北京第十八中学七年级上册数学期末试卷及答案-百度文库
北京市人教版七年级上册数学期末试卷及答案-百度文库
北京市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.4 =( ) A .1B .2C .3D .43.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1-C . 2.5-D .35.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=6.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或5 7.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+68.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x+= C .10040062x x += D .1004006x 2x+= 9.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6 D .3(x +1)﹣2×2x ﹣1=610.当x=3,y=2时,代数式23x y-的值是( )A .43B .2C .0D .311.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.已知方程22x a ax +=+的解为3x =,则a 的值为__________.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.分解因式: 22xyxy +=_ ___________18.如图,在数轴上点A ,B 表示的数分别是12,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.20.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 21.钟表显示10点30分时,时针与分针的夹角为________. 22.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.23.单项式()26a bc -的系数为______,次数为______.24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.26.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.27.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数30.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.31.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
北京市七年级上册期末数学试卷及答案(13)
北京市七年级上册期末数学试卷(13)一、选择题(本题共30分,每小题3分)1.(3分)的绝对值是()A.B.C.4 D.﹣42.(3分)亚运城的建筑面积约为358000平方米,将358000用科学记数法表示应为()A.35.8×104B.3.58×105C.0.358×106D.3.58×1063.(3分)如果单项式与2x4y n+3是同类项,那么m、n的值分别是()A.B.C.D.4.(3分)下列各式中,去括号正确的是()A.x+2(y﹣1)=x+2y﹣1 B.x﹣2(y﹣1)=x+2y+2C.x﹣2(y﹣1)=x﹣2y﹣2 D.x﹣2(y﹣1)=x﹣2y+25.(3分)M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中,正确的是()A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向6.(3分)如图,直角三角尺AOB的直角顶点O在直线CD上,若∠AOC=35°,则∠BOD的度数为()A.65°B.55°C.45°D.35°7.(3分)如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()A.5 B.4 C.3 D.28.(3分)一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,根据题意,下面所列的方程正确的是()A.600×0.8﹣x=20 B.600×8﹣x=20C.600×0.8=x﹣20 D.600×8=x﹣209.(3分)有理数a,b在数轴上的位置如图所示,则下列结论中,错误的是()A.a<0<b B.|a|>|b| C.﹣a>b D.b﹣a<a+b 10.(3分)如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.二、填空题(本题共16分,每小题2分)11.(2分)的相反数是.12.(2分)若|x+2|+(y﹣3)2=0,则xy=.13.(2分)关于x方程2x+5m﹣6=0的解是x=﹣2,那么m的值是.14.(2分)若一个角的补角比它的余角的4倍少15°,则这个角的度数为.15.(2分)如图,点B在射线AE上,∠D+∠ABC=180°,若∠CBE=80°,则∠D=°.16.(2分)如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为40cm,若AP=PB,则这条绳子的原长为cm.17.(2分)在数学活动课上,李老师要求同学们在边长为1的正方形格纸中,画出一个“风车”图案.小红同学的做法是:如图甲所示,把一个三角形按顺时针方向旋转90°,连续转三次,形成四个叶片的“风车”图案;类似地,把一个梯形按顺时针方向旋转90°,连续转三次,形成图乙所示的四个叶片的“风车”图案.请你仿照小红同学的做法,在备用图中,画一个新的四个叶片的“风车”图案,并使得“风车”的四个叶片的面积与图乙的四个叶片的面积相同.18.(2分)观察按下列顺序排列的等式:9×1+4=13,9×2+5=23,9×3+6=33,9×4+7=43,…猜想:第n个等式(n为正整数)应表示为.三、解答题(本题共16分,每小题4分)19.(4分)计算:﹣17+(﹣6)+23﹣(﹣20)20.(4分)计算:.21.(4分)计算:()×24.22.(4分)计算:﹣32+(﹣1)2010÷(﹣)2﹣3×(0.5﹣)四、解答题(本题共15分,每小题5分)23.(5分)先化简,再求值:3(2a2b﹣ab2)﹣(5a2b﹣4ab2),其中a=2,b=﹣1.24.(5分)解方程:4x+3(2x﹣5)=7﹣x.25.(5分)解方程:.五、按要求作图,并回答问题(本题4分)26.(4分)如图,B为射线OA上一点,①在射线OA的上方,画∠AOC=120°,∠OBD=90°;②画∠AOC的平分线OE,交射线BD于点P.测量点O、P之间的距离(精确到1cm).六、列方程解应用题(本题共9分,第27小题4分,第28小题5分)27.(4分)某校开展了向贫困山区学生捐书的活动,已知七年级、八年级与九年级学生共捐书1680本,其中九年级学生所捐图书数量比七年级学生所捐图书数量的3倍少270本;八年级学生所捐图书数量比七年级学生所捐图书数量的2倍多150本,在这次活动中,七年级学生捐了多少本书?28.(5分)某服装厂接到一批校服的生产加工任务,要求按计划天数加工完成.该厂如果每天加工20套校服,按计划时间交货时,比定货任务少加工100套;如果每天加工23套校服,按计划时间交货时,还能比定货任务多加工20套.这批校服的加工任务是多少套?原计划多少天加工完成?七、解答题(本题共10分,第29小题4分,第30小题6分)29.(4分)如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=40°,求∠DOE的度数;(2)若∠AOC=α,则∠DOE=(用含α代数式表示).30.(6分)如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,原点O恰为线段PQ的中点.北京市七年级上册期末数学试卷答案(13)一、选择题(本题共30分,每小题3分)1.(3分)的绝对值是()A.B.C.4 D.﹣4【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,即可得到答案.【解答】解:的绝对值是,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值是表示某个数与原点的距离.2.(3分)亚运城的建筑面积约为358000平方米,将358000用科学记数法表示应为()A.35.8×104B.3.58×105C.0.358×106D.3.58×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:358000=3.58×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如果单项式与2x4y n+3是同类项,那么m、n的值分别是()A.B.C.D.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,即可得出m、n的值.【解答】解:∵单项式与2x4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选:A.【点评】此题考查了同类项的知识,掌握同类项的两个相同是关键,①所含字母相同,②相同字母的指数相同.4.(3分)下列各式中,去括号正确的是()A.x+2(y﹣1)=x+2y﹣1 B.x﹣2(y﹣1)=x+2y+2C.x﹣2(y﹣1)=x﹣2y﹣2 D.x﹣2(y﹣1)=x﹣2y+2【分析】注意:2(y﹣1)=2y﹣2,即可判断A;根据﹣2(y﹣1)=﹣2y+2,即可判断B、C、D.【解答】解:A、x+2(y﹣1)=x+2y﹣2,故本选项错误;B、x﹣2(y﹣1)=x﹣2y+2,故本选项错误;C、x﹣2(y﹣1)=x﹣2y+2,故本选项错误;D、x﹣2(y﹣1)=x﹣2y+2,故本选项正确;故选:D.【点评】本题考查了去括号法则和乘法的分配律等知识点,注意:①括号前是“+”号,把括号和它前面的“+”号去掉,括号内的各项都不变,括号前是“﹣”号,把括号和它前面的“﹣”号去掉,把括号内的各项都变号.②m(a+b)=ma+mb,不等于ma+b.5.(3分)M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中,正确的是()A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向【分析】用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.【解答】解:船A在M的南偏西90°﹣30°=60°方向,故A、B选项错误;船B在M的北偏东90°﹣50°=40°方向,故C正确,D错误;故选:C.【点评】此题主要考查了方向角,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.6.(3分)如图,直角三角尺AOB的直角顶点O在直线CD上,若∠AOC=35°,则∠BOD的度数为()A.65°B.55°C.45°D.35°【分析】根据平角定义,可得∠AOC+∠AOB+∠BOD=180°,而∠AOC=35°,∠AOB=90°,代入易求∠BOD.【解答】解:根据图,可知∠AOC+∠AOB+∠BOD=180°,∵∠AOC=35°,∠AOB=90°,∴∠BOD=180°﹣90°﹣35°=55°,故选:B.【点评】本题考查了余角、补角,解题的关键是能根据图找出角之间的和差关系.7.(3分)如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()A.5 B.4 C.3 D.2【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM=AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选:C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM的长度是解本题的关键.8.(3分)一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,根据题意,下面所列的方程正确的是()A.600×0.8﹣x=20 B.600×8﹣x=20C.600×0.8=x﹣20 D.600×8=x﹣20【分析】要列方程,首先根据题意找出题中存在的等量关系:售价﹣成本价=利润20元.此时再根据列方程就不难了.【解答】解:设上衣的成本价为x元,由已知得上衣的实际售价为600×0.8元,然后根据利润=售价﹣成本价,可列方程:600×0.8﹣x=20故选:A.【点评】此题应重点弄清两点:(1)利润、售价、成本价三者之间的关系;(2)打8折的含义.9.(3分)有理数a,b在数轴上的位置如图所示,则下列结论中,错误的是()A.a<0<b B.|a|>|b| C.﹣a>b D.b﹣a<a+b【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则﹣a>b,b﹣a>b+a.【解答】解:∵a<0<b,且|a|>b,∴﹣a>b,b﹣a>b+a.故选:D.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.10.(3分)如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【分析】根据无盖可知底面M没有对面,再根据图形粗线的位置,可知底面的正方形与侧面的四个正方形从左边数第2个正方形的下边,然后根据选项选择即可.【解答】解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题(本题共16分,每小题2分)11.(2分)的相反数是﹣.【分析】根据相反数的定义作答.【解答】解:的相反数是﹣.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.12.(2分)若|x+2|+(y﹣3)2=0,则xy=﹣6 .【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解:∵|x+2|+(y﹣3)2=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.【点评】本题考查的知识点是:某个数的绝对值与某个数的平方的和为0,那么绝对值里面的代数式为0,平方的底数为0.13.(2分)关于x方程2x+5m﹣6=0的解是x=﹣2,那么m的值是 2 .【分析】根据一元一次方程解的定义可知x=﹣2能是方程左右相等,把x=﹣2代入方程2x+5m﹣6=0解关于m的方程即可.【解答】解:把x=﹣2代入方程2x+5m﹣6=0得:2×(﹣2)+5m﹣6=0,解得:m=2,故答案为:2.【点评】此题主要考查了一元一次方程的解,关键是掌握一元一次方程解的定义:能使方程左右两边相等的未知数的值.14.(2分)若一个角的补角比它的余角的4倍少15°,则这个角的度数为55 .【分析】根据补角和余角的定义,利用这个角的补角的度数=它的余角的度数×4﹣15作为相等关系列方程,解方程即可.【解答】解:设这个角为x,则它的补角为(180°﹣x),余角为(90°﹣x),由题意得:180°﹣x=4(90°﹣x)﹣15,解得x=55°.即这个角为55°.故答案为55.【点评】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.15.(2分)如图,点B在射线AE上,∠D+∠ABC=180°,若∠CBE=80°,则∠D=80 °.【分析】根据邻补角定义可得∠ABC+∠CBE=180°,而∠CBE=80°,易求∠ABC,又知∠D+∠ABC=180°,进而可求∠D.【解答】解:∵∠ABC+∠CBE=180°,∠CBE=80°,∴∠ABC=100°,∵∠D+∠ABC=180°,∴∠D=180°﹣∠ABC=180°﹣100°=80°,故答案是80°.【点评】本题考查了余角、补角,解题的关键是先求出∠ABC.16.(2分)如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为40cm,若AP=PB,则这条绳子的原长为60或120 cm.【分析】设AP=xcm,则BP=2xcm,分为两种情况:①当含有线段AP的绳子最长时,得出方程x+x=40,②当含有线段BP的绳子最长时,得出方程2x+2x=40,求出每个方程的解,代入2(x+2x)求出即可.【解答】解:设AP=xcm,则BP=2xcm,①当含有线段AP的绳子最长时,x+x=40,解得:x=20,即绳子的原长是2(x+2x)=6x=120(cm);②当含有线段BP的绳子最长时,2x+2x=40,解得:x=10,即绳子的原长是2(x+2x)=6x=60(cm);故答案为:60或120.【点评】本题考查了两点间的距离的应用,解此题的关键是能根据题意求出符合条件的两个解.17.(2分)在数学活动课上,李老师要求同学们在边长为1的正方形格纸中,画出一个“风车”图案.小红同学的做法是:如图甲所示,把一个三角形按顺时针方向旋转90°,连续转三次,形成四个叶片的“风车”图案;类似地,把一个梯形按顺时针方向旋转90°,连续转三次,形成图乙所示的四个叶片的“风车”图案.请你仿照小红同学的做法,在备用图中,画一个新的四个叶片的“风车”图案,并使得“风车”的四个叶片的面积与图乙的四个叶片的面积相同.【分析】先求出图乙每个叶片的面积为2;再设计出底2,高2的三角形按顺时针方向旋转90°,连续转三次,形成四个叶片的“风车”图案(答案不唯一).【解答】解:举例如图:(答案不唯一)【点评】考查了利用旋转设计图案,注意四个叶片的面积是2的限制条件.18.(2分)观察按下列顺序排列的等式:9×1+4=13,9×2+5=23,9×3+6=33,9×4+7=43,…猜想:第n个等式(n为正整数)应表示为10n+3 .【分析】根据题意得到每个等式左边是9乘以这个等式的序号数加上比序号数大3的数,等式右边是序号数的10倍与3的和.【解答】解:9×n+(n+3)=10n+3.故答案为10n+3.【点评】本题考查了规律型:数字的变化类:从一组数字的每个数与这个数字的数位之间的关系发现规律;也可从一组数字的前后两个数之间的关系发现规律.三、解答题(本题共16分,每小题4分)19.(4分)计算:﹣17+(﹣6)+23﹣(﹣20)【分析】先把减法变成加法,再写出省略加号的形式,最后按加法法则计算即可.【解答】解:﹣17+(﹣6)+23﹣(﹣20)=﹣17+(﹣6)+23+(+20)=﹣17﹣6+23+20=﹣23+23+20=20.【点评】本题考查了有理数的加减混合运算,主要考查学生的计算能力,注意:运算步骤①先把减法变成加法,②再写出省略加号的形式,③最后按加法法则计算.20.(4分)计算:.【分析】先把2.5化成,同时把除法变成乘法,再算乘法,注意:先确定结果的符号,再确定结果的数字.【解答】解:=﹣×(﹣)×(﹣)=﹣1.【点评】本题考查了有理数的乘除法的应用,计算步骤一般是先把除法变成乘法,再按乘法法则进行计算.21.(4分)计算:()×24.【分析】根据乘法的分配律得到原式=×24+×24﹣×24,再进行约分,然后进行加减运算.【解答】解:原式=×24+×24﹣×24=3+16﹣18=19﹣18=1.【点评】本题考查了有理数的乘法:利用乘法的分配律可简化运算.22.(4分)计算:﹣32+(﹣1)2010÷(﹣)2﹣3×(0.5﹣)【分析】原式第一项表示3平方的相反数,第二项被除数利用﹣1的偶次幂为1计算,除数表示两个﹣的乘积,再利用除以一个数的等于乘以这个数的倒数将除法运算化为乘法运算,最后一项括号中两项通分并利用同分母分数的减法法则计算,利用异号两数相乘的法则计算,合并即可得到结果.【解答】解:原式=﹣9+1÷﹣3×(﹣)=﹣9+1×4﹣3×(﹣)=﹣9+4+=﹣4.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则运算,有时可以利用运算律来简化运算.四、解答题(本题共15分,每小题5分)23.(5分)先化简,再求值:3(2a2b﹣ab2)﹣(5a2b﹣4ab2),其中a=2,b=﹣1.【分析】根据单项式乘多项式的法则展开,再合并同类项,把a、b的值代入求出即可.【解答】解:3(2a2b﹣ab2)﹣(5a2b﹣4ab2)=6a2b﹣3ab2﹣5a2b+4ab2…(2分)=6a2b﹣5a2b﹣3ab2+4ab2…(3分)=a2b+ab2…(5分)当a=2,b=﹣1时,原式=22×(﹣1)+2×(﹣1)2=﹣2.【点评】本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣1时应用括号.24.(5分)解方程:4x+3(2x﹣5)=7﹣x.【分析】先去括号、移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:去括号得:4x+6x﹣15=7﹣x,移项,得:4x+6x+x=7+15,合并同类项,得:11x=22,系数化成1得:x=2.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.(5分)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得,6(3x+4)﹣12=7﹣2x,去括号得,18x+24﹣12=7﹣2x,移项得,18x+2x=7﹣24+12,合并同类项得,20x=﹣5,系数化为1得,x=﹣.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.五、按要求作图,并回答问题(本题4分)26.(4分)如图,B为射线OA上一点,①在射线OA的上方,画∠AOC=120°,∠OBD=90°;②画∠AOC的平分线OE,交射线BD于点P.测量点O、P之间的距离(精确到1cm).【分析】根据题目要求利用量角器画图即可,然后再利用直尺量出OP的长.【解答】解:如图所示:测量可得点O、P之间的距离约为3cm.【点评】此题主要考查了画图,关键是在画图时要细心量准角度.六、列方程解应用题(本题共9分,第27小题4分,第28小题5分)27.(4分)某校开展了向贫困山区学生捐书的活动,已知七年级、八年级与九年级学生共捐书1680本,其中九年级学生所捐图书数量比七年级学生所捐图书数量的3倍少270本;八年级学生所捐图书数量比七年级学生所捐图书数量的2倍多150本,在这次活动中,七年级学生捐了多少本书?【分析】在这次活动中,七年级学生捐了x本书,则八年级学生捐了(2x+150)本,九年级学生捐了(3x﹣270)本,由题意得等量关系:七年级捐书+八年级捐书+九年级捐书=捐书总数,根据等量关系列出方程即可.【解答】解:在这次活动中,七年级学生捐了x本书,则八年级学生捐了(2x+150)本,九年级学生捐了(3x﹣270)本,由题意得:x+(2x+150)+(3x﹣270)=1680,解得:x=300,答:在这次活动中,七年级学生捐了300本书.【点评】此题主要考查了一元一次方程的应用,解决问题的关键是表示出三个年级学生的捐款总数.28.(5分)某服装厂接到一批校服的生产加工任务,要求按计划天数加工完成.该厂如果每天加工20套校服,按计划时间交货时,比定货任务少加工100套;如果每天加工23套校服,按计划时间交货时,还能比定货任务多加工20套.这批校服的加工任务是多少套?原计划多少天加工完成?【分析】可设计划天数或服装套数为未知数,再以另一个量为相等关系列方程求解.【解答】解:设计划天数x天,则20x+100=23x﹣20,解得x=40,则服装有20×40+100=900套;答:这批校服的加工任务是900套,原计划40天加工完成.【点评】此题主要考查了一元一次方程的应用,根据已知条件利用校服定货任务得出等式方程是解题关键.七、解答题(本题共10分,第29小题4分,第30小题6分)29.(4分)如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=40°,求∠DOE的度数;(2)若∠AOC=α,则∠DOE=α(用含α代数式表示).【分析】(1)求出∠BOC=140°,根据OD平分∠BOC得出∠COD=∠BOC,求出∠COD =70°,根据∠DOE=∠COE﹣∠COD求出即可;(2)求出∠BOC=α,根据OD平分∠BOC得出∠COD=∠BOC,求出∠COD,根据∠DOE =∠COE﹣∠COD求出即可.【解答】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∴∠BOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=20°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α.【点评】本题考查了有关角的计算,关键是能求出各个角的度数,题目比较典型,是一道比较好的题目.30.(6分)如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,原点O恰为线段PQ的中点.【分析】(1)根据点C所表示的数,以及BC、AB的长度,即可写出点A、B表示的数;(2)①根据题意画出图形,表示出AP=6t,CQ=3t,再根据线段的中点定义可得AM=3t,根据线段之间的和差关系进而可得到点M表示的数;根据CN=CQ可得CN=t,根据线段的和差关系可得到点N表示的数;②此题有两种情况:当点P在点O的左侧,点Q在点O的右侧时;当P在点O的右侧,点Q在点O的左侧时,分别画出图形进行计算即可.【解答】解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10;(2)①由题意得:AP=6t,CQ=3t,如图1所示:∵M为AP中点,∴AM=AP=3t,∴在数轴上点M表示的数是﹣10+3t,∵点N在CQ上,CN=CQ,∴CN=t,∴在数轴上点N表示的数是6﹣t;②如图2所示:由题意得,AP=6t,CQ=3t,分两种情况:i)当点P在点O的左侧,点Q在点O的右侧时,OP=10﹣6t,OQ=6﹣3t,∵O为PQ的中点,∴OP=OQ,∴10﹣6t=6﹣3t,解得:t=,当t=秒时,O为PQ的中点;ii)当P在点O的右侧,点Q在点O的左侧时,OP=6t﹣10,OQ=3t﹣6,∵O为PQ的中点,∴OP=OQ,∴6t﹣10=3t﹣6,解得:t=,此时AP=8<10,∴t=不合题意舍去,综上所述:当t=秒时,O为PQ的中点.。
北京市七年级上册数学期末试题及答案解答
北京市七年级上册数学期末试题及答案解答一、选择题1.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5-D .32.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠3.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50° B .130° C .50°或 90° D .50°或 130° 4.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)5.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AO C =∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB6.下列各数中,有理数是( ) A 2B .πC .3.14D 377.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米9.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .310.3的倒数是( ) A .3B .3-C .13D .13-11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.212.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1二、填空题13.多项式2x3﹣x2y2﹣1是_____次_____项式.14.单项式22ab-的系数是________.15.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.16.如图甲所示,格边长为cma的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.17.单项式﹣22πa b的系数是_____,次数是_____.18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.19.16的算术平方根是.20.如图,在数轴上点A,B表示的数分别是12,若点B,C到点A的距离相等,则点C所表示的数是___.21.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 22.化简:2x+1﹣(x+1)=_____.23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ,它的第n 个单项式是______.三、解答题25.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A 、B 两点表示的数分别为 , ;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形. ①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图. ②553的点,(图中标出必要线段长) 26.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?27.如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段的长度是点P到直线BC的距离.28.柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?29.如图,已知数轴上点A表示的数为﹣1,点B表示的数为3,点P为数轴上一动点.(1)点A到原点O的距离为个单位长度;点B到原点O的距离为个单位长度;线段AB的长度为个单位长度;(2)若点P到点A、点B的距离相等,则点P表示的数为;(3)数轴上是否存在点P,使得PA+PB的和为6个单位长度?若存在,请求出PA的长;若不存在,请说明理由?(4)点P从点A出发,以每分钟1个单位长度的速度向左运动,同时点Q从点B出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P与点Q重合?30.如图,线段AB8=,点C是线段AB的中点,点D是线段BC的中点.()1求线段AD的长;()2在线段AC上有一点E,1CE BC3=,求AE的长.四、压轴题31.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.32.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.33.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.3.D解析:D 【解析】 【分析】根据题意画出图形,再分别计算即可. 【详解】根据题意画图如下; (1)∵OC ⊥OD , ∴∠COD=90°, ∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°, (2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.4.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.6.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.7.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.8.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.二、填空题13.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.14.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 解析:12- 【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】 解:单项式22ab -的系数是12-, 故答案为:12-. 【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.16.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.17.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】 本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.18.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 20.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.21.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.22.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.(1)112)①详见解析;②详见解析【分析】(1)依据点A到原点的距离为:21-,点A在原点左侧,即可得到点A表示的实数为+,点B在原点右侧,即可得到点A表示的实数12-,依据点B到原点的距离为:12为12+;(2)依据所拼正方形的面积为5,即可得到其边长为5,进而得到分割线的长度;(3)依据(2)中分割线的长度即可得到表示数5以及5﹣3的点.【详解】解:(1)由图可得,点A到原点的距离为:21-,点A在原点左侧,∴点A表示的实数为12-,由图可得,点B到原点的距离为:12+,点B在原点右侧,∴点B表示的实数为12+,故答案为:12+;-,12(2)如图所示:(3)表示数5以及5﹣3的点如图所示:【点睛】本题主要考查了实数与数轴,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.26.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里【解析】【分析】(1)根据计价规则,列式计算,即可得到答案,(2)根据计价规则,列式计算,即可得到答案,(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x公里,根据计价规则,列出关于x的一元一次方程,解之即可.【详解】解:(1)根据题意得:2.5×2+0.45×8=7.6<10,即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,2.3×5+0.3×20+0.3×(20﹣10)=11.5+6+3=20.5(元),即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,故答案为:10,20.5,(2)20×2.4+40×0.35+(20﹣10)×0.3=48+14+3=65(元),答:需付车费65元,(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,即行驶的里程大于10公里,设行驶的里程为x公里,根据题意得:2.3x+0.3×30+0.3(x﹣10)=39.8,解得:x=13,答:行驶的里程为13公里.【点睛】本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.27.(1)详见解析;(2)详见解析;(3)PH.【解析】【分析】利用尺规作出过一点作已知直线的垂线即可解决问题.【详解】解:(1)过点P画BC的垂线,垂足为H,如图所示;(2)过点P画AB的垂线,交BC于Q,如图所示;(3)线段PH的长度是点P到直线BC的距离.故答案为PH.【点睛】本题考查作图-基本作图,点到直线的距离等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.28.(1)需要甲车6辆,乙车8辆;(2)选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.【解析】【分析】(1)设需要甲车x 辆,乙车y 辆,根据运送94吨原材料需运费6400元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设需要甲车a 辆,乙车b 辆,丙车(14-a-b )辆,根据需要运送94吨原材料,即可得出关于a 、b 的二元一次方程,结合a 、b 、c 均为非负整数即可得出运送方案,再利用总运费=400×甲车所需辆数+500×乙车所需辆数+600×丙车所需辆数,即可求出总运费.【详解】解:(1)设需要甲车x 辆,乙车y 辆,根据题意得:5x+8y=94400x+500y=6400⎧⎨⎩, 解得:x=6y=8⎧⎨⎩. 答:需要甲车6辆,乙车8辆.(2)设需要甲车a 辆,乙车b 辆,丙车(14﹣a ﹣b )辆,根据题意得:5a+8b+10(140﹣a ﹣b )=94,整理得:5a+2b=46,∴a=46-2b 5, 当b=3时,a=8,c=3;当b=8时,a=6,c=0.第一种:400×8+500×3+600×3=6500(元);第二种:400×6+500×8=6400(元).答:选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.29.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】【分析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.30.(1)6,(2)83. 【解析】【分析】 ()1根据AD AC CD =+,只要求出AC 、CD 即可解决问题;()2根据AE AC EC =-,只要求出CE 即可解决问题;。
北京市人教版(七年级)初一上册数学期末测试题及答案
北京市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .32.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2C .1,4D .1,34.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃5.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 8.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1 B .1﹣a =1﹣b C .3a =3b D .2﹣3a =3b ﹣2 9.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60 C .300×0.2-x =60 D .300×0.8-x =60 11.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.若|x |=3,|y |=2,则|x +y |=_____. 14.|-3|=_________; 15.若523m xy +与2n x y 的和仍为单项式,则n m =__________.16.写出一个比4大的无理数:____________. 17.﹣213的倒数为_____,﹣213的相反数是_____. 18.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________19.52.42°=_____°___′___″.20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .23.单项式()26a bc -的系数为______,次数为______.24.已知7635a ∠=︒',则a ∠的补角为______°______′. 三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集.26.解方程:131142x x x +-+=- 27.计算:(1)(﹣0.5)+(﹣32)﹣(+1) (2)2+(﹣3)2×(﹣112) (3)3825-+|﹣2|﹣(﹣1)201828.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么? 29.计算:(1)1108(2)2⎛⎫--÷-⨯-⎪⎝⎭(2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦. 30.用白色棋子摆出下列一组图形:(1)填写下表:图形编号(1)(2)(3)(4)(5)(6)...图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?四、压轴题31.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和b(b a>),则线段AB的长(点A到点B的距离)可表示为AB=b a-.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?32.如图,数轴上有A、B、C三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.33.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.C解析:C 【解析】 【分析】 根据AC 比BC 的14多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.5.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.7.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.8.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】-或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,222+, (2)∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x +y |=|﹣3+2|=1(4)x =﹣3,y =﹣2时,|x +y |=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键. 18.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.22.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.23.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此解析:16【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc -的系数为16-;次数为2+1+1=4; 故答案为16-;4. 【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.24.25【解析】【分析】 根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.-4<x ≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232x x x +≤⎧⎪⎨+>-⎪⎩①②, 由①得:x ≤2,由②得:x>-4,所以不等式组的解集为:-4<x ≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【详解】去分母得,4+(1+3x)=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.(1)﹣3;(2)54;(3)﹣6.【解析】【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣1 12)=2﹣3 4=54;(3)原式=﹣2﹣5+2﹣1=﹣6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.28.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同【解析】【分析】(1)求出样本容量,进而求出厨余垃圾的吨数;(2)A 部分由400吨,总数量为800吨,求出所占的百分比,C 部分占整体的40800,因此C 部分所在的圆心角的度数为360°的40800. (3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,答:厨余垃圾有280吨;(2)400÷800=50%,360°×40800=18°, 答:在扇形统计图中,A 部分所占的百分比是50%,C 部分所对应的圆心角度数是18°. (3)80÷40=2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.【点睛】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.29.(1)-12;(2)0【解析】【分析】(1)将除法变乘法计算,最后计算减法即可;(2)先算乘方和括号内的式子,然后计算乘法,最后计算加减.【详解】(1)解:原式=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=12-(2)解:原式=()111192523--⨯⨯- =()1166--⨯- =11-+=0【点睛】 本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.30.(1)见详解;(2)3(n+1);(3)99枚.【解析】【分析】解题注意根据图形发现规律,并用字母表示.然后根据条件代入计算.【详解】解:(1)图形编号1 2 3 4 5 6 图形中的棋子 6 9 12 15 18 21 (3)设图形有99枚棋子,它是第x 个图形.根据题意得:3+3x=99解得x=32所以它是第32个图形.故答案为(1)6,9,12,15,18,21.【点睛】此题考査规律问题,观察图形,发现(1)中是6个棋子.后边多一个图形,多3个棋子.根据这一规律即可解决下列问题.四、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,33.(1)60°;(2)射线OP 是∠AOC 的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。
七年级上册北京第十八中学数学期末试卷培优测试卷
七年级上册北京第十八中学数学期末试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
(人教版)北京市2018-2019学年七年级上期末数学考试题(有答案)
2018—2019学年第一学期初一期末试卷数 学一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.绝对值是2的数是A .2-B .2C .2或2-D .21 2.据中新网报道,“神威·太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有40960块处理器.其中40960用科学记数法表示应为 A .5104096.0⨯ B .410096.4⨯C .3100960.4⨯D .31096.40⨯3. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是A .1m <-B .3n >C .m n <-D .m n >- 4.若3x =是关于x 的方程21x a -=的解,则a 的值为A .5B .4C .5-D .4-5.下列判断正确的是A .近似数0.35与0.350的精确度相同B .a 的相反数为a -C .m 的倒数为1mD .m m =6.点C 在射线AB 上,若AB=3,BC =2,则AC 为A .5B .1C .1或5D .不能确定7.同一平面内,两条直线的位置关系可能是A .相交或平行B .相交或垂直C .平行或垂直D .平行、相交或垂直 8.如图,点C 为线段AB 的中点,延长线段AB 到D ,使得AB BD 31=.若8=AD ,则CD 的长为 A .2B .3C .5D .79.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是A .用两个钉子就可以把木条固定在墙上B .如果把A ,B 两地间弯曲的河道改直,那么就能缩短原来河道的长度C .植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线D .测量运动员的跳远成绩时,皮尺与起跳线保持垂直 10.按下图方式摆放餐桌和椅子:…1张餐桌坐6人,2张餐桌坐8人,…,n 张餐桌可坐的人数为 A .5+nB .62+nC .n 2D .42+n二、填空题(本大题共6个小题,每小题3分,共18分)11.请结合实例解释3a 的意义,你的举例: . 12.如图是某几何体的表面展开图,则这个几何体是 . 13.如图,OC 为AOB ∠内部的一条射线, 若︒=∠100AOB ,84261'︒=∠, 则2∠= ︒.14.解方程m m 253=-时,移项将其变形为523=-m m 的依据是 . 15.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为25.0+,1-,5.0+,75.0-.小红快速准确地算出了4筐白菜的总质量为 千克.16.规定:用{}m 表示大于m 的最小整数,例如235=⎭⎬⎫⎩⎨⎧,{}54=,{}15.1-=-等;用[m ]表示不大于m 的最大整数,例如327=⎥⎦⎤⎢⎣⎡,[]22=,[]42.3-=-,(1){}4.2= ;[]8-= ;(2)如果整数..x 满足关系式:{}[]1823=+x x ,则=x __________. 三、计算题(本大题共3个小题,17、18题各4分, 19题5分,共13分) 17.75513434--+. 18.()()5428110-⨯+-÷--.21OBC A19. 32323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.四、解方程(本大题共2个小题,20题4分,21题5分,共9分) 20. ()34523x x -+= 21.2531162x x -+-=. 五、解答题(本大题共6个小题,每小题5分,共30分)22.2017年京津冀旅游年卡包含了京津冀众多名胜文化、自然景区等,与2016年卡相比新增了29家景区,年卡分为四类,其中三类年卡及相应费用如下表所示:北京某公园年卡代售点在某日上午卖出上述三种年卡共30张,其中畅游版年卡5张,30张年卡费用总计2750元.(1)该日上午共卖出优惠版和乐享版的年卡 张; (2)卖出的30张年卡中,乐享版年卡有多少张?23.如图,平面上有三个点A ,O ,B . (1)根据下列语句顺次画图.①画射线OA ,OB ;②画AOB ∠的角平分线OC , 并在OC 上任取一点P (点P 不与点O 重合);③过点P 画OA PM ⊥,垂足为M ; ④画出点P 到射线OB 距离最短的线段PN ;(2)请回答:通过测量图中的线段,猜想相等的线段有 (写出一对即可). 24.若单项式122mxy --与45m x y -是同类项,求12322-+--m m m m 的值.25.先化简再求值: ()ab b b a ab +-⎪⎭⎫⎝⎛+-3212,其中52-=+b a .A26.已知:∠AOC =146︒,OD 为∠AOC 的平分线,射线OB ⊥OA 于O ,部分图形如图所示.请补全图形,并求∠BOD 的度数.27.观察下列两个等式:1312312+⨯=-,1325325+⨯=-,给出定义如下:我们称使等式1+=-ab b a 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,31),(5,32),都是“共生有理数对”. (1)数对(2-,1),(3,21)中是“共生有理数对”的是 ; (2)若(a ,3)是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则(n -,m -) “共生有理数对”(填“是”或“不是”);(4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).2018-2019学年第一学期初一期末数学试卷答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可。
北京2020-2021学年七年级上册期末数学试卷及答案(5份)
北京2020秋丰台区第一学期期末练习初一数学一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是DC B A A .点A B .点B C .点CD .点D2. 由美国主题景点协会(TEA )和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆.请将7550000用科学记数法表示为 A .755×104 B .75.5×105 C .7.55×106 D .0.755×1073. 比5.4-大的负整数有 A .3个B .4个C .5个D .无数个4. 下列运算正确的是 A .33323a a a =- B .34-=-m m C .022=-ab b aD .2532x x x =+5. 将一副直角三角尺按如图所示摆放,则图中∠ABC 的度数是 A .120°B .135°C .145°D .150°6. 如果y x =,那么根据等式的性质下列变形正确的是 A .0=+y xB .yx 55= C .y x -=-22 D .77-=+y x7.如果53=x 是关于x 的方程05=-m x 的解,那么m 的值为 A. 3 B. 31 C.3- D. 31-DCBA8.如果()0232=++-n m ,那么mn 的值为A. 1-B. 23- C. 6 D.6-9. 小华家要进行室内装修,设计师提供了如下四种图案的地砖,爸爸希望灰白两种颜色的地砖面积比例大致相同,那么下面最符合要求的是A. B. C. D.10.用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如右图所示,那么从左面看它得到的平面图形一定不是..A. B. C. D.二、填空题(每小题3分,共24分)11. 有理数2018的相反数是 . 12. 写出一个系数为32-且次数为3的单项式 . 13. 计算:12°20'×4= .14. 如图,OC 是∠AOB 的平分线,如果∠AOB =130°,∠BOD =25°,那么∠COD = °. 15. 方程241=-x 的解是 . 16. 已知1=a ,2=b ,如果b a >,那么=+b a .CBOD A17.阅读下面材料:在数学课上,老师提出如下问题:下面是班内三位同学提交的设计方案:根据以上信息,你认为 同学的方案最正确,理由是 . 18. 我国明代著名数学家程大位的《算法统宗》一书中记载了一些诗歌形式的算题,其中有一个“百羊问题”:甲赶群羊逐草茂,乙拽肥羊一只随其后;戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半群,得你一只来方凑.玄机奥妙谁猜透.题目的意思是:甲赶了一群羊在草地上往前走,乙牵了一只肥羊紧跟在甲的后面.乙问甲:“你这群羊有一百只吗?”甲说:“如果再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只.”请问甲原来赶的羊一共有多少只?如果设甲原来赶的羊一共有x 只,那么可列方程...为 .三、解答题(共46分,第19题3分,第20 — 27题,每小题4分,第28题5分, 第29题6分)19. 计算:()376-+--.20. 计算:⎪⎭⎫ ⎝⎛+-⨯-32652118.C COA BBC COA B BC C OA B B小玲的方案 小平的方案 小伟的方案 如图,在一个圆锥形状的包装盒的底部A 处有一只壁虎, 在侧面B 处有一只小昆虫,壁虎沿着什么路线爬行,才能以 最短的路线接近小昆虫? OCAB21. 计算:()4832116+-⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷.22. 计算:⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-⨯-⨯-23234332.23. 解方程:()2325-=-x x .24. 解方程:2133531+=--x x .25. 先化简,再求值:()[]xy y x xy xy y x ---+2223275,其中1-=x ,32-=y .26. 如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答: (1)连接P A ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ; (2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.A P B27. 已知:线段AB = 2,点D 是线段AB 的中点,延长线段AB 到C ,BC = 2AD .求线段DC 的长.28. 列方程解应用题:快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.请根据以上信息解答下列问题:(1)你认为小宇购买 元以上的书,办卡就合算了; (2)小宇购买这些书的原价是多少元.29. 如图,正方形ABCD 的边AB 在数轴上,数轴上点A 表示的数为-1,正方形ABCD 的面积为16.(1)数轴上点B 表示的数为 ;(2)将正方形ABCD 沿数轴水平移动,移动后的正方形记为''''D C B A ,移动后的正方形''''D C B A 与原正方形ABCD 重叠部分的面积记为S. ① 当S =4时,画出图形,并求出数轴上点'A 表示的数;② 设正方形ABCD 的移动速度为每秒2个单位长度,点E 为线段'AA 的中点,点F 在线段'BB 上,且B B BF '=41. 经过t 秒后,点E ,F 所表示的数互为相反数,直接写出t 的值.BA备用图丰台区第一学期期末练习初一数学评分标准及参考答案二、填空题(每小题3分,共24分)11.-2018 12.答案不唯一,如332a -13.49°20' 14.4015.8-=x16.–1或–317.小伟;两点之间,线段最短18.100142=++++xx x x 三、解答题(共46分,第19题3分,第20—27题,每小题4分,第28题5分,第29题6分)19.解:原式= 6–7–3……2分 = – 4.……3分 20.解:原式= – 9+15–12……3分 = – 6.……4分21.解:原式=()()483216+-⎪⎭⎫⎝⎛-⨯-⨯……2分=12– 4 ……3分 =8.……4分22.解:原式=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯-2278943……2分 =⎪⎭⎫ ⎝⎛-⨯-23843……3分 =3243⨯- =21-.……4分 23.解:6325-=-x x……1分 5632--=--x x……2分 115-=-x……3分 511=x . ∴511=x 是原方程的解. ……4分24.解:()()1335326+=--x x……1分 391066+=+-x x……2分663910+-=-x x ……3分3=x .∴3=x 是原方程的解. ……4分25.解:原式=()xy y x xy xy y x -+-+224675=y x y x 2245+=y x 29. ……3分当1-=x ,32-=y 时, 原式=()⎪⎭⎫⎝⎛-⨯-⨯32192= – 6.……4分26.解:(1)(2)(3)如图:……3分(4)PD .……4分27.解:根据题意正确画出图形.CDBA∵点D 是线段AB 的中点,AB =2,∴AD =BD =21AB =1.∵BC =2AD =2,∴DC =BC +BD =2+1=3.28. 解:(1)100;(2)设小宇购买这些书的原价是x 元,根据题意列方程,得13%8020-=+x x 解得x =165 答:小宇购买这些书的原价是165元.29.解:(1)–5;(2)∵正方形ABCD 的面积为16,∴边长为4.①当S=4时,若正方形ABCD 向左平移,如图1, 重叠部分中的A 'B =1,∴AA '=3. 则点A '表示–1–3= – 4.若正方形ABCD 向右平移,如图2, 重叠部分中的AB '=1,∴AA '=3. 则点A '表示–1+3= 2.∴点A '表示的数为– 4或2.图1 ②t =4.①锐角的补角一定是钝角; ②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等; ④锐角和钝角互补. A .①②B .①③C .①④D .②③6.在运用有理数加法法则求两个有理数的和时,下列的一些思考步骤中最先进行的是A .求两个有理数的绝对值,并比较大小B .确定和的符号C .观察两个有理数的符号,并作出一些判断D .用较大的绝对值减去较小的绝对值7.分别从正面、左面和上面这三个方向看下面的四个几何体中的一个,得到如图所示的平面图形,那么这个几何体是A B CD8.如果一些体积为1cm 3的小立方体恰好可以组成体积为1m 3的大立方体,把所有这些小立方体一个接一个向上摞起来,大概有多高呢?以下选项中最接近这一高度的是A .天安门城楼高度B .未来北京最高建筑“中国尊”高度C .五岳之首泰山高度D .国际航班飞行高度二、填空题(本题共24分,每小题3分)9.计算:1138()842-⨯+-= .10.写出312xy -的一个同类项: . 11.如图,在利用量角器画一个40°的∠AOB 的过程中,对于先找点B ,再画射线OB 这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为______同学的说法是正确的.12.若一个多项式与2m n -的和等于2m ,则这个多项式是 . 13.若2x =是关于x 的方程23ax +=的解,则a 的值为 . 14.如果一个数的实际值为a ,测量值为b ,我们把b a -称为绝对误差,ab a -称为相对误差.若有一种零件实际长度为5.0 cm ,测量得4.8 cm ,则测量所产生的绝对误差是cm ,相对误差是 .绝对误差和相对误差都可以用来衡量测量的准确程度,它们的区别是 .15.如图,射线OA 的方向是北偏东20°,射线OB 的方向是北偏西40°,OD 是OB 的反向延长线.若OC 是∠AOD 的平分线,则∠BOC =__________°,射线OC 的方向是________________.第15题图16.如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入10x =,则输出5y =.若输出3y =,则输入的x的值为 .三、解答题(本题共52分,第17-21题每小题4分,第22-25题每小题5分,第26-27题每小题6分)17.如图,点C 是线段AB 外一点.按下列语句画图:(1)画射线CB ; (2)反向延长线段AB ; (3)连接AC ;(4)延长AC 至点D ,使CD =AC .18.计算:)42()213(22---÷-. 19.计算:)213(214+-+ab ab .20.解方程:25(1)x x +=--. 21.解方程:52323x x-++=.22.先化简,再求值:22222()2(1)2a b ab a b ab +----,其中1a =,3b =-.23.暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成下列各问题:(1)从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是 ,积为 _. (2)从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是 ,商为 .(3)从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法(可加括号),使其运算结果为24,写出运算式子.(写出一种即可)24.填空,完成下列说理过程如图,已知△ACD 和△BCE 是两个直角三角形,90ACD ∠=︒,90BCE ∠=︒. (1)求证:ACE BCD ∠=∠;(2)如果150ACB ∠=︒,求DCE ∠的度数.(1)证明:如图,因为90ACD ∠=︒,90BCE ∠=︒,所以ACE ∠+________BCD =∠+_________90=︒, 所以_________=__________.(2)解: 因为150ACB ∠=︒,90ACD ∠=︒, 所以BCD ∠=_________-__________=_________︒-__________︒ =_________︒.所以DCE ∠=________BCD -∠=__________︒ .25.列方程解应用题我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?26.探究规律,完成相关题目沸羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(5)+❈(2)7+=+;(3)-❈(5)8-=+;(3)-❈(4)7+=-;(5)+❈(6)11-=-; 0❈(8)8+=;(6)-❈06=.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,_________________________________________________________.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,_________________.(2)计算:(2)-❈[0❈(1)]-=.(括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个....运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)27.阅读材料,并回答问题如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B .将木棒在数轴上水平移动,当点M 移动到点B 时,点N 所对应的数为20,当点N 移动到点A 时,点M 所对应的数为5. (单位:cm )由此可得,木棒长为__________cm .借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.2425=-⨯+ ……………………………………………………………………2分825=-+ …………………………………………………………………………3分…………………………………………………………………………………4分114322ab ab =+-- …………………………………………………………2分ab =. …………………………………………………………………………分55x x +=-+ …………………………………………………………………1分52- ………………………………………………………………………2分………………………………………………………………………………3分…………………………………………………………………………………4分 3(5)2(2)x x +-=+ ……………………………………………………………分1831542x x +-=+ ……………………………………………………………分43- ………………………………………………………………………3分…………………………………………………………………………4分2222)2(1)2a b ab a b ab +----222222222a b ab a b ab =+-+--……………………………………………………2分2ab =. …………………………………………………………………………………3分当1a =,3b =-时, 原式21(3)=⨯-=9. ………………………………………………………………………5分23. (1) 5-,3- (1)分15 (2)分(2)5-,3+ ……………………………………………………………………………………3分53- (4)分(3)3[5(3)]0-⨯--++(答案不唯一) ………………………………………………………5分24. (1)证明:如图,因为90ACD ∠=︒,90BCE ∠=︒,所以ACE ∠+DCE ∠BCD =∠+DCE ∠90=︒,……………………………1分所以ACE ∠=BCD ∠. (2)分(2)解: 因为150ACB ∠=︒,90ACD ∠=︒, 所以BCD ∠=ACB ∠-ACD ∠ ………………………………………………3分=150︒-90︒=60︒. (4)分所以DCE ∠=BCE ∠BCD -∠=30︒ . (5)分25. 解:设快马x 天可以追上慢马.由题意,得24015015012x x -=⨯. …………………………………………………2分解得20x =. …………………………………………………………………4分答:快马20天可以追上慢马. (5)分26. 解:(1)同号得正,异号得负,并把绝对值相加 (1)分等于这个数的绝对值…………………………………………………………………2分(2)3- ……………………………………………………………………………………4分(3)交换律在有理数的❈(加乘)运算中还适用. (5)分由❈(加乘)运算的运算法则可知,(5)+❈(2)+7=+,(2)+❈(5)+7=+,所以(5)+❈(2)+=(2)+❈(5)+. …………………………………………………6分即交换律在有理数的❈(加乘)运算中还适用.27. 解:5 (2)分64 ………………………………………………………………………………………3分12 …………………………………………………………………………………………4分……………………5分如图,点A 表示美羊羊现在的年龄,点B 表示村长爷爷现在的年龄,木棒MN 的两端分别落在点A B 、.由题意可知,当点N 移动到点A 时,点M 所对应的数为40-,当点M 移动到点B 时,点N 所对应的数为116.可求52MN =.所以点A 所对应的数为12,点B 所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.…………………………………………6分北京2019-2020学年顺义区第一学期七年级教学质量检测数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个符合题意,请把对应题目答案的相应字母填在括号内 .1. 2017年1月份某天的最高气温是4℃,最低气温是-9℃,那么这天的温差(最高气温减最低气温)是( ).A .-5℃B .13℃C .一13℃D . 5℃2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将这个数用科学记数法表示为( ) A .84410⨯ B .84.410⨯C . 94.410⨯D .104.410⨯3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A .2(2)a b - B . 22()a b -C .22a b -D .2(2)a b -4.在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么33a b= C. 如果63=a,那么2a = D. 如果0a b c -+=,那么a b c =+ 5.下列各式中运算正确的是( )A. 422a a a =+ B. 134=-a a C.b a ba b a 22243-=- D.532523a a a =+6. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为( )A. 1- B .0 C. 1 D. 11 7. 下列叙述错误的是( )A. 经过两点有一条直线,并且只有一条直线B. 在同一平面内不相交的两条直线叫做平行线C. 连接两点的线段的长,叫做这两点间的距离D.从直线外一点到这条直线的垂线段,叫做点到直线的距离8.有理数a b ,在数轴上的位置如图所示,以下说法正确的是( ) A. 0a b += B. b a < C. 0ab > D.b a <9.如图,是正方体的平面展开图,每个面上都标有一个汉字, 与“信”字相对的面上的字为( )A. 文B.明C. 法D. 治10.计算20172016(0.125)8-⨯结果正确的是( )A .18- B .18C .8D .8-二、填空题 (共6个小题,每小题3分,共18分)N M B A 116-40文 明 法治诚 信11.-312. 计算:(5-+ 13.北京市的“过180的部分,吨.14. 换算:65.24°15.如图,平角的角.16上所贴的剪纸为,三、解答题(共17.(418.(519.(520.(5分)计算:3221332()()()224-⨯-+-÷-()21.(4分)解方程:262(35)x x-=-22.(5分) 解方程:221134x x+--=23.(5分)已知x,y为有理数,且满足2121(1)03x y++-=,求代数式xy的值.24.(4分)如图,A,B,C,D为4个居民小区,现要在4个居民小区之间建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?画出购物中心的位置,并说明理由.25.(5分)已知平面上三点A、B、C.按下列要求画出图形:(1)画直线AB,射线BC,线段AC;(2)过点C画直线CD,使CD AB;(3)画出点C到直线AB的垂线段CE.26.(5分)某中学举办中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.小强考了68分,求小强答对了多少道题?27.(5分) 已知:90AOB∠=︒,20BOC∠=︒,OM平分AOB∠,求MOC∠的度数.1DBAC BA28.(5分)阅读材料:求2342017122222++++++…的值.解:设234201620171222222S =+++++++…,将等式两边同时乘以2得:23452017201822222222S =+++++++…将下式减去上式得2018221S S -=- 即201821S =-即2342017201812222221++++++=-…请你仿照此法计算:(1)2349122222++++++…;(2)234155555n ++++++…(其中n 为正整数). 29.(5分)新华书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书满200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是多少元?选做题(5分)1.(2分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是天.2.(3分)设-3a =,15b =,试确定20162017a b +的末位数字是几?顺义区第一学期七年级教学质量检测数学试题参考答案及评分参考一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 BCABCCDDBA二、填空题 题号 11 1213141516 答案3、2-、22-、29、12- 22165度14分24秒 6、717、32n +三、解答题 17.解:原式=3312+4484--+ ………………………………………………………1分 =3132++4448-- ……………………………………………………2分 =318-- ………………………………………………………………3分 =118-……………………………………………………………4分18.解:原式=8153()+)3495-⨯-⨯(- …………………………………………………3分=21()33+- =13………………………………………………………………5分19.解:原式=620+27---3 …………………………………………………………4分 =2- …………………………………………………………………5分20.解:原式=1948()443-⨯+⨯- ………………………………………………………4分 =23--=5- …………………………………………………………………5分21. 解:去括号,得 26610x x -=- ………………………………………1分移项, 得 26106x x -=-+ ………………………………………2分 合并同类项,得 44x -=- …………………………………………3分 系数化为1,得 1x = ……………………………………………4分 所以,1x =是方程的解 …………………………………………… 5分22. 解:去分母 ,得 4(2)123(21)x x +-=-………………………………………2分去括号, 得 481263x x +-=- …………………………………………3分 移项, 得 463812x x -=--+ …………………………………………4分 合并同类项,得 21x -= 系数化为1, 得 12x =- 所以 ,12x =-是方程的解 …………………………………………5分 23. 解:因为210x +≥,21(1)03y -≥,且满足2121(1)03x y ++-=,…………1分所以210x += 且 1103y -=. ………………………………………………3分 所以12x =-,3y = ………………………………………………4分 所以代数式xy 的值是32-………………………………………………………5分 24.解:连结AC 和BD ,AC 和BD 相交于点M ,则点M 即是购物中心的位置 .……………………………………………………2分 MA MC MB MD AC BD +++=+理由是两点之间线段最短. ……………………………………………………4分25.略 (每个图形各一分) ………………………………………………………5分26.解:设小李答对了x 道题. ……………………………………………………1分依题意,列方程得53(20)68x x --=. (3)分解得16x =. (4)分答:小李答对了16道题. ………………………………………………………………5分27.解: ∵90AOB ∠=︒,OM 平分AOB ∠,∴︒=∠45BOM ………………………………………………………………1分又∵20BOC ∠=︒①当OC 在AOB ∠内部时,452025MOC BOM BOC ∠=∠-∠=︒-︒=︒ ……………………………3分② 当OC 在AOB ∠外部时452065MOC BOM BOC ∠=∠+∠=︒+︒=︒……………………………5分∴MOC ∠的度数是25︒.或65︒28.解:(1)设29122+2S =+++…则23102222+2S =+++…10221S S ∴-=-即1021S =- ……………………………………………2分2910122+2=21∴+++-…(2)设21555n S =++++…则23155555n S +=++++…1551n S S +∴-=-即1451n S +=-1514n S +-∴= ………………………………………………………………5分29.解:设小丽第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得:① 当10003x <≤时, 3229.4x x +=,解得:57.35x =(舍去); ……………………………………………………… 1分② 当100200<33x ≤时, 9+3229.410x x ⨯=,解得:62x =,此时两次购书原价总和为:4462248x =⨯=; …………………………………… 3分③ 当2001003x <≤时,73229.410x x +⨯=,解得:74x =,此时两次购书原价总和为:4=474=296x ⨯.综上可知:小丽这两次购书原价的总和是248或296元.………………………… 5分选做题(选做题得分可以加入总分中,加到满分100分止) 1. 5102. 解:∵15b =∴2017201715b =的末位数字一定是5 -----------------------------------------1分 ∵3a =- ∴201620162016(3)3a=-=∵133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,∴推算20163的末位数字一定是1 ----------------------------------------------2分 ∴2016a 与2017b 的末位数字之和是16∴20162017a b +的末位数字是6 -----------------------------------------------3分2019-2020学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分) 1.(3分)﹣4的倒数是( ) A .B .﹣C .4D .﹣42.(3分)在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为( ) A .0.3369×107B .3.369×106C .3.369×105D .3369×1033.(3分)下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a2D.3ab+4ab=7ab4.(3分)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长5.(3分)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC .由x=﹣1,可得x =﹣D .由,可得2(x﹣1)=x﹣36.(3分)已知3a2﹣a=1,则代数式6a2﹣2a﹣5的值为()A.﹣3B.﹣4C.﹣5D.﹣77.(3分)有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④8.(3分)下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.(3分)下列图形中,可能是右面正方体的展开图的是()A .B .C .D .10.(3分)居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.(2分)如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.(2分)用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.(2分)已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.(2分)若(x+1)2+|y﹣2020|=0,则x y=.15.(2分)《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.(3分)我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.(3分)已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.(3分)一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共16分,每小题8分)19.(8分)计算:(1)(﹣5)+12﹣(﹣8)﹣21(2)20.(8分)计算:(1)(2)四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.(5分)先化简,再求值:6y3+4(x3﹣2xy)﹣2(3y3﹣xy),其中x=﹣2,y=3.22.(5分)解方程:.23.(5分)解方程组:.24.(4分)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补25.(5分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a ij(其中i,j=1,2,3,4),如图1中第2行第1列的数字a ij=0;对第i行使用公式A i=8a i1+4a i2+2a i3+a i4进行计算,所得结果A1表示所在年级,A2表示所在班级,A3表示学号的十位数字,A4表示学号的个位数字.如图1中,第二行A2=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案26.(6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.27.(5分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).一、填空题(本题6分)28.观察下列等式,探究其中的规律并解答问题:(1)第4个等式中,k=;(2)写出第5个等式:;(3)写出第n个等式:(其中n为正整数)二、解答题(本题共14分,每小题0分)29.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).30.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB 组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2019-2020学年北京市西城区七年级(上)期末数学试卷试题解析一、选择题(本题共30分,每小题3分)1.【答案】B解:﹣4的倒数是﹣.故选:B.2.【答案】B解:将3369000用科学记数法表示为3.369×106,故选:B.3.【答案】D解:A.5a与6b不是同类项,所以不能合并,故本选项不合题意;B.9a﹣a=8a,故本选项不合题意;D.3ab+8ab=7ab,正确,故本选项符合题意.故选:D.4.【答案】A解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【答案】B解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C 、由x=﹣1,可得x=﹣6,不符合题意;D 、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【答案】A解:∵3a2﹣a=1,∴原式=2(3a2﹣a)﹣5=2﹣5=﹣3,故选:A.7.【答案】C解:∵﹣3<a<﹣2,∴|a|<3,∵a<8,b<0,∴选项②符合题意;∴b+c>0,∵b>a,∴选项④符合题意,故选:C.8.【答案】D解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【答案】C解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符和,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【答案】D解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;故选:D.二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.【答案】见试题解答内容解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【答案】见试题解答内容解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【答案】见试题解答内容解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=4,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【答案】见试题解答内容解:∵(x+1)2+|y﹣2020|=0,∴x+1=0,y﹣2020=0,所以x y=(﹣1)2020=1.故答案为:1.15.【答案】见试题解答内容解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【答案】见试题解答内容解:(1)=2×7﹣(﹣3)×6=28∴﹣4m﹣2×4=6,∴m=﹣5.故答案为:28、﹣5.17.【答案】见试题解答内容。
北京市人教版七年级上册数学期末试卷及答案
北京市人教版七年级上册数学期末试卷及答案一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1062.若34(0)x y y =≠,则( ) A .34y 0x += B .8-6y=0xC .3+4x y y x =+D .43x y = 3.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+4.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=- D .235a b ab +=5.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+= D .6352x x --=6.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个7.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50° B .130°C .50°或 90°D .50°或 130°8.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +19.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .1202010.﹣3的相反数是( ) A .13-B .13C .3-D .311.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____. 14.|-3|=_________;15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 19.若∠1=35°21′,则∠1的余角是__.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 21.方程x +5=12(x +3)的解是________. 22.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.26.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
北京市人教版七年级上册数学期末试卷及答案-百度文库
北京市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线3.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+ 5.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( )A .3B .4C .5D .66.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 7.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式8.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=09.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元12.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.213.下列图形中,哪一个是正方体的展开图()A.B.C.D.14.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟15.把1,3,5,7,9, 排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.2125二、填空题16.一个角的余角等于这个角的13,这个角的度数为________.17.若|x|=3,|y|=2,则|x+y|=_____.18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.化简:2xy xy +=__________.20.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00-10.17 转帐收入¥200.00+10.18 体育用品¥64.00-10.19 零食¥82.00-10.20餐费¥100.00-21.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.22.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.23.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.24.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.25.若∠1=35°21′,则∠1的余角是__.26.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.27.﹣225ab π是_____次单项式,系数是_____. 28.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.29.用度、分、秒表示24.29°=_____.30.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、压轴题31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.33.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.34.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.35.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.36.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数37.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.38.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.3.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.4.D解析:D【分析】方程两边同乘以6即可求解.【详解】12132x x +-=, 方程两边同乘以6可得,2x-6=3(1+2x ).故选D.【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.5.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n ﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D .【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 7.B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
七年级(上)期末数学试卷(含答案解析)
七年级(上)期末数学试卷(含答案解析)一、选择题(本大题共10小题,共30.0分)1.在下列有理数:-5,-(-3)3,|-|,0,-22中,负数有()A. 1个B. 2个C. 3个D. 4个2.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元3.下列各组中,不是同类项的是()A. 52与25B. -ab与baC. 0.2a2b与-a2bD. a2b3与-a3b24.下列说法:①倒数等于本身的数只有1;②若a、b互为相反数,那么a、b的商必定等于-1;③对于任意实数x,|x|+x一定是非负数;④两个负数,绝对值小的反而大,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个5.在有理数-32,3.5,-(-3),|-2|、(-)2,-3.1415926中,负数的个数是()A. 1个B. 2个C. 3个D. 4个6.数18000用科学记数法表示为()A. 0.18×104B. 1.8×104C. 18×104D. 1.8×1057.下列各组数中,相等的一组是()A. (-2)3与-23B. (-2)2与-22C. (-3×2)3与3×(-2)3D. -32与(-3)+(-3)8.如图几何体的俯视图是()A.B.C.D.9.要使多项式不含的项,则的值是A. B. C. D.10.如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A. 64°B. 66°C. 74°D. 86°二、填空题(本大题共10小题,共40.0分)11.单项式-4πa3b的系数是______.12.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b-c|-2|b-a|+|2c|=______.13.已知有理数a、b在数轴上的位置如图所示,化简|a-b|+|a+b|的结果为______.14.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则-2mn+-x=______.15.将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=______.16.若∠A的补角等于116°,则∠A= .17.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.18.如图.AC,BD交于点O.图中共有______ 条线段,它们分别是______ .19.废纸回收能减少树木的砍伐量,保持森林覆盖率,有利于封山育林减少水土流失,有利于生态环境,能减少化学原料的运用与排放,减少污染,有利于环境维护和降低消费本钱.若回收废纸1kg,可生产(结再生纸0.6kg,小明和小亮每学期分别能回收讲义等废纸a kg,b kg,这些废纸可生产再生纸______kg.果用含a,b的代数式表示)20.若x2=9,则x= ______ ;若x3=-27,x= ______ ;已知|x|=9,则x= ______ .三、计算题(本大题共1小题,共5.0分)21.先化简,再求值:5a2-[a2-(2a-5a2)-2(a2-3a)],其中a=4.四、解答题(本大题共7小题,共45.0分)22.某一出租车一天下午以菜市场为出发地在东西方向营运, 约定向东为正,向西为负,行车里程(单位:千米)依先后次序记录如下: +8,-3,-4,+2,-8,+13,-2(1)将最后一名乘客送到目的地,出租车离出发点菜市场多远?在菜市场的什么方向?(2)若每千米耗油0.2升,问从出发地出发到收工时共耗油多少升?23.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c-a|+|c-b|+|a+b|.24.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?25.如图,已知∠1+∠2=180°,∠3=∠B,对DE∥BC说明理由.理由:∵∠1+∠2=180°(已知)且∠1+______=180°(邻补角定义),∴∠2=______,∴BD∥EF (______),∴∠3=______(两直线平行,内错角相等),又∵∠3=∠B(已知)∴______=______(等量代换),∴DE∥BC (______).26.如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到______的距离,______是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是______(用“<”号连接)27.已知长方形的长为a,宽为b.(1)求阴影部分的面积.(用a、b字母表示)(2)当a=5,b=3时,求阴影部分的面积.28.已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为______.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.答案和解析1.【答案】B【解析】解:∵-(-3)3=27,|-|=,-22=-4,∴-5,-(-3)3,|-|,0,-22中,负数有-5,-22,故选B.首先化简各数,根据负数的定义分别进行判断,从而得出负数的个数即可.本题主要考查了正数和负数以及绝对值和乘方等知识,正确化简各数是解题关键.2.【答案】C【解析】解:小明乘车|20-5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.3.【答案】D【解析】解:A.52与25是同类项,故此选项不符合题意;B.-ab与ba所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.0.2a2b与-a2b所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;Da2b3与-a3b2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意.故选:D.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.4.【答案】C【解析】解:①倒数等于本身的数只有1,错误,还有-1;②若a、b互为相反数,那么a、b的商必定等于-1,错误,a,b不能等于0;③对于任意实数x,|x|+x一定是非负数,正确;④两个负数,绝对值小的反而大,正确.故选:C.直接利用倒数以及绝对值和相反数的性质分别分析得出答案.此题主要考查了倒数以及绝对值和相反数的性质,正确把握相关性质是解题关键.5.【答案】B【解析】解:-32=-9,-(-3)=3,|-2|=2,,∴-32,-3.1415926是负数,一共2个,故选:B.根据有理数的乘方法则、相反数的概念、绝对值的性质计算,根据负数的概念判断即可.本题考查的是有理数的乘方、绝对值的性质、正数和负数,掌握有理数的乘方法则、绝对值的性质是解题的关键.6.【答案】B【解析】解:18000=1.8×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:A.(-2)3=-8,-23=-8,相等,此选项符合题意;B.(-2)2=4,-22=-4,不相等,此选项不符合题意;C.(-3×2)3=(-6)3=-216,3×(-2)3=3×(-27)=-81,不相等,此选项不符合题意;D.-32=-9,(-3)+(-3)=-6,不相等,此选项不符合题意;故选:A.根据乘方的定义和有理数混合运算顺序逐一计算即可判断.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.8.【答案】C【解析】解:从上面看,是一个矩形,矩形内部是一个由虚线围成的小矩形.故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9.【答案】D【解析】由题意得,,,,故选D。
北京市人教版七年级上册数学期末试卷及答案百度文库
北京市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式3.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x+=C .10040062x x += D .1004006x 2x+= 7.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°8.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
北京市人教版七年级上册数学期末试卷及答案百度文库
北京市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式 3.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .34.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .5.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 7.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y8.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查 9.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°10.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元 B .赔了10元C .赚了50元D .不赔不赚13.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-14.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .212515.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 17.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………19.把5,5,35按从小到大的顺序排列为______. 20.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 21.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.22.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 23.﹣213的倒数为_____,﹣213的相反数是_____. 24.计算:()222a -=____;()2323x x ⋅-=_____.25.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)26.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 27.4是_____的算术平方根. 28.观察“田”字中各数之间的关系:则c 的值为____________________. 29.若523m xy +与2n x y 的和仍为单项式,则n m =__________.30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 33.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.34.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.35.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
北京市七年级上册期末数学试卷及答案
北京市七年级上册期末数学试卷一、精心选一选(共10个小题,每小题3分,共30分)1.(3分)﹣的相反数是()A.B.﹣C.5D.﹣52.(3分)三峡工程是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22 150 000 000m3,这个数用科学记数法表示为()A.221.5×108m3B.22.15×109m3C.2.215×1010m3D.2.215×1011m33.(3分)已知|a|=|﹣3|,则a等于()A.3B.﹣3C.0D.±34.(3分)现规定一种运算a※b=ab+a﹣b,其中a,b为有理数,则3※5的结果为()A.11B.12C.13D.145.(3分)A、B两点的距离是()A.连接A、B两点的线段B.连接A、B两点间的线段的长度C.过A、B两点的直线D.过A、B两点的射线6.(3分)如图所示,下列说法错误的是()A.OA的方向是北偏西22°B.OB方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东60°7.(3分)甲、乙两人练习赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米,他俩从同一地点起跑,乙先跑5米后,甲出发追赶乙.设甲出发x秒后追上乙,则下列四个方程中正确的是()A.7x=6.5x+5B.7x=6.5x﹣5C.7x+5=6.5x D.(7+6.5)x=5 8.(3分)一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.只有图①B.图①、图②C.图②、图③D.图①、图③9.(3分)下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a10.(3分)下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是()厘米.A.4018B.4020C.8036D.6027二、细心填一填(共10个小题,每小题2分,共20分)11.(2分)将236875精确到万位的结果是.12.(2分)体校里男学生人数是m,女学生人数是n,教练人数和学生人数的比是1:20,则教练人数是.13.(2分)观察如图中的数轴,a、b、c表示的数由小到大的顺序为.14.(2分)一个角的余角比它的补角的多1°,则这个角的度数为度.15.(2分)若2a2m+2b2与﹣a m+3b n﹣3是同类项,则m+n=.16.(2分)已知m2﹣mn=21,mn﹣n2=﹣15,则代数式m2﹣n2=.17.(2分)从下午13:00到当天下午13:50,时钟的分针转过的角度为度.18.(2分)已知线段AB=10cm,C是直线AB上一点,且BC=6cm,M、N分别是AB、BC的中点,则线段MN的长为.19.(2分)如图,在4种4×4方格图案,其中阴影部分面积相同的图案是(请填写序号)20.(2分)一个人先沿水平道路前进a千米,继而沿b千米长的山坡爬到了山顶,之后又沿原路返回到出发点,全程共用了5小时,已知此人在水平路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,则此人所走的全程2(a+b)是千米.三、用心算一算(共4个小题,每小题4分,共16分)21.(4分)计算:7.8﹣9.5+(﹣8)﹣(﹣3.2)22.(4分).23.(4分)计算:18÷(﹣7)﹣128÷(﹣7)+33÷(﹣7)24.(4分)计算﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.四、先化简,再求值(本题4分)25.(4分)已知a﹣b=2,ab=﹣1,求(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)的值.五、解方程(共2个小题,每小题5分,共10分)26.(5分).六、列方程解应用题(共2个小题,每小题5分,共10分)27.(5分)在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?28.(5分)张欣和李明相约去图书城买书,他俩的对话如下:张欣:“听说花20元办一张会员卡,买书可享受七折优惠.”李明:“是的,我上次买了一套图书,加上办卡的费用,还比按原价买书一共省了25元.”请根据他们的对话,求出李明上次所购买书籍的原价是多少元?七、解答题(共3个小题,每小题5分,共15分)29.(5分)如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;(2)求∠BOE的度数.30.(5分)如图,在长方形ABCD中放置9个形状、大小都相同的小长方形,试根据图中所给数据求出三块阴影部分面积的和.31.(5分)阅读框图并回答下列问题:(1)若A为785,则E=;(2)按框图流程,取不同的三位数A,所得E的值都相同吗?如果相同,请说明理由;如果不同,请求出E的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数1,它的百位数字减去个位数字所得的差大于2”.其余的步骤不变,请猜想E的值并对你猜想的结论加以证明.北京市七年级上册期末数学试卷答案一、精心选一选(共10个小题,每小题3分,共30分)1.(3分)﹣的相反数是()A.B.﹣C.5D.﹣5【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.(3分)三峡工程是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22 150 000 000m3,这个数用科学记数法表示为()A.221.5×108m3B.22.15×109m3C.2.215×1010m3D.2.215×1011m3【分析】科学记数法的表示形式为a×10n的形式,其中1≤a<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:22 150 000 000=2.215×1010.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)已知|a|=|﹣3|,则a等于()A.3B.﹣3C.0D.±3【分析】依据绝对值的意义,得出a=±3.注意结果有两个.【解答】解:因为|a|=|﹣3|=3,所以a=±3.故选:D.【点评】考查了绝对值的性质,绝对值都是非负数,互为相反数的两数绝对值相等.4.(3分)现规定一种运算a※b=ab+a﹣b,其中a,b为有理数,则3※5的结果为()A.11B.12C.13D.14【分析】按照规定首先把它转化为有理数的混合运算,再进一步根据有理数的混合运算顺序进行计算.【解答】解:根据题意,得原式=3×5+3﹣5=15+3﹣5=13.故选:C.【点评】此题是一道新定义题目,同时要熟悉有理数的运算顺序.5.(3分)A、B两点的距离是()A.连接A、B两点的线段B.连接A、B两点间的线段的长度C.过A、B两点的直线D.过A、B两点的射线【分析】根据两点间距离的定义进行解答即可.【解答】解:∵连接两点间的线段的长度叫两点间的距离,∴连接A、B两点间的线段的长度叫A、B两点的距离.故选:B.【点评】本题考查的是两点间距离的定义,即连接两点间的线段的长度叫两点间的距离.6.(3分)如图所示,下列说法错误的是()A.OA的方向是北偏西22°B.OB方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东60°【分析】根据方位角的概念解答即可.【解答】解:A、根据互余的概念,OA的方向是北偏西90°﹣68°=22°,正确;B、OB方向是西偏南45°即西南方向,正确;C、OC方向是南偏东90°﹣30°=60°,正确;D、OD的方向是北偏东90°﹣60°=30°,错误.故选:D.【点评】此题较简单,只要同学们熟练掌握方位角的概念即可.7.(3分)甲、乙两人练习赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米,他俩从同一地点起跑,乙先跑5米后,甲出发追赶乙.设甲出发x秒后追上乙,则下列四个方程中正确的是()A.7x=6.5x+5B.7x=6.5x﹣5C.7x+5=6.5x D.(7+6.5)x=5【分析】首先理解题意找出题中存在的等量关系:乙跑的路程=甲跑的路程,根据此等式列方程即可.【解答】解:设甲出发x秒钟后追上乙,则甲所跑的路程为7x,而此时乙所跑的路程为6.5x+5;根据此时“甲追上乙”那么他们的总路程应该相同,即7x=6.5x+5.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.只有图①B.图①、图②C.图②、图③D.图①、图③【分析】利用正方体及其表面展开图的特点解题.【解答】解:图②,经过折叠后,没有上下底面,侧面是由5个正方形组成,与正方体的侧面是4个正方形围成不相符,所以不是无盖的正方体盒子的平面展开图,故选D.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.9.(3分)下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a【分析】根据去括号法则(括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“﹣”号,去括号时,把括号和它前面的“﹣”去掉,括号内的各项都变号)去括号,即可得出答案.【解答】解:A、a2﹣(2a﹣b2+b)=a2﹣2a+b2﹣b,故A错误;B、﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故B错误;C、2x2﹣3(x﹣5)=2x2﹣3x+15,故C错误;D、﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3﹣(﹣4a2+1﹣3a)=﹣a3+4a2﹣1+3a,故D正确.故选:D.【点评】本题考查了去括号法则的应用,注意:①括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“﹣”号,去括号时,把括号和它前面的“﹣”去掉,括号内的各项都变号,②m(a+b)=ma+mb,不是等于ma+b.10.(3分)下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是()厘米.A.4018B.4020C.8036D.6027【分析】根据梯形可知第一个图形的周长为4,第二个图形的周长为2×4﹣1×2=8,第3个图形的周长为3×4﹣2×2=8,第3个图形的周长为4×4﹣3×2=10,由此得到第n 个图形的周长为4n﹣2(n﹣1)=2n+2个,据此得到答案即可.【解答】解:第一个图形的周长为4,第二个图形的周长为2×4﹣1×2=8,第3个图形的周长为3×4﹣2×2=8,第4个图形的周长为4×4﹣3×2=10,…由此得到第n个图形的周长为4n﹣2(n﹣1)=2n+2个,故第2009个图形的周长为2×2009+2=4020.故选:B.【点评】本题考查了规律型题目,解题的关键是根据图形的变化得到第n个图形的周长为2n+2.二、细心填一填(共10个小题,每小题2分,共20分)11.(2分)将236875精确到万位的结果是 2.4×105.【分析】先写成科学记数法的形式,再根据四舍五入按要求解答.【解答】解:236875=2.36875×105≈2.4×105.故答案为:2.4×105.【点评】本题考查了科学记数法表示较大的数与近似数的取舍,写成科学记数法的形式是解题的关键.12.(2分)体校里男学生人数是m,女学生人数是n,教练人数和学生人数的比是1:20,则教练人数是.【分析】设每份为x人,则教练有x人,学生有20x人,就可以得出20x=m+n,求出x 就是教练人数了.【解答】解:设每份为x人,则教练有x人,学生有20x人,由题意,得∴20x=m+n,∴x=,∴教练有人.故答案为:人【点评】本题考查列代数式,关键是根据题目中的比例关系,用一个字母来表示,最后求出结果.13.(2分)观察如图中的数轴,a、b、c表示的数由小到大的顺序为b<c<a.【分析】根据数轴上的数,右边的总比左边的大进行比较即可.【解答】解:根据图形b<c<a.故答案为:b<c<a.【点评】本题主要考查了利用数轴比较有理数的大小,熟记“数轴上的数,右边的总比左边的大”是解题的关键.14.(2分)一个角的余角比它的补角的多1°,则这个角的度数为63度.【分析】根据余角、补角的定义计算.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,补角为(180﹣x)°.根据题意有:(90﹣x)=(180﹣x)+1解得x=63,故这个角的度数为63度.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.15.(2分)若2a2m+2b2与﹣a m+3b n﹣3是同类项,则m+n=6.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出关于m和n的方程,解出即可得出答案.【解答】解:∵2a2m+2b2与﹣a m+3b n﹣3是同类项,∴2m+2=m+3;n﹣3=2,解得:m=1,n=5,∴m+n=6.故答案为:6.【点评】此题考查了同类项的定义,解答本题的关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,难度一般.16.(2分)已知m2﹣mn=21,mn﹣n2=﹣15,则代数式m2﹣n2=6.【分析】直接把m2﹣mn=21,mn﹣n2=﹣15相加即可.【解答】解:∵m2﹣mn=21,mn﹣n2=﹣15,∴m2﹣mn+mn﹣n2=21﹣15=6.故答案为6.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.(2分)从下午13:00到当天下午13:50,时钟的分针转过的角度为300度.【分析】时针和分针的运动可以看做一种匀速的旋转运动,13:00到当天下午13:50,分针用,50分钟时间.由此再进一步分别计算它们旋转的角度.【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,∵13:00到当天下午13:50,分针用50分钟时间.∴分针旋转了30°×10=300°,故答案为:300.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.18.(2分)已知线段AB=10cm,C是直线AB上一点,且BC=6cm,M、N分别是AB、BC的中点,则线段MN的长为2cm或8cm.【分析】根据题意,正确画图,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能:(1)点C在线段AB上;(2)点C在线段AB的延长线上.【解答】解:(1)若为图1情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB=BC=3cm,∴MN=MB﹣NB=2cm;(2)若为图2情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB=BC=3cm,∴MN=MB+BN=8cm.故答案为:2cm或8cm.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键.19.(2分)如图,在4种4×4方格图案,其中阴影部分面积相同的图案是(1)(2)(4)(请填写序号)【分析】设正方形网格中小正方形的边长为1,数出各图案中阴影部分有多少个等腰直角三角形,然后根据它们的面积和,再进行判断.【解答】解:设正方形网格中小正方形的边长为1,则(1)中阴影部分面积=8.5;(2)中阴影部分面积=8.5;(3)中阴影部分面积=8;(4)中阴影部分面积=8.5;所以阴影部分面积相同的图案是(1)(2)(4).故答案为(1)(2)(4).【点评】本题考查了三角形面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.20.(2分)一个人先沿水平道路前进a千米,继而沿b千米长的山坡爬到了山顶,之后又沿原路返回到出发点,全程共用了5小时,已知此人在水平路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,则此人所走的全程2(a+b)是20千米.【分析】因为时间=,根据个人先沿水平道路前进a千米,继而沿b千米长的山坡爬到了山顶,之后又沿原路返回到出发点,全程共用了5小时,已知此人在水平路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,可列方程.【解答】解:•2++=5∴a+b=10.∴2(a+b)=20.故答案为:20.【点评】本题考查理解题意的能力,关键是根据时间列出方程,然后找出a和b的关系,从而代数求值.三、用心算一算(共4个小题,每小题4分,共16分)21.(4分)计算:7.8﹣9.5+(﹣8)﹣(﹣3.2)【分析】原式先利用减法法则变形,再利用同号及异号两数相加的法则计算即可得到结果.【解答】解:原式=7.8﹣9.5﹣8+3.2=11﹣17.5=﹣6.5.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.22.(4分).【分析】首先把乘除混合运算统一成乘法,再确定结果的符号,然后把绝对值相乘即可.【解答】解:原式=(﹣7.5)×(﹣4)××(﹣)=﹣(×4××)=﹣.【点评】此题主要考查了有理数的乘除法混合运算,关键是注意结果符号的判断,这是同学们最容易出错的地方.23.(4分)计算:18÷(﹣7)﹣128÷(﹣7)+33÷(﹣7)【分析】根据除以一个数等于乘以这数的倒数转化为乘法运算,再逆运用乘法分配律进行计算即可得解.【解答】解:18÷(﹣7)﹣128÷(﹣7)+33÷(﹣7)=18×(﹣)﹣128×(﹣)+33×(﹣)=(18﹣128+33)×(﹣)=(﹣77)×(﹣)=11.【点评】本题考查了有理数的除法,先转化为乘法运算,再利用乘法分配律可以使计算更加简便.24.(4分)计算﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.【分析】先计算乘方得到原式=﹣49+2×9+(﹣6)÷,再进行乘除运算得到原式=﹣49+18﹣54,最后进行加减运算即可.【解答】解:原式=﹣49+2×9+(﹣6)÷=﹣49+18﹣6×9=﹣85.【点评】本题考查了有理数的混合运算:先进行乘方运算,再进行乘除运算,最后进行加减运算;有括号先计算括号.四、先化简,再求值(本题4分)25.(4分)已知a﹣b=2,ab=﹣1,求(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)的值.【分析】先去括号合并同类项,把式子化成含有a﹣b和ab的式子,再整体代入求出即可.【解答】解:(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)=4a﹣5b﹣ab﹣2a+3b﹣5ab=2a﹣2b﹣6ab,=2(a﹣b)﹣6ab,当a﹣b=2,ab=﹣1时,原式=2×2﹣6×(﹣1)=10.【点评】本题考查了整式的化简求值的应用,用了整体代入思想,即把a﹣b和ab当作整体来代入.五、解方程(共2个小题,每小题5分,共10分)26.(5分).【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得,4(2x﹣1)﹣2(10x﹣1)=3(2x+1)﹣12,去括号得,8x﹣4﹣20x+2=6x+3﹣12,移项得,8x﹣20x﹣6x=3﹣12+4﹣2,合并同类项得,﹣18x=﹣7,系数化为1得,x=.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.六、列方程解应用题(共2个小题,每小题5分,共10分)27.(5分)在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?【分析】根据题干,可设甲种水管有x根,则乙种水管有(25﹣x)根,所以甲种管子的总长度是5x米,乙种管子的总长度是8(25﹣x)米,根据等量关系:“甲、乙两种水管总长为155米”列出方程即可解决问题.【解答】解:设甲种水管有x根,则乙种水管有(25﹣x)根.依题意,得5x+8(25﹣x)=155.解得x=15,乙种水管有25﹣x=25﹣15=10(根).答:甲种水管有15根,乙种水管有10根.【点评】此题考查了含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.28.(5分)张欣和李明相约去图书城买书,他俩的对话如下:张欣:“听说花20元办一张会员卡,买书可享受七折优惠.”李明:“是的,我上次买了一套图书,加上办卡的费用,还比按原价买书一共省了25元.”请根据他们的对话,求出李明上次所购买书籍的原价是多少元?【分析】可设书的原价为x元,据张欣和李明的话可得关于应付费用的等量关系:书价的七折+20=书的原价﹣25,据此列出方程求解即可.【解答】解:设李明上次所购买书籍的原价为x元.依题意,得0.7x+20=x﹣25,解得x=150.答:李明上次所购买书籍的原价是150元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.七、解答题(共3个小题,每小题5分,共15分)29.(5分)如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;(2)求∠BOE的度数.【分析】(1)求出∠AOD度数,求出∠AOE,求出∠AOF,即可得出答案;(2)求出∠BOD度数,求出∠DOE度数,相加即可得出答案.【解答】(1)答:∠AOF=∠COF,证明:∵O是直线CD上一点,∴∠AOC+∠AOD=180°,∵∠AOC=60°,∴∠AOD=180°﹣60°=120°,∵OE平分∠AOD,∴.∵OF⊥OE,∴∠FOE=90°∴∠AOF=∠FOE﹣∠AOE=90°﹣60°=30°,∴∠COF=∠AOC﹣∠AOF=60°﹣30°=30°,∴∠AOF=∠COF.(2)解:∵∠AOC=60°,∴∠BOD=∠AOC=60°,∠AOD=180°﹣60°=120°,∵OE是∠AOD的平分线,∴∠DOE=∠AOD=60°,∴∠BOE=∠BOD+∠DOE=60°+60°=120°,.【点评】本题考查了角平分线定义和角的有关计算的应用,主要考查学生的计算能力.30.(5分)如图,在长方形ABCD中放置9个形状、大小都相同的小长方形,试根据图中所给数据求出三块阴影部分面积的和.【分析】设小长方形的宽为x,则小长方形的长为(66﹣4x).由图形提供的数据建立方程求出其解即可.【解答】解:设小长方形的宽为x,则小长方形的长为(66﹣4x),依题意,得(66﹣4x)+2x=21+3x,解得:x=9小长方形的长为:66﹣4x=66﹣4×9=30所以三块阴影部分面积的和66×(21+3×9)﹣9×30×9=738.答:三块阴影部分面积的和为758.【点评】本题主要考查了二元一次方程组的应用,此题是一个信息题目,要求学生会根据图示找出数量关系,根据图示可以列出方程,求出小长方形的宽是解答本题的关键.31.(5分)阅读框图并回答下列问题:(1)若A为785,则E=1089;(2)按框图流程,取不同的三位数A,所得E的值都相同吗?如果相同,请说明理由;如果不同,请求出E的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数1,它的百位数字减去个位数字所得的差大于2”.其余的步骤不变,请猜想E的值并对你猜想的结论加以证明.【分析】(1)由A=785,根据框图中的流程计算即可得到E;(2)E的值相同,理由为:设A=100a+10b+c,且a﹣c=2,表示出B,求出A﹣B,得到C,进而求出D,最后求出E即可;(3)E=1089,理由为:设A=100a+10b+c且a﹣c>2,表示出B,进而得出C与D,求出E即可.【解答】解:(1)由A=785,得到B=587,∴C=A﹣B=785﹣587=198,D=891,则E=198+891=1089.(2)E的值都相同,理由如下:设A=100a+10b+c且a﹣c=2,则B=100c+10b+a,∴C=A﹣B=(100a+10b+c)﹣(100c+10b+a)=99a﹣99c=99(a﹣c)=99×2=198,∴D=891,∴E=C+D=198+891=1089.(3)E=1089,理由为:设A=100a+10b+c且a﹣c>2,则B=100c+10b+a,∴C=A﹣B=(100a+10b+c)﹣(100c+10b+a)=100(a﹣c)﹣(c﹣a)=100(a﹣c ﹣1)+10×9+(10+c﹣a),∴D=100(10+c﹣a)+10×9+(a﹣c﹣1),∴E=C+D=[100(a﹣c﹣1)+10×9+(10+c﹣a)]+[100(10+c﹣a)+10×9+(a﹣c﹣1)]=1089.【点评】此题考查了整式加减的应用,弄清题意是解本题的关键.。
北京市人教版七年级上册数学期末试卷及答案百度文库
北京市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠3.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④6.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 7.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣28.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =9.下列变形中,不正确的是( )A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m =,则x y = D .若x y =,则x y m m= 10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.把5,5,35按从小到大的顺序排列为______.16.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.17.写出一个比4大的无理数:____________.18.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 19.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.20.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.21.若∠1=35°21′,则∠1的余角是__. 22.方程x +5=12(x +3)的解是________.23.如果A、B、C在同一直线上,线段AB=6厘米,BC=2厘米,则A、C两点间的距离是______.24.观察“田”字中各数之间的关系:则c的值为____________________.三、压轴题25.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.28.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.30.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.31.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF∠=∠,进而可得FOD∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.A解析:A【解析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.7.D解析:D 【解析】 【分析】根据等式的基本性质对各选项进行逐一分析即可. 【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C 、∵a =b ,∴3a =3b ,故本选项正确;D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误. 故选:D . 【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.8.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.9.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】 方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .【点睛】 本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.C解析:C【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5, n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键17.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.18.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大19.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键20.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.21.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.22.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.23.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
2025届北京市丰台区十八中学数学七年级第一学期期末经典模拟试题含解析
2025届北京市丰台区十八中学数学七年级第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40°2.下列计算的结果中正确的是( )A .6a 2﹣2a 2=4B .a +2b =3abC .2xy 3﹣2y 3x =0D .3y 2+2y 2=5y 43.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合.( )A .90B .135C .180D .2704.如果∠A 和∠B 互补,且∠A >∠B ,给出下列四个式子:①90°﹣∠B ;②∠A ﹣90°;③12∠A+∠B ;④12(∠A ﹣∠B ),其中表示∠B 余角的式子有( )A .4个B .3个C .2个D .1个 5.某两位数,十位上的数字为a ,个位上的数字为b ,则这个两位数可表示为 ( )A .abB .a+bC .10a+bD .10b+a6.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子的年龄的4倍还大1岁,设今年儿子x 岁,则可列方程为( )A .4153(5)x x ++=+B .354(5)1x x -=-+C .354(5)1x x +=++D .453(5)1x x -=-+7.数149000000科学记数法可表示为( )A .81.4910⨯B .91.4910⨯C .814.910⨯D .914.910⨯8.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x 立方米的水,下列方程正确的是( )A .1.2×20+2(x ﹣20)=1.5xB .1.2×20+2x =1.5xC .1.22 1.52x x += D .2x ﹣1.2×20=1.5x 9.用一副三角板不能画出下列那组角( )A .45°,30°,90°B .75°,15°,135°C .60°,105°,150°D .45°,80°,120°10.23ab -的系数与次数分别为A .3?-,2次B . 3,2次C . 3?-,3次D .3,3次二、填空题(本大题共有6小题,每小题3分,共18分)11.若2(1)|2|0m n ++-=,则n m =________________.12.若两个角互补,且度数之比为3:2,则较大角的度数为______.13.若一个角等于53°17′,则这个角的余角等于__________.14.因式分解:2294m n -+____________.15.若|a|=3,|b|=4且a b >,则a b +=_______.16.单项式﹣2xy 2的系数是_____,次数是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,直线AB 、CD 相交于点O .已知∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:1. (1)求∠AOE 的度数;(2)若OF 平分∠BOE ,问:OB 是∠DOF 的平分线吗?试说明理由.18.(8分)化简求值()()2223421231a a a a a +----+,其中12a =-. 19.(8分)有个写运算符号的游戏:在“3□(2□3)□43□2” 中的每个□内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)请计算琪琪填入符号后得到的算式:()2432323⨯÷-÷;(2)嘉嘉填入符号后得到的算式是()43233÷⨯⨯□22,一不小心擦掉了□里的运算符号,但她知道结果是103-,请推算□内的符号.20.(8分)读题画图计算并作答 画线段AB =3 cm ,在线段AB 上取一点K ,使AK =BK ,在线段AB 的延长线上取一点C ,使AC =3BC ,在线段BA 的延长线取一点D ,使AD =AB .(1)求线段BC 、DC 的长?(2)点K 是哪些线段的中点?21.(8分)如 图,△ACB 和△E CD 都是等腰直角三角形,A ,C ,D 三点在同一直线上,连接BD ,AE ,并延长AE 交BD 于F .(1)求证:△ACE ≌△BCD ;(2)直线AE 与BD 互相垂直吗?请证明你的结论.22.(10分)把下列各数在数轴上表示出来,并用“<”将各数连接起来.﹣3,+1,﹣1.5,5223.(10分)如图,长方形ABCD 沿着直线DE 和EF 折叠,使得AB 的对应点A′,B′和点E 在同一条直线上. (1)写出∠AEF 的补角和∠ADE 的余角;(2)求∠DEF .24.(12分)计算:﹣23﹣[(﹣3)2﹣22×14﹣8.5]÷(﹣12)2参考答案一、选择题(每小题3分,共30分)1、C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.2、C【分析】直接利用合并同类项法则计算得出答案.【详解】A、6a2﹣2a2=4a2,故此选项错误;B、a+2b,无法计算,故此选项错误;C、2xy3﹣2y3x=0,故此选项正确;D、3y2+2y2=5y2,故此选项错误.故选:C.【点睛】本题考查了整式的运算问题,掌握合并同类项法则是解题的关键.3、B【分析】据旋转中心、旋转角及旋转对称图形的定义结合图形特点,可知图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90°,180°,270°,360°,都能与原来的图形重合,再利用中心对称图形的定义即可求解.【详解】解:图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90°,180°,270°,360°,都能与原来的图形重合,故只有135不能与原图形重合.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.也考查了旋转中心、旋转角的定义及求法.对应点与旋转中心所连线段的夹角叫做旋转角.4、B【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【详解】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°-∠B)=90°,∴90°-∠B是∠B的余角,②∵∠B+(∠A-90°)=∠B+∠A-90°=180°-90°=90°,∴∠A-90°是∠B的余角,③∵∠B+12∠A+∠B=()31390,222B A B B∠+∠+∠=∠+︒∴12∠A+∠B不是∠B的余角,④∵∠B+ 12(∠A-∠B)=12(∠A+∠B)=12×180°=90°,∴12(∠A-∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故选B.【点睛】本题考查了余角和补角,熟记余角和补角的概念是解题的关键.5、C【解析】根据两位数的表示方法即可解答.【详解】根据题意,这个两位数可表示为10a+b,故选C.【点睛】本题考查了一个两位数的表示方法,即为十位上的数字×10+个位上的数字.6、B【分析】设今年儿子的年龄为x岁,则今年父亲的年龄为3x岁,根据5年前父亲的年龄是儿子年龄的4倍再加一岁,即可得出关于x的一元一次方程,此题得解.【详解】设今年儿子的年龄为x岁,则今年父亲的年龄为3x岁,依题意得:3x﹣5=4(x﹣5)+1.故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7、A【分析】由题意根据科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数进行分析得解.【详解】解:将149000000用科学记数法表示为:81.4910⨯.故选:A .【点睛】本题考查科学记数法的表示方法,熟知科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值是解题的关键.8、A【解析】由“所交水费的平均价格为1.5元每立方米”可知,该月用水量x 立方米超过了20立方米,超过部分为(x -20)立方米,则该月水费由1.220⨯和2(20)x -两部分组成,根据两部分水费之和为1.5x ,可得:1.2202(20) 1.5x x ⨯+-=.故选A.9、D【解析】本题考查三角板上角的度数,三角板上的度数有30°、45°、60°、90°,将它们组合看哪些度数不能用它们表示.【详解】比如:画个75°的角,先用30°在纸上画出来,再45°角叠加就画出了75°角了;同理可画出30°、45°、60°、90°、15°、105°、120°、135°、150°的角.因为无法用三角板中角的度数拼出80°,所以不能画出的角的度数是80度.本题选择D.【点睛】熟悉角的计算是解题的关键.10、C【分析】系数即字母前面数字部分,次数即所有字母次数的和.【详解】系数为:-3次数为:1+2=3故选:C .【点睛】本题考查单项式的概念,注意次数指的单项式中所有字母次数的和.二、填空题(本大题共有6小题,每小题3分,共18分)11、1;【分析】根据平方和绝对值的非负性求出m 和n 的值,从而得到n m 的值.【详解】解:∵2(1)|2|0m n ++-=,∴m+1=0,n-2=0,∴m=-1,n=2,∴n m =1.故答案为:1.【点睛】本题考查了代数式求值,解题的关键是正确运用平方和绝对值的非负性,难度不大.12、108°【分析】根据两个角度数之比为3:2,设较大角的度数为3x ,较小角的度数为2x ;结合两个角互补,通过建立一元一次方程并求解,即可得到答案.【详解】两个角度数之比为3:2设较大角的度数为3x ,较小角的度数为2x∵两个角互补∴32180x x +=∴36x =∴较大角的度数为3336108x =⨯=故答案为:108°.【点睛】本题考查了补角、一元一次方程的知识;解题的关键是熟练掌握补角的性质,从而完成求解.13、'3643【分析】根据余角的定义计算即可求解.【详解】解:'905317=3643︒-︒′.故答案为:'3643【点睛】本题考查了余角的定义和角的计算,熟练掌握余角的定义并能进行角的加减运算是解题关键.14、(23)(23)n m n m -+【分析】根据平方差公式因式分解.【详解】2294m n -+=222249(2)(3)(23)(23)n m n m n m n m -=-=-+.故答案为:(23)(23)n m n m -+.【点睛】考查了利用平方差公式因式分解,解题关键是熟记其公式特点和化成a 2-b 2的形式.15、-1或-1 【分析】根据3a =,b 4=,a >b ,得出a 、b 的值,再代入计算即可. 【详解】解:∵3a =,b 4=,∴a=±3,b=±4, 又∵a >b ,∴a=3,b=-4或a=-3,b=-4,当a=3,b=-4时,a+b=3+(-4)=-1,当a=-3,b=-4时,a+b=(-3)+(-4)=-1,因此a+b 的值为:-1或-1.故答案为:-1或-1.【点睛】本题考查了有理数的加法,绝对值的意义,掌握有理数加法的计算方法是正确计算的前提,根据绝对值的意义求出a 、b 的值是得出答案的关键.16、-2 1【分析】根据单项式的系数和次数的定义解答即可【详解】解:单项式﹣2xy 2的系数是﹣2,次数是1+2=1.故答案是:﹣2;1.【点睛】考查了单项式,单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.三、解下列各题(本大题共8小题,共72分)17、 (1) 10°;(2) OB 是∠DOF 的平分线,理由见解析【分析】(1)设∠AOE =2x ,根据对顶角相等求出∠AOC 的度数,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠BOF 的度数即可.【详解】(1)∵∠AOE :∠EOC =2:1.∴设∠AOE =2x ,则∠EOC =1x ,∴∠AOC =5x .∵∠AOC =∠BOD =75°,∴5x =75°,解得:x =15°,则2x =10°,∴∠AOE =10°;(2)OB 是∠DOF 的平分线.理由如下:∵∠AOE =10°,∴∠BOE =180°﹣∠AOE =150°.∵OF 平分∠BOE ,∴∠BOF =75°.∵∠BOD =75°,∴∠BOD =∠BOF ,∴OB 是∠DOF 的角平分线.【点睛】本题考查了对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.18、23a -,114- 【分析】原式去括号合并得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=2223+4216+22a a a a a ----23a =- 当12a =-时, 原式=2111324⎛⎫--- ⎪⎝⎭= 【点睛】此题考查了整式的加减−化简求值,熟练掌握整式的运算法则是解题的关键.19、(1)53;(2)□里应是“-”号. 【分析】(1)根据有理数的混合运算法则计算可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;【详解】(1) ()2432323⨯÷-÷ =2413334⨯-⨯ =123- =53;(2)()43233÷⨯⨯=4 363÷⨯=14 23⨯=2 3 ,因为23□22=103-,即23□4=103-所以23-123=103-所以“□”里应是“-”号.【点睛】本题考查了有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.20、(1) BC=1.5 cm,DC=6cm;(2)点K是线段AB和DC的中点.【分析】(1)先根据AC=3BC=AB+BC,可得AB=2BC,即BC=AB=1.5(cm),AD=AB=×3=1.5(cm),进而可得:DC=DA+AB+BC=1.5+3+1.5=6(cm),(2)根据中点的定义可得:K是线段AB的中点,也是线段DC的中点.【详解】(1)由AC=3BC=AB+BC,得AB=2BC,∴BC=AB=1.5(cm),AD=AB=×3=1.5(cm),∴DC=DA+AB+BC=1.5+3+1.5=6(cm),(2)K是线段AB的中点,也是线段DC的中点.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点的性质和线段和差关系.21、(1)证明见解析;(2)垂直,理由见解析.【解析】试题分析:(1)、根据等腰直角三角形的性质得出AC=BC,EC=CD,∠BCD=∠ACB=90°,从而得到三角形全等;(2)、直线AE与BD互相垂直就是证明∠AFD=90°,根据三角形全等得到∠AEC=∠BDC,结合∠BEF=∠AEC,从而得出∠BEF=∠BDC,根据DBC+∠BDC=90°得到∠BEF+∠DBC=90°,从而得到垂直.试题解析:(1)、∵△ACB和△ECD都是等腰直角三角形,∴AC="BC" EC=CD,又∵∠BCD=∠ACB=90°,∴△ACE≌△BCD(SAS)(2)、∵△ACE≌△BCD ∴∠AEC=∠BDC,又∵∠BEF=∠AEC(对顶角),∴∠BEF=∠BDC,又∵∠DBC+∠BDC=90°,∴∠BEF+∠DBC=90°,∴AF⊥BD,所以直线AE与BD互相垂直.考点:三角形全等的判定与性质22、数轴见解析,5 3 1.512 -<-<+<【分析】画出数轴,将这四个点标在数轴上,根据数轴上的点从左往右依次增大比较有理数的大小.【详解】解:如图,数轴上的点表示的数右边的总比左边的大,得53 1.512 -<-<+<.【点睛】本题考查利用数轴比较有理数的大小,解题的关键是掌握数轴的三要素,用数轴上的点表示有理数.23、(1)∠AEF的补角有∠BEF和∠B′EF,∠ADE的余角有∠AED、∠A′ED和∠CDE;(2)∠DEF=90°【分析】(1)根据折叠的性质以及补角的定义和余角的定义即可写出;(2)由折叠的性质得到∠AED=∠A′ED,∠BEF=∠B′EF,根据平角的定义即可得到结论;【详解】(1)根据折叠的性质知:∠AED=∠A′ED,∠BEF=∠B′EF,∵四边形ABCD是长方形,∴∠ADC=∠A=90︒,∴∠AEF+∠BEF=180︒,∴∠AEF的补角有∠BEF和∠B′EF,∠ADE+∠CDE=90︒,∠ADE+∠AED =90︒,∠ADE的余角有∠AED、∠A′ED和∠CDE;(2)由折叠可知∠AED=∠A′ED,∠BEF=∠B′EF,∵∠AED+∠A′ED+∠BEF+∠B′EF=180°,∴∠DEA′+∠B′EF=12⨯180°=90°,∴∠DEF=90°;【点睛】本题考查了折叠的性质,补角和余角的定义,正确的识别图形解题的关键.24、﹣1【解析】根据有理数的乘除法和加减法可以解答本题.【详解】﹣23﹣[(﹣3)2﹣22×14﹣8.5]÷(﹣12)2=﹣8﹣[9﹣4×14﹣8.5]×4=﹣8﹣[9﹣1﹣8.5]×4=﹣8﹣(﹣0.5)×4=﹣8+2=﹣1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
最新七年级(上)数学期末考试试卷(含解析) (12)
北京市朝阳区2017-2018学年度第一学期期末检测七年级数学试卷 (选用) 2018.1(时间:90分钟 满分:100分)一、 选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.中美两国企业家对话会于2017年11月9日在北京人民大会堂举行,在两国元首的正确引领下,两国企业创造了奇迹,经贸合作的金额达到253 500 000 000美元,这既创造了中美经贸合作的新纪录,也刷新了世界经贸合作史的纪录.将253 500 000 000用科学记数法表示应为 A .120.253510⨯ B .122.53510⨯ C .112.53510⨯ D .9253.510⨯ 2.如图,在不完整的数轴上有A ,B 两点,它们所表示的两个有理数互为..相反..数.,则关于原点位置的描述正确的是A .在点A 的左侧B .与线段AB 的中点重合C .在点B 的右侧D .与点A 或点B 重合3.下列各式中结果为负数的是A .(3)--B .3- C .2(3)- D .23- 4.已知2x =-是方程410x a +=的解,则a 的值是A .3B .12C .2D .-3 5.下列计算正确的是A .2233x x -= B .22232a a a --=-C .3(1)31a a -=-D .2(1)22x x -+=--6.下面四组图中,每组左边的平面图形能够折叠成右边的立体图形的是A .①②B .①④C .②D .③ 7.李老师用长为6a 的铁丝做了一个长方形教具,其中一边长为b -a ,则另一边的长为A .7a b -B .2a b -C .4a b -D .82a b - 8.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能..画出的角度是 A .18° B .55° C .63° D .117°二、填空题(本题共24分,每小题3分) 9.写出一个比324-小的有理数: . 10.若a ,b 互为倒数,则2ab -5= . 11.计算11512________.436⎛⎫-+⨯=⎪⎝⎭ 12.下列三个现象:①用两个钉子就可以把一根木条固定在墙上;②从A 地到B 地架设电线,只要尽可能沿着线段AB 架设,就能节省材料; ③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上. 其中可用“两点确定一条直线”来解释的现象有 .(填序号) 13.下面的框图表示了小明解方程5(3)3x x -+=的流程:其中,步骤“③”的依据是 .14.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x 的值为 .15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°12'的方向上,则∠AOB 的补角的度数是 .第14题图 第15题图16.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个 参赛者的得分情况.在此次竞赛中,有一位 参赛者答对8道题,答错12道题,则他的 得分是 .三、解答题(本题共52分, 17-21题每小题4分, 22-25题每小题5分, 26-27题每小题6分) 17.计算:()()41230(5)-⨯-+÷-. 18.解方程:72122x x +=-. 19.解方程:12146x x-++=.20.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线AB ; (2)连接BC ;(3)反向延长BC 至D ,使得BD =BC ; (4)在直线l 上确定点E ,使得AE +CE 最小.21.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.22.某学校为表彰在“庆祝党的十九大胜利召开”主题绘画比赛中表现突出的同学,购买了30支水彩笔和40本笔记本,共用1360元,每本笔记本的价格比每支水彩笔的价格贵6元.每支水彩笔的价格是多少元?23.阅读下面材料:数学课上,老师给出了如下问题:如图,∠AOB =80°,OC 平分∠AOB .若∠BOD =20°,请你补全图形,并求∠COD 的度数.以下是小明的解答过程:解:如图1,因为OC 平分∠AOB ,∠AOB =80°,所以BOC ∠=________AOB ∠=_________°. 因为∠BOD =20°,所以COD ∠= °.小静说:“我觉得这个题有两种情况,小明考虑的是OD 在∠AOB 外部的情况,事实上,OD 还可能在∠AOB 的内部” . 图1完成以下问题: (1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图2中画出另一种情况对应的图形,并直接写出此时∠COD 的度数为 °.图224.对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=. (1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = (用含m ,n 的式子表示).25.自2014年5月1日起,北京市居民使用自来水实施阶梯水价,具体标准如下表:例如,某户家庭年使用自来水200 m,应缴纳:180×5+(200-180)×7=1040元;某户家庭年使用自来水300 m3,应缴纳:180×5+(260-180)×7+(300-260)×9=1820元.(1)小刚家2016年共使用自来水170 m3,应缴纳元;小刚家2017年共使用自来水260 m3,应缴纳元.(2)小强家2017年使用自来水共缴纳1180元,他家2017年共使用了多少自来水?26.如图,数轴上点A,B表示的有理数分别为-6,3,点P是射线AB上的一个动点(不与点A,B 重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.27.观察下面的等式:5112+322-=--+; 3112+3-=--+; 1112+3-=-+;15()12+322--=-+; (2)142+3--=-+.回答下列问题:(1)填空: 152+3-=-+;(2)已知212+3x -=-+,则x 的值是 ;(3)设满足上面特征的等式最左边的数为y ,求y 的最大值,并写出此时的等式.北京市朝阳区2017~2018学年度第一学期期末检测 七年级数学试卷参考答案及评分标准 2018.1一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)9.答案不唯一,例如-3 10.-3 11. 9 12. ①③13.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等14.-515.100°12′16.24三、解答题(本题共52分,第17-21题每小题4分,第22-25题每小题5分,第26-27题每小题6分) 17.解:原式1(2)(6)=⨯-+-26=-- 8=-.18.解:72122x x +=-22127x x +=-.45x =.54x =.19.解:12146x x-++= 3(1)122(2)x x -+=+.331242x x -+=+. 324123x x -=-+.5.x =-20.解:如图.21.解:223(2)(6)4x xy x xy y ----223664x xy x xy y =--+- 224x y =-.因为2250x y --=,所以225x y -=.所以原式=10.22.解:设每支水彩笔的价格为x 元.由题意,得 3040(6)136x x ++=.解得 16x =.答:每支水彩笔的价格为16元.23.解:(1)12,40,60. (2)如图.图2∠COD 的度数为 20 °.24.解:(1)(2)-⊙1132(23)122=-⨯-+- 4=-.(2)答案不唯一,例如:m n ⊕=(1)m n +.25.解:(1)850,1460.(2)设小强家2017年共使用了x m 3自来水.由题意,得 18057(180)1180x ⨯+-=. 解得 220x =.答:小强家2017年共使用了220 m 3自来水.26.解:(1)6,6.(2)MN 的长不改变.①如图1,当点P 在线段AB 上时,因为M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点, 所以22,33PM AP PN BP ==. 所以MN PM PN =+2233AP BP =+2()3AP BP =+. 因为AP +BP =AB ,所以MN 23AB =.②如图2,当点P 在线段AB 的延长线上时,因为M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,所以22,33PM AP PN BP ==. 所以MN PM PN =-2233AP BP =-2()3AP BP =-.因为AP BP AB -=,所以MN 23AB =.综上所述,点P 在射线AB 上运动(不与点A ,B 重合)的过程中,始终有MN 263AB ==.27.解:(1)3-. (2)0或4-.(3)设绝对值符号里左边的数为a . 由题意,得 12+3y a -=-+. 所以24a y +=-.因为 2a +的最小值为0, 所以4y -的最小值为0. 所以y 的最大值为4.此时20a +=.所以 2a =-.所以此时等式为4122+3-=--+.综上所述,y 的最大值为4,此时等式为4122+3-=--+.说明:以上答案仅供参考,若有不同解法,只要过程和解法正确,可相应给分.祝老师们身体健康,假期愉快!。
北京初一初中数学期末考试带答案解析
北京初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列运算正确的是()A.a3•a4=a12B.(﹣6a6)÷(﹣2a2)=3a3C.(a﹣2)2=a2﹣4D.2a﹣3a=﹣a2.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查4.如图,已知AB∥CD,直线EF分别交 AB、CD于点E,F,EG平分∠BEF交CD于点G.如果∠1=70°,那么∠2的度数是()A.70° B.65° C.55° D.22.5°5.若方程ax﹣5y=3的一个解是,则a的值是()A.﹣13B.13C.7D.﹣76.把不等式的解集表示在数轴上,下列选项正确的是()A.B.C.D.7.为迎接北京奥运会,有十五位同学参加奥运知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A.平均数B.众数C.最高分数D.中位数8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.设a=355,b=444,c=533,则a、b、c的大小关系是()A.c<a<b B.a<b<c C.b<c<a D.c<b<a二、填空题1.如图,∠AOC=90°,ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,那么,∠MON= °.2.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是.3.若x﹣y=2,xy=1,则x2+y2= .4.社会消费品通常按类别分为:吃类商品、穿类商品、用类商品、烧类商品,其零售总额是反映居民生活水平的一项重要数据.为了了解北京市居民近几年的生活水平,小红参考北京统计信息网的相关数据绘制了统计图的一部分:(1)北京市2013年吃类商品的零售总额占社会消费品零售总额的百分比为;(2)北京市2013年吃类商品零售总额约为1673亿元,那么当年的社会消费品零售总额约为亿元;请补全条形统计图,并标明相应的数据.5.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).6.2x6y2•x3y+(﹣25x8y2)(﹣xy).7.16x2y﹣16x3﹣4xy2.8.张强和李毅二人分别从相距20千米的A、B两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求张强、李毅每小时各走多少千米.三、解答题1.[(a+b)(a﹣b)﹣(a﹣b)2+2b(a﹣b)]÷4b.2.25x2﹣(x2+4)2.3.解方程组:.4.解不等式﹣<﹣1,并把解集在数轴上表示.5.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.证明:(请你在横线上填上合适的推理)∵AC∥DE(已知),∴∠1=∠同理∠ =∠3∴∠ =∠3∵DC∥EF(已知),∴∠2=∠∵CD平分∠ACB,∴∠ =∠∴∠ =∠∴EF平分∠BED.6.已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.7.已知关于x、y的二元一次方程组的解x、y是一对相反数,试求m的值.8.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).四、计算题求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.北京初一初中数学期末考试答案及解析一、选择题1.下列运算正确的是()A.a3•a4=a12B.(﹣6a6)÷(﹣2a2)=3a3C.(a﹣2)2=a2﹣4D.2a﹣3a=﹣a【答案】D【解析】根据合并同类项法则,同底数的幂的定义、乘方的概念解答.A、应为a3·a4=a7,故本选项错误;B、应为(﹣6a6)÷(﹣2a2)=3a4,故本选项错误;C、应为(a﹣2)2=a2﹣4a+4,故本选项错误;D、2a﹣3a=﹣a,正确.故选D.【考点】同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式2.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a×10n(1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.因此可求6700 010=6.70001×106≈6.7×106.故选B.【考点】科学记数法与有效数字3.为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查【答案】B【解析】根据题意可知:总体是参加中考的15 000名学生的视力情况,故A不正确;每名学生的视力情况是总体的一个样本,因此C错;上述调查应该是抽查,因此D错.故选B.【考点】总体、个体、样本、样本容量4.如图,已知AB∥CD,直线EF分别交 AB、CD于点E,F,EG平分∠BEF交CD于点G.如果∠1=70°,那么∠2的度数是()A.70° B.65° C.55° D.22.5°【答案】C【解析】根据平行线的性质可由EG平分∠BEF,得∠BEG=∠GEF,再根据平行线的性质:两直线平行,内错角相等,由AB∥CD,求得∠BEG=∠2,再根据等量代换可求∠2=∠GEF,因此由三角形的内角和定理知∠1=70°,∠1+∠2+∠GEF=180°,可得∠2=55°.故选C.【考点】平行线的性质5.若方程ax﹣5y=3的一个解是,则a的值是()A.﹣13B.13C.7D.﹣7【答案】A【解析】把x与y的值代入方程计算,即把代入方程得:﹣a﹣10=3,解得:a=﹣13,故选A.【考点】二元一次方程的解6.把不等式的解集表示在数轴上,下列选项正确的是()A.B.C.D.【答案】B【解析】【考点】在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式2x+1>-1得x>-1,再解不等式x+2≤3得x≤1,再根据求不等式组的解集应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了,求出两不等式的公共部分,即解集为-1<x≤1,最后根据不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示,把不等式的解集表示在数轴上为.故选:B.【考点】在数轴上表示不等式的解集;解一元一次不等式组7.为迎接北京奥运会,有十五位同学参加奥运知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A.平均数B.众数C.最高分数D.中位数【答案】D【解析】由于总共有15个人,且他们的分数互不相同,取8位同学,第8的成绩就是中位数,所以要判断是否进入前8名,只要比较自己的分数和中位数的大小即可.故选D.【考点】统计量的选择8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【答案】D【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积:甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b),然后根据阴影部分的面积相等,从而得到可以验证成立的公式a2﹣b2=(a+b)(a﹣b).故选:D.【考点】等腰梯形的性质;平方差公式的几何背景;平行四边形的性质9.设a=355,b=444,c=533,则a、b、c的大小关系是()A.c<a<b B.a<b<c C.b<c<a D.c<b<a【答案】A【解析】根据有理数大小比较的规律:有理数的比较大小.一般方法是化为指数相同的幂,比较底数的大小.因此可得355=(35)11;444=(44)11;533=(53)11.又因为53<35<44,故533<355<444.故答案:A.【考点】幂的乘方与积的乘方二、填空题1.如图,∠AOC=90°,ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,那么,∠MON= °.【答案】45°【解析】根据ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,得出∠AOM=∠MOD,∠CON=∠NOD,又∠AOC=90°即可得出∠AOM=∠MOD=45°+∠COD.进而求出∠MON的度数为45°.【考点】角平分线的定义2.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是.【答案】3【解析】先把a当作已知条件解不等式-2x+5≥5,求出x的取值范围x≤,再根据不等式的解集为x≤﹣1,即可得=-1,解出a=3.【考点】在数轴上表示不等式的解集3.若x﹣y=2,xy=1,则x2+y2= .【答案】6【解析】把x﹣y=2的两边平方得出,x2﹣2xy+y2=4,再进一步由xy=﹣1,把代数式变形求得x2+y2=4+2×1=6【考点】完全平方公式4.社会消费品通常按类别分为:吃类商品、穿类商品、用类商品、烧类商品,其零售总额是反映居民生活水平的一项重要数据.为了了解北京市居民近几年的生活水平,小红参考北京统计信息网的相关数据绘制了统计图的一部分:(1)北京市2013年吃类商品的零售总额占社会消费品零售总额的百分比为;(2)北京市2013年吃类商品零售总额约为1673亿元,那么当年的社会消费品零售总额约为亿元;请补全条形统计图,并标明相应的数据.【答案】20%,8350【解析】(1)利用北京市2013年吃类商品的零售总额占社会消费品零售总额的百分比=1﹣吃类商品的百分比﹣穿类商品的百分比﹣用类商品的百分比﹣烧类商品的百分比,即1﹣64.1%﹣7.2%﹣8.7%=20%;(2)先求出北京市2013年的社会消费品零售总额约为:1670÷20%=8350(亿元),补全条形统计图,故答案为:20%,8350.【考点】条形统计图;扇形统计图5.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).【答案】8,【解析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n个数是.【考点】规律型:数字的变化类6.2x6y2•x3y+(﹣25x8y2)(﹣xy).【答案】27x9y3【解析】利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式求解即可.试题解析:解:2x6y2·x3y+(﹣25x8y2)(﹣xy)=2x9y3+25x9y3,=27x9y3.【考点】单项式乘单项式7.16x2y﹣16x3﹣4xy2.【答案】﹣4x(2x﹣y)2【解析】因式分解是先用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.此题先提取公因式4x,然后再利用完全平方公式进行二次因式分解.试题解析:解:16x2y﹣16x3﹣4xy2,=4x(4xy﹣4x2﹣y2),=﹣4x(4x2﹣4xy+y2),=﹣4x(2x﹣y)2.【考点】提公因式法与公式法的因式分解综合运用8.张强和李毅二人分别从相距20千米的A、B两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求张强、李毅每小时各走多少千米.【答案】4千米,5千米【解析】设张强每小时走x千米,李毅每小时走y千米,根据题意可得,张强走2.5小时的路程+李毅走2小时的路程=20千米,李毅和张强共同走1个小时,俩人走的路程为9千米,据此列方程组求解.试题解析:解:设张强每小时走x千米,李毅每小时走y千米,由题意得,,解得:.答:张强每小时走4千米,李毅每小时走5千米.【考点】二元一次方程组的应用三、解答题1.[(a+b)(a﹣b)﹣(a﹣b)2+2b(a﹣b)]÷4b.【答案】a-b【解析】原式中括号中利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,再利用多项式除以单项式法则计算即可得到结果.试题解析:原式=(a2﹣b2﹣a2+2ab﹣b2+2ab﹣2b2)÷4b=(﹣4b2+4ab)÷4b=﹣b+a.【考点】整式的混合运算2.25x2﹣(x2+4)2.【答案】-(x+4)(x+1)(x-1)(x-4)【解析】先把25x2看做(5x)2,则可以根据平方差公式进行分解,然后用十字相乘法法完成分解.试题解析:解:25x2﹣(x2+4)2=(5x)2﹣(x2+4)2=(5x+x2+4)(5x-x2-4)=-(x+4)(x+1)(x-1)(x-4)【考点】分解因式3.解方程组:.【答案】【解析】方程组利用加减消元法求出解即可.试题解析:解:,①+②×2得:13x=26,即x=2,把x=2代入②得:y=4,则方程组的解为.【考点】解二元一次方程组4.解不等式﹣<﹣1,并把解集在数轴上表示.【答案】x>﹣2【解析】去分母,去括号,移项,合并同类项,系数化成1即可.试题解析:解:去分母得:2(4x﹣1)﹣(5x+2)<﹣10,8x﹣2﹣5x﹣2<﹣10,3x<﹣6,x>﹣2,在数轴上表示为:.【考点】解一元一次不等式;在数轴上表示不等式的解集5.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.证明:(请你在横线上填上合适的推理)∵AC∥DE(已知),∴∠1=∠同理∠ =∠3∴∠ =∠3∵DC∥EF(已知),∴∠2=∠∵CD平分∠ACB,∴∠ =∠∴∠ =∠∴EF平分∠BED.【答案】5,5,1,4,1,2,3,4【解析】先根据平行线的性质得出∠BEF=∠BCD,∠FED=∠EDC,∠EDC=∠DCA,∠FED=∠DCA,故可得出∠FED=∠DCA,再根据CD平分∠ACB可知∠DCA=∠BCD,故可得出结论.试题解析:证明:∵AC∥DE(已知)∴∠1=∠5同理∠5=∠3∴∠1=∠3∵DC∥EF(已知),∴∠2=∠4∵CD平分∠ACB,∴∠1=∠2∴∠3=∠4∴EF平分∠BED.故答案为:5,5,1,4,1,2,3,4.【考点】平行线的性质6.已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【答案】见解析【解析】过E点作EF∥AB,根据平行线的性质得出∠B=∠3,结合已知条件∠1=∠B得出∠1=∠3.根据平行于同一直线的两直线平行得出EF∥CD,由平行线的性质及已知条件∠2=∠D得出∠2=∠4,再根据平角的定义得出∠1+∠2+∠3+∠4=180°,则∠BED=90°.试题解析:证明:过E点作EF∥AB,则∠B=∠3,又∵∠1=∠B,∴∠1=∠3.∵AB∥EF,AB∥CD,∴EF∥CD,∴∠4=∠D,又∵∠2=∠D,∴∠2=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠3+∠4=90°即∠BED=90°,∴BE⊥ED.【考点】平行线的判定与性质7.已知关于x、y的二元一次方程组的解x、y是一对相反数,试求m的值.【答案】【解析】把x=﹣y代入方程组可得到关于y、m的方程组,解此方程组可求得m的值.试题解析:解:由题意可知x=﹣y,代入方程组可得,整理可得,把y=2m+3代入m=﹣7y可得m=﹣14m﹣21,解得m=﹣,即m的值为﹣.【考点】二元一次方程组的解8.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).【答案】见解析【解析】(1)利用长方形的性质结合基本图形进而拼凑即可;(2)利用平行四边形的性质结合基本图形进而拼凑即可;(3)结合基本图形进而拼凑出符合题意的四边形即可.试题解析:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示:【考点】图形的剪拼四、计算题求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.【答案】﹣4,﹣3,﹣2,﹣1,0,1,2【解析】先根据一元一次不等式组解出a的取值,根据a是整数解得出a的可能取值即可.试题解析:解:不等式﹣11<﹣2a﹣5≤3的解集为﹣4≤a<3,所以适合不等式﹣11<﹣2a﹣5≤3的a的整数解有﹣4,﹣3,﹣2,﹣1,0,1,2.【考点】一元一次不等式组的整数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京第十八中学七年级上册数学期末试卷及答案-百度文库一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30°B .40°C .50°D .90°2.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .54.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°5.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .6.下列各数中,绝对值最大的是( ) A .2 B .﹣1 C .0 D .﹣3 7.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱10.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯C .6510⨯D .510⨯13.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm14.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 17.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 18.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.19.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.20.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________21.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.22.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.23.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.24.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.25.-2的相反数是__.26.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.27.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.28.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?33.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?34.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.35.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.36.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 37.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.38.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.3.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.4.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.5.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.6.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.7.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.9.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.10.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.D【解析】 【分析】方程两边同乘12即可得答案. 【详解】方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D . 【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案. 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.13.B解析:B 【解析】 【分析】由CB =4cm ,DB =7cm 求得CD=3cm ,再根据D 是AC 的中点即可求得AC 的长 【详解】∵C ,D 是线段AB 上两点,CB =4cm ,DB =7cm , ∴CD =DB ﹣BC =7﹣4=3(cm ), ∵D 是AC 的中点, ∴AC =2CD =2×3=6(cm ). 故选:B . 【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.14.A解析:A 【解析】 【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.17.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.19.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 22.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.23.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.24.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.25.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.26.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.27.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 28.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.29.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.30.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1……∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.33.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为。