积
∴图中三个阴影部分的面积之和 ;
故选:C.
【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.
8.已知点 是等边 的边 上的一点,若 ,则在以线段 为边的三角形中最小内角的大小为( )
A. B. C. D.
所有结果共有36种,其中点数之和等于7的结果有6种,概率为
故答案为: .
【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.
14.如图, 分别与 相切于 两点,且 .若点 是 上异于点 的一点,则 的大小为___________.
【答案】 或
【解析】根据切线的性质得到 ,根据四边形内角和为 ,得出 ,然后根据圆周角定理即可求解.
2022年山东省青岛市中考数学真题(原卷版)
![2022年山东省青岛市中考数学真题(原卷版)](https://img.taocdn.com/s3/m/95482ac85ff7ba0d4a7302768e9951e79a896952.png)
z2022年青岛市中考数学试题(考试时间:120分钟 满分:120分)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共25题.第Ⅰ卷为选择题,共8小题,24分;第Ⅱ卷为填空题,作图题、解答题,共17小题,96分.2.所有题目均在答题卡...上作答,在试题上作答无效. 第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1. 我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003.将0.0000003用科学记数法可以表示为( ) A.B. C. D.2. 北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 计算的结果是( ) A.B. 1C.D. 34.如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()A. B. C. D.5. 如图,正六边形内接于,点M 在上,则的度数为( )p 355113p 7310-´60.310-´6310-´7310´-3ABCDEF O !AB CME ÐzA. B. C. D.6. 如图,将先向右平移3个单位,再绕原点O 旋转,得到,则点A 的对应点的坐标是( )A. B.C.D.7. 如图,O 为正方形对角线的中点,为等边三角形.若,则的长度为( )A.B.C.D.8. 已知二次函数图象开口向下,对称轴为直线,且经过点,则下列结论正确的是( )3036°45°60°ABC !180°A B C ¢¢¢V A ¢(2,0)(2,3)--(1,3)--(3,1)--ABCD AC ACE !2AB =OE 22y ax bx c =++的1x =-(30)-,zA. B. C. D.第Ⅱ卷(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9. ﹣绝对值是_____.10.小明参加“建团百年,我为团旗添光彩”主题演进比赛,其演讲形象、内容、效果三项得分分别是9分,8分,8分.若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为__________分.11. 为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________.12. 图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中的度数是__________.13. 如图,是的切线,B 为切点,与交于点C ,以点A 为圆心、以的长为半径作,分别交于点E ,F .若,则图中阴影部分的面积为__________.14. 如图,已知的平分线交于点E ,且.将沿折叠使点C 与点E 恰好重合.下列结论正确的有:__________(填写序号)①②点E 到的距离为3 ③ 0b >0c <0a b c ++>30a c +=12的ABC аAB O !OA O !OC EF ,AB AC 2,4OC AB ==,,16,,ABC AB AC BC AD BC ABC ==^Ð△AD 4DE =C ÐGM 8BD =AC 103=EMz.④三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15. 已知:,.求作:点P ,使点P 在内部,且.四、解答题(本大题共10小题,共74分)16. (1)计算:; (2)解不等式组: 17. 2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜. 请用列表或画树状图的方法,说明这个游戏对双方是否公平.18. 已知二次函数y =x 2+mx +m 2−3(m 为常数,m >0)的图象经过点P (2,4).EM AC∥Rt ABC !90B Ð=°ABC !,45PB PC PBC =Ð=°2111442a a a a -æö÷+ç÷-+-èø()231212x x xì³-ïí-<ïîz.com(1)求m 的值;(2)判断二次函数y =x 2+mx +m 2−3的图象与x 轴交点的个数,并说明理由.19. 如图,为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东的点C 处,观光船到滨海大道的距离为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的距离.(参考数据:,,,,,)20. 孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打并创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表组别 时长t (单位:h )人数累计人数 第一组 正正正正正正30 第二组 正正正正正正正正正正正正 60 第三组 正正正正正正正正正正正正正正 70 第四组正正正正正正正正40AB 68°CB 40°sin 400.64°»cos 400.77°»tan 400.84°»sin 680.93°»cos 680.37°»tan 68 2.48°»12t £<23t £<34t £<45t £<z根据以上信息,解答下列问题: (1)补全频数直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第__________组;(3)若将上述调查结果绘制成扇形统计图,则第二组学生人数占调查总人数的百分比为__________,对应的扇形圆心角的度数为__________;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间? 21. 【图形定义】有一条高线相等两个三角形称为等高三角形.例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.【性质探究】如图①,用,分别表示和的面积. 则, ∵的°2h 的ABC !A B C ¢¢¢V ,AD A D ¢¢BC B C ¢¢AD A D ¢¢=ABC !A B C ¢¢¢V ABC S !A B C S ¢¢¢!ABC !A B C ¢¢¢V 11,22ABC A B C S BC AD S B C A D ¢¢¢=×=¢¢×¢¢△△AD A D ¢¢=z∴. 【性质应用】(1)如图②,D 是的边上的一点.若,则__________; (2)如图③,在中,D ,E 分别是和边上的点.若,,,则__________,_________;(3)如图③,在中,D ,E 分别是和边上点,若,,,则__________.22. 如图,一次函数的图象与x 轴正半轴相交于点C ,与反比例函数的图象在第二象限相交于点,过点A 作轴,垂足为D ,.(1)求一次函数的表达式;(2)已知点满足,求a 的值.23. 如图,在四边形ABCD 中,AB ∥CD ,点E ,F 在对角线BD 上,BE =EF =FD ,∠BAF =∠DCE =90°.(1)求证:△ABF ≌△CDE ;(2)连接AE ,CF ,已知__________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF 的形状,并证明你的结论. 条件①:∠ABD =30°; 条件2:AB =BC .(注:如果选择条件①条件②分别进行解答,按第一个解答计分)::ABC A B C S S BC B C ¢¢=¢¢△△ABC !BC 3,4BD DC ==:ABD ADC S S =△△ABC !BC AB :1:2BE AB =:1:3CD BC =1ABC S =△BEC S =△CDE S =△ABC !BC AB 的:1:BE AB m =:1:CD BC n =ABC S a =!CDE S =△y kx b =+2y x=-(1,)A m -AD x ^AD CD=(,0)E a CE CA=z24. 李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y (元/千克)与购进数量x (箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25. 如图,在中,,将绕点A 按逆时针方向旋转得到,连接.点P 从点B 出发,沿方向匀速运动,速度为;同时,点Q 从点A出发,沿方向匀速运动,速度为.交于点F ,连接.设运动时间为.解答下列问题:(1)当时,求t 的值;(2)设四边形的面积为,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使?若存在,求出t 的值;若不存在,请说明理由.Rt ABC △90,5cm,3cm ACB AB BC Ð=°==ABC !90°ADE !CD BA 1cm/s AD 1cm/s PQ AC ,CP EQ (s)(05)t t <<EQ AD ^PCDQ ()2cm S PQ CD Y2022年青岛市中考数学试题(考试时间:120分钟 满分:120分)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共25题.第Ⅰ卷为选择题,共8小题,24分;第Ⅱ卷为填空题,作图题、解答题,共17小题,96分. 2.所有题目均在答题卡...上作答,在试题上作答无效. 第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1. 我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003.将0.0000003用科学记数法可以表示为( ) A.B.C.D.【答案】A 【解析】【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.0000003故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.2. 北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C 【解析】p 355113p 7310-´60.310-´6310-´7310´7310-z【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【详解】解:A 、既不轴对称图形,又不是中心对称图形,该选项不符合题意; B 、不是轴对称图形,是中心对称图形,该选项不符合题意; C 、既是轴对称图形,又是中心对称图形,该选项符合题意; D 、是轴对称图形,不是中心对称图形,该选项不符合题意; 故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3. 计算) A .B . 1CD . 3【答案】B 【解析】【分析】把括号内的每一项分别乘 再合并即可. 【详解】解:故选:B.【点睛】本题考查是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.4. 如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是( )A .B .C .D .是-3321=-=的z【答案】C 【解析】【分析】根据几何体的俯视图是从上面看进行判断解答即可. 【详解】解:由图可知,该“堑堵”的俯视图是 ,故选:C .【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.5. 如图,正六边形内接于,点M 在上,则的度数为( )A .B .C .D .【答案】D 【解析】【分析】先求出正六边形的中心角,再利用圆周角定理求解即可. 【详解】解:连接OC 、OD 、OE ,如图所示:∵正六边形内接于, ∴∠COD = =60°,则∠COE =120°, ∴∠CME = ∠COE =60°,故选:D.ABCDEF O !AB CMEÐ3036°45°60°ABCDEF O !360612z【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n 多边形的中心角为是解答的关键.6. 如图,将先向右平移3个单位,再绕原点O 旋转,得到,则点A 的对应点的坐标是( )A .B .C .D .【答案】C 【解析】【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解. 【详解】解:先画出△ABC 平移后的△DEF ,再利用旋转得到△A 'B 'C ',由图像可知A '(-1,-3), 故选:C .360nABC !180°A B C ¢¢¢V A¢(2,0)(2,3)--(1,3)--(3,1)--z【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7. 如图,O 为正方形对角线的中点,为等边三角形.若,则的长度为( )A.B.C.D.【答案】B 【解析】【分析】利用勾股定理求出AC 的长度,再利用等边三角形的性质即可解决问题. 【详解】在正方形中:, ∴∵O 为正方形对角线的中点, ∴∵为等边三角形, O 为的中点,∴,∴, ∴故选:B .【点睛】此题考查了正方形的性质,勾股定理,等边三角形的性质,掌握以上知识点是解题的关键.8. 已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是( )A .B .C .D .【答案】DABCD AC ACE !2AB =OE 2ABCD 2,90AB BC ABC ==Ð=°AC ===ABCD AC 12OC AC ==ACE !AC EC AC ==EO AC ^90EOC Ð=°OE ===2y ax bx c =++1x =-(30)-,0b >0c <0a b c ++>30a c +=【解析】【分析】图象开口向下,得a <0, 对称轴为直线,得b =2a ,则b <0,图象经过,根据对称性可知,图象经过点,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下, ∴a <0,∵对称轴为直线, ∴b =2a ,∴b <0,故A 不符合题意;根据对称性可知,图象经过, ∴图象经过点, ∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意; 将将b =2a 代入,可知3a +c =0,故D 符合题意. 故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.第Ⅱ卷(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9. ﹣的绝对值是_____. 【答案】 【解析】【分析】绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b-a|或|a-b|表示数轴上表示a 的点和表示b 的点的距离. 【详解】﹣的绝对值是|﹣|= 【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.10. 小明参加“建团百年,我为团旗添光彩”主题演进比赛,其演讲形象、内容、效果三项得分分别是9分,8分,8分.若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为__________分. 【答案】8.3 【解析】12bx a=-=-(30)-,(1)0,12bx a=-=-(30)-,(1)0,1212121212【分析】按三项得分的比例列代数式再计算即可. 【详解】解:由题意得: 故答案为:【点睛】本题考查的是加权平均数的含义,掌握“求解加权平均数的方法”是解本题的关键.11. 为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________. 【答案】【解析】【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x 米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x 米/分,∴比赛时小亮平均速度为(1+25%)x 米/分, 根据题意可得,故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12. 图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中的度数是__________.【答案】60 【解析】930%840%830%,930%840%830%=8.3,8.3300030003(125%)x x-=+300030003(125%)x x-=+300030003(125%)x x-=+ABC аz【分析】先确定∠BAD 的度数,再利用菱形的对边平行,利用平行线的性质即可求出∠ABC 的度数.【详解】如图,∵∠BAD =∠BAE =∠DAE ,∠BAD +∠BAE +∠DAE =360°, ∴∠BAD =∠BAE =∠DAE =120°, ∵BC ∥AD ,∴∠ABC =180°-120°=60°, 故答案为:60.【点睛】本题考查了菱形的性质与学生读题审题的能力,解题关键是理解题意,求出∠BAD 的度数.13. 如图,是的切线,B 为切点,与交于点C ,以点A 为圆心、以的长为半径作,分别交于点E ,F .若,则图中阴影部分的面积为__________.【答案】 【解析】【分析】先证明再利用阴影部分的面积等于三角形面积减去扇形面积即可得到答案.【详解】解:如图,连接OB ,是的切线,AB O !OA O !OC EF ,AB AC 2,4OC AB ==4p -90,90,ABOO A AB O !90,90,ABO O Az设故答案为:【点睛】本题考查的是圆的切线的性质,扇形面积的计算,掌握“整体求解扇形的面积”是解本题的关键.14. 如图,已知的平分线交于点E ,且.将沿折叠使点C 与点E 恰好重合.下列结论正确的有:__________(填写序号) ①②点E 到的距离为3 ③ ④【答案】①④##④① 【解析】【分析】根据等腰三角形的性质即可判断①,根据角平分线的性质即可判断②,设12,,O n A n 薪薪!2,4OC AB ==12,244,2ABO OB AE S \===创=V 2212360360BOC AEF n OB n AE S S p p \+=+扇形扇形()212904,360360n n OB p p p +===4.S p \=-阴影4p -,,16,,ABC AB AC BC AD BC ABC ==^Ð△AD 4DE =C ÐGM 8BD =AC 103=EM EM AC∥z,则,中,,.继而求得,设,则,根据,进而求得的值,根据,,可得,即可判断④【详解】解:∵∴,故①正确; 如图,过点作于,于,,平分, ,是角平分线,, ,,故②不正确,.将沿折叠使点C 与点E 恰好重合,,设,则,中,,.,解得,故③不正确,DM x =8EM x =-Rt EDM △222EM DM DE =+4DE =EM AE a =4,8AD AE ED a BD =+=+=AE ABED BD=a 20443tan 83AD C DC +===4tan 3ED EMD DM Ð==C EMD Ð=Ð,,16,,ABC AB AC BC AD BC ==^△182BD DC BC ===E EF AB ^F EH AC ^H !,AD BC AB AC ^=AE \BAC ÐEH EF \=!BE ABD Ð的,ED BC EF AB ^^!EF ED \=4EH ED \==!C ÐGM ,8EM MC DM MC DM EM CD \=+=+==DM x =8EM x =-Rt EDM △222EM DM DE =+4DE =()22284x x -=+3x =5EM MC \==z设,则,, , , , ,,解得或(舍去) ,, , ,故④正确,故答案为:①④【点睛】本题考查了解直角三角形,三线合一,角平分线的性质,掌握以上知识是解题的关键.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15. 已知:,.AE a =4,8AD AE ED a BD =+=+=()22248AB a =++11221122ABE BDEAB EF AE BD S S BD ED ED BD ´´==´´!!"AE AB ED BD\=48a AB=2AB a =\()2248a ++()22a =203a =4a =-20443tan 83AD C DC +\===4tan 3ED EMD DM Ð==!C EMD \Ð=ÐEM AC \YRt ABC !90B Ð=°z求作:点P ,使点P 在内部,且. 【答案】见解析 【解析】【分析】分别以点B 、C 为圆心,大于BC 长的一半为半径画弧,交于两点,连接这两点,然后再以点B 为圆心,适当长为半径画弧,交AB 、BC 于点M 、N ,以点M 、N 为圆心,大于MN 长一半为半径画弧,交于一点Q ,连接BQ ,进而问题可求解. 【详解】解:如图,点P 即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.四、解答题(本大题共10小题,共74分)16. (1)计算:;ABC !,45PB PC PBC =Ð=°2111442a a a a -æö÷+ç÷-+-èø(2)解不等式组: 【答案】(1);(2) 【解析】【分析】(1)先计算括号内的分式的减法,再把除法转化为乘法,约分后可得答案; (2)分别解不等式组中的两个不等式,再确定不等式解集的公共部分即可. 【详解】(1)解:原式 . (2)解:解不等式得: 解不等式得: ∴原不等式组的解集是.【点睛】本题考查的是分式的化简,一元一次不等式组的解法,掌握“分式混合运算的运算顺序与解一元一次不等式组的步骤”是解本题的关键.17. 2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平. 【答案】游戏对双方都公平 【解析】【分析】根据题意列表求得双方的概率即可求解. 【详解】解:所有可能的结果如下: 乙 甲12345()231212x x xì³-ïí-<ïî12a -23x <£2121442a a a a a --+=÷-+-212(2)1a a a a --=×--12a =-23(1)x x ³-3x £212x-<2x >23x <£1 2∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果. ∴P (小冰获胜) P (小雪获胜) ∵P (小冰获胜)=P (小雪获胜) ∴游戏对双方都公平.【点睛】本题考查了游戏的公平性,列表法求概率,掌握求概率的方法是解题的关键. 18. 已知二次函数y =x 2+mx +m 2−3(m 为常数,m >0)的图象经过点P (2,4). (1)求m 的值;(2)判断二次函数y =x 2+mx +m 2−3的图象与x 轴交点的个数,并说明理由. 【答案】(1)m =1 (2)二次函数图象与x 轴有两个交点,理由见解析.【解析】【分析】(1)把P (2,4)代入y =x 2+mx +m 2−3即可求得m 的值; (2)首先求出Δ=b 2-4ac 的值,进而得出答案. 【小问1详解】解:∵二次函数y = x 2+mx +m 2−3图象经过点P (2,4) ,∴4=4+2m +m 2−3, 即m 2+2m −3=0, 解得:m 1=1,m 2=−3, 又∵m >0, ∴m =1; 【小问2详解】解:由(1)知二次函数y =x 2+x −2, ∵Δ=b 2−4ac =12+8=9>0,∴二次函数y =x 2+x −2的图象与x 轴有两个交点.【点睛】此题主要考查了抛物线与x 轴的交点以及一元二次方程的解法,得出△的值是解题关键.19. 如图,为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东的点C 处,观光船()1,1()1,2()1,3()1,4()1,5()2,1()2,2()2,3()2,4()2,551102==51102==22y x x =+-的AB 68°z到滨海大道的距离为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的距离.(参考数据:,,,,,)【答案】观光船从C 处航行到D 处的距离为米 【解析】【分析】过点C 作于点F ,根据题意利用正切函数可得,由矩形的判定和性质得出,结合图形利用锐角三角函数解三角形即可. 【详解】解:过点C 作于点F , 由题意得,, 在中,, ∵ ∴∴ ∵ ∴四边形为矩形 ∴.在中, ∵ ∴答:观光船从C 处航行到D 处的距离为米.CB 40°sin 400.64°»cos 400.77°»tan 400.84°»sin 680.93°»cos 680.37°»tan 68 2.48°»462.5CF DE ^496AB =296CF BE ==CF DE ^40,68D ACB Ð=°Ð=°Rt ABC !90CBA Ð=°tan ABACB CBÐ=tan 68200 2.48496AB CB =´°=´=496200296BE AB AE =-=-=90CFE FEB CBE Ð=Ð=Ð=°FEBC 296CF BE ==Rt CDF !90DFC Ð=°sin CFD CDÐ=296462.5sin 400.64CF CD =»=°462.5【点睛】题目主要考查解三角形的应用,理解题意,找准各角之间的关系,利用锐角三角函数解三角形是解题关键.20. 孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打并创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表o根据以上信息,解答下列问题:z(1)补全频数直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第__________组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为__________,对应的扇形圆心角的度数为__________;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间? 【答案】(1)图见解析 (2)三 (3)30%,108 (4)330人 【解析】【分析】(1)根据频数分布表补全图形即可;(2)根据中位数的定义,中间的一个数或两个数的平均数求出中位数; (3)根据百分比=该组频数÷总数,圆心角百分比,即可得出答案; (4)用2200乘以第一组所占百分比即可得出答案. 【小问1详解】解:学生每周自主发展兴趣爱好时长频数直方图:【小问2详解】 ∵总人数为200人,∴中位数落在第100、101个学生每周自主发展兴趣爱好的时长的平均数, 又∵30+60=90<100,30+60+70=160>101, ∴中位数落在第三组, 故答案为:三; 【小问3详解】第二组的学生人数占调查总人数的百分比为:°2h =360´°60100%30%200´=z第二组的学生人数对应的扇形圆心角的度数为: 故答案为:30%,108; 【小问4详解】估计该校需要增加自主发展兴趣爱好时间的人数为:(人) 答:估计该校有330人需要增加自主发展兴趣爱好时间.【点睛】本题考查频数及频率的应用,熟练掌握频数及频率的意义及应用、频数分布直方图的画法及一定的数据分析方法是解题关键. 21. 【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.【性质探究】如图①,用,分别表示和的面积. 则, ∵∴. 【性质应用】(1)如图②,D 是的边上的一点.若,则__________;(2)如图③,在中,D ,E 分别是和边上的点.若,,,则__________,_________;(3)如图③,在中,D ,E 分别是和边上的点,若,,,则__________.【答案】(1)30%360108´°=°302200330200´=ABC !A B C ¢¢¢V ,AD A D ¢¢BC B C ¢¢AD A D ¢¢=ABC !A B C ¢¢¢V ABC S !A B C S ¢¢¢!ABC !A B C ¢¢¢V 11,22ABC A B C S BC AD S B C A D ¢¢¢=×=¢¢×¢¢△△AD A D ¢¢=::ABC A B C S S BC B C ¢¢=¢¢△△ABC !BC 3,4BD DC ==:ABD ADC S S =△△ABC !BC AB :1:2BE AB =:1:3CD BC =1ABC S =△BEC S =△CDE S =△ABC !BC AB :1:BE AB m =:1:CD BC n =ABC S a =!CDE S =△3:4z(2); (3)【解析】【分析】(1)由图可知和是等高三角形,然后根据等高三角形的性质即可得到答案;(2)根据,和等高三角形的性质可求得,然后根据和等高三角形的性质可求得;(3)根据,和等高三角形的性质可求得,然后根据,和等高三角形的性质可求得.【小问1详解】解:如图,过点A 作AE ⊥BC ,则,∵AE =AE ,∴. 【小问2详解】解:∵和是等高三角形, ∴, ∴; ∵和是等高三角形, ∴, ∴. 【小问3详解】解:∵和是等高三角形, ∴,1216a mnABD △ADC !:1:2BE AB =1ABC S =△BEC S !:1:3CD BC =CDE S △:1:BE AB m =ABC S a =!S BEC !:1:CD BC n =CDE S △12ABD S BD AE =×!12ADC S DC AE =×V ::3:4ABD ADC S S BD DC ==△△BEC △ABC !::1:2BEC ABC S S BE AB ==!△1111222BEC ABC S S ==´=!△CDE △BEC △::1:3CDE BEC S S CD BC ==!△11113326CDE BEC S S ==´=!!BEC △ABC !::1:BEC ABC S S BE AB m ==!△z∴; ∵和是等高三角形, ∴, ∴. 【点睛】本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.22. 如图,一次函数的图象与x 轴正半轴相交于点C ,与反比例函数的图象在第二象限相交于点,过点A 作轴,垂足为D ,.(1)求一次函数的表达式;(2)已知点满足,求a 的值. 【答案】(1) (2)【解析】【分析】(1)将点A 坐标代入反比例函数解析式求出m ,得,由轴可得,进一步求出点,将A ,C 点坐标代入一次函数解析式,用待定系数法即可求出一次函数的解析式;(2)由勾股定理求出AC 的长,再根据且E 在x 轴上,分类讨论得a 的值. 【小问1详解】解:(1)∵点在反比例函数的图象上, ∴ ∴ ∵轴11BEC ABC a S S a m m m==´=!△CDE △BEC △::1:CDE BEC S S CD BC n ==!△11CDE BEC a a S S n n m mn==´=!!y kx b =+2y x=-(1,)A m -AD x ^AD CD =(,0)E a CE CA =1y x =-+1-1+(1,2)A -AD x ^2,1AD OD ==(1,0)C CE CA =(1,)A m -2y x=-221m =-=-(1,2)A -AD x ^。
2023年山东省东营市中考数学真题及答案(1)
![2023年山东省东营市中考数学真题及答案(1)](https://img.taocdn.com/s3/m/fb7bafff0d22590102020740be1e650e52eacfe6.png)
(总分 120 分,考试时间 120 分钟) 第Ⅰ卷(选择题 共 30 分)
一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确 的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.
1. 2 的相反数是( )
4. 剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代
表作名录.小文购买了以“剪纸图案”为主题的 5 张书签,他想送给好朋友小乐一张.小文将书签背面朝
上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形
的概率是(
)
4
解题的关键.
8. 如图,在平面直角坐标系中,菱形 OABC 的边长为 2 6 ,点 B 在 x 轴的正半轴上,且 AOC 60 ,
将菱形 OABC 绕原点 O 逆时针方向旋转 60 ,得到四边形 OABC ( 点 A 与点 C 重合 ) ,则点 B 的坐标是
(
)
A. 3 6,3 2
B. 3 2,3 6
A.
5
【答案】C
3
B.
5
2
C.
5
1
D.
5
【解析】
【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能
够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如
果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进
C. 2x2 3 8x6 ,故该选项不正确,不符合题意;
D. 2 3x 2 3x 4 9x2 ,故该选项正确,符合题意;
2024年山东省烟台市中考真题数学试卷含答案解析
![2024年山东省烟台市中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/a0430783cf2f0066f5335a8102d276a2002960cd.png)
2024年山东省烟台市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中的无理数是( )A .23B .3.14C D2.下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B . 12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .3.下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A .①B .②C .③D .④【答案】A 【分析】本题考查几何体的三视图,熟练掌握三视图的画法是解题的关键.分别画出各选项得出的左视图,再判断即可.【详解】解:A 、取走①时,左视图为 ,既是轴对称图形又是中心对称图形,故选项A 符合题意;B 、取走②时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项B 不符合题意;C 、取走③时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项C 不符合题意;D 、取走④时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项D 不符合题意;故选:A .4.实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c -<C .a c >D .22a b-<-【答案】B5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是4A 纸厚度的六分之一,已知1毫米1=百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )A .30.1510⨯纳米B ..41510⨯纳米C .51510-⨯纳米D .61.510-⨯纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为2S 甲和2S 乙,则2S 甲和2S 乙的大小关系是( )A .22S S >甲乙B .22S S <甲乙C .22S S =甲乙D .无法确定【答案】A 【分析】本题考查比较方差的大小,根据折线图,得到乙选手的成绩波动较小,即可得出结果.【详解】解:∵方差表示数据的离散程度,方差越大,数据波动越大,方差越小,数据波动越小,由折线图可知乙选手的成绩波动较小,∴22S S >甲乙;故选A .7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】本题考查角平分线的判定,全等三角形的判定和性质,等腰三角形的判定和性质,中垂线的性质和判定,根据作图痕迹,逐一进行判断即可.【详解】解:第一个图为尺规作角平分线的方法,OP 为AOB ∠的平分线;第二个图,由作图可知:,OC OD OA OB ==,∴AC BD =,∵AOD BOC ∠=∠,∴AOD BOC ≌△△,∴OAD OBC ∠=∠,∵AC BD =,BPD APC ∠=∠,∴BPD APC ≌,∴AP BP =,∵,OA OB OP OP ==,∴AOP BOP ≌△△,∴AOP BOP ∠=∠,∴OP 为AOB ∠的平分线;第三个图,由作图可知,ACP AOB OC CP ∠=∠=,∴CP BO ∥,COP CPO ∠=∠,∴CPO BOPÐ=Ð∴COP BOP ∠=∠,∴OP 为AOB ∠的平分线;第四个图,由作图可知:OP CD ⊥,OC OD =,∴OP 为AOB ∠的平分线;故选D .8.如图,在正方形ABCD 中,点E ,F 分别为对角线BD AC ,的三等分点,连接AE 并延长交CD 于点G ,连接EF FG ,,若AGF α∠=,则FAG ∠用含α的代数式表示为( )A .452α︒-B .902α︒-C .452α︒+D .2α∴OD OC =,ODC ∠=∴OE OF =,∵EOF DOC ∠=∠,OE OD ∴EOF DOC ∽△△,9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?A.45尺B.88尺C.90尺D.98尺故选:C .10.如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∵菱形EFGH ,60E ∠=︒,依题意,MNG 为等边三角形,运动时间为t ,则cos30NG =∴1sin 60S NG NG =⨯⨯⨯︒依题意,6EM EG t t =-=-,则EK ∴()211236223EKJ S EJ EM t =⋅=⨯- ∴EKJS S S =- 菱形当1114x <≤时,同理可得,3综上所述,当03x ≤≤时,函数图象为开口向上的一段抛物线,当开口向下的一段抛物线,当68x <≤时,函数图象为一条线段,当开口向下的一段抛物线,当1114x <≤时,函数图象为开口向上的一段抛物线;故选:D .二、填空题11x 的取值范围为 .【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.12.关于x 的不等式12x m x -≤-有正数解,m 的值可以是 (写出一个即可).13.若一元二次方程22410x x --=的两根为m ,n ,则2234m m n -+的值为.14.如图,在边长为6的正六边形ABCDEF 中,以点F 为圆心,以FB 的长为半径作 BD,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为 .设圆锥的底面圆的半径为∴3r =;故答案为:3.15.如图,在ABCD Y 中,120C ∠=︒,8AB =,10BC =.E 为边CD 的中点,F 为边AD 上的一动点,将DEF 沿EF 翻折得D EF ' ,连接AD ',BD ',则ABD '△面积的最小值为.过C 作CN AB ⊥于N ,∵AB CD ∥,∴EM CN =,在Rt BCN 中,10BC =,CBN ∠16.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x4-3-1-15y59527-下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x -<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y --均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x -或3x >.其中正确结论的序号为 .【答案】①②④【分析】本题考查了二次函数的图象和性质, 利用待定系数法求出a b c 、、的值即可判断①;利用根的判别式即可判断②;利用二次函数的性质可判断③;利用对称性可判断④;画出函数图形可判断⑤;掌握二次函数的图象和性质是解题的关键.【详解】解:把()4,0-,()1,9-,()1,5代入2y ax bx c =++得,164095a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,解得128a b c =-⎧⎪=-⎨⎪=⎩,∴0abc >,故①正确;∵1a =-,2b =-,8c =,由2228y x y x x =-+⎧⎨=--+⎩,解得1120x y =⎧⎨=⎩,2235x y =-⎧⎨=⎩,∴()2,0A ,()3,5B -,由图形可得,当3x <-或2x >时,2282x x x --+<-+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④,故答案为:①②④.三、解答题17.利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷⎪--+,再求值.18.“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t 表示,单位:h )进行调查.经过整理,将数据分成四组(A 组:02t ≤<;B 组:24t ≤<;C 组:46t ≤<;D 组:68t ≤<),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,1429α︒≤≤︒;夏至日时,4376α︒≤≤︒.sin140.24︒≈,cos140.97︒≈,tan140.25︒≈sin290.48︒≈,cos290.87≈︒,tan290.55≈︒sin430.68︒≈,cos430.73︒≈,tan430.93︒≈sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米,AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填14︒,29︒,43︒,76︒中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.【答案】任务一:冬至,14︒;任务二:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器【分析】本题考查解直角三角形的应用,理解题意是解答的关键.任务一:根据题意直接求解即可;任务二:过E 作EF AB ⊥于F ,利用正切定义求得【详解】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需α为冬至日时的最小角度,即14α=︒,故答案为:冬至,14︒;任务二:过E 作EF AB ⊥于F ,则90AFE ∠=︒,54EF =米,BF DF =,在Rt AFE 中,tan AFEFα=,∴tan14540.2513.5AF EF =⋅︒≈⨯=(米)∵11 3.336.3AB =⨯=(米),∴36.313.5DE BF AB AF ==-=-=22.8 3.37÷≈(层),20.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.如图,正比例函数y x =与反比例函数k y x =的图象交于点)A a ,将正比例函数图象向下平移()0n n >个单位后,与反比例函数图象在第一、三象限交于点B ,C ,与x 轴,y 轴交于点D ,E ,且满足:3:2BE CE =.过点B 作BF x ⊥轴,垂足为点F ,G 为x 轴上一点,直线BC 与BG 关于直线BF 成轴对称,连接CG .(1)求反比例函数的表达式;(2)求n 的值及BCG 的面积.22.在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为直线BC 上任意一点,连接AD .将线段AD 绕点D 按顺时针方向旋转90︒得线段ED ,连接BE .【尝试发现】(1)如图1,当点D 在线段BC 上时,线段BE 与CD 的数量关系为________;【类比探究】(2)当点D 在线段BC 的延长线上时,先在图2中补全图形,再探究线段BE 与CD 的数量关系并证明;【联系拓广】(3)若1AC BC ==,2CD =,请直接写出sin ECD ∠的值.由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,BE 过点E 作EM BC ⊥交BC 于点由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,∵90ACB ∠=︒,∴ACD DME ∠=∠,ADC ∠+∴CAD EDM ∠=∠由(2)得1DM AC ==,2EM CD ==,∴3CM CD DM =+=,∴2213CE CM EM =+=,∴2213sin 1313EM ECD CE ∠===.同理可得:ACD DME △≌△,∴1DM AC ==,2ME CD ==,∴211CM =-=,∴22215CE =+=,∴225sin 55EM ECD CE ∠===;23.如图,AB 是O 的直径,ABC 内接于O ,点I 为ABC 的内心,连接CI 并延长交O于点D ,E 是 BC上任意一点,连接AD ,BD ,BE ,CE .(1)若25ABC ∠=︒,求CEB ∠的度数;(2)找出图中所有与DI 相等的线段,并证明;(3)若CI =DI =ABC 的周长.【答案】(1)115︒(2)DI AD BD ==,证明见解析(3)30【分析】(1)利用圆周角定理得到90ACB ∠=︒,再根据三角形的内角和定理求65CAB ∠=︒,然后利用圆内接四边形的对角互补求解即可;(2)连接A I ,由三角形的内心性质得到内心,CAI BAI ∠=∠,ACI BCI ∠=∠,然后利用圆周角定理得到DAB DCB ACI ∠=∠=∠,AD BD =,利用三角形的外角性质证得DAI DIA ∠=∠,然后利用等角对等边可得结论;(3)过I 分别作IQ AB ⊥,IF AC ⊥,IP BC ⊥,垂足分别为Q 、F 、P ,根据内切圆的性质和和切线长定理得到AQ AF =,CF CP =,BQ BP =,利用解直角三角形求得2CF CP ==, 13AB =,进而可求解.【详解】(1)解:∵AB 是O 的直径,∴90ADB ACB ∠=∠=︒,又25ABC ∠=︒,∴902565CAB ∠=︒-︒=︒,∵四边形ABEC 是O 内接四边形,∴180CEB CAB ∠+∠=︒,∴180115CEB CAB ∠=︒-∠=︒;∵点I 为ABC 的内心,∴CAI BAI ∠=∠,ACI ∠∴ AD BD=,∴DAB DCB ACI ∠=∠=∠∵点I 为ABC 的内心,即为∴Q 、F 、P 分别为该内切圆与∴AQ AF =,CF CP =,∵22CI =,90IFC ∠=2AB AQ BQ CF=+++22AB CF=+21322=⨯+⨯30=.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.24.如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.由题意得2AG BG ==,∵对称轴为直线=1x -,∴()()1,0, 3.0B A -,∴3OC OA ==,∴()0,3C ,将A 、B 、C 分别代入21y ax bx c =++,得:09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴2123y x x =--+,∴()2212314y x x x =--+=-++,顶点为()1,4-∵抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,∴抛物线2y 的1a =,顶点为()1,4-,∴2y 的表达式为:()2214y x =--,即2223y x x =--(2)解:将点F 向右平移2个单位至F ',则2F F '=,()4,0F '-,过点D 作直线2l 的对称点为D ¢,连接,,F N F D ND '''',∴ND ND '=,∵()2214y x =--,∴直线2l 为直线1x =,∵抛物线()2214y x =--,∴()1,4E -∵2l y ∥轴,∴1DHE ∠=∠,∵2PEH DHE ∠=∠,∴2112PEH ∠=∠=∠+∠,∴12∠=∠,作H 关于直线2l 的对称点H ',则点H '在直线PE 上,∵点H 的坐标为()0,2-,直线2l :1x =,∴()2,2H '-,设直线PE 的表达式为:()0y kx b k =+≠,代入()2,2H '-,()1,4E -,得:224k b k b +=-⎧⎨+=-⎩,解得:26k b =⎧⎨=-⎩,∴直线PE 的表达式为26y x =-,联立222623y x y x x =-⎧⎨=--⎩,得:22326x x x --=-,解得:3x =或1x =(舍),∴()3,0P ;②当点P 在直线2l 左侧抛物线上时,延长EP 交y 轴于点N ,作HN 的垂直平分线交HE 于点Q ,交y 轴于点M ,过点E 作EK y ⊥轴于点K ,则QM EK ∥,如图:。
2024年山东省威海市中考数学试题(含解析)
![2024年山东省威海市中考数学试题(含解析)](https://img.taocdn.com/s3/m/f08df15391c69ec3d5bbfd0a79563c1ec5dad7d7.png)
扬州市2024年初中毕业升学考试数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置,在试卷第一面的右下角填写好座位号.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,必须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.实数2的倒数是()A.2- B.2C.12-D.122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是()A.B.C.D.3.下列运算中正确的是()A.222()a b a b -=-B.523a a a -=C.()235a a = D.236326a a a ⋅=4.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力 4.34.44.54.64.74.84.95.0人数7447111053这45名同学视力检查数据的众数是()A.4.6B.4.7C.4.8D.4.95.在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是()A.()1,2 B.()1,2- C.()1,2- D.()1,2--6.如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体7.在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是()A.0B.1C.2D.48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676B.674C.1348D.1350二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.近年来扬州经济稳步发展:2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为____.10.分解因式:2242a a -+=_____.11.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.530随着实验次数的增大,“盖面朝上”的概率接近于__________(精确到0.01).12.有意义,则x 的取值范围是___.13.若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为____cm .14.如图,已知一次函数(0)y kx b k =+≠的图象分别与x 、y 轴交于A 、B 两点,若2OA =,1OB =,则关于x 的方程0kx b +=的解为_____.15.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要____分钟.16.物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)AB 经小孔O 在屏幕(竖直放置)上成像A B ''.设36cm AB =,24cm A B ''=.小孔O 到AB 的距离为30cm ,则小孔O 到A B ''的距离为_____cm .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为_____.18.如图,已知两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C 、D 分别是1l 、2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为_____.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:0|3|2sin 302)π-+︒--;(2)化简:2(2)1x x x -÷-+.20.解不等式组260412x x x -≤⎧⎪⎨-<⎪⎩,并求出它的所有整数解的和.21.2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x (分)百分比A 组60x <5%B 组6070x ≤<15%C 组7080x ≤<aD 组8090x ≤<35%E 组90100x ≤≤25%成绩条形统计图根据所给信息,解答下列问题:(1)本次调查的成绩统计表中=a ________%,并补全条形统计图;(2)这200名学生成绩的中位数会落在________组(填A 、B 、C 、D 或E );(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.22.2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A 、B 、C 、D 、E )参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;(2)小明和小亮在C 、D 、E 三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?24.如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD .(1)试判断四边形ABCD 的形状,并说明理由;(2)已知矩形纸条宽度为2cm ,将矩形纸条旋转至如图2位置时,四边形ABCD 的面积为28cm ,求此时直线AD CD 、所夹锐角1∠的度数.25.如图,已知二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标.26.如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长.27.如图,点A B M E F 、、、、依次在直线l 上,点A B 、固定不动,且2AB =,分别以AB EF 、为边在直线l 同侧作正方形ABCD 、正方形EFGH ,90PMN ∠=︒,直角边MP 恒过点C ,直角边MN 恒过点H .(1)如图1,若10BE =,12EF =,求点M 与点B 之间的距离;(2)如图1,若10BE =,当点M 在点B E 、之间运动时,求HE 的最大值;(3)如图2,若22BF =,当点E 在点B F 、之间运动时,点M 随之运动,连接CH ,点O 是CH 的中点,连接HB MO 、,则2OM HB +的最小值为_______.28.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =,O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.【答案】D 【解析】解:∵1212⨯=,∴2的倒数为12,故选:D .2.【答案】C【解析】解:A ,B ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C .3.【答案】B【解析】解:A 、()2222a b a ab b -=-+,原选项错误,不符合题意;B 、523a a a -=,正确,符合题意;C 、()236a a =,原选项错误,不符合题意;D 、2353·26a a a =,原选项错误,不符合题意;故选:B .4.【答案】B【解析】解:这45名同学视力检查数据中,4.7出现的次数最多,因此众数是4.7.故选:B .5.【答案】D【解析】∵点()1,2P 关于原点的对称点为P',∴P'的坐标为(-1,-2),故选D .6.【答案】C【解析】解:根据图示,上下是两个三角形,中间是长方形,∴三棱柱,故选:C .7.【答案】B【解析】当0x =时,422y ==,∴42=+y x 与y 轴的交点为()0,2;由于42x +是分式,且当2x ≠-时,402x ≠+,即0y ≠,∴42=+y x 与x 轴没有交点.∴函数42=+y x 的图像与坐标轴的交点个数是1个,故选:B .8.【答案】D【解析】这一列数为:1,1,2,3,5,8,13,21,34,…可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于202436742÷= ,即前2024个数共有674组,且余2个数,∴奇数有674221350⨯+=个.故选:D二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【答案】71.8710⨯【解析】718700000 1.8710=⨯,故答案为:71.8710⨯.10.【答案】()221a -【解析】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.11.【答案】0.53【解析】解:由表中数据可得:随着实验次数的增大,“盖面朝上”的概率接近0.53,故答案为:0.5312.【答案】2x ≥【解析】解:根据题意,使二次根式有意义,即x ﹣2≥0,解得:x ≥2.故答案为:x ≥2.13.【答案】5【解析】解:圆锥的侧面展开图的弧长为210210(cm)ππ⨯÷=,∴圆锥的底面半径为1025(cm)ππ÷=,故答案为:5.14.【答案】2x =-【解析】解:∵2OA =,∴(2,0)A -,∵一次函数y kx b =+的图象与x 轴交于点(2,0)A -,∴当0y =时,2x =-,即0kx b +=时,2x =-,∴关于x 的方程0kx b +=的解是2x =-.故答案为:2x =-.15.【答案】2.5【解析】解:根据题意,设t 分钟追上,∴10060100t t +=,解得, 2.5t =,∴速度快的人追上速度慢的人需要2.5分钟,故答案为:2.5.16.【答案】20【解析】由题意得:AB A B ''∥,∴AOB A OB ''∽△△,如图,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',∴OC A B '''⊥,30cm OC =,∴A B OC AB OC '''=,即243630OC '=,∴20OC '=(cm ),即小孔O 到A B ''的距离为20cm ,故答案为:20.17.【答案】23【解析】解:如图,过点D 作DE x ⊥轴于点E .∵点A 的坐标为(1,0),∴1OA =,∵30BAC ∠=︒,BC x ⊥,设BC a =,则3AD AC a ==,由对称可知AC AD =,30DAB BAC ∠=∠=︒,∴60,30DAC ADE ︒∠=︒∠=,∴32AE a =,32DE a =,∴33(13,),1,22B a a D a ⎛⎫++ ⎪ ⎪⎝⎭,∵点B 的对应点D 落在该反比例函数的图像上,∴()3313122k a a a ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭,解得:233a =,∵反比例函数图象在第一象限,∴k =,故答案为:18.【答案】13【解析】解:∵两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,∴点B 为定点,AB 的长度为定值,∵12l l ∥,∴ACE BDE ∠=∠,CAE DBE =∠∠,∵AC BD =,∴()ASA ACE BDE ≌,∴12BE AE AB ==,∵BH CD ⊥,∴90BHE ∠=︒,∴点H 在以BE 为直径的圆上运动,如图,取线段BE 的中点O ,以点O 为圆心,OB 为半径画圆,则点H 在O 上运动,∴当AH 与O 相切时BAH ∠最大,∴OH AH ⊥,∵2AE OB OE ==,∴3AO AE OE OE =+=,∵OH OE =,∴3sin 13OH OE AO O BAH E ==∠=,故答案为:13.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【答案】(1)3π-;(2)11x +【解析】解:(1)0|3|2sin 302)π-+︒--13212=π-+⨯-311=π-+-3π=-;(2)2(2)1x x x -÷-+2112x x x -=⋅+-11x =+.20.【答案】132x <≤,整数和为6【解析】解:260412x x x -≤⎧⎪⎨-<⎪⎩①②,由①得,26x ≤,解得,3x ≤;由②得,241x x <-,移项得,241x x -<-,解得,12x >,∴原不等式组的解为:132x <≤,∴所有整数解为:1,2,3,∴所有整数解的和为:1236++=.21.【答案】(1)20,条形统计图见详解(2)D(3)300人【解析】【小问1详解】5153522105%%%%%a -=---=,C 组人数为:20020%40⨯=,补全条形统计图如图所示:故答案为:20【小问2详解】55124005%%%%%+=<+,51532075505%%%%++=>+,∴200名学生成绩的中位数会落在D组.【小问3详解】120025%300⨯=(人)估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.22.【答案】(1)1 5(2)1 3【解析】【小问1详解】解:由题意得从这些景区随机选择1个景区,选中东关街的有1种可能,∴选中东关街的概率是1 5,故案䅁为:1 5;【小问2详解】列表如下:小亮小明C D EC CC CD CED DC DD DEE EC ED EE 共有9种等可能结果,其中小明和小亮选到相同景区的结果有3种结果,∴小明和小亮选到相同景区的概率:3193P ==;答:小明和小亮选到相同景区的概率13.23.【答案】B 型机器每天处理60吨【解析】解:设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,根据题意,得50030040x x =+,解得60x =.经检验,60x =是所列方程的解.答:B 型机器每天处理60吨.24.【答案】(1)四边形ABCD 是菱形,理由见详解(2)130∠=︒【解析】【小问1详解】解:四边形ABCD 是菱形,理由如下,如图所示,过点A 作AT NP ⊥于点T ,过点C 作CU EH ⊥于点U ,根据题意,四边形EFGH ,四边形MNPQ 是矩形,∴EH FG MQ NP ,,∴AB DC AD BC ,,∴四边形ABCD 是平行四边形,∵宽度相等,即AT CU =,且90ATB CUB ABT CBU ∠=∠=︒∠=∠,,∴()ATB CUB AAS ≌,∴AB CB =,∴平行四边形ABCD 是菱形;【小问2详解】解:如图所示,过点A 作AR CD ⊥于点R ,根据题意,2AR cm =,∵·8ABCD S CD AR ==四边形,∴4CD =,由(1)可得四边形ABCD 是菱形,∴4AD =,在Rt ATD 中,12AR AD =,∴130∠=︒.25.【答案】(1)12b c =-=,(2)122434()()P P ---,,,【解析】【小问1详解】解:二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点,∴42010b c b c --+=⎧⎨-++=⎩,解得,12b c =-⎧⎨=⎩,∴12b c =-=,;【小问2详解】解:由(1)可知二次函数解析式为:22y x x =--+,(2,0)A -,(1,0)B ,∴1(2)3AB =--=,设(),P m n ,∴1·62PAB S AB n == ,∴4n =,∴4n =±,∴当224x x --+=时,1870∆=-=-<,无解,不符合题意,舍去;当224x x --+=-时,13x =-,22x =;∴122434()()P P ---,,,.26.【答案】(1)作图见详解(2)作图见详解(3)BM =【解析】【小问1详解】解:如图所示,∴2COQ CAQ ∠=∠;点O 即为所求【小问2详解】解:如图所示,连接BC ,以点B 为圆心,以BC 为半径画弧交AQ 于点1B ,以点1B 为圆心,以任意长为半径画弧交AQ 于点11C D ,,分别以点11C D ,为圆心,以大于1112C D 为半径画弧,交于点1F ,连接11B F 并延长交AP 于点M ,∵AB 是直径,∴90ACB ∠=︒,即BC AP ⊥,根据作图可得11111111B C B D C F D F ==,,∴1MB AQ ⊥,即190MB B ∠=︒,1MB 是点M 到AQ 的距离,∵1BC BB =,∴()1Rt BCM Rt BB M HL ≌,∴1CM B M =,点M 即为所求点的位置;【小问3详解】解:如图所示,根据作图可得,212COQ CAQ MC MW MC AQ ∠=∠==⊥,,,连接BC ,∴在Rt AMW 中,3sin 5WM A AM ==,∴55122033WM AM ⨯===,∴20128AC AM CM =-=-=,∵AB 是直径,∴90ACB ∠=︒,∴3sin 5BC A AB ==,设3BC x =,则5AB x =,∴在Rt ABC 中,()()222538x x =+,解得,2x =(负值舍去),∴36BC x ==,在Rt BCM 中,BM ===.27.【答案】(1)4或6;(2)12.5;(3).【解析】【小问1详解】解:设BM x =,则10ME x =-,∵四边形ABCD 、EFGH 是正方形,∴90ABC CBM ∠=∠=︒,90HEF MEH ∠=∠=︒,2AB BC ==,∴90CBM MEH ∠=∠=︒,90BCM CMB ∠+∠=︒,∵90PMN ∠=︒,∴90EMH CMB ∠+∠=︒,∴BCM EMH ∠=∠,∴BCM EMH ∽,∴BC BM EM EH =,即21012x x =-,则210240x x -+=,解得:6x =或4x =,∴6BM =或4BM =;【小问2详解】设BM x =,则10ME x =-,∵四边形ABCD 、EFGH 是正方形,∴90ABC CBM ∠=∠=︒,90HEF MEH ∠=∠=︒,2AB BC ==,∴90CBM MEH ∠=∠=︒,90BCM CMB ∠+∠=︒,∵90PMN ∠=︒,∴90EMH CMB ∠+∠=︒,∴BCM EMH ∠=∠,∴BCM EMH ∽,∴BC BM EM EH =,即210x x HE =-,∴()22115512.522HE x x x =-+=--+,当5BM =时,HE 有最大,最大值为12.5;【小问3详解】连接FH ,∵四边形EFGH 是正方形,∴45HFE ∠=︒,即点H 在对角线FH 所在直线上运动,如图,作B 关于FH 的对称点B ',连接B C ',过C 作CQ FG ⊥于点Q ,∴'BF B F =,四边形BFQC 为矩形,则点'B G Q 、、三点共线,2BC FQ ==,22CQ BF ==∴'22B F FB ==,∴''20B Q B F FQ =-=,∵90CMH ∠= ,点O 是CH 的中点,∴12OM CH =,∴2OM HB CH HB +=+,∴当C H B '、、三点共线时,CH HB +有最小值B C ',∴在Rt 'CB Q 中,由勾股定理得:B C '====∴2OM HB +的最小值为,故答案为:28.【答案】(1)AD BD CD -=;(2)AD BD CD -=(3)当D 在 BC 上时,2sin 2CD AD BD α⋅=-;当D 在 AB 上时,2sin 2CD AD BD α⋅=+【解析】解:∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∵O 是ABC 的外接圆,∴AD 是BAC ∠的角平分线,则30DAB ∠=︒∴AD BC⊥∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴30DCB DBC ∠=∠=︒设,AD BC 交于点E ,则BE CE =,设1BD =,则1CD BD ==在Rt BDE △中,∴33cos3022BE BD BD =︒⋅==∴3BC =,∵AD 是直径,则90ABD Ð=°,在Rt △ABD 中,2AD BD =2=∴211AD BD -=-=∴AD BD CD-=(2)如图所示,在AD 上截取DF BD =,∵ AB AB=∴60ADB ACB ∠=∠=︒∴DBF 是等边三角形,∴BF BD =,则60BFD ∠=︒∴120AFB ∠=︒∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴AFB CDB ∠=∠;∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∴AB BC =,又∵ BDBD =∴BCD BAF=∠∠在,AFB CDB 中AFB CDB BAF BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AFB CDB ≌∴AF CD =,∴AD BD AD DF AF CD -=-==即AD BD CD -=;(3)解:①如图所示,当D 在 BC上时,在AD 上截取DE BD =,∵ AB AB=∴ACB ADBÐ=Ð又∵,CA CB DE DB==∴CAB DEB ∽,则ABC EBD ∠=∠∴AB BC EB BD =即AB EB BC BD=又∵ABC EBD∠=∠∴ABE CBD∠=∠∴ABE CBDV V ∽∴AE AB BE CD BC BD==∵AE AD DE AD BD=-=-∴AD BD AB CD BC-=如图所示,作CF AB ⊥于点F ,在Rt BCF 中,1122BCF BAC α∠=∠=,∴sin 2BC BF α⋅=∴2sin 2AB BC α=⋅∴2sin 2AD BD CD α-=,即2sin 2CD AD BD α⋅=-②当D 在 AB 上时,如图所示,延长BD 至G ,使得DG DA =,连接AG ,∵四边形ACDB 是圆内接四边形,∴180GAD ACB ADB ∠=∠=︒-∠又∵,CA CB DG DA==∴CAB DAG ∽,则CAB DAG ∠=∠∴AC AB AD AG =即AC AD AB AG=,又∵CAB DAG∠=∠∴CAD BAG∠=∠∴CAD BAG∽∴CD AC BG AB=,∵BG BD DG BD AD=+=+同①可得2sin2AB AC α=⋅∴2sin 2CD AC AC BD AD AB AC α==+⋅∴2sin 2CD AD BD α⋅=+综上所述,当D 在 BC 上时,2sin 2CD AD BD α⋅=-;当D 在 AB 上时,2sin 2CD AD BD α⋅=+.。
2024年山东省滨州市中考数学试题(含部分答案)
![2024年山东省滨州市中考数学试题(含部分答案)](https://img.taocdn.com/s3/m/c5556c331fd9ad51f01dc281e53a580216fc50e9.png)
滨州市二〇二四年初中学业水平考试数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1. 的绝对值是( )A. 2B.C.D. 2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是( )A. B.C. D.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()12-1212-2-A. B.C. D.4. 下列运算正确的是( )A. B. C. D. 5. 若点在第二象限,那么a 的取值范围是( )A. B. C. D. 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m150 1.60 1.65170 1.75 1.80人数232341某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③7.点和点在反比例函数(为常数)的图象上,若,则的大小关系为( )A. B. C. D. 8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,中,,的长分别为.则可以用含的式子表示出的内切圆直径,下列表达式错误的是( )()336n n =22(2)4a a -=-824x x x ÷=23m m m ⋅=()12,N a a -12a >12a <102a <<102a ≤<()11,M x y ()22,N x y 223k k y x-+=k 120x x <<120y y ,,120y y <<120y y >>120y y <<120y y >>Rt ABC △90C ∠=︒,,AB BC CA ,,c a b ,,c a b ABC dA. B. C. D. 第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9.若分式在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11. 将抛物线先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12. 一副三角板如图1摆放,把三角板绕公共顶点O 顺时针旋转至图2,即时,的大小为____________.13. 如图,在中,点D ,E 分别在边上.添加一个条件使,则这个条件可以是____________.(写出一种情况即可)14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.d a b c=+-2ab d a b c =++d =|()()|d a b c b =--11x -2y x =-AOB AB OD ∥1∠ABC ,AB AC ADE ACB ∽15. 如图,四边形AOBC 四个顶点的坐标分别是,,,,在该平面内找一点P ,使它到四个顶点的距离之和最小,则P 点坐标为____________.16. 如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)的长为____________;(2)请只用无刻度的直尺,在如图所示的网格中,画出以为边的矩形,使其面积为,并简要说明点C ,D 的位置是如何找到的(不用证明):____________.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:.18. 解方程:(1);(2).19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称(1,3)A -(0,0)O (3,1)B -(5,4)C PA PO PB PC +++AB AB ABCD 263()11222-⎫⎛+-⨯-⎪⎝⎭21132x x -+=240x x -=为欧拉分式.(1)写出对应的表达式;(2)化简对应的表达式.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在中,若,,则有;②某同学顺势提出一个问题:既然①正确,那么进一步推得,即知,若把①中的替换为,还能推出吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出,并分别提供了不同的证明方法.小军证明:分别延长至E ,F 两点,使得……小民证明:∵.()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=------0P 1P ABC AD BC ⊥BD CD =B C ∠=∠AB AC =AB BD AC CD +=+BD CD =AB BD AC CD +=+B C ∠=∠B C ∠=∠,DB DC AD BC ⊥∴与均为直角三角形、根据勾股定理,得……【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(,且x 是整数),部分数据如下表所示:电影票售价x (元/张)4050售出电影票数量y (张)164124(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润票房收入运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润多少?如图1,中,点D ,E ,F 分别在三边上,且满足.23. ①求证:四边形为平行四边形;②若,求证:四边形为菱形;24. 把一块三角形余料(如图2所示)加工成菱形零件,使它的一个顶点与的顶点M 重合,另外三个顶点分别在三边上,请在图2上作出这个菱形.(用尺规作图,保留作图是ADB ADC △3080x ≤≤=-ABC BC CA AB ,,DF AC DE AB ,∥∥AFDE AB BD AC DC=AFDE MNH MNH △MN NH HM ,,痕迹,不写作法.)25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题:14.如图,在锐角中,探究,,之间的关系.(提示:分别作和边上的高.)【得出结论】.基础应用】在中,,,,利用以上结论求的长;【推广证明】进一步研究发现,不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足(R 为外接圆的半径).请利用图1证明:.【拓展应用】如图2,四边形中,,,,.求过A ,B ,D 三点的圆的半径.ABC sin a A sin b B sin c CAB BC sin sin sin a b c A B C==ABC 75B ∠=︒45C ∠=︒2BC =AB sin sin sin a b c A B C==2sin sin sin a b c R A B C===ABC 2sin sin sin a b c R A B C===ABCD 2AB =3BC =4CD =90B C ∠=∠=︒滨州市二〇二四年初中学业水平考试数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】A【6题答案】【答案】A【7题答案】【答案】C【8题答案】【答案】D第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.【9题答案】【答案】x ≠1【10题答案】【答案】2或3【11题答案】【答案】【12题答案】【答案】75【13题答案】【答案】或或【14题答案】【答案】60°##60度【15题答案】【答案】##【16题答案】【答案】 ①. ②. 取点,得到正方形,交格线于点,交格线于点,连接,得到矩形,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.【17题答案】【答案】【18题答案】【答案】(1)(2),.【19题答案】【答案】(1) (2)()1,2ADE C ∠=∠AED B ∠=∠AD AE AC AB =108,99⎛⎫ ⎪⎝⎭181,99⎛⎫ ⎪⎝⎭,E F ABEF AF C BE D DC ABCD 5x =10x =24x =()()()()()()0111P a b a c b c b a c a c b =++------10P =【20题答案】【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:.【21题答案】【答案】(1)见解析(2)见解析【22题答案】【答案】(1)(2) (3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【23~24题答案】【答案】23 ①见解析;②见解析24. 见解析【25题答案】【答案】教材呈现:见解析;基础应用:;推广证明:见解析;拓展应用:.72︒29()43243080y x x =-+≤≤()2432420003080w x x x =-+-≤≤AB =R =。
2023年山东省临沂市中考数学真题(答案解析)
![2023年山东省临沂市中考数学真题(答案解析)](https://img.taocdn.com/s3/m/f5843118492fb4daa58da0116c175f0e7dd11948.png)
2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。
2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(解析版)
![2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(解析版)](https://img.taocdn.com/s3/m/b86ca706814d2b160b4e767f5acfa1c7aa0082cf.png)
2024年枣庄市初中学业水平考试数学本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.下列实数中,平方最大的数是()A.3B.12C.1-D.2-【答案】A【解析】【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵239=,21124⎛⎫=⎪⎝⎭,()211-=,()224-=,而1149 4<<<,∴平方最大的数是3;故选A2.用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D .该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D .3.2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为()A.30.61910⨯ B.461.910⨯ C.56.1910⨯ D.66.1910⨯【答案】C【解析】【分析】本题考查用科学记数法的表示方法,一般形式为10n a ⨯,其中110a ≤<,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动位数相同,确定a 与n 的值是解题关键.【详解】解:61.9万5619000 6.1910==⨯,故选:C .4.下列几何体中,主视图是如图的是()A . B. C. D.【答案】D【解析】【分析】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.能看到的线画实线,看不到的线画虚线.根据主视图是从正面看到的图形分析即可.【详解】解:A .主视图是等腰三角形,不符合题意;B .主视图是共底边的两个等腰三角形,故不符合题意;C .主视图是上面三角形,下面半圆,故不符合题意;D .主视图是上面等腰三角形,下面矩形,故符合题意;故选:D .5.下列运算正确的是()A.437a a a += B.()2211a a -=-C.()2332ab a b = D.()2212a a a a+=+【答案】D【解析】【分析】本题考查合并同类项,幂的乘方运算,完全平方公式,单项式乘以多项式,掌握其运算法则是解决此题的关键.按照运算规律进行计算即可.【详解】解:A .式子中两项不是同类项,不能合并,故A 不符合题意;B .()22121a a a -=-+,故B 不符合题意;C .()2362a b a b =,故C 不符合题意;D .()2212a a a a +=+,故D 符合题意.故选D .6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A.200B.300C.400D.500【答案】B【解析】【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x -,根据“改造后生产600件的时间与改造前生产400件的时间相同”列出分式方程,解方程即可.【详解】解:设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x -,根据题意,得:600400100x x =-,解得:300x =,经检验300x =是分式方程的解,且符合题意,答:改造后每天生产的产品件数300.故选:B .7.如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为()A.12B.10C.8D.6【答案】A【解析】【分析】本题考查的是正多边形的性质,正多边形的外角和,先求解正多边形的1个内角度数,得到正多边形的1个外角度数,再结合外角和可得答案.【详解】解:∵正方形BCMN ,∴90NBC ∠=︒,∵120ABN ∠=︒,∴36090120150ABC ∠=︒-︒-︒=︒,∴正n 边形的一个外角为18015030︒-︒=︒,∴n 的值为3601230︒=︒;故选A8.某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是()A.19 B.29 C.13 D.23【答案】C【解析】【分析】本题考查了用列表法或画树状图法求概率.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及甲与乙恰好选择同一项活动的情况,再利用概率公式求解即可求得答案.【详解】解:设跳绳、踢毽子、韵律操分别为A 、B 、C ,画树状图如下,共有9种等可能的结果,甲、乙恰好选择同一项活动的有3种情况,故他们选择同一项活动的概率是3193=,故选:C .9.如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为()A.52 B.3 C.72 D.4【答案】B【解析】【分析】本题考查了平行四边形的性质,平行线分线段成比例定理,平行证明相似等知识点,正确作辅助线是解题关键.作辅助线如图,由平行正相似先证DEC GAE ∽,再证BGF AGE ∽,即可求得结果.【详解】解:延长DF 和AB ,交于G 点,∵四边形ABCD 是平行四边形,∴DC AB ∥,DC AB =即DC AG ∥,∴DEC GAE∽∴CE DE DC AE GE AG==,∵5AC =,1CE =,∴514AE AC CE =-=-=,∴14CE DE DC AE GE AG ===,又∵EF DE =,14DE DE GE EF FG ==+,∴13EF FG =,∵14DC DC AG AB BG ==+,DC AB =,∴13DC BG =,∴13EF DC FG BG ==,∴34BG FG AG EG ==∴AE BF ∥,∴BGF AGE ∽,∴34BF FG AE EG ==∵4AE =,∴3BF =.故选:B .10.根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,∴350x a=-∴350180a -≤,解得170a ≥,故①,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =-,∴290140y ->,∴150y <,故②正确,故选:D .二、填空题:本题共6小题,每小题3分,共18分.11.因式分解:22x y xy +=________.【答案】()2xy x +【解析】【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.【答案】1-(答案不唯一)【解析】【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x -≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨-<⎩①②,由①得:1x ≥-,由②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的一个整数解为:1-;故答案为:1-(答案不唯一).13.若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.【答案】14##0.25【解析】Δ0=时,方程有两个相等的实数根”是解题的关键.根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=-=-⨯⨯=,解之即可得出结论.【详解】解:∵关于x 的方程2420x x m -+=有两个相等的实数根,∴2242444160b ac m m ∆=-=-⨯⨯=-=,解得:14m =.故答案为:14.14.如图,ABC 是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.【答案】40︒##40度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识,利用圆周角定理求出AOB ∠的度数,利用等边对等角、三角形内角和定理求出OAB ∠的度数,利用平行线的性质求出OAC ∠的度数,即可求解.【详解】解∶连接OB ,∵25ACB ∠=︒,∴250AOB ACB ∠=∠=︒,∵OA OB =,∴()1180652OAB OBA AOB ∠=∠=︒-∠=︒,∵OA CB ∥,∴25A OAC CB ∠=︒∠=,∴40CAB OAB OAC ∠=∠-∠=︒,故答案为:40︒.15.如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.【答案】【解析】【分析】如图,过F 作FH AC ⊥于H ,证明BAP CAP ∠=∠,DE AB ⊥,122AF BF AB ===,再证明45FAH ∠=︒,再结合勾股定理可得答案.【详解】解:如图,过F 作FH AC ⊥于H ,由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB ===,∵67.5PQE ∠=︒,∴67.5AQF ∠=︒,∴9067.522.5BAP CAP ∠=∠=︒-︒=︒,∴45FAH ∠=︒,∴22AH FH AF ===,∴F 到AN 的距离为;【点睛】本题考查了作图−复杂作图:基本作图,三角形的内角和定理的应用,勾股定理的应用,等腰三角形的判定,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质,逐步操作.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.【答案】()2,1【解析】【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2,经过2次运算后得到点为()42,21÷÷,即为()2,1,经过3次运算后得到点为()22,131÷⨯+,即为()1,4,……,发现规律:点()1,4经过3次运算后还是()1,4,∵202436742÷= ,∴点()1,4经过2024次运算后得到点()2,1,故答案为:()2,1.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(1)计算:1122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ +-⎝⎭,其中1a =.【答案】(1)3(2)3a -2-【解析】【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+=(2)原式()()3123333a a a a a a ++⎛⎫-÷ ⎪+++-⎝⎭()()332·32a a a a a +-+=++3a =-将1a =代入,得原式132=-=-18.【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F A ,D ,E 在同一条直线上,且AD DE =,DEFDAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.【答案】(1)A ,P 两点间的距离为89.8米;(2)②【解析】【分析】本题考查的是全等三角形的判定与性质的应用,解直角三角形的应用,灵活应用知识点是解本题的关键;(1)如图,过B 作BH AP ⊥于H ,先求解cos79600.1911.4AH AB =⋅︒≈⨯=,sin79600.9858.8BH AB =⋅︒≈⨯=,再求解37APB ∠=︒及PH 即可;(2)由全等三角形的判定方法可得()ASA ADP EDF ≌,可得AP EF =,从而可得答案.【详解】解:如图,过B 作BH AP ⊥于H ,∵60AB =米,79PAB ∠=︒,sin790.98︒≈,cos790.19︒≈,∴cos79600.1911.4AH AB =⋅︒≈⨯=,sin79600.9858.8BH AB =⋅︒≈⨯=,∵79PAB ∠=︒,64PBA ∠=︒,∴180796437APB ∠=︒-︒-︒=︒,∴tan tan 370.75BH APB PH∠=︒=≈,∴58.878.40.75PH ≈=,∴11.478.489.8AP AH PH =+=+=(米);即A ,P 两点间的距离为89.8米;(2)∵AD DE =,DEFDAP ∠=∠,当F ,D ,P 在同一条直线上时,∴ADP EDF ∠=∠,∴()ASA ADP EFD ≌,∴AP EF =,∴只需测量EF 即可得到AP 长度;∴乙小组的方案用到了②;19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息:8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生的模型设计成绩的中位数是________分;(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(43:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【解析】【分析】(1)先求解总人数,再求解7080x ≤<的人数,再补全图形即可;(2)根据中位数的含义确定第25个,第26个数据的平均数即可得到中位数;(3)由总人数乘以80分含80以上的人数百分比即可得到答案;(4)根据加权平均数公式分别计算甲,乙二人成绩,再比较即可【小问1详解】解:∵510%50÷=,而8090x ≤<有20人,∴7080x ≤<有502051015---=,补全图形如下:。
2023山东省日照市中考数学真题试卷和答案
![2023山东省日照市中考数学真题试卷和答案](https://img.taocdn.com/s3/m/f11269586fdb6f1aff00bed5b9f3f90f76c64d3b.png)
日照市2023年初中学业水平考试数学试题(满分120分,时间120分钟)注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共6页.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号等填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回.2.第I 卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第I 卷(选择题36分)一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1. 计算:()23--的结果是( )A 5 B. 1 C. -1 D. -52. 窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )A. 81.410-⨯B. 71410-⨯C. 60.1410-⨯D. 91.410-⨯4. 如图所示的几何体的俯视图可能是( ).A. B. C. D. 5. 在数学活动课上,小明同学将含30︒角的直角三角板的一个顶点按如图方式放置在直尺上,测得123∠=︒,则2∠的度数是( ).A. 23︒B. 53︒C. 60︒D. 67︒6. 下列计算正确的是( )A. 236a a a ⋅=B. ()32628m m -=-C. 222()x y x y +=+D. 232235ab a b a b +=7. 《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,可列方程为( )A. 911616x x +=+B. 911616x x -=-C. 911616x x +=-D. 911616x x -=+8. 日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=︒,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=︒,15.3m BC =,则灯塔的高度AD 大约是( )(结果精确到1m 1.41≈ 1.73≈)A. 31mB. 36mC. 42mD. 53m9. 已知直角三角形三边,,a b c 满足c a b >>,分别以,,a b c 为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为1S ,均重叠部分的面积为2S ,则( )A. 12S S > B. 12S S < C. 12S S = D. 12,S S 大小无法确定10. 若关于x 的方程32122x m x x -=--解为正数,则m 的取值范围是( )A. 23m >- B. 43<m C. 23m >-且0m ≠ D. 43<m 且23m ≠11. 在平面直角坐标系xOy 中,抛物线2(0)y ax bx a =+≠,满足300a b a b +>⎧⎨+<⎩,已知点(3,)m -,(2,)n ,(4,)t 在该抛物线上,则m ,n ,t 的大小关系为( )A. t n m <<B. m t n <<C. n t m <<D. n m t<<12. 数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y,其中的1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是( )A. 202340a =B. 202443a =C. 2(21)26n a n -=-D. 2(21)24n a n -=-第Ⅱ卷(非选择题 84分)二、填空题:本题共4小题,每小题3分,共12分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13. 分解因式:3a b ab -=_________.14. 若点()3,1M m m +-在第四象限,则m 的取值范围是__________.15. 已知反比例函数63k y x-=(1k >且2k ≠)的图象与一次函数7y x b =-+的图象共有两个交点,且两交点横坐标的乘积120x x ⋅>,请写出一个满足条件的k 值__________.16. 如图,矩形ABCD 中,68AB AD ==,,点P 在对角线BD 上,过点P 作MN BD ⊥,交边AD BC ,于点M ,N ,过点M 作ME AD ⊥交BD 于点E ,连接EN BM DN ,,.下列结论:①EM EN =;②四边形MBND 的面积不变;③当:1:2AM MD =时,9625MPE S =△;④BM MN ND ++的最小值是20.其中所有正确结论的序号是__________.三、解答题:本题共6个小题,满分72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17. (12122sin 45-︒--⨯;(2)先化简,再求值:2221244x x x x x x ⎛⎫---÷ ⎪--+⎝⎭,其中12x =-.18. 2023年3月22日至28日是第三十届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A 小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量()3m x 分为5组,第一组:57x ≤<,第二组:79x ≤<,第三组:911x ≤<,第四组:1113≤<x ,第五组:1315x ≤<,并对数据进行整理、描述和分析,得到如下信息:信息一:甲小区3月份用水量频数分布表用水量(x /m )频数(户)57x ≤<479x ≤<9911x ≤<101113≤<x 51315x ≤<2信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:甲小区乙小区平均数9.09.1中位数9.2a信息三:乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6.根据以上信息,回答下列问题:(1)=a __________;(2)在甲小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为1b ,在乙小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为2b ,比较1b ,2b 大小,并说明理由;(3)若甲小区共有600户居民,乙小区共有750户居民,估计两个小区3月份用水量不低于313m 的总户数;(4)因任务安排,需在B 小组和C 小组分别随机抽取1名同学加入A 小组,已知B 小组有3名男生和1名女生,C 小组有2名男生和2名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.19. 如图,平行四边形ABCD 中,点E 是对角线AC 上一点,连接BE DE ,,且BE DE =.(1)求证:四边形ABCD 是菱形;(2)若10tan 2AB BAC =∠=,,求四边形ABCD 的面积.20. 要制作200个A ,B 两种规格的顶部无盖木盒,A 种规格是长、宽、高都为20cm 的正方体无盖木盒,B 种规格是长、宽、高各为20cm ,20cm ,10cm 的长方体无盖木盒,如图1.现有200张规格为40cm 40cm ⨯的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A 种木盒x 个,则制作B 种木盒__________个;若使用甲种方式切割木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A 和B 两种规格的无盖木盒,请分别求出A ,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;的(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A 种木盒的销售单价定为a 元,B 种木盒的销售单价定为1202a ⎛⎫- ⎪⎝⎭元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.21. 在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论.解决以下问题:如图1,ABC 中,AB AC BAC α=∠=,(60180α<<︒︒).点D 是BC 边上一动点(点D 不与B ,C 重合),将线段AD 绕点A 顺时针旋转α到线段AE ,连接BE .(1)求证:A ,E ,B ,D 四点共圆;(2)如图2,当AD CD =时,O 是四边形AEBD 的外接圆,求证:AC 是O 的切线;(3)已知1206BC α=︒=,,点M 是边BC 的中点,此时P 是四边形AEBD 的外接圆,直接写出圆心P 与点M 距离的最小值.22. 在平面直角坐标系xOy 内,抛物线()2520y ax ax a =-++>交y 轴于点C ,过点C 作x 轴的平行线交该抛物线于点D .(1)求点C ,D 的坐标;(2)当13a =时,如图1,该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),点P 为直线AD 上方抛物线上一点,将直线PD 沿直线AD 翻折,交x 轴于点(4,0)M ,求点P 的坐标;(3)坐标平面内有两点()1,1,5,1E a F a a ⎛⎫++ ⎪⎝⎭,以线段EF 边向上作正方形EFGH .①若1a =,求正方形EFGH 的边与抛物线的所有交点坐标;的为②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.日照市2023年初中学业水平考试数学试题(满分120分,时间120分钟)注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共6页.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号等填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回.2.第I 卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第I 卷(选择题36分)一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1. 计算:()23--的结果是( )A. 5B. 1C. -1D. -5【答案】A【解析】【分析】把减法化为加法,即可求解 。
2024年山东省淄博市中考数学真题(含答案)
![2024年山东省淄博市中考数学真题(含答案)](https://img.taocdn.com/s3/m/48e135446ad97f192279168884868762cbaebb19.png)
2024年山东省淄博市中考数学试题一、选择题(本大题共10小题,每题4分,共40分)1.(4分)下列运算结果是正数的是( )A.3﹣1B.﹣32C.﹣|﹣3|D.−32.(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(4分)我国大力发展新质生产力,推动了新能源汽车产业的快速发展.据中国汽车工业协会发布的消息显示.2024年1至3月,我国新能源汽车完成出口30.7万辆.将30.7万用科学记数法表示为3.07×10n.则n的值是( )A.4B.5C.6D.74.(4分)如图,已知AD∥BC,BD平分∠ABC.若∠A=110°,则∠D的度数是( )A.40°B.36°C.35°D.30°5.(4分)数学兴趣小组成员小刚对自己的学习质量进行了测试.如图是他最近五次测试成绩(满分为100分)的折线统计图,那么其平均数和方差分别是( )A.95分,10B.96分,10C.95分,10D.96分,106.(4分)如图,在综合与实践活动课上,小强先测得教学楼在水平地面上的影长BC为35m.又在点C处测得该楼的顶端A的仰角是29°.则用科学计算器计算教学楼高度的按键顺序正确的是( )A.B.C.D.7.(4分)如图,其大意为:已知矩形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺,1尺=10寸)若设门的高和宽分别是x尺和y尺.则下面所列方程组正确的是( )A.x=y−6.8x2+102=y2B.x=y−6.8x2+y2=102C.x=y+6.8x2+102=y2D.x=y+6.8x2+y2=1028.(4分)如图所示,在矩形ABCD中,BC=2AB,点M,N分别在边BC,AD上.连接MN,将四边形CMND沿MN翻折,点C,D分别落在点A,E处.则tan∠AMN的值是( )A.2B.2C.3D.59.(4分)如图所示,正方形ABCD与AEFG(其中边BC,EF分别在x,y轴的正半轴上)的公共顶点A在反比例函数y=kx的图象上,直线DG与x,y轴分别相交于点M,N.若这两个正方形的面积之和是152,且MD=4GN.则k的值是( )A.5B.1C.3D.210.(4分)某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从A地匀速出发,甲健步走向B地.途中偶遇一位朋友,驻足交流10min后,继续以原速步行前进;乙因故比甲晚出发30min,跑步到达B地后立刻以原速返回,在返回途中与甲第二次相遇.如图表示甲、乙两人之间的距离y(m)与甲出发的时间x(min)之间的函数关系.那么以下结论:①甲、乙两人第一次相遇时,乙的锻炼用时为20min;②甲出发86min时,甲、乙两人之间的距离达到最大值3600m;③甲、乙两人第二次相遇的时间是在甲出发后100min;④A,B两地之间的距离是11200m.其中正确的结论有( )A.①②③B.①②④C.①③④D.②③④二、填空题(共5小题,每题4分,共20分)11.(4分)计算:27−23= .12.(4分)如图,已知A,B两点的坐标分别为A(﹣3,1),B(﹣1,3),将线段AB平移得到线段CD.若点A的对应点是C(1,2),则点B的对应点D的坐标是 .13.(4分)若多项式4x 2﹣mxy +9y 2能用完全平方公式因式分解,则m 的值是 .14.(4分)如图,在边长为10的菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 在BC延长线上,OE 与CD 相交于点F .若∠ACD =2∠OEC ,OF FE =56,则菱形ABCD 的面积为 .15.(4分)如图,在平面直角坐标系中,作直线x =i (i =1,2,3,…)与x 轴相交于点A i ,与抛物线y =14x 2相交于点B i ,连接A i B i +1,B i A i +1相交于点∁i ,得△A i B i ∁i 和△A i +1B i +1∁i ,若将其面积之比记为a i =S △A i B i c i S △A i +1+B i +1c i ,则a 2024= .三、解答题(共8题90分)16.(10+2x <−32x +4<1+2x,并求所有整数解的和.17.(10分)如图,已知AB =CD ,点E ,F 在线段BD 上,且AF =CE .请从①BF =DE ;②∠BAF =∠DCE ;③AF =CF 中.选择一个合适的选项作为已知条件,使得△ABF ≌△CDE .你添加的条件是: (只填写一个序号).添加条件后,请证明AE∥CF.18.(10分)化简分式:a2−b2a2−2ab+b2+1−a−ba−b,并求值(请从小宇和小丽的对话中确定a,b的值)19.(10分)希望中学做了如下表的调查报告(不完整):调查目的了解本校学生:(1)周家务劳动的时间;(2)最喜欢的劳动课程调查方式随机问卷调查随机问卷调直调查对象随机问卷调直部分七年级学生(该校所有学生周家务劳动时间都在1~3.5h范围内)调查内容(1)你的周家条劳动时间(单位,h)是①1~1.5②1.5~2③2~2.5④2.5~3⑤3~3.5(2)你最喜欢的劳动课程是(必选且只选一门)A.家政B.烹饪C.剪纸D.园艺E.陶艺调查结果结合调查信息,回答下列问题:(1)参与本次问卷调查的学生人数 名;在扇形统计图中,第④组所对应扇形的圆心角的度数为 度;(2)补全周家务劳动时间的频数分布直方图;(3)若该校七年级学生共有800人,请估计最喜欢“烹饪”课程的学生人数;(4)小红和小颖分别从“家政”等五门最喜欢的劳动课程中任选一门学习,请用列表法或画树状图的方法,求两人恰好选到同一门课程的概率.20.(12分)“我运动,我健康,我快乐!”随着人们对身心健康的关注度越来越高.某市参加健身运动的人数逐年增多,从2021年的32万人增加到2023年的50万人.(1)求该市参加健身运动人数的年均增长率;(2)为支持市民的健身运动,市政府决定从A公司购买某种套装健身器材.该公司规定:若购买不超过100套,每套售价1600元;若超过100套,每增加10套,售价每套可降低40元.但最低售价不得少于1000元.已知市政府向该公司支付货款24万元,求购买的这种健身器材的套数.21.(12分)如图,一次函数y=k1x+2的图象与反比例函数y=k2x的图象相交于A(m,4),B两点,与x,y轴分别相交于点C,D.且tan∠ACO=2.(1)分别求这两个函数的表达式;(2)以点D为圆心,线段DB的长为半径作弧与x轴正半轴相交于点E,连接AE,BE.求△ABE的面积;(3)根据函数的图象直接写出关于x的不等式k1x+2>k2x的解集.22.(13分)在综合与实践活动课上,小明以“圆”为主题开展研究性学习.【操作发现】小明作出了⊙O的内接等腰三角形ABC,AB=AC.并在BC边上任取一点D(不与点B,C重合),连接AD,然后将△ABD绕点A逆时针旋转得到△ACE.如图①小明发现:CE与⊙O的位置关系是 ,请说明理由:【实践探究】连接DE,与AC相交于点F.如图②,小明又发现:当△ABC确定时,线段CF的长存在最大值.请求出当AB=310,BC=6时,CF长的最大值;【问题解决】在图②中,小明进一步发现:点D分线段BC所成的比CD:DB与点F分线段DF所成的比DF:FE始终相等.请予以证明.23.(13分)如图,抛物线y=ax2+bx+3与x轴相交于A(x1,0),B(x2,0)两点(点A在点B的左侧),其中x1,x2是方程x2﹣2x﹣3=0的两个根,抛物线与y轴相交于点C.(1)求该抛物线对应的函数表达式;(2)已知直线l:y=3x+9与x,y轴分别相交于点D,E.①设直线BC与l相交于点F,问在第三象限内的抛物线上是否存在点P,使得∠PBF=∠DFB?若存在,求出点P的坐标;若不存在,说明理由;②过抛物线上一点M作直线BC的平行线.与抛物线相交于另一点N.设直线MB,NC 相交于点Q.连接QD,QE.求线段QD+QE的最小值.2024年山东省淄博市中考数学试题参考答案一、选择题(本大题共10小题,每题4分,共40分)1.A 2.C 3.B 4.C 5.D 6.A7.D 8.A 9.C 10.B二、填空题(共5小题,每题4分,共20分)11.312.(3,4)13.±12 14.96 15.(20242025)4三、解答题(共8题90分)16.(10+2x<−32x+4①<1+2x②,解不等式①得:x<1;解不等式②得:x>﹣4,∴原不等式组的解集﹣4<x<1,∴不等式组所有整数解的和为﹣3+(﹣2)+(﹣1)+0=﹣6.17.(10分)解:当选择①BF=DE时,△ABF≌△CDE,证明如下:在△ABF和△CDE中,AB=CDAF=CEBF=DE,∴△ABF≌△CDE(SSS),∴∠B=∠D,∴AE∥CF;当选择②∠BAF=∠DCE时,△ABF≌△CDE,证明如下:在△ABF和△CDE中,AB=CD∠BAF=∠DCEAF=CE,∴△ABF≌△CDE(SAS);∴∠B=∠D,∴AE∥CF;当选择③AF=CF时,不能判定△ABF≌△CDE,故答案为:①(答案不唯一).18.(10分)解:由对话可得a =﹣3,b =2,原式=(a +b)(a−b)(a−b )2+1−a−b a−b =a +b a−b +1−a−b a−b =1a−b,当a =﹣3,b =2时,原式=1−3−2=−15.19.(10分)解:(1)参与本次问卷调查的学生人数为20÷20%=100(名).在扇形统计图中,第④组所对应扇形的圆心角的度数为360°×35100=126°.故答案为:100;126.(2)周家条劳动时间是③2~2.5的人数为100﹣10﹣20﹣35﹣10=25(人).补全周家务劳动时间的频数分布直方图如图所示.(3)800×100−18−20−24−16100=176(人).∴估计最喜欢“烹饪”课程的学生人数约176人.(4)列表如下:A B C D E A(A ,A )(A ,B )(A ,C )(A ,D )(A ,E )B(B ,A )(B ,B )(B ,C )(B ,D )(B ,E )C(C ,A )(C ,B )(C ,C )(C ,D ) (C ,E )D (D ,A )(D ,B )(D ,C )(D ,D ) (D ,E )E(E,A)(E,B)(E,C)(E,D)(E,E)共有25种等可能的结果,其中两人恰好选到同一门课程的结果有5种,∴两人恰好选到同一门课程的概率为525=15.20.(12分)解:(1)设该市参加健身运动人数的年均增长率为x,由题意得:32(1+x)2=50,解得:x1=0.25=25%,x2=﹣2.25(不符合题意,舍去),答:该市参加健身运动人数的年均增长率为25%;(2)设购买的这种健身器材的套数为m套,由题意得:m(1600−m−10010×40)=240000,整理得:m2﹣500m+60000=0,解得:m1=200,m2=300(不符合题意,舍去),答:购买的这种健身器材的套数为200套.21.(12分)解:(1)由y=k1x+2得D(0,2),∵tan∠ACO=2,∴DOCO=2,∴C(﹣1,0),代入y=k1x+2得k1=2,∴一次函数解析式为y=2x+2.过A作AM⊥x轴,如图1.∴tan∠ACO=AMCM=2,∵AM=4,∴CM=2,∴OM=1,∴A(1,4),代入y=k2x得k2=4,∴反比例函数解析式为y=4x .(2)如图2:过A 作AN ∥y 轴,交BE 于N .联立y =2x +2和y =4x 得x 2+x ﹣2=0,∴x =﹣2或1,∴B (﹣2,﹣2).∴BD =(−2−0)2+(−2−2)2=25,∴DE =DB =25,∴OE =DE 2−OD 2=4,∴E (4,0),设直线BE 解析式为y =mx +n ,∴4m +n =0−2m +n =−2,∴m =13,n =−43,∴直线BE 解析式为y =13x −43,∴N (1,﹣1),∴△ABE 面积=12(4+1)(4+2)=15.(3)看图得:当﹣2<x<0或x>1时,k1x+2>k2x,即2x+2>4x.22.(13分)解:操作发现:连接CO并延长交⊙O于点M,连接AM,∵MC是⊙O直径,∴∠MAC=90°,∴∠AMC+∠ACM=90°由旋转的性质得∠B=∠ACE,∵∠B=∠AMC,∴∠ACE=∠AMC,∵OCE=∠ACM+∠ACE=∠ACM+∠AMC=90°,∵OC是⊙O的半径,∴CE与⊙O相切;实践探究:由旋转的性质得:∠BAD=∠CAE,AD=AE,∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE,∵AB=AC,∴ABAD=ACAE,∴△ABC∽△ADE,∴∠B=∠ADE=∠ACB,∵∠ADC=∠ADE+∠CDF=∠B+∠BAD,∴∠CDF=∠BAD,∴△ABD∽△DCF,∴ABCD=BDCF,设BD=x,则CD =6﹣x ,∴3106−x =x CF,∴CF =1030x (6﹣x )=−1030(x ﹣3)2+31010,∵−1030<0,∴当x =3时,CF 有最大值为31010;问题解决:证明:过点E 作EN ∥BC 交AC 于点N ,∴∠ENC =∠ACB ,由旋转的性质知:∠B =∠ACE ,∵∠B =∠ACB ,∴∠ACB =∠ACE ,∴∠ENC =∠ACE ,∴EN =CE ,由旋转的性质得:△ABD ≌△ACE ,∴BD =CE ,∴BD =EN ,∵EN ∥BC ,∴△CDF ∽△NEF ,∴CD EN =DF EF ,∵BD =EN ,∴CD BD =DFEF .23.(13分)解:(1)∵x 1,x 2是x 2﹣2x ﹣3=0的两个根,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵抛物线y=ax2+bx+3与x轴相交于A、B两点,∴a−b+3=09a+3b+3=0,解得a=−1b=2,∴抛物线函数表达式为y=﹣x2+2x+3;(2)①存在,理由如下:∵直线y=3x+9与x、y轴分别交于点D、E,∴x=0时,y=9,y=0时,3x+9=0,x=﹣3,∴点D(﹣3,0)、E(0,9),∴OD=3,OE=9,∴tan∠OED=ODOE=13,由抛物线可知:当x=0时,y=3,∴C(0,3),∴OB=OC=3,∴∠OBC=∠OCB=45°,∴∠FCE=∠OCB=45°,∵∠DFB是△CEF的外角,∴∠DFB=∠FCE+∠FEC=45°+∠FEC,∵∠DFB=∠PBF=∠CBO+∠PBQ=45°+∠PBQ,∴∠PBQ=∠FEC,∴tan∠PBQ=PQBQ=13,设P(m,﹣m2+2m+3),则BQ=3﹣m,PQ=m2﹣2m﹣3,∴m2−2m−33−m=13,∴m=3(舍去)或−43,∴P(−43,−139);②∵过抛物线上一点M作直线BC的平行线,与抛物线相交于另一点N,设M(x1,y1),N(x2,y2),设直线MN的解析式为:y=﹣x+n,设直线BM的解析式为y=k1x+m,将B(3,0)代入得3k1+m=0,解得:m=﹣3k1,∴直线BM的解析式为y=k1x﹣3k1,设直线CN的解析式为y=k2x+m1,将C(0,3)代入得m1=3,∴直线CN的解析式为y=k2x+3;,得x2﹣3x+n﹣3=0,联立方程组y=−x+ny=−x2+2x+3∴x1+x2=3,将M(x1,y1)代入y=k1x﹣3k1,y=﹣x2+2x+3 得:y1=k1x−3k1,y1=−x12+2x1+32+(k1﹣2)x﹣3(k1+1)=0,∴x1∴(x1﹣3)[x1+(k1+1)]=0,解得:k1=﹣1﹣x1,将N(x2,y2)代入y=k2x+3,y=﹣x2+2x+3 得:y2=k2x2+3,y2=−x22+2x2+32+(k2﹣2)x2=0,∴x2∴x2(x2+k2﹣2)=0,解得:k2=2﹣x2,联立方程组y=k2x+3y=k1x−3k1,得出x Q=3(1+k1)k1−k2=3[1+(−1−x1)]−1−x1−(2−x2)=−3x1−3+x2−x1=−3x1−3+3−x1−x1=32,∴点Q在直线x=32上运动,在y=3x+9中,令x=0,则y=9,即E(0,9),如图,作点E关于直线x=32的对称点E',连接DE'交直线x=32于Q',连接EQ',则E'(3,9),由轴对称性质可得EQ'=EQ',∴QD+QE的最小值=DQ'+EQ'=DQ'+E'Q'=DE',由两点之间线段最短可得:线段QD+QE的最小值为DE',∵DE'=[3−(−3)]2+(9−0)2=313,∴线段QD+QE的最小值为313.。
2024年山东省潍坊市中考真题试题(原卷版)
![2024年山东省潍坊市中考真题试题(原卷版)](https://img.taocdn.com/s3/m/9eef48970408763231126edb6f1aff00bed570e0.png)
山东省潍坊市2024年初中学业水平考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共44分)一、单项选择题(共6小题,每小题4分,共24分.每小题的四个选项中只有一项正确)1. 下列著名曲线中,既是轴对称图形也是中心对称图形的是( )A. B.C. D.2.2024年3月份,低空经济首次被写入《政府工作投告》.截止2023年底,全国注册通航企业690家、无人机126.7万架,运营无人机的企业达1.9万家.将126.7万用科学记数法表示为( )A.51.26710×B.61.26710×C.71.26710×D.4126.710×3.某厂家生产的海上浮漂的形状是中间穿孔的球体,如图1所示.该浮漂的俯视图是图2,那么它的主视图是( )A. B.C. D.4.中国中医科学院教授屠呦呦因其在青蒿素抗疟方面的研究获2015年诺贝尔生理学或医学奖.某科研小组用石油醚做溶剂进行提取青蒿素的实验,控制其他实验条件不变,分别研究提取时间和提取温度对青蒿素提取率的影响,其结果如图所示:由图可知,最佳的提取时间和提取温度分别为()A.100min,50℃ B.120min,50℃ C.100min,55℃ D.120min,55℃5.一种路灯的示意图如图所示,其底部支架AB 与吊线FG 平行,灯杆CD 与底部支架AB 所成锐角15α=°.顶部支架EF 与灯杆CD 所成锐角45β=°,则EF 与FG 所成锐角的度数为( )A.60°B.55°C.50°D.45°6.已知关于x 的一元二次方程2210x mx n mn −−++=,其中,m n 满足23m n −=,关于该方程根的情况,下列判断正确的是()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定二、多项选择题(共4小题,每小题5分,共20分.在每小题的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)7. 下列命题是真命题的有( )A.若a b =,则ac bc=B.若a b >,则ac bc>C.两个有理数的积仍为有理数D.两个无理数的积仍为无理数8.如图,圆柱1,下列关于该圆柱的结论正确的有( )的A.体积为πB.母线长为1C.侧面积为D.侧面展开图的周长为2+9.如图,已知抛物线2y ax bx c ++的对称轴是直线1x =,且抛物线与x 轴的一个交点坐标是()4,0.下列结论正确的有( )A.0a b c −+>B.该抛物线与x 轴的另一个交点坐标是()3,0−C.若点()11,y −和()22,y 在该抛物线上,则12y y <D.对任意实数n ,不等式2an bn a b +≤+总成立10.如图,O 是ABC 的外接圆,AO BC ∥,连接CO 并延长交O 于点D .分别以点,A C 为圆心,以大于12AC 的长为半径作弧,并使两弧交于圆外一点M .直线OM 交BC 于点E ,连接AE ,下列结论一定正确的是()A. AB AD= B.AB OE =C.AOD BAC ∠=∠ D.四边形AOCE 为菱形第Ⅱ卷(非选择题 共106分)三、填空题(共4小题,每小题4分,共16分.只写最后结果)11.请写出同时满足以下两个条件的一个函数:______.①y 随着x 的增大而减小;②函数图象与y 轴正半轴相交.12.如图,在直角坐标系中,等边三角形ABC 的顶点A 的坐标为()0,4,点,B C 均在x 轴上.将ABC 绕顶点A 逆时针旋转30°得到AB C ′′△,则点C ′的坐标为______.13. 小莹在做手抄报时,用到了红色、黄色、蓝色三支彩笔,这三支彩笔笔帽和笔芯颜色分别一致.完成手抄报后,她随机地将三个笔帽分别盖在三支彩笔上,每个笔帽和笔芯的颜色都不匹配的概率是______.14.将连续的正整数排成如图所示的数表.记(),i j a 为数表中第i 行第j 列位置的数字,如()1,24a =,()3,28a =,()5,422a =.若(),2024m n a =,则m =______,n =______.四、解答题(共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.(12132− +−−;(2)先化简,再求值:32111a a a a ++−÷ −−,其中2a =+.16.如图,在矩形ABCD 中,2AB AD >,点E F ,分别在边AB CD ,上.将ADF △沿AF 折叠,点D 的对应点G 恰好落在对角线AC 上;将CBE △沿CE 折叠,点B 的对应点H 恰好也落在对角线AC 上.连接GE FH ,.的求证:(1)AEH CFG △≌△;(2)四边形EGFH 为平行四边形.17.如图,正比例函数y x =的图象与反比例函数k y x =的图象的一个交点是(A m .点()P n 在直线y x =上,过点P 作y 轴的平行线,交k y x =的图象于点Q .(1)求这个反比例函数的表达式;(2)求OPQ △的面积.18.在某购物电商平台上,客户购买商家的商品后,可从“产品质量”“商家服务”“发货速度”“快递服务”等方面给予商家分值评价(分值为1分、2分、3分、4分和5分).该平台上甲、乙两个商家以相同价格分别销售同款T 恤衫,平台为了了解他们的客户对其“商家服务”的评价情况,从甲、乙两个商家各随机抽取了一部分“商家服务”的评价分值进行统计分析.【数据描述】下图是根据样本数据制作的不完整的统计图,请回答问题(1)(2).(1)平台从甲、乙两个商家分别抽取了多少个评价分值?请补全条形统计图;(2)求甲商家的“商家服务”评价分值的扇形统计图中圆心角α的度数.【分析与应用】样本数据的统计量如下表,请回答问题(3)(4).(3)直接写出表中a 和b 的值,并求x 的值;(4)小亮打算从甲、乙两个商家中选择“商家服务”好的一家购买此款T 恤衫.你认为小亮应该选择哪一家?说明你的观点.19.2024年6月,某商场为了减少夏季降温和冬季供暖的能源消耗,计划在商场的屋顶和外墙建造隔热层,其建造成本P (万元)与隔热层厚度()cm x 满足函数表达式:10P x =.预计该商场每年的能源消耗费用T (万元)与隔热层厚度()cm x 满足函数表达式:()()24218x x T ++=−,其中09x ≤≤.设该商场的隔热层建造费用与未来8年能源消耗费用之和为y (万元). (1)若148y =万元,求该商场建造的隔热层厚度;(2)已知该商场未来8年的相关规划费用为t (万元),且2t y x =+,当172192t ≤≤时,求隔热层厚度()cm x 的取值范围.20.如图,已知ABC 内接于O ,AB 是O 的直径,BAC ∠的平分线交O 于点D ,过点D 作DE AC ⊥,交AC 的延长线于点E ,连接BD CD ,.(1)求证:DE 是O 的切线;(2)若1CE =,1sin 3BAD ∠=,求O 直径. 21.在光伏发电系统运行时,太阳能板(如图1)与水平地面的夹角会对太阳辐射的接收产生直接影响.某地区工作人员对日平均太阳辐射量y (单位:121kW h 10m d −−−⋅⋅⋅⋅)和太阳能板与水平地面的夹角()090x x °≤≤进行统计,绘制了如图2所示的散点图,已知该散点图可用二次函数刻画.(1)求y 关于x 的函数表达式;(2)该地区太阳能板与水平地面夹角为多少度时,日平均太阳辐射量最大?(3)图3是该地区太阳能板安装后的示意图(此时,太阳能板与水平地面的夹角使得日平均太阳辐射量最大),AGD ∠为太阳能板AB 与水平地面GD 的夹角,CD 为支撑杆.已知2m AB =,C 是AB 的中点,CD GD ⊥.在GD 延长线上选取一点M ,在,D M 两点间选取一点E ,测得4m EM =,在,M E 两点处分别用测角仪测得太阳能板顶端A 的仰角为30°,45°,该测角仪支架的高为1m .求支撑杆CD 的长.(精确到0.1m1.414≈1.732≈)22. 问题提出】在绿化公园时,需要安装一定数量的自动喷洒装置,定时喷水养护,某公司准备在一块边长为18m 的正方形草坪(如图1)中安装自动喷洒装置,为了既节约安装成本,又尽可能提高喷洒覆盖率,需要设计合适的安装方案.的的【说明:一个自动喷洒装置的喷洒范围是半径为()m r 的圆面.喷洒覆盖率k sρ=,s 为待喷洒区域面积,k 为待喷洒区域中的实际喷洒面积.【数学建模】这个问题可以转化为用圆面覆盖正方形面积的数学问题.【探索发现】(1)如图2,在该草坪中心位置设计安装1个喷洒半径为9m 的自动喷洒装置,该方案的喷洒覆盖率ρ=______.(2)如图3,在该草坪内设计安装4个喷洒半径均为9m 2的自动喷洒装置;如图4,设计安装9个喷洒半径均为3m 的自动喷洒装置;⋅⋅⋅⋅⋅⋅,以此类推,如图5,设计安装2n 个喷洒半径均为9m n的自动喷洒装置.与(1)中的方案相比,采用这种增加装置个数且减小喷洒半径的方案,能否提高喷洒覆盖率?请判断并给出理由.(3)如图6所示,该公司设计了用4个相同的自动喷洒装置喷洒的方案,且使得该草坪的喷洒覆盖率1ρ=.已知AE BF CG DH ===,设()m AE x =,1O 的面积为()2m y ,求y 关于x 的函数表达式,并求当y 取得最小值时r 的值.【问题解决】(4)该公司现有喷洒半径为的自动喷洒装置若干个,至少安装几个这样的喷洒装置可使该草坪的喷洒覆盖率1ρ=?(直接写出结果即可)。
精品解析:2023年山东省烟台市中考数学真题(解析版)
![精品解析:2023年山东省烟台市中考数学真题(解析版)](https://img.taocdn.com/s3/m/d8a6a5de846a561252d380eb6294dd88d0d23de9.png)
2023年烟台市初中学业水平考试数学试题一、选择题1. 23−的倒数是( )A.23 B. 23−C.32D. 32−【答案】D 【解析】【分析】根据乘积是1两个数叫做互为倒数解答. 【详解】解:∵23132−×−=, ∴23−的倒数是32−,故选:D .【点睛】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键. 2.是同类二次根式的是( )A.B.C.D.【答案】C 【解析】【分析】根据同类二次根式定义,逐个进行判断即可.【详解】解:A2=不是同类二次根式,不符合题意; B不是同类二次根式,不符合题意; C=是同类二次根式,符合题意; D=不是同类二次根式,不符合题意; 故选:C .【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式. 3. 下列四种图案中,是中心对称图形的是( )的的A. B. C. D.【答案】B 【解析】【分析】根据中心对称图形的定义,逐个进行判断即可,中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 【详解】解:根据题意可得:是中心对称图形的只有B , 故选:B .【点睛】本题主要考查了中心对称图形的定义,解题的关键是中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 4. 下列计算正确的是( ) A. 2242a a a += B. ()32626a a = C. 235a a a ⋅= D. 824a a a ÷=【答案】C 【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答. 【详解】解:A .2222a a a +=,故该选项不正确,不符合题意; B .()32628a a =,故该选项不正确,不符合题意;C .235a a a ⋅=,故该选项正确,符合题意;D .826a a a ÷=,故该选项不正确,不符合题意. 故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键. 5. 不等式组321,23m m −≥ −>的解集在同一条数轴上表示正确的是( )A. B.C.D.【答案】A【解析】【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【详解】解:32123m m −≥−>①② 解不等式①得:m 1≥ 解不等式②得:1m <−将不等式的解集表示在数轴上,如图所示,故选:A .【点睛】本题主要考查数轴上表示不等式的解集,熟练掌握数轴上表示不等式组的解集的方法是解题的关键.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.【答案】A 【解析】【分析】根据俯视图的定义,即可进行解答.【详解】解:根据题意可得:从该几何体正上方看,棱AE 的投影为点E ,棱AB 的投影为线段BE ,棱AD 的投影为线段ED ,棱AC 的投影为正方形BCDE 的对角线,∴该几何体的俯视图为:,故选:A【点睛】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值平均数大于乙班视力值的平均数B.C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差 【答案】D 【解析】【分析】根据平均数,中位数,极差,方差的定义分别求解即可. 【详解】甲班视力值分别为:4.7,5.0,4.7,4.8,4.7,4.7,4.6,4.4; 从小到大排列为:4.4,4.6,4.7,4.7,4.7,4.7,4.8,5.0;中位数为4.7 4.7=4.72+, 平均数为()14.4 4.6 4.7 4.7 4.7 4.7 4.85.0=4.78+++++++;极差为5.0 4.40.6−=方差为()()()()222221=0.30.10.10.3=0.0258S +++甲;乙班视力值分别为:4.8,4.7,4.7,5.0,4.6,4.5,4.9,4.4;的从小到大排列为:4.4,4.5,4.6,4.7,4.7,4.8,4.9,5.0,中位数为4.7 4.7=4.72+ 平均数为()14.4 4.5 4.6 4.7 4.7 4.8 4.95.0=4.78+++++++;极差为5.0 4.40.6−=方差为()()()()()()22222221=0.30.20.10.10.20.3=0.0358S +++++甲;甲、乙班视力值的平均数、中位数、极差都相等,甲班视力值的方差小于乙班视力值的方差,故D 选项正确 故选:D .【点睛】本题考查了折线统计图,求平均数,中位数,极差,方差,熟练掌握平均数,中位数,极差,方差的定义是解题的关键.8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为( )A. 12P P <B. 12P PC. 12P P >D. 无法判断【答案】C 【解析】【分析】根据题意可得阴影部分面积等于正方形面积的一半,进而即可求解. 【详解】解:如图所示,连接AE BD ,交于O , 由题意得,A B C D ,,,分别是正方形四条边的中点, ∴点O 为正方形的中心, ∴AOBF AODC S S =四边形四边形,根据题意,可得扇形OAB 的面积等于扇形CAD 的面积, ∴AOBF OAB AODC AOC S S S S −=−四边形扇形四边形扇形,∴阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半 ∴12P P =, 故选:C .【点睛】本题考查了正方形的性质,扇形面积,几何概率,得出阴影部分面积等于正方形面积的一半是解题的关键.9. 如图,抛物线2y ax bx c ++的顶点A 的坐标为1,2m−,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc >;②20b c +>;③若图象经过点()()123,,3,y y −,则12y y >;④若关于x 的一元二次方程230ax bx c ++−=无实数根,则3m <.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据图象,分别得出a 、b 、c 的符号,即可判断①;根据对称轴得出a b =,再根据图象得出当1x =时,0y a b c =++<,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程230ax bx c ++−=移项可得23ax bx c ++=,根据该方程无实数根,得出抛物线2y ax bx c ++与直线3y =没有交点,即可判断④.【详解】解:①∵该抛物线开口向下, ∴a<0,∵该抛物线的对称轴在y 轴左侧, ∴0b <,∵该抛物线于y 轴交于正半轴,∴0c >, ∴0abc >,故①正确,符合题意; ②∵1,2A m−, ∴该抛物线的对称轴为直线122b x a =-=-,则a b =, 当1x =时,y a bc =++,把a b =得:当1x =时,2y b c =+, 由图可知:当1x =时,0y <, ∴20b c +<,故②不正确,不符合题意; ③∵该抛物线的对称轴为直线12x =−, ∴()13,y −到对称轴的距离为()15322−−−=,()23,y 到对称轴的距离为17322−−= , ∵该抛物线开口向下,∵5722<, ∴12y y >,故③正确,符合题意;④将方程230ax bx c ++−=移项可得23ax bx c ++=, ∵230ax bx c ++−=无实数根,∴抛物线2y ax bx c ++与直线3y =没有交点, ∵1,2A m−, ∴3m <.故④正确综上:正确的有:①③④,共三个. 故选:C .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方法,熟练掌握二次函数的图象和性质.10. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A …,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A −−−,()32,1A −−,则顶点100A 的坐标为( )A ()31.34 B. ()31,34− C. ()32,35 D. ()32,0【答案】A 【解析】【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n −−,.【详解】解:∵()121A −,,()412A −,,()703A ,,()1014A ,, , ∴()323n A n n −−,,∵1003342=×−,则34n =,∴()1003134A ,, 故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.二、填空题11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________. 【答案】113.610×.【解析】【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:3600亿360000000000=,用科学记数法表示为113.610×. 故答案为:113.610×.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.12. 一杆古秤在称物时的状态如图所示,已知1102∠=°,则2∠的度数为_____.【答案】78°##78度 【解析】【分析】根据两直线平行,内错角相等,即可求解. AB DC ∥, ∴2BCD ∠=∠,∵1180BCD ∠+∠=°,1102∠=°, ∴180178BCD ∠=°−∠=°∴278∠=°.故答案为:78°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5° 【解析】【分析】如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=°−°=°,然后再根据等腰三角形的性质求得65OAB ∠=°、25OAD ∠=°,最后根据角的和差即可解答.【详解】解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=°−°=°,15525130AOD ∠=°−°=°,∴()118077.52OABAOB ∠=°−∠=°,()1180252OAD AOB ∠=°−∠=°, ∴52.5OAB A BAD O D ∠∠−∠==°. 故答案为52.5°.【点睛】本题主要考查了角的度量、等腰三角形的性质等知识点,灵活运用等腰三角形的性质是解答本题的关键.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8; ③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是___________. 【答案】①③ 【解析】【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①4=;故①正确,符合题意; ②按键的结果为()3424+−=−;故②不正确,不符合题意;③按键的结果为()sin 4515sin 300.5°−°=°=;故③正确,符合题意; ④按键的结果为2132102−×=;故④不正确,不符合题意;综上:正确的有①③. 故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义. 15. 如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.【答案】24 【解析】【分析】设,k C a a,则,kOB a AC a==,则122k AC BC a ==,根据三角形的面积公式得出162ACD S AC OB =⋅= ,列出方程求解即可. 【详解】解:设,k C a a, ∵A 与x 轴相切于点B , ∴BC x ⊥轴,∴,kOB a AC a==,则点D 到BC 的距离为a , ∵CB 为A 的直径,∴122kAC BC a ==, ∴16224ACDk k S a a =⋅⋅== , 解得:24k =, 故答案为:24.【点睛】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.16. 如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y 2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【解析】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC == 在Rt ABQ 中,8,4AB BQ ==∴AQ∵1122ABC S AB CG AQ BC =×=× ,∴BC AQ CG AB ×==,. 【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.三、解答题17. 先化简,再求值:2695222a a a a a −+÷++−−,其中a 是使不等式112a −≤成立的正整数. 【答案】33a a −+;12−【解析】【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可.【详解】解:2695222a a a a a −+÷++ −−()()()23225222a a a a a a −+−=÷+ −−−()2234522a a a a−−+÷−−()()()232233a aa a a −−⋅−+−33a a −=+, 解不等式112a −≤得:3a ≤, ∵a 为正整数, ∴1a =,2,3,∵要使分式有意义20a −≠, ∴2a ≠,∵当3a =时,552320223a a ++=++=−−, ∴3a ≠,∴把1a =代入得:原式131132−==−+. 【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A 大学的大约有_________人;(3)甲、乙两位同学计划从A ,B ,C 三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.【答案】(1)见解析(2)14.4°;200.(3)1 3【解析】【分析】(1)根据C的人数除以占比得到总人数,进而求得B的人数,补全统计图即可求解;(2)根据D的占比乘以360°得到圆心角的度数,根据1000乘以选择A的人数的占比即可求解;(3)根据列表法求概率即可求解.【小问1详解】解:总人数为1428%50÷=(人)∴选择B大学的人数为5010142816−−−−=,补全统计图如图所示,【小问2详解】在扇形统计图中,D所在的扇形的圆心角的度数为236014.4 50°×=°,选择A大学的大约有101000=20050×(人)故答案为:14.4°;200.【小问3详解】列表如下,共有9种等可能结果,其中有3种符合题意,∴甲、乙两人恰好选取同一所大学的概率为13.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,列表法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45°,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18°,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈°,cos180.951≈°,tan180.325≈°)【答案】该风力发电机塔杆PD 的高度为32米 【解析】【分析】过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,先根据含30°角直角三角形的性质得出8DE =,设PD x =米,则()8PD DE x =+=+米,进而得出()8AE x =+米,证明四边形FAEP 为矩形,则()8PFAE x ==+米,()8AFPE x ==+米,根据线段之间的和差关系得出()45BF AB AF s x =−=−米,最后根据tan18BFPF=°,列出方程求解即可.【详解】解:过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,根据题意可得:AB 、PD 垂直于水平面,30DCE ∠=°,45PAC ∠=°,18GBP ∠=°, ∴PE AE ⊥,∵16CD =米, ∴1116822DE CD ==×=(米), 设PD x =米,则()8PE PD DE x =+=+米,∵45PAC ∠=°,PE AE ⊥,∴()8tan 45PEAEx ==+°米,∵AB AE ⊥,PE AE ⊥,PF AB ⊥,∴四边形FAEP 为矩形,∴()8PFAE x ==+米,()8AFPE x ==+米,∵53AB =米,∴()()53845BF AB AF x x =−=−+=−米, ∵18GBP ∠=°, ∴18BPF ∠=°, ∴tan18BF PF =°,即450.3258xx−≈+, 解得:32x ≈,答:该风力发电机塔杆PD 的高度为32米.【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤. 20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C 为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180°至RCO △处,如图3.经过推理、计算可求出线段CQ 的长. 请你任选其中一种方案求线段CQ 的长. 【答案】线段CQ 的长为2512. 【解析】【分析】方案一:连接OQ ,由翻折的不变性,知3AP AB ==, 2.5OPOB ==,证明()HL QPO QCO ≌△△,推出PQ CQ =,设PQCQ x ==,在Rt ADQ △中,利用勾股定理列式计算求解即可;方案二:将ABO 绕点O 旋转180°至RCO △处,证明OAQ R ∠=∠,推出QA QR =,设CQ x =,同方案一即可求解.【详解】解:方案一:连接OQ ,如图2.∵四边形ABCD 矩形,∴3AB CD ==,5ADBC ==, 由作图知12.52BOOC BC ===, 由翻折的不变性,知3AP AB ==, 2.5OP OB ==,90APO B ∠=∠=°,∴ 2.5OP OC ==,90QPO C ∠=∠=°,又OQ OQ =, ∴()HL QPO QCO ≌△△, ∴PQ CQ =,设PQCQ x ==,则3AQ x =+,3DQ x =−,是在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +−=+, 解得2512x =, ∴线段CQ 的长为2512; 方案二:将ABO 绕点O 旋转180°至RCO △处,如图3.∵四边形ABCD 是矩形,∴3AB CD ==,5ADBC ==, 由作图知12.52BOOC BC ===, 由旋转的不变性,知3CR AB ==,BAO R ∠=∠,90B OCR ∠=∠=°, 则9090180OCR OCD ∠+∠=°+°=°, ∴D C R 、、共线,由翻折的不变性,知BAO OAQ ∠=∠, ∴OAQ R ∠=∠, ∴QA QR =,设CQ x =,则3QA QR x ==+,3DQ x =−,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +−=+, 解得2512x =, ∴线段CQ 的长为2512. 【点睛】本题考查了作线段的垂直平分线,翻折的性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本. (1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?【答案】(1)《周髀算经》单价为40元,则《孙子算经》单价是30元;(2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元. 【解析】【分析】(1)设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元,根据“用600元购买《孙子算经》比购买《周髀算经》多买5本”列分式方程,解之即可求解;(2)根据购买的《周髀算经》数量不少于《孙子算经》数量的一半列出不等式求出m 的取值范围,根据m 的取值范围结合函数解析式解答即可. 【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元, 依题意得,600600534x x=+, 解得40x =,经检验,40x =是原方程的解,且符合题意,340304×=, 答:《周髀算经》单价为40元,则《孙子算经》单价是30元; 【小问2详解】解:设购买的《周髀算经》数量m 本,则购买的《孙子算经》数量为()80m −本, 依题意得,()1802m m ≥−, 解得2263m ≥, 设购买《周髀算经》和《孙子算经》的总费用为y (元), 依题意得,()400.8300.88081920y m m m =×+×−=+,∵80k =>,∴y 随m 的增大而增大,∴当27m =时,有最小值,此时82719202316y =×+=(元), 802753−=(本)答:当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【点睛】本题主要考查分式方程的实际应用,一次函数的实际应用以及一元一次不等式的实际应用,根据题意表示出y 与x 之间的函数关系式以及列出不等式是解题的关键.22. 如图,在菱形ABCD 中,对角线,AC BD 相交于点,E O 经过,A D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG GD =.(1)求证:AB 是O 的切线;(2)已知O 的半径与菱形的边长之比为5:8,求tan ADB ∠的值.【答案】(1)见解析 (2)tan 2ADB ∠=.【解析】【分析】(1)利用垂径定理得OF AD ⊥,利用菱形的性质得GAF BAF ∠=∠,利用半径相等得OAF OFA ∠=∠,即可证明90OAF BAF ∠+∠=°,据此即可证明结论成立;(2)设4AG GD a ==,由题意得:5:4OA AG =,求得5OA a =,由勾股定理得到3OG a =,求得2FG a =,利用菱形的性质求得ADB AFG ∠=∠,据此求解即可. 【小问1详解】证明:连接OA ,∵AG GD =,由垂径定理知OF AD ⊥,∴90OGA FGA ∠=∠=°,∵四边形ABCD 是菱形,∴GAF BAF ∠=∠,∴90GAF AFG BAF AFG ∠+∠=°=∠+∠,∵OA OF =,∴OAF OFA ∠=∠,∴90OAF BAF OAB ∠+∠=∠=°,又∵OA 为O 的半径,∴AB 是O 的切线;【小问2详解】解:∵四边形ABCD 是菱形,AG GD =,∴设4AG GD a ==,∵O 的半径与菱形的边长之比为5:8,∴在Rt OAG △中,:5:4OA AG =,∴5OA a =,3OG a ==,∴2FG OF OG a =−=,∵四边形ABCD 是菱形,∴BD AC ⊥,即90DEA FGA ∠=°=∠,∴ADB AFG ∠=∠, ∴4tan tan 22AG a ADB AFG FG a∠=∠===. 【点睛】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.23. 如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.【答案】(1)见解析 (2)2BE =【解析】【分析】(1)证明CD BE ∥,推出DCE BEF ∠=∠,利用SAS 证明DCE FEB ≌△△即可证明结论成立; (2)取CF 的中点H ,连接GH ,证明GH 是FCD 的中位线,设BE a =,则122FH a =−,证明FGH FBE ∽△△,得到GH FH BE EF=,即2440a a −−=,解方程即可求解. 【小问1详解】 证明:∵等腰ACD 和等腰BCE ,∴AD CD =,EC EB =,A DCA ∠=∠,∵A CBE ∠=∠,∴DCA CBE ∠=∠,∴CD BE ∥,∴DCE BEF ∠=∠,∵EF AD =,∴EF CD =,在DCE △和FEB 中,CD EF DCE FEB EC = ∠=∠ =, ∴()SAS DCE FEB ≌△△,∴DE BF =;【小问2详解】解:取CF 的中点H ,连接GH ,∵点G 是DE 的中点,∴GH 是FCD 的中位线, ∴11122GH CD AD ===,GH CD ∥,设BE a =,则111222CH EH CE BE a ====, ∵2EF AD ==, ∴122FH a =−, ∵CD BE ∥,∴GH BE ∥,∴FGH FBE ∽△△, ∴GH FH BE EF =,即12122a a −=, 整理得2440a a −−=,解得2a =+(负值已舍),经检验2a =+是所列方程的解,且符合题意,∴2BE =【点睛】本题考查了相似三角形的判定和性质,解一元二次方程,三角形中位线定理,全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24. 如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =−交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为B 上一个动点,请求出12+PC PA 的最小值. 【答案】(1)直线AD 的解析式为1y x =−;抛物线解析式为265y x x =−+(2)存在,点M 的坐标为()4,3−或()0,5 或()5,0(3【解析】【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=°时,求出直线AM 的解析式为1y x =−+,解方程组2165y x y x x =−+ =−+ ,即可得到点M 的坐标;②当90ADM ∠=°时,求出直线DM 的解析式为5y x =−+,解方程组2565y x y x x =−+ =−+,即可得到点M 的坐标; (3)在AB 上取点F ,使1BF =,连接CF ,证得BF PB PB AB=,又PBF ABP ∠=∠,得到PBF ABP ∽,推出12PF PA =,进而得到当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【小问1详解】解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将 1,0A 代入直线1y kx =−10k −=,解得1k =,∴直线AD 的解析式为1y x =−;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++= ++= ,解得16a b = =−, ∴抛物线的解析式为265y x x =−+;【小问2详解】存在点M ,∵直线AD 的解析式为1y x =−,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =−=,∴()3,2D ,①当90DAM ∠=°时,设直线AM 的解析式为y x c =−+,将点A 坐标代入, 得10c −+=,解得1c =,∴直线AM 的解析式为1y x =−+, 解方程组2165y x y x x =−+ =−+ , 得10x y = =或43x y = =− , ∴点M 的坐标为()4,3−;②当90ADM ∠=°时,设直线DM 的解析式为y x d =−+,将()3,2D 代入, 得32d −+=,解得5d =,∴直线DM 的解析式为5y x =−+, 解方程组2565y x y x x =−+ =−+, 解得05x y = = 或50x y = =, ∴点M 的坐标为()0,5 或()5,0综上,点M 的坐标为()4,3−或()0,5 或()5,0;【小问3详解】如图,在AB 上取点F ,使1BF =,连接CF ,∵2PB =, ∴12BF PB =, ∵2142PB AB ==,、 ∴BF PB PB AB=, 又∵PBF ABP ∠=∠,∴PBF ABP ∽, ∴12PF BF PAPB ==,即12PF PA =, ∴12PC PA PC PF CF +=+≥, ∴当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长, ∵5,1514OC OF OB ==−=−=,∴CF∴12+PC PA【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.。
2020年山东省济南市中考数学试题及参考答案(word解析版)
![2020年山东省济南市中考数学试题及参考答案(word解析版)](https://img.taocdn.com/s3/m/105a65529b89680202d8257d.png)
2020年山东省济南市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图所示的几何体,其俯视图是()A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3 C.4 D.511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y 值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3二、填空题(本大题共6个小题.每小题4分,共24分)13.分解因式:2a2﹣ab=.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式与代数式的值相等,则x=.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF =3,则tan∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:()0﹣2sin30°++()﹣1.20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格100≤x<120 a合格120≤x<140 b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A 3000 3400B 3500 4000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON 的面积为S2,若S1=2S2,求m的值.答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【知识考点】算术平方根;实数的性质.【思路分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可.【解答过程】解:﹣2的绝对值是2;故选:A.【总结归纳】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图所示的几何体,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据俯视图是从物体上面看所得到的图形判断即可.【解答过程】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.。
2024年山东省泰安市中考数学试卷(附答案解析)
![2024年山东省泰安市中考数学试卷(附答案解析)](https://img.taocdn.com/s3/m/6d3e43b1e109581b6bd97f19227916888486b984.png)
2024年山东省泰安市中考数学试卷(附答案解析)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义:只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:﹣的相反数是:.故选:C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(4分)下列运算正确的是()A.2x2y﹣3xy2=﹣x2y B.4x8y2÷2x2y2=2x4C.(x﹣y)(﹣x﹣y)=x2﹣y2D.(x2y3)2=x4y6【分析】利用合并同类项的法则,整式的除法的法则,平方差公式,积的乘方的法则对各项进行运算即可.【解答】解:A、2x2y与﹣3xy2不属于同类项,不能合并,故A不符合题意;B、4x8y2÷2x2y2=2x6,故B不符合题意;C、(x﹣y)(﹣x﹣y)=y2﹣x2,故C不符合题意;D、(x2y3)2=x4y6,故D符合题意;故选:D.【点评】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.3.(4分)下面图形中,中心对称图形的个数有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:左起第四个图形不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;第一、第二和第三个图形能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.所以中心对称图形有3个.故选:C.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(4分)据泰山景区2024年1月4日消息,2023年泰山景区累计接待进山游客超860万人次,同比增长301.36%,刷新了历年游客量最高纪录.数据860万用科学记数法表示为()A.8.60×107B.86.0×105C.0.860×107D.8.60×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:860万=8600000=8.60×106,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(4分)如图,直线l∥m,等边三角形ABC的两个顶点B,C分别落在直线l,m上,若∠ABE=21°,则∠ACD的度数是()A.45°B.39°C.29°D.21°【分析】过点A作AF∥l,由平行公理的推论得出AF∥m,根据平行线的性质得出∠BAF=∠ABE,∠ACD=∠CAF,根据等边三角形的性质得出∠BAC=60°,即可求出∠ACD的度数.【解答】解:如图,过点A作AF∥l,∵直线l∥m,∴AF∥m,∵△ABC是等边三角形,∴∠BAC=60°,∵AF∥l,∴∠BAF=∠ABE,∵∠ABE=21°,∴∠BAF=21°,∴∠CAF=∠BAC﹣∠BAF=60°﹣21°=39°,∵AF∥m,∴∠ACD=∠CAF=39°,故选:B.【点评】本题考查了等边三角形的性质,平行线的性质,熟练掌握这些知识点是解题的关键.6.(4分)如图,AB是⊙O的直径,C,D是⊙O上两点,BA平分∠CBD,若∠AOD=50°,则∠A的度数为()A.65°B.55°C.50°D.75°【分析】先利用圆周角定理可得:∠ABD=25°,然后利用平角定义得∠ABC=25°,根据圆周角定理得∠C=90°,再根据三角形内角和定理进行计算即可解答.【解答】解:∵∠AOD=50°,∴∠ABD=∠AOD=25°,∵BA平分∠CBD,∴∠ABC=∠ABD=25°,∵AB是⊙O的直径,∴∠C=90°,∴∠A=180°﹣90°﹣25°=65°.故选:A.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理是解题的关键.7.(4分)关于x的一元二次方程2x2﹣3x+k=0有实数根,则实数k的取值范围是()A.B.C.D.【分析】根据一元二次方程根的判别式即可解决问题.【解答】解:因为关于x的一元二次方程2x2﹣3x+k=0有实数根,所以Δ=(﹣3)2﹣4×2×k≥0,解得k≤.故选:B.【点评】本题主要考查了根的判别式,熟知一元二次方程根的判别式是解题的关键.8.(4分)我国古代《四元玉鉴》中记载“二果问价”问题,其内容大致如下:用九百九十九文钱,可买甜果苦果共一千个,若…,…,试问买甜果苦果各几个?若设买甜果x个,买苦果y个,可列出符合题意的二元一次方程组,根据已有信息,题中用“…,…”表示的缺失的条件应为()A.甜果七个用四文钱,苦果九个用十一文钱B.甜果十一个用九文钱,苦果四个用七文钱C.甜果四个用七文钱,苦果十一个用九文钱D.甜果九个用十一文钱,苦果七个用四文钱【分析】根据列出的二元一次方程组可得甜果苦果买一千,甜果九个用十一文钱,苦果七个用四文钱,【解答】解:根据列出的二元一次方程组,可得缺失的条件应为:甜果九个用十一文钱,苦果七个用四文钱,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,根据方程组找出等量关系.9.(4分)如图,Rt△ABC中,∠ABC=90°,分别以顶点A,C为圆心,大于的长为半径画弧,两弧分别相交于点M和点N,作直线MN分别与BC,AC交于点E和点F;以点A为圆心,任意长为半径画弧,分别交AB,AC于点H和点G,再分别以点H,点G为圆心,大于HG的长为半径画弧,两弧交于点P,作射线AP,若射线AP恰好经过点E,则下列四个结论:①∠C=30°;②AP垂直平分线段BF;③CE=2BE;④.其中,正确结论的个数有()A.1个B.2个C.3个D.4个【分析】首先证明∠C=∠EAC=∠BAE=30°,推出AC=2AB,AE=2BE,可得①②③④正确.【解答】解:由作图可知MN垂直平分线段AC,∴EA=EC,∴∠EAC=∠C,由作图可知AE平分∠BAC,∴∠BAE=∠CAE,∵∠ABC=90°,∴∠C=∠CAE=∠BAE=30°,故①正确,∴AC=2AB,∵AF=FC,∴AB=AF,∴AP垂直平分线段BF,故②正确,∵AE=2BE,EA=EC,∴EC=2BE,故③正确,=S△BCF,∴S△BEF∵AF=FC,=S△ABC,∴S△BFC=S△ABC,故④正确.∴S△BEF故选:D.【点评】本题考查作图﹣复杂作图,角平分线的性质,线段的垂直平分线的性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.10.(4分)两个半径相等的半圆按如图方式放置,半圆O ′的一个直径端点与半圆O 的圆心重合,若半圆的半径为2,则阴影部分的面积是()A .B .C .D .【分析】连接OA ,AO ′,作AB ⊥OO ′于点B ,得三角形AOO ′是等边三角形,求出AB =,S 弓形AO ′=S 扇形AOO ′﹣S △AOO ′=﹣,再根据S 阴影=S 弓形AO ′+S 扇形AO ′O ,即可得出答案.【解答】解:如图,连接OA ,AO ′,作AB ⊥OO ′于点B ,∵OA =OO ′=AO ′=2,∴三角形AOO ′是等边三角形,∴∠AOO ′=60°,OB =OO ′=1,∴AB ==,∴S 弓形AO ′=S 扇形AOO ′﹣S △AOO ′=﹣2××=﹣,∴S 阴影=S 弓形AO ′+S 扇形AO ′O=﹣+=﹣.故选:A.【点评】本题考查了扇形的面积公式的运用、三角形的面积公式的运用,熟练掌握扇形的面积公式是关键.11.(4分)如图所示是二次函数y=ax2+bx+c(a≠0)的部分图象,该函数图象的对称轴是直线x=1,图象与y轴交点的纵坐标是2.则下列结论:①2a+b=0;②方程ax2+bx+c=0一定有一个根在﹣2和﹣1之间;③方程ax2+bx+c﹣=0一定有两个不相等的实数根;④b﹣a<2.其中,正确结论的个数有()A.1个B.2个C.3个D.4个【分析】根据抛物线与坐标轴的交点情况、二次函数与方程的关系、二次函数的性质判断即可.【解答】解:∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故①正确;∵抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴的一个交点在2,3之间,∴与x轴的另一个交点在﹣1,0之间,∴方程ax2+bx+c=0一定有一个根在﹣1和0之间,故②错误;∵抛物线y=ax2+bx+c与直线y=有两个交点,∴方程ax2+bx+c﹣=0一定有两个不相等的实数根,故③正确;∵抛物线与x轴的另一个交点在﹣1,0之间,∴a﹣b+c<0,∵图象与y轴交点的纵坐标是2,∴c=2,∴a﹣b+2<0,∴b﹣a>2.故④错误.故选:B.【点评】本题考查的是图象法求一元二次方程的近似值,抛物线与x轴的交点、二次函数图象与系数的关系以及二次函数与方程的关系,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.12.(4分)如图,菱形ABCD中,∠B=60°,点E是AB边上的点,AE=4,BE=8,点F是BC上的一点,△EGF是以点G为直角顶点,∠EFG为30°角的直角三角形,连结AG.当点F在直线BC上运动时,线段AG的最小值是()A.2B.C.D.4【分析】E作EM⊥BC,则点E、M、F、G四点共圆,从而得到AF=MH,因为AG≥GF,所以求出MH的值即可得解.【解答】解:如图,过E作EM⊥BC于点M,作MH⊥AB于点H,作AF⊥GM于点F,∵∠EMF+∠EGF=180°,∴点E、M、F、G四点共圆,∴∠EMG=∠EFG=30°,∵∠B=60°,∴∠BEM=30°=∠EMG,∴MG∥AB,∴四边形MHAF是矩形,∴MH=AF,∵BE=8,∴EM=BE•cos30°=4,∴MH=EM=2=AF,∴AG≥AF=2,∴AG最小值是2.故选:C.【点评】本题主要考查了菱形的性质、解直角三角形、垂线段最短、圆内接四边形对角互补等知识,熟练掌握相关知识点和添加合适的辅助线是解题关键.二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分)13.(4分)单项式﹣3ab2的次数是3.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式﹣3ab2中,a的指数是1,b的指数是2,∴此单项式的次数为:1+2=3.故答案为:3.【点评】本题考查的是单项式次数的定义,即一个单项式中所有字母的指数的和叫做单项式的次数.14.(4分)某学校在4月23日世界读书日举行“书香校园,全员阅读”活动.小明和小颖去学校图书室借阅书籍,小明准备从《西游记》、《骆驼祥子》、《水浒传》中随机选择一本,小颖准备从《西游记》、《骆驼祥子》、《朝花夕拾》中随机选择一本,小明和小颖恰好选中书名相同的书的概率是.【分析】列表可得出所有等可能的结果数以及小明和小颖恰好选中书名相同的书的结果数,再利用概率公式可得出答案.【解答】解:将《西游记》、《骆驼祥子》、《水浒传》、《朝花夕拾》分别记为A,B,C,D,列表如下:A B DA(A,A)(A,B)(A,D)B(B,A)(B,B)(B,D)C(C,A)(C,B)(C,D)共有9种等可能的结果,其中小明和小颖恰好选中书名相同的书的结果有2种,∴小明和小颖恰好选中书名相同的书的概率为.故答案为:.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.15.(4分)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度.他们在河岸一侧的瞭望台上放飞一只无人机.如图,无人机在河上方距水面高60米的点P处测得瞭望台正对岸A处的俯角为50°,测得瞭望台顶端C处的俯角为63.6°,已知瞭望台BC高12米(图中点A,B,C,P在同一平面内).那么大汶河此河段的宽AB为74米.(参考数据:sin40°≈,sin63.6°≈,tan50°≈,tan63.6°≈2)【分析】根据题干条件,要求AB,求出AE和BE即可,分别在两个直角三角形中去求即可.【解答】解:由题知∠NPC=∠PCF=63.6°,∠MPA=∠BAP=50°,BC=EF=12m,PE=60m,∴PF=PE﹣EF=48m,在Rt△PFC,tan63.6°==2,∴CF=24m,∴BE=24m,在Rt△APF中,tan50°==,∴AE=50m,∴AB=AE+BE=74m.故答案为:74.【点评】本题主要考查解直角三角形的应用—仰角、俯角问题,熟练掌握解直角三角形是解题关键.16.(4分)如图,小明的父亲想用长为60米的栅栏,再借助房屋的外墙围成一个矩形的菜园.已知房屋外墙长40米,则可围成的菜园的最大面积是450平方米.【分析】依据题意,设垂直于墙的边长为x米,则平行于墙的边长为(60﹣2x)米,又墙长为40米,从而可得0<60﹣2x≤40,故10≤x<30,又菜园的面积=x(60﹣2x)=﹣2x2+60x=﹣2(x﹣15)2+450,进而结合二次函数的性质即可判断得解.【解答】解:由题意,设垂直于墙的边长为x米,则平行于墙的边长为(60﹣2x)米,又墙长为40米,∴0<60﹣2x≤40.∴10≤x<30.又菜园的面积=x(60﹣2x)=﹣2x2+60x=﹣2(x﹣15)2+450,∴当x=15时,可围成的菜园的最大面积是450,即垂直于墙的边长为15米时,可围成的菜园的最大面积是450平方米.故答案为:450.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.17.(4分)如图,AB是⊙O的直径,AH是⊙O的切线,点C为⊙O上任意一点,点D为的中点,连结BD交AC于点E,延长BD与AH相交于点F.若DF=1,,则AE的长为.【分析】先证∠DAF=∠ABD,从而求出AF=,再证△ADE≌△ADF(ASA)即可得解.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵AH是⊙O的切线,∴∠BAF=90°,∴∠DAF=∠ABD=90°﹣∠DAB,∴△DAF∽△DBA,∴==tan B=,∵DF=1,∴AD=2,∴AF==,∵点D为的中点,∴,∴∠ABD=∠DAC=∠DAF,∵∠ADE=∠ADF=90°,∴90°﹣∠DAE=90°﹣∠DAF,即∠AED=∠AFD,∴AE=AF=.故答案为:.【点评】本题主要考查相似三角形的判定和性质、切线的性质、圆周角定理等知识,熟练掌握相关知识是解题关键.18.(4分)如图所示,是用图形“〇”和“●”按一定规律摆成的“小屋子”.按照此规律继续摆下去,第12个“小屋子”中图形“〇”个数是图形“●”个数的3倍.【分析】根据所给图形,依次求出“〇”和“●”的个数,发现规律即可解决问题.【解答】解:由所给图形可知,第1个“小屋子”中图形“〇”的个数为:1=1,“●”的个数为:4=1×2+2;第2个“小屋子”中图形“〇”的个数为:3=1+2,“●”的个数为:6=2×2+2;第3个“小屋子”中图形“〇”的个数为:6=1+2+3,“●”的个数为:8=3×2+2;第4个“小屋子”中图形“〇”的个数为:10=1+2+3+4,“●”的个数为:10=4×2+2;…,所以第n个“小屋子”中图形“〇”的个数为:1+2+3+…+n=,“●”的个数为:2n+2;由题知,,解得n1=﹣1,n2=12,又因为n为正整数,所以n=12,即第12个“小屋子”中图形“〇”个数是图形“●”个数的3倍.故答案为:12.【点评】本题主要考查了图形变化的规律,能根据所给图形发现“〇”和“●”的个数变化规律是解题的关键.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)计算:;(2)化简:.【分析】(1)先算特殊角的三角函数值,负整数指数幂,二次根式的化简,再算加减即可;(2)先算括号里的运算,把能分解的因式进行分解,除法转为乘法,最后约分即可.【解答】解:(1);==7;(2)===.【点评】本题主要考查分式的混合运算,实数的运算,解答的关键是对相应的运算法则的掌握.20.(11分)某超市打算购进一批苹果.现从甲、乙两个供应商供应的苹果中各随机抽取10个,测得它们的直径(单位:mm ),并制作统计图如下:根据以上信息,解答下列问题:(1)统计量供应商平均数中位数众数甲8080b 乙m a 76则m =80,a =79.5,b =83.(2)苹果直径的方差越小,苹果的大小越整齐,据此判断,甲供应商供应的苹果大小更为整齐.(填“甲”或“乙”)(3)超市规定直径82mm (含82mm )以上的苹果为大果.超市打算购进甲供应商的苹果2000个,其中,大果约有多少个?【分析】(1)分别根据算术平均数,中位数和众数的定义解答即可;(2)根据方差的意义解答即可;(3)利用样本估计总体,即用2000乘样本中直径82mm (含82mm )以上所占比例即可.【解答】解:(1)由题意得:m =(75+76×3+79+80+81+83+86+88)÷10=80;把乙的10个苹果的直径从小到大排列,排在中间的两个数分别是79,80,故中位数a ==79.5;甲10个苹果的直径中,83出现的次数最多,故众数b =83,故答案为:80,79.5,83;(2)甲的方差为:[(76﹣80)2+(77﹣80)2+(78﹣80)2+(79﹣80)2+2×(80﹣80)2+(81﹣80)2+3×(83﹣80)2]=5.8;乙的方差为[(75﹣80)2+3×(76﹣80)2+(79﹣80)2+(80﹣80)2+(81﹣80)2+(83﹣80)2+(86﹣80)2+(88﹣80)2]=18.4,因为5.8<18.4,所以甲供应商供应的苹果大小更为整齐.故答案为:甲;(3)答:大果约有600个.【点评】本题考查了平均数、中位数、众数、方差以及用样本估计总体,掌握相关统计量的计算方法是解答本题的关键.21.(9分)直线y1=kx+b(k≠0)与反比例函数的图象相交于点A(﹣2,m),B(n,﹣1),与y 轴交于点C.(1)求直线y1的表达式;(2)若y1>y2,请直接写出满足条件的x的取值范围;(3)过C点作x轴的平行线交反比例函数的图象于点D,求△ACD的面积.【分析】(1)分别将点A(﹣2,m)、点B(n,﹣1)代入中,求出m、n的值,再分别代入y1=kx+b中,即可得出答案;(2)数形结合即可得出答案;(3)把y=3代入中,求出点D的坐标,再根据三角形的面积公式即可求出答案.【解答】解:(1)分别将点A(﹣2,m)、点B(n,﹣1)代入中,即﹣2m=﹣8,﹣n=﹣8,解得:m=4,n=8,∴A点坐标为(﹣2,4),B点坐标为(8,﹣1),把A点坐标(﹣2,4),B点坐标(8,﹣1)分别代入y1=kx+b,即∴一次函数表达式为.(2)由图象可知,当y1>y2时,x<﹣2或0<x<8.(3)把y=3时代入中,得,∴D点坐标为,,∴.【点评】本题主要考查反比例函数与一次函数的交点,待定系数法求解析式及数形结合思想是解题的关键.22.(10分)随着快递行业的快速发展,全国各地的农产品有了更广阔的销售空间,某农产品加工企业有甲、乙两个组共35名工人.甲组每天加工3000件农产品,乙组每天加工2700件农产品,已知乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的1.2倍,求甲、乙两组各有多少名工人?【分析】设甲组有x名工人,则乙组有(35﹣x)名工人,根据乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的1.2倍,可列出关于x的分式方程,解之经检验后,可得出x的值(即甲组的人数),再将其代入(35﹣x)中,即可求出乙组的人数.【解答】解:设甲组有x名工人,则乙组有(35﹣x)名工人,根据题意得:=×1.2,解答:x=20,经检验,x=20是所列方程的解,且符合题意,∴35﹣x=35﹣20=15.答:甲组有20名工人,乙组有15名工人.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(12分)综合与实践为了研究折纸过程蕴含的数学知识,某校九年级数学兴趣小组的同学进行了数学折纸探究活动.【探究发现】(1)同学们对一张矩形纸片进行折叠,如图1,把矩形纸片ABCD翻折,使矩形顶点B的对应点G恰好落在矩形的一边CD上,折痕为EF,将纸片展平,连结BG.EF与BG相交于点H.同学们发现图形中四条线段成比例,即,请你判断同学们的发现是否正确,并说明理由.【拓展延伸】(2)同学们对老师给出的一张平行四边形纸片进行研究,如图2,BD是平行四边形纸片ABCD的一条对角线,同学们将该平行四边形纸片翻折,使点A的对应点G,点C的对应点H都落在对角线BD上,折痕分别是BE和DF.将纸片展平,连结EG,FH,FG.同学们探究后发现,若FG∥CD,那么点G 恰好是对角线BD的一个“黄金分割点”,即BG2=BD•GD.请你判断同学们的发现是否正确,并说明理由.【分析】(1)作EM⊥BC于点M,证△EMF∽△BCG即可得证;(2)利用平行线分线段比例,然后进行等线段转化即可得证.【解答】解:(1)正确,理由如下,作EM⊥BC于点M,∵EF⊥BG,∴∠BHF=90°,∴∠FBH+∠BFH=90°.∵∠EMF=90°,∴∠MEF+∠BFH=90°∴∠FBH=∠MEF,又∵∠EMF=∠C=90°,∴△EMF∽△BCG..∵ABCD是矩形,EM⊥BC,∴四边形ABME是矩形.∴AB=EM.∴.(2)同学们的发现说法正确,理由如下,∵CD∥FG,∴,∠CDF=∠DFG,由折叠知∠CDF=∠BDF,∴∠DFG=∠BDF.∴GD=GF.∴,由平行四边形及折叠知AB=BG,AB=CD,∴,∴BG2=BD•GD即点G为BD的一个黄金分割点.【点评】本题主要考查了矩形的性质、平行四边形的性质、相似三角形的判定和性质、折叠的性质等知识,掌握相关知识是解题的关键.24.(13分)如图1,在等腰Rt△ABC中,∠ABC=90°,AB=CB,点D,E分别在AB,CB上,DB=EB,连结AE,CD,取AE中点F,连结BF.(1)求证:CD=2BF,CD⊥BF;(2)将△DBE绕点B顺时针旋转到图2的位置.①请直接写出BF与CD的位置关系:BF⊥CD;②求证:CD=2BF.【分析】(1)证明△ABE≌△CBD(SAS)得出∠FAB=∠BCD,再根据直角三角形斜边上得中线等于斜边的一半得出,再利用等角转化即可求证;(2)①这一问主要是猜想,还需要利用第二问的思路去证明,先证△AGB≌△BDC得到∠ABG=∠BCD =∠BAN,再利用8字型得到∠ABC=∠ANC=90°,即可得证;②利用倍长中线证△AGF≌△EBF (SAS),再证△AGB≌△BDC(SAS),即可得证.【解答】(1)证明:在△ABE和△CBD中,∵AB=BC,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD(SAS),∴AE=CD,∠FAB=∠BCD.∵F是Rt△ABE斜边AE的中点,∴AE=2BF,∴CD=2BF,∵,∴∠FAB=∠FBA.∴∠FBA=∠BCD,∵∠FBA+∠FBC=90°,∴∠FBC+∠BCD=90°.∴BF⊥CD;(2)①BF⊥CD;理由如下:延长BF到点G,使FG=BF,连结AG.延长BE到M,使BE=BM,连接AM并延长交CD于点N.证△AGB≌△BDC(具体证法过程跟②一样).∴∠ABG=∠BCD,∵F是AE中点,B是EM中点,∴BF是△ABM中位线,∴BF∥AN,∴∠ABG=∠BAN=∠BCD,∴∠ABC=∠ANC=90°,∴AN⊥CD,∵BF∥AN,∴BF⊥CD.故答案为:BF⊥CD;②证明:延长BF到点G,使FG=BF,连结AG.∵AF=EF,FG=BF,∠AFG=∠EFB,∴△AGF≌△EBF(SAS),∴∠FAG=∠FEB,AG=BE.∴AG∥BE.∴∠GAB+∠ABE=180°,∵∠ABC=∠EBD=90°,∴∠ABE+∠DBC=180°,∴∠GAB=∠DBC.∵BE=BD,∴AG=BD.在△AGB和△BDC中,∵AG=BD,∠GAB=∠DBC,AB=CB,∴△AGB≌△BDC(SAS),∴CD=BG.∵BG=2BF,∴CD=2BF,【点评】本题主要考查了全等三角形的判定和性质、直角三角形斜边上的中线等于斜边的一半、平行线的判定和性质等知识,熟练掌握相关知识和添加合适的辅助线是解题关键.25.(13分)如图,抛物线的图象经过点D(1,﹣1),与x轴交于点A,点B.(1)求抛物线C1的表达式;(2)将抛物线C1向右平移1个单位,再向上平移3个单位得到抛物线C2,求抛物线C2的表达式,并判断点D是否在抛物线C2上;(3)在x轴上方的抛物线C2上,是否存在点P,使△PBD是等腰直角三角形.若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)将点D的坐标代入抛物线表达式,即可求解;(2)由题意得:C2:y=(x﹣1)2+(x﹣1)﹣4+3=(x﹣)2﹣,当x=1时,y=(x﹣)2﹣=(1﹣)2﹣=﹣1,即可求解;(3)当∠BAP为直角时,证明△DGB≌△EHD(AAS),求出点E(2,2),当x=2时,y=(x﹣)2﹣=(2﹣)2﹣=2,即点E在抛物线C2上,即点P即为点E(2,2);当∠DBP为直角时,同理可解;当∠HPD为直角时,如图3,同理可得点E(0,1),即可求解.【解答】解:(1)将点D的坐标代入抛物线表达式得:﹣1=a+﹣4,解得:a=,则抛物线的表达式为:y=x2+x﹣4;(2)由题意得:C2:y=(x﹣1)2+(x﹣1)﹣4+3=(x﹣)2﹣,当x=1时,y=(x﹣)2﹣=(1﹣)2﹣=﹣1,故点D在抛物线C2上;(3)存在,理由:当∠BAP为直角时,如图1,过点D作DE⊥BD且DE=BE,则△BDE为等腰直角三角形,∵∠BDG+∠EDH=90°,∠EDH+∠DEH=90°,∴∠BDG=∠DEH,∵∠DGB=∠EHD=90°,∴△DGB≌△EHD(AAS),则DH=BG=1,EH=GD=1+2=3,则点E(2,2),当x=2时,y=(x﹣)2﹣=(2﹣)2﹣=2,即点E在抛物线C2上,即点P即为点E(2,2);当∠DBP为直角时,如图2,同理可得:△BGE≌△DHB(AAS),则DH=3=BG,BH=1=GE,则点E(﹣1,3),当x=﹣1时,y=(x﹣)2﹣=(﹣1﹣)2﹣=3,即点E在抛物线C2上,即点P即为点E(﹣1,3);当∠HPD为直角时,如图3,设点E(x,y),同理可得:△EHB≌△DGE(AAS),则EH=x+2=GD=y+1且BH=y=GE=1﹣x,解得:x=0且y=1,即点E(0,1),当x=0时,y=(x﹣)2﹣=(0﹣)2﹣≠1,即点E不在抛物线C2上;综上,点P的坐标为:(2,2)或(﹣1,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省中考数学试题第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算中,正确的是A .235a a a +=B .3412a a a ⋅=C .236a a a =÷ D .43a a a -=2.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线 剪去∠C ,则∠1+∠2等于A .315° B.270° C .180° D.135°3.如图,点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A .(0,0)B .(12,-12) C .(22,-22) D .(-12,12)4.小华五次跳远的成绩如下(单位:m ):3.9,4.1, 3.9, 3.8, 4.2.关于这组数据, 下列说法错误的是A .极差是0.4B .众数是3.9C .中位数是3.98D .平均数是3.98 5.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是 A .2.5 B .3.5 C .4.5 D .5.56.已知代数式2346x x -+的值为9,则2463x x -+的值为A .18B .12C .9D .77.一个正方体的表面展开图如图所示,每一个面上都写有一个整数, 并且相对两个面上所写的两个整数之和都相等,那么A .a =1,b =5B .a =5,b =1C .a =11,b =5D .a =5,b =118.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A组:0.5h t <; B组:0.5h 1h t <≤;C组:1h 1.5h t <≤;D组: 1.5h t ≥.根据上述信息,你认为本次调查数据的中位数落在 A .B 组 B .C 组 C .D 组 D .A 组9.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格第2题ABOM第6题图第3题第9题图OA B C D 组别人数第10题图的边长为1 cm ,则这个圆锥的底面半径为 A .22cm B .2cm C .22cm D .21cm 10.如图,两个高度相等且底面直径之比为1∶2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙 杯,则乙杯中的液面与图中点P 的距离是 A .43cm B .6cm C .8cm D .10cm11.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交12.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米 B .0.5米 C .0.8米 D .1米 13.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --,B .(32)a b --,C .(32)a b ++,D .(23)a b ++,14.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)15.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .16如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是第12题图7 O -2 -4 -3 -5 yC -1 6A 2 1 3 4 5 1 2B x 3 4 5 第14题图Oy y Oy xOy xOB C A 第6题图(-1,1y (2,2)2y xyOO3 2 1 -O ----2 - 1 2 3 x y 图 3 2 1 -O ----2 - 1 2 3 x y 图P A B CA 'B 'C ' P 'A .x <-1B .—1<x <2C .x >2D . x <-1或x >217.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子 A .8颗 B .6颗 C .4颗 D .2颗18.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( ) A .12B .13C .14D .1619.如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是 A .(2,0) B .(4,0) C .(-22,0) D .(3,0)20.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A .(3035030)-,B .(3030350)-,C .(30330),D .(30303),二、填空题:1.如图,在△ABC 中,AB =2,AC =2,以A 为圆心,1为半径的圆与边BC 相切,则BAC ∠的度数是 .2.在平面直角坐标系中,点P (-2,2x +1)所在的象限是 .3.函数y =21x +中,自变量x 的取值范围是 . 4.已知二次函数c bx ax y ++=21(0≠a )与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图所示),则能使21y y >成立的x 的取值范围是 .5.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .6如图,AB 为O ⊙的直径,CD 为O ⊙的弦,42ACD ∠=°,则BAD ∠= °.7.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .ABC第1题图第4题图第8题1 23 4 -1 1 2 xyA第19题图ODAC 第6题图Oxy第20题图 A8.将边长分别为2、3、5的三个正方形按如图方式排列,则图中阴影部分的面积为 .9.在实数的原有运算法则中,我们补充新运算法则 “ * ” 如下:当a ≥b 时,2*a b b =;当a < b 时,*a b a =.则当x = 2时,(1*)(3*)x x x -g =__________.(“ · ” 和 “ – ”仍为实数运算中的乘号和减号)10.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球. 11.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.12.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子. 13.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .15.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________.16.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法中正确的是 .(填写序号)…第12题图A BCFE 'A 第11题图('B ) D A FEO第13题图C ' B '第13题图B A 6cm 3cm1cm 第14题第15题图①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.三、解答题: 1.(本题满分7分)(1)化简求值:22212221x x x x x x --+--+÷x ,其中x =23.(2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤把解集在数轴上表示出来(3)先化简,再求值:⎝⎛⎭⎫1+1x -2÷ x 2-2x +1 x 2-4,其中x =-5.2.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:3.一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题: (1)求这三根细木棒能构成三角形的概率; (2)求这三根细木棒能构成直角三角形的概率; (3)求这三根细木棒能构成等腰三角形的概率.ABC4小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?5.在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)6.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金. 7.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.37°C GEDB AF第5题图红 黄 蓝 红 白 蓝试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.8.如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;9.已知:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM的延长线交⊙O 于点E ,且EM >MC .连结DE ,DE (1) 求证:AM MB EM MC ⋅=⋅; (2) 求EM 的长;(3)求sin ∠EOB 的值.10.如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =;(2)当tanADE ∠=31时,求EF 的长.BFD BA EC11在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ∆=.(1)求点A 与点B 的坐标; (2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.12.如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由. (4)连接PF ,在上述运动过程中,五边形PFCDEF第24题图。