强度理论

合集下载

强度理论

强度理论
在Mmax和FS,max同时存在的横截面C稍稍偏左的横截 面上,该工字形截面腹板与翼缘交界点a处,正应力 和切应力分别比较接近前面求得的max和max,且该 点处于平面应力状态,故需利用强度理论对该点进 行强度校核。
M max ya 80103 N m 135103 m 122.7 MPa 6 4 Iz 8810 m
第9章 强度理论
9-1 强度理论概述
强度条件: max
[ ]
适用于单向应力状态,σmax为拉(压)杆横截面上 的正应力或梁横截面上的最大弯曲正应力。
max [ ]
适用于纯剪切应力状态,τmax为圆轴扭转时横截 面上的最大切应力或梁在横力弯曲时横截面上的 最大弯曲切应力。
[σ]或[τ]是由拉伸(或压缩)试验或纯剪切试验所
且相应的材料多为塑性材料;为避免在校核强度时
需先求主应力值等的麻烦,可直接利用图示应力状
Ⅱ.产生显著塑性变形而丧失工作能力的塑性屈服。
铸铁拉伸时沿试件的横截面断裂
铸铁圆轴扭转时沿与轴线约成 450的螺旋面断裂。 断裂与最大拉应力或最大拉应变有关,是拉应力 或拉应变过大所致。
低碳钢拉伸至屈服时,会出现与轴线约成450 的滑移线。
低碳钢圆轴扭转时沿纵横方向出现滑移线。
屈服或显著塑性变形是切应力过大所致。
2

2 0
3 2 27.7 MP a 2 2
2

由于梁的材料Q235钢为塑性材料,故用第三或第 四强度理论校核a点的强度。
r3 1 3 150.4 MPa 27.7 MPa 178.1 MPa
r4
1 1 2 2 2 3 2 3 1 2 2

工程力学第5节 强度理论

工程力学第5节 强度理论

max 0
1 3 max 13 2
第三强度理论 建立的强度条件
1 3 s
1 3 [ ]
4、形状改变比能理论(第四强度理论) 这一理论认为形状改变比能是引起材料屈服破 坏的主要因素。即无论什么应力状态,只要构件内 一点处的形状改变比能达到单向应力状态下的极限 值,材料就要发生屈服破坏。经推导可得危险点处 于复杂应力状态的构件发生塑性屈服破坏的条件为
二、四种强度理论 1、最大拉应力理论(第一强度理论) 该理论认为引起材料脆性断裂破坏的因素是最 大拉压力。即无论什么应力状态下,只要构件内一 点处的最大拉压力达到单向应力状态下的极限应力, 材料就要发生脆性断裂。于是危险点处于复杂应力 状态的构件发生脆性断裂破坏的条件为:
1 b
第一强度理论 建立的强度条件
1 b / E 1 1 [1 ( 2 3 )] E
第二强度理论 建立的强度条件
1 ( 2 3 ) b
1 ( 2 3 ) [ ]
3、最大切应力理论(第三强度理论) 这一理论认为最大切应力是引起屈服的主要因 素。即无论什么应力状态,只要最大切应力达到单 向应力状态下的极限切应力,材料就要发生屈服破 坏。于是危险点处于复杂应力状态的构件发生塑性 屈服破坏的条件为:
纵截面上的正应力
2)确定主应力 因t <<D,p 值比 和 小得多,工程计算常忽略。
pD 150106 Pa 2t
1 150MPa 2 75MPa 3 0
3)按照形状改变比能理论校核强度
r 4 1 2 2 3 3 1
2 1 2 2 2 3

材料力学第9章 强度理论

材料力学第9章 强度理论

由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E

b
E
1 1 1 2 3 E
1u
1u
E

b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa

强度理论

强度理论

第一强度理论(最大拉应力准则)(maximum tensile stree criterion):无论材料处于什么应力状态,只要发生脆性断裂,其共同原因都是由于微元内的最大拉应力δmax达到了某个共同的极限值。

根据这一理论,“无论什么应力状态”,当然包括单向应力状态。

脆性材料单向拉伸试验结果表明,当横截面上的正应力δ=δb时发生脆性断裂;对于单向拉伸,横截面上的正应力,就是微元所有方向面中的最大正应力,即δmax=δ;所以δb就是所有应力状态发生脆性断裂的极限值,同时,无论什么应力状态,只要存在大于零的正应力,δ1(第一主应力)就是最大拉应力,因此应力状态发生脆性断裂的失效判据为δ1=δb。

相应的强度条件δ1≤[δ]=δb/nb第二强度理论(最大拉应变准则)(maximum tensile strain criterion):无论材料处于什么应力状态,只要发生脆性断裂,其共同原因都是由于微元内的最大拉应变ε1达到了某个共同的极限值。

根据这一理论以及胡克定律,单向应力状态的最大拉应变εmax=δmax/E=δ/E,δ为横截面上的正应力;脆性材料单向拉伸实验结果表明,当δ=δb时发生脆性断裂,这时的最大应变值为εmax0=δmax/E=δb/E;所以δb/E就是所有应力状态发生脆性断裂的极限值。

同时,对于主应力为δ1、δ2、δ3的任意应力状态,根据广义胡克定律,最大拉应变为εmax=δ1/E-νδ2/E-νδ3/E=(δ1-νδ2-νδ3)/E,因此所有应力状态发生脆性断裂的失效判据为δ1-ν(δ2+δ3)=δb(这一理论只与少数脆性材料的实验结果吻合)相应的强度条件δ1-ν(δ2+δ3)≤[δ]=δb/nb第三强度理论(最大剪应力准则)(maximum shearing stress criterion):无论材料处于什么应力状态,只要发生屈服(或剪断),其共同原因都是由于微元内的最大剪应力τmax达到了某个共同的极限值。

第二讲 四种常见的强度理论

第二讲 四种常见的强度理论

在复杂应力状态下一点处的最大切应力为
屈服的条件:
τ max
=
1 2
(σ1

σ3)
max
=
S
2
(σ1 − σ3 = σS )
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
4.2.2 四种常见的强度理论
3、最大切应力理论(第三强度理论) 塑性材料
根据:当作用在构件上的外力过大时,其危险点处的材料就 会沿最大切应力所在截面滑移而发生屈服失效。
4.2.2 四种常见的强度理论
2、最大伸长线应变理论(第二强度理论) 脆性材料
根据:当作用在构件上的外力过大时,其危险点处的材料就
会沿垂直于最大拉应变方向的平面发生破坏。
基本假说:最大正应变(拉应变)1是引起材料脆断的因素。
失效准则:最大拉应变1
最大拉应变:
ε1 =
1 E
[σ1

μ(σ2+σ Nhomakorabea )]4.2.4 相当应力
1、相当应力
把各种强度理论的强度条件写成统一形式
σr σ
r称为复杂应力状态的相当应力.
σr1 = σ1 σr2 = σ1 − μ(σ2 + σ3 ) σr3 = σ1 − σ3
σr4 =
1 2
[(σ1

σ2 )2
+
(σ2

σ3)2
+
(σ3

σ1)2 ]
4.2.5 四种强度理论的适用范围
1、各种强度理论的适用范围
(1) 脆性材料选用第一或第二强度理论; (2) 塑性材料选用第三或第四强度理论; (3) 在二向和三向等拉应力时,无论是塑性还是脆性都发 生脆性破坏,故选用第一或第二强度理论; (4) 在二向和三向等压应力时,无论是塑性还是脆性材 料都发生塑性破坏,故选用第三或第四强度理论。

材料力学强度理论

材料力学强度理论

纵截面裂开,这与第
二强度理论旳论述
基本一致。
例6、填空题
危险点接近于三向均匀受拉旳塑性材
料,应选用 第一 强度理论进行计算,
因为此时材料旳破坏形式

脆性断。裂
例8、圆轴直径为d,材料旳弹性模量为E,泊松比为 ,为了测得轴端旳力偶m之值,但只有一枚电阻片。 (1)试设计电阻片粘贴旳位置和方向; (2) 若按照你所定旳位置和方向,已测得线应变为
(一)、有关脆断旳强度理论
1、最大拉应力理论(第一强度理论)
假定:不论材料内各点旳应力状态怎样, 只要有一点旳主应力σ1 到达单向拉伸断裂时旳 极限应力σu,材料即破坏。
在单向拉伸时,极限应力 σu =σb
失效条件可写为 σ1 ≥ σb
第一强度理论强度条件:
1 [ ]
[ ] b
n
第一强度理论—最大拉应力理论
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
k2
FS hb
(200
100 103 22.8) 103 7 103
1 , 2 0, 3
第三强度理论旳强度条件为:
1 3 ( ) 2 [ ]
由此得: [ ]
2
剪切强度条件为: [ ]
按第三强度理论可求得: [ ] [ ]
2
第四强度理论旳强度条件为:
1
2
( 1 2 )2
( 2
3)2
( 3
1)2
3 [ ]

强度理论

强度理论

第五节 强度理论一、强度理论概述各种材料因强度不足而引起的失效现象是不同的。

根据第五章的讨论,我们知道象普通碳钢这样的塑性材料,是以发生屈服现象、出现塑性变形为失效的标志;而象铸铁这样的脆性材料,失效现象是突然断裂。

第五~八章的强度条件可以概括为最大工作应力不超过许用应力,即[]σ≤σmax 或[]τ≤τmax 。

这里的许用应力是从试验测得的极限应力除以安全系数得到的,这种直接根据试验结果来建立强度条件的方法,对于危险点处于复杂应力状态的情况不再适用。

这是因为复杂应力状态下三个主应力的组合是各种各样的,1σ、2σ和3σ之间的比值有无限多种情形,不可能对所以的组合都一一试验确定其相应的极限应力。

事实上,尽管失效现象比较复杂,但可以归纳为如下二点:1.材料在外力作用下的破坏形式不外乎有几种类型;2.同一类型材料的破坏是由某一个共同因素引起的。

人们在长期的实践中,综合多种材料的失效现象和资料,对强度失效提出各种假说。

这些假说认为,材料按断裂或屈服失效,是应力、应变或变形能等其中某一因素引起的。

按照这些假说,无论是简单还是复杂应力状态,引起失效的因素是相同的,造成失效的原因与应力状态无关。

这些假说称为强度理论。

利用强度理论,就可以利用简单应力状态下的试验(例如拉伸试验)结果,来推断材料在复杂应力状态下的强度,建立复杂应力状态的强度条件。

强度理论是推测材料强度失效原因的一些假说,它的正确与否以及适用范围,必须在工程实践中加以检验。

经常是适用于某类材料的强度理论,并不适用于另一类材料。

下面介绍的四种强度理论,都是在常温静载荷下,适用于均匀、连续、各向同性材料的强度理论。

二、四种强度理论1) 最大拉应力理论(第一强度理论)这一理论认为引起材料脆性断裂破坏的因素是最大拉压力,它是人们根据早期使用的脆性材料(象天然石、砖和铸铁等)易于拉断而提出的。

该理论认为无论什么应力状态下,只要构件内一点处的最大拉压力1σ达到单向应力状态下的极限应力b σ,材料就要发生脆性断裂。

强度理论

强度理论
Mmax 56kN m
⑴ 最大弯曲正应力强度校核
max
Mmax 56 103 0.25 133.3MPa 5 Wz 2 5.25 10
⑵ 最大弯曲切应力强度校核 根据第三强度理论
0.5 80MPa
0.5 80MPa
116.7 2 3 46.32 141.6MPa
所以无论采用第三强度理论或第四强度理论进行强度校核, 危险点的强度满足要求
例:试按强度理论确定塑性材料的许用切应力。 解:纯剪切应力状态的主应力 3 1 2 0 第三强度理论的强度条件 r3 1 3 2 第四强度理论的强度条件 1 r4 [( 1 2 )2 ( 2 3 )2 ( 3 1 )2 ] 3 2 剪切强度条件 按第三强度理论确定塑性材料的许用切应力 0.5 按第四强度理论确定塑性材料的许用切应力 3 0.6
⑴ 应用:材料的屈服失效形式。
⑵ 局限:与第三强度理论相比更符合实际,但公式过 于复杂。
五、强度理论的应用
1. 各强度理论的适用范围
·断裂失效
第一强度理论(脆性材料的单、二向应力状态,塑 性材料的三向应力状态)。
·屈服失效
第三、四强度度理论(脆性材料的三向应力状态, 塑性材料的单、二向应力状态)。
三、最大切应力理论(第三强度理论)
材料发生屈服是最大切应力引起,即最大切应力达到某 一极限值时材料发生屈服。 1.第三强度理论的计算准则 单向应力状态 s (材料屈服失效)
max

2

s
2
max
1 3
2

强度理论

强度理论

§10.5 强度理论一、 强度理论的概念强度理论是研究材料在复杂应力条件下强度失效的原因和失效条件的理论。

在前面的章节中,分别介绍了杆件在基本变形时的强度条件,如杆件在轴向拉、压时处于单向应力状态,其强度条件为[]max max N A σσ=≤式中许用应力[σ]是通过拉伸实验得出材料的极限应力再除以安全系数获得的。

圆轴扭转时,材料处于纯剪应力状态状态,其强度条件为[]max max t T W ττ=≤式中许用应力[τ]也是直接通过实验得出材料的极限应力再除以安全系数获得的。

梁横力弯曲时基于最大正应力作用点和基于最大切应力作用点的强度条件也是直接通过实验建立的。

但是,由于工程构件或元件所处的应力状态是多种多样的。

在复杂应力状态下,判断材料失效仅仅通过实验和这些简单应力状态下建立的强度条件是远远不够的。

人们在长期的生产实践中,综合分析材料强度的失效现象,提出了各种不同的假说。

各种假说尽管各有差异,但它们都认为:材料之所以按某种方式失效(屈服或断裂),是由于应力、应变或应变能密度等诸因素中的某一因素引起的。

按照这种假说,无论单向或复杂应力状态,造成失效的原因是相同的。

所以可将简单应力状态的实验结果,与复杂应力状态的下材料的破坏联系起来,从而建立了强度理论。

二、 材料破坏的两种基本形式综合分析材料破坏现象,可以认为构件由于强度不足将引起两种破坏形式:(1)脆性断裂:材料破坏前无明显的塑性变形,断裂面粗糙,且多发生在最大正应力作用面上,如铸铁受拉和受扭时的破坏,均属于脆性断裂。

(2)塑性屈服(流动):材料破坏前发生较大的塑性变形,破坏面较光滑,且多发生在最大剪应力作用面上,如低碳钢受拉和受扭时的破坏便属于这类破坏。

三、 工程中常用的几个强度理论1.最大拉应力理论(第一强度理论)该理论认为最大拉应力是引起断裂破坏的主要原因。

即认为不论材料处于简单应力状态还是复杂应力状态,引起材料破坏的原因是它的最大拉应力σ1达到某一极限值,材料就发生断裂。

材料力学-第七章-强度理论

材料力学-第七章-强度理论
脆性断裂,最大拉应力准则
r1 = max= 1 [] 其次确定主应力
ma xx 2y 1 2 xy2 4x 2y 2.2 9 M 8 P
m inx 2y 1 2 xy2 4x 2y 3 .7M 2 P
1=29.28MPa,2=3.72MPa, 3=0
r113M 0 Pa
根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹 性失效准则;
考虑安全系数后,其强度条件
根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失 效准则;
考虑安全系数后,强度条件
建立常温静载复杂应力状态下的弹性失效准则: 强度理论的基本思想是:
确认引起材料失效存在共同的力学原因,提出关于这一 共同力学原因的假设;
像铸铁一类脆性材料均具有 bc bt 的性能,
可选择莫尔强度理论。
思考题:把经过冷却的钢质实心球体,放入沸腾的热油锅 中,将引起钢球的爆裂,试分析原因。
答:经过冷却的钢质实心球体,放入沸腾的热油锅中, 钢 球的外部因骤热而迅速膨胀,其内芯受拉且处于三向均 匀拉伸的应力状态因而发生脆性爆裂。
思考题: 水管在寒冬低温条件下,由于管内水结冰引起体 积膨胀,而导致水管爆裂。由作用反作用定律可知,水 管与冰块所受的压力相等,试问为什么冰不破裂,而水管 发生爆裂。
局限性:
1、未考虑 2 的影响,试验证实最大影响达15%。
2、不能解释三向均拉下可能发生断裂的现象, 此准则也称特雷斯卡(Tresca)屈服准则
4. 畸变能密度理论(第四强度理论) 材料发生塑性屈服的主要因素是 畸变能密度;
无论处于什么应力状态,只要危险点处畸变能密度达到 与材料性质有关的某一极限值,材料就发生屈服。
具有屈服极限 s
铸铁拉伸破坏

工程力学中四大强度理论

工程力学中四大强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。

一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

材料力学-强度理论

材料力学-强度理论

§9–2 四个强度理论及其相当应力 一、最大拉应力(第一强度)理论: 认为构件的断裂是由最大拉应力引起的。当最大拉应力达到单向 拉伸的强度极限时,构件就断了。
1、破坏判据: 1 b ;( 1 0)
2、强度准则: 1 ; ( 1 0)
3、实用范围:实用于破坏形式为脆断的构件。
二、最大伸长线应变(第二强度)理论:
到单向拉伸试验屈服时形状改变比能时,构件就破坏了。
uxmax uxs
ux
1
6E
1 2 2 2 3 2 3 1 2
1、破坏判据: 2、强度准则
1
2
1
2 2
2
3 2
3
1 2
s
1
2
1
2 2
2
3 2
3
1 2
3、实用范围:实用于破坏形式为屈服的构件。
认为构件的断裂是由最大伸长线应变引起的。当最大伸长线应变 达到单向拉伸试验下的极限应变时,构件就断了。
1 b ;(1 0)
1
1 E
1
2
3
b
E
1、破坏判据: 1 2 3 b
2、强度准则: 1 2 3
3、实用范围:实用于破坏形式为脆断的构件。
三、最大剪应力(第三强度)理论:
认为构件的屈服是由最大剪应力引起的。当最大剪应力达到单
向拉伸试验的极限剪应力时,构件就破坏了。
max s
max
1 3
2
s
2
s
1、破坏判据: 1 3 s
2、强度准则: 1 3
3、实用范围:实用于破坏形式为屈服的构件。
四、形状改变比能(第四强度)理论:
认为构件的屈服是由形状改变比能引起的。当形状改变比能达

20.四个常用的强度理论

20.四个常用的强度理论
7.35
[
]
八、强度计算的步骤: 1、外力分析:确定所需的外力值。 2、内力分析:画内力图,确定可能的危险面。 3、应力分析:画危面应力分布图,确定危险点并画出单元体, 求主应力。 4、强度分析:选择适当的强度理论,计算相当应力,然后进行 强度计算。
九、强度理论的选用原则:依破坏形式而定。 1、脆性材料:使用第一、第二强度理论;
三、最大拉应力(第一强度)理论: 认为构件的断裂是由最大拉应力引起的。当最大拉应力达到 单向拉伸的强度极限时,构件就断了。 1、破坏判据: σ1 = σ b ; (σ1 > 0) 2、强度准则: σ r1 = σ 1 ≤ [σ ] ; ( σ 1 > 0) 3、适用范围:适用于破坏形式为脆断的构件。(脆性材料) 4、局限性:当σ1<0 时无法解释破坏现象 没有考虑其他两个主应力的影响 无法解释塑性材料的破坏
五、最大剪应力(第三强度)理论: 认为构件的屈服是由最大剪应力引起的。当最大剪应力达 到单向拉伸试验的极限剪应力时,构件就破坏了。
τ max = τ s
τ max =
σ1 − σ 3 σ s = = τs 2 2
1、破坏判据: σ 1 − σ 3 = σ s 2、强度准则: σ r3 = σ 1 − σ 3 ≤ [σ ] 3、适用范围:适用于破坏形式为屈服的构件。(塑性材料) 4、局限性:无法解释脆性材料的破坏现象 偏于安全
当时无法解释破坏现象没有考虑其他两个主应力的影响无法解释塑性材料的破坏四最大伸长线应变第二强度理论
20.四个常用的强度理论
一、强度理论:是关于“构件发生强度失效(failure by lost strength)起因”的假说。 二、材料的破坏形式:⑴ 屈服; ⑵ 断裂 。 1、伽利略播下了第一强度理论的种子; 2、马里奥特关于变形过大引起破坏的论述,是第二强度理论的 萌芽; 3、杜奎特(C.Duguet)提出了最大剪应力理论; 4、麦克斯威尔最早提出了最大畸变能理论(maximum distortion energy theory);这是后来人们在他的书信出版后才知道的。

强度理论课件

强度理论课件
详细描述
第三强度理论考虑了等效应力和等效应变的影响,认为当材料受到的等效应力或等效应变超过其等效 应力或等效应变极限时,材料会发生断裂。这种理论适用于各种类型的材料,包括脆性和塑性材料。
第四强度理论
总结词
基于形状改变比能或最大剪切应变能,当材料受到的形状改变比能或剪切应变能超过其形状改变比能极限或剪切 应变能极限时,材料发生断裂。
详细描述
第四强度理论考虑了形状改变比能和剪切应变能的影响,认为当材料受到的形状改变比能或剪切应变能超过其形 状改变比能极限或剪切应变能极限时,材料会发生断裂。这种理论适用于各种类型的材料,包括脆性和塑性材料 。
03
强度理论的计算方法
弹性力学方法
弹性力学是研究弹性物体在外力作用下的应力、应变和位移 的学科。在强度理论中,弹性力学方法通过建立物体的应力应变关系,推导出强度准则,用于评估结构在不同外力作用 下的稳定性。
非线性或复杂环境下的应用还存在局限性。
参数确定困难
02
强度理论中的一些参数,如材料的弹性模量、屈服强度等,在
实际应用中往往难以准确测定。
忽略微观结构影响
03
强度理论通常基于宏观尺度,忽略了材料的微观结构和缺陷对
强度的影响。
强度理论的发展趋势
多尺度分析
随着计算技术的发展,强度理论正朝着多尺度方向发展,以综合考 虑微观、细观和宏观尺度对材料强度的影响。
弹性力学方法基于连续介质力学的基本原理,通过求解微分 方程或积分方程来获得物体的应力分布和位移场,进而分析 结构的强度和稳定性。
有限元方法
有限元方法是数值分析中的一种方法,通过将连续的物体 离散化为有限个小的单元(如三角形、四边形等),然后 对每个单元进行求解,最后将所有单元的解组合起来得到 整个物体的解。

工程力学四个强度理论

工程力学四个强度理论

工程力学四个强度理论工程力学是研究物体在受到外力作用时的运动与变形规律的一门学科,它是理论力学在工程实践中的应用。

工程力学中有许多重要理论,其中四个强度理论是应用最为广泛且具有实用性的理论。

这四个强度理论分别是:拉压强度理论、剪切强度理论、弯曲强度理论和变形强度理论。

拉压强度理论拉压强度理论是研究材料受拉力和压力时的强度情况。

在材料受拉或受压时,当受到的外力超过其承受能力时,材料就会发生破坏。

拉压强度理论通过对材料的拉伸和压缩性能进行分析,确定了材料在拉伸和压缩下的强度极限,为工程设计和材料选取提供了依据。

剪切强度理论剪切强度理论是研究材料受到剪切力时的强度情况。

在材料受到剪切力作用时,如果剪切力超过了材料本身的承受能力,就会导致材料剪切破坏。

剪切强度理论通过对材料在剪切力下的变形规律和破坏特点进行研究,确定了材料的剪切强度极限,为结构的承载能力和稳定性提供了理论支撑。

弯曲强度理论弯曲强度理论是研究材料在受到弯曲力矩时的强度情况。

在工程实践中,很多结构在受力时会受到不同方向的弯曲力矩,因此了解材料在弯曲条件下的强度表现是至关重要的。

弯曲强度理论通过对材料在受弯曲力矩下的应力、变形和破坏特性进行研究,为结构的设计和优化提供了基础。

变形强度理论变形强度理论是研究材料在受热膨胀、冷缩等变形情况下的强度特性。

材料在受到温度变化或热机械作用时,会发生尺寸变化和形变,如果超出了材料能够承受的范围,就会导致材料破坏。

变形强度理论通过研究材料在变形过程中的应力、变形和破坏特性,为高温结构、膨胀管道等工程提供了理论依据。

在工程实践中,工程师们常常根据这四个强度理论来评估和设计工程结构,以确保结构的安全性、可靠性和稳定性。

这四个强度理论不仅是工程力学理论体系中重要的组成部分,也是工程设计和材料选择的重要参考依据,为各种工程问题的解决提供了理论支撑。

强度理论

强度理论
A : 1 2 10MPa, 3 140MPa
B :1 2 120MPa, 3 200MPa
二、关于塑性屈服破坏的强度理论
1、最大切应力理论(第三强度理论)
最大切应力τmax 是引起材料屈服破坏的主要原因。
屈服条件: τmax = τs
σ1 - σ3 = σs
强度条件: σ1 - σ3 ≤ [σ ] ➢ 能解析塑性材料的屈服破坏。——Tresca屈服准则
➢ 用这一理论计算结果偏于安 全,在工程中广泛应用。
n
强度条件为:
1
t c
3
t
可以解析铸铁受压破坏并不是与横截面成45。的截面。
适用于 脆性材t料 c
塑性材料 t c 即为第三强度理论
➢ 能解析三向均匀受压不破坏;一定条件下能解析三向均 匀受拉发生破坏。
τ
α

O2
O O1
点圆

σ



σbc
σbt
§8-4 强度理论的应用
强度理论的统一公式:
力,但也与同一截面上的正应力有关。 由三向应力圆可知,最大切应力和较大的切应力均在
主应力σ1、σ3 所作的应力圆上。 按材料在破坏时的主应力σ1、 σ3 所作的应力圆,就 代表在极限应力状态下的应力圆——极限应力圆。
τ
极限应力图
τ
包络线
破坏
σ
O2
O O3
O1
σ
包络线
未破坏
σbc
σbt
O3 N O3O1 O2 P O2O1
例2. 已知一锅炉的内径D0=1000mm,壁厚δ=10mm,
如图所示。锅炉材料为低碳钢,其容许应力[σ]=170MPa。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结
由于第一强度理论在容器设计历史上使 用的最早,实践经验较为成熟,而且由 于强度条件不同而引起的误差已经考虑 在安全系数内,所以至今在容器常规设 计中仍然采用第一强度理论。 GB150-98《钢制压力容器》中,内压 圆筒强度计算基本公式的理论依据是第 一强度理论。
强度理论
断裂强度理论(对于脆性材料) (1)最大拉应力理论 (2)最大伸长线应变理论 屈服强度理论(对于塑性材料) (1)最大切应力理论 (2)最大形变比能(distortion energy)理论
第一强度理论 最大拉应力理论脆性断裂理论) (最大拉应力理论 )
第一强度理论认为最大拉应力是引起材料脆 性断裂破坏的主要因素,即无论材料处于何 种应力状态,当最大拉应力达到单向应力状 态下所测定的危险应力值时,材料就开始脆 性断裂破坏。按照这一理论所建立的强度条 件是: σ r1 = σ 1 ≤[ σ ] σ 式中, r1 称为第一强度理论的相当应力; σ 1 是复杂应力状态中的最大拉应力。
第二强度理论 最大拉应变理论) (最大拉应变理论)
第二强度理论认为材料破坏主要是由于最大拉应变达 到危险值所引起的,即不论材料处于何种应力状态, 当其最大拉应变达到简单拉伸下出现危险状态之应变 时,材料开始破坏。其破坏条件是:
σ
ε 最大=ε=
σ
E
式中的为简单拉伸下危险的应变值。
σ r 2 = σ 1 − µ (σ 2 + σ 3 ) ≤[ σ ]
σ 1 σ 2 σ 3 是按代数值大小而排列的三个方向的主应力, σ 1 是最大一个主应力。
第三强度理论 最大剪应力理论) (最大剪应力理论)
容器中大量采用低碳钢等塑性材料,它们是以屈服(流动)并产生 较大的塑性变形为其破坏标志的。而材料的屈服现象,主要是由 最大剪应力所引起。基于这种认识,第三强度理论认为不论材料 处于何种应力状态,当它的最大剪应力达到在简单拉伸下使材料 屈服的最小剪应力值时,材料开始发生破坏。 按此理论建立的强度条件是:
σ =0,按照第三强度理论计算 对于薄壁容器, 3 结果与按第一强度理论的计算结果相同。
σ r 3 = σ 1 − σ 3 ≤[σ]
第四强度理论 最大变形能理论) (最大变形能理论)
第四强度理论认为材料破坏的主要原因是它的 形状变形能达到了某一极限值。即不论材料处 于何种应力状态,当它的形状变形能达到在简 单拉伸情况下使材料届服的极限形状变形能之 值时,材料就发生破坏。 按此理论建立的强度条件是:
σ r4
1 = [(σ 1 − σ 2 ) 2 + (σ 2 − σ 3 ) 2 + (σ 3 − σ 1 ) 2 ] 2
总结
以上四个强度理论,都是根据材料的“破 坏”的形式来选择,塑性材料一般发生塑 性屈服,而脆性材料一般发生脆性断裂破 坏。 第一强度理论对脆性材料较适用;第二强 度理论对受二向或三向应力的脆性材料并 不适用;第四强度理论对于塑性材料,不 论是受压或受拉,其计算结果基本符合实 际情况。第三强度理论对于塑性材料比较 适用,其计算误差一般不超过,而且形式 也比较简单,所以应用更为广泛。
相关文档
最新文档