仪表信号传送距离
信号电缆传输距离
![信号电缆传输距离](https://img.taocdn.com/s3/m/b5f1a8a2d1f34693daef3e22.png)
对于一个完整的信号回路,构成的主要环节为现场仪表、电缆、控制室内的接口设备,其他制约传输的因素还有仪表的信号类型、防爆要求、信号干扰等,下面从各环节加以分析。
1. 1现场仪表
对于仪表本身,正常工作的条件是必须满足最小工作电压,即由控制室供出的电压经过线路的衰减后到达仪表的电压值必须大于仪表的工作电压,这是仪表正常工作输出或接受信号的最小要求。
535Ω/ (12. 3Ω/ km ×2) = 21. 7 km。
由上可见,仅考虑仪表最小工作电压的约束时,电缆最远的理论传输距离为21. 7 km。在实际
使用中用到1. 1 km左右,截面1. 5 mm2 ,中间接线箱接线。ABB的变送器, P + F的安全栅,实测工作电压约为17~21 V ,变送器工作正常。
3. 3电缆的选择
在所有制约信号传输距离的因素中,电缆是最直接的因素,因为其他设备的参数均不随距离变化。为减少线阻,可以选择公称直径尽可能大一些的电缆,工程上1. 5 mm2电缆为较为通用的选择,个别距离较远的场合,例如800~1 100 m的传输距离,也用到了2. 5 mm2的电缆,实践验证没有问题。
1. 4电缆的选择
在工程设计确定现场仪表安装位置之前往往就已经选定了现场仪表及控制系统,电缆的选择就成为制约信号传输的关键环节,电缆的电阻参数、电感参数、电容参数直接与距离成比例,且成为制约信号传输的直接因素。
1. 5本安回路的防爆要求
本安设计中需要对回路中各参数进行匹配,其中与传输距离相关的参数是电缆的参数,该参数必须满足匹配条件,说明如下(仅说明与距离传输的相关项)。表征设备具有本安性能的主要参数:本安设备最大内部等效电容Ci ,最大内部等效电感Li。表征连接电缆本安性能的基本参数:电缆最大允许分布电容CC ,最大允许分布电感LC。
24、让你知道为什么标准信号是4~20mA
![24、让你知道为什么标准信号是4~20mA](https://img.taocdn.com/s3/m/a1de60420b1c59eef9c7b410.png)
让你知道为什么标准信号是4~20mA概述4~20mA.DC(1~5V.DC)信号制是国际电工委员会(IEC)过程控制系统用模拟信号标准。
我国从DDZ-Ⅲ型电动仪表开始采用这一国际标准信号制,仪表传输信号采用4~20mA.DC,联络信号采用1~5V.DC,即采用电流传输、电压接收的信号系统。
那么为什么标准信号要定为4~20mA 呢?今天,小编就来和大家讲讲其中的原因。
一.远传信号用电流源优于电压源的原因因为现场与控制室之间的距离较远,连接电线的电阻较大时,如果用电压源信号远传,由于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,而用恒电流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。
二.信号最大电流选择20mA的原因最大电流20mA的选择是基于安全、实用、功耗、成本的考虑。
安全火花仪表只能采用低电压、低电流,20mA的电流通断引起的火花能量不足以引燃瓦斯,非常安全;综合考虑生产现场仪表之间的连接距离,所带负载等因素;还有就是功耗及成本问题,对电子元件的要求,,供电功率的要求等因素。
三.信号起点电流选择4mA的原因4~20mA变送器两线制的居多,两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线。
为什么起点信号不是0mA?这是基于两点: 1.变送器电路没有静态工作电流将无法工作,信号起点电流4mA.DC就是变送器的静态工作电流。
2.同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。
信号发生器能够输出和测量4-20mA信号四.电流信号(4~20mA信号)的优点1.电流信号适合远距离传输,因为电流信号不受导线电阻的影响,而电压信号在导线本身具有电阻的情况下会分压,导致测量不精准。
一般4~20mA最远传送距离控制在100m以内,再远则建议使用数字信号(485通讯)2.电流信号一般采用两线制,电压信号一般采用三线制,相比之下,两线制比三线制节省材料,降低成本。
4~20MA信号传输距离
![4~20MA信号传输距离](https://img.taocdn.com/s3/m/00cc5360b9f3f90f77c61b87.png)
4~20mA信号传送距离在论坛上有个帖子问:“4~20mA信号能否传送1KM?”,在其它论坛上也见过类似问题的帖,特发此文讨论。
看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?ﻫ但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。
因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。
ﻫ决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。
已知:RL=250Ω,Vo=24V.DC 其允许误差为24V +10% -5%,ﻫ电源允许波动△V=24V*5%=1.2V,ﻫImax=20mA=0.02A,ﻫ最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此dlr取16.28V。
即Vmin=16.28≤24-1.2-0.02(250+r)则连接导线的电阻r=24-1.2-16.28/0.02-250=76Ω仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。
已知t=75℃时铜的电阻系数ρ=0.0217Ω.mm2/m。
ﻫ根据L=Sr/ρ 就可计算出铜导线的最大长度。
用标称截面1.5mm2导线时L=1.5*76/0.0217=5253mﻫ用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m因为仪表的接线往返是两根线,所以计算结果应除2即:ﻫ用标称截面1.5mm2导线时L1=5253.5/2=2626mﻫ用标称截面0.8mm2导线时L2=2801.8/2=1400mﻫ在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。
几种常见仪表的通讯设置
![几种常见仪表的通讯设置](https://img.taocdn.com/s3/m/192316ede009581b6bd9eb69.png)
几种常见仪表的通讯设置点击次数:499次类型:连接通讯1、如果您使用XK3180仪表,请将仪表的C42参数改为10,此时下位机类型请选择XK3180,波特率4800修改仪表参数的方法:按[设置]键,显示C,输入4,按[输入]键,显示C41:1110,不改,再按[输入]键跳过,显示C42:00,按入1、0两个键,即C42改为10,再按[输入]键,显示C,按[退出]。
然后用串口调试工具测试通讯,通讯参数设为:4800,n,8,12、如果使用柯力D2008F、D2009F仪表,请注意仪表参数设置,tF=0(连续发送,兼容XK3190A9),仪表默认波特率96003、如果使用D2002E仪表,当bt=01时,波特率为4800,仪表的参数pt=01,则下位机类型应该为XK3180或XK315A2或8142pro(参考D2002E说明书第17页,第8,9步骤)4、如果是DS822C,请设置MODE=6,Adr=5,bt=5,下位机类型应该为:XK3180或8142pro 或XK315A2,波特率48005、8142pro仪表参数(校验和)F3.4=1,如果是XK3130(KingBird)则F4.1.5=1(具体情况,参考说明书),皆可兼容XK3180通讯协议6、D2008F/D2009F与PC连接的通讯协议相同,可兼容XK3190A97、上海耀华公司的仪表,如XK3190A9、XK3190D9、XK3190DS1、XK3190DS3等,协议相同,可选择XK3190A9通讯仪表通讯流程图点击次数:448次类型:连接通讯软件通讯连接如何设置点击次数:398次类型:连接通讯用串口调试工具测试仪表和软件能够传输数据之后,在软件里设置相关通讯参数,就能够正常运行了。
打开称重软件,点击菜单:系统(W)==>通讯连接设置(L),称重软件支持常见模拟仪表,数字仪表以及RS485-232转换器通讯,设置如下图1:图1 下位机类型:包括485转换器,数字仪表,模拟仪表,用户可以自己选择.(BOAST108为本公司RS232-485转换器)本软件支持仪表类型:XK3180、XK3190A9、XK3190A9+、XK3190D9、XK3190DS1、8142pro、XK315A2、2008F、D2009F等。
教你学会仪表信号电缆最大敷设长度计算
![教你学会仪表信号电缆最大敷设长度计算](https://img.taocdn.com/s3/m/e2a4a0a9e45c3b3566ec8bab.png)
教你学会仪表信号电缆最大敷设长度计算本文在介绍自控仪表信号电路的基础上,分析了电路的负载能力,并根据几个典型二线制仪表的负载局限,计算了仪表信号电缆最大理论敷设长度,同时依据设计规范的要求计算了仪表信号电缆最大敷设长度,并绘制了不同截面的仪表信号电缆最大敷设长度随仪表功耗变化的函数图。
对于本安电缆,还根据本安系统回路能量限制条件得到的两个公式,计算了本安电缆最大敷设长度,最后通过实例,总结了仪表信号电缆截面的选择步骤。
在石化工程设计中,仪表信号电缆截面选择过大,造成极大浪费;较小则线阻大,致使信号不稳定或现场仪表故障。
因此,文章从理论和设计规范的要求上对仪表信号电缆最大敷设长度进行计算,并总结电缆截面选择的步骤。
1、仪表信号电路仪表信号按常规可分为两类五种,即模拟和数字两类或AI、AO、DI、DO、PI 五种(A表示模拟量,D表示数字量,P表示脉冲量,I表示输入,O表示输出),其中,脉冲量是一种变化频率较高的特殊数字量,所以信号看似三类,但实际上可简化为模拟和数字两类,并且DO的输出频率基本能达到实际应用的要求,因此,控制系统也很少有专门的PO卡件,所以信号可分为上述五种,这五种信号的简略电路图可如下图1~图5所示。
图1 AI 有源信号的简略电路图 图2 AI 无源信号的简略电路图图3 AO信号的简略电路图图4 DI和PI信号的简略电路图图5 DO信号的简略电路图图中T为变送器,P为执行器(如阀门定位器),S为开关器件(干触点或晶体管等),R s为A/D模数转换电路中的采样电阻,D/A为数模转换电路,U s为24VDC电 源,r表示信号电缆线阻。
AI信号是现场仪表变送器输出的4-20mA检测电流,若现场仪表为三线制或四线制接法时,变送器输出的信号一般是有源的(被动式外供电型仪表除外),检测电路如上图1所示,若现场仪表为二线制接法时,变送器输出的信号是无源的,必须在系统侧将电源串入回路,检测电路如上图2所示。
4-20mA信号传输的详解
![4-20mA信号传输的详解](https://img.taocdn.com/s3/m/7aba9ab8c77da26925c5b080.png)
我来回答这个问题,希望能让你走出困惑。
远距离传输模拟信号,使用电压方式显然不合理,因为有线路消耗存在压降,当然有些人说可以以高传输阻抗减少传输电流来降低压降的影响,但是系统的抗干扰能力大大降低。
把敏感器件的信号转换成电流信号来传输可以消除传输线带来的压降误差,但是多大合适呢?我们的双绞线特性阻抗是50欧姆左右,相隔1CM宽的0.2平方毫米的导线特性阻抗300欧姆左右,所以负载电阻选择50-300欧姆比较理想,为了AD转换方便,负载电阻上的信号最大量程值一般5-10V比较合适,那么权衡所有,负载电阻250欧姆,电流20mA,负载压降5V比较满意。
那么为什么选择4-20mA而不是0-20mA呢?为了减少接线的复杂性,传感器选择2线要比多线简单的多,2线既要传输信号,又要给传感器供电,所以设计者从中盗窃4mA电流给传感器放大电路供电,这样4-20mA的标准就确定了。
如果还不明白,就给我QQ留言吧,我一定让你弄明白是怎么回事。
4-20MA信号是IEC规定的过程控制标准模拟信号,我过为3型仪表制式,因为是电流传送,只要导线内阻加负载电阻*20MA后,小于规定的上限电压就可以,是专们远传用的,比2型表的0`10MA不同的是可以克服零点死区,干扰不大的情况也无须屏蔽,负载端也可加一250欧电阻形成1~5V电压信号给接受的二次仪表。
要看你的线径了,如果阻抗小的话,1000M-2000M没有问题;当然你还可以选。
微机测速仪使用说明书
![微机测速仪使用说明书](https://img.taocdn.com/s3/m/75045b8ba0116c175f0e48e0.png)
大连美天三有电子仪表有限公司Dalian Metern SANYOU Electronic Instrument Co.,Ltd.一、 简介微机测速仪 (V 2.0)Micro TachometerUser’s Manual使用说明书 CSY & MCSMETERN 公司生产的多功能微机测速仪,内置单片机,采用数字中控仪表集成总汇技术结构,是测定转速的智能型仪表。
配用低阻抗高灵敏度非接触磁电式传感器。
该仪表集信号检测、数据处理、数字显示,报警指示,报警控制和变送输出等为一体,广泛用于现场指示,闭环控制、报警控制等场所,应用于电力、冶金、化工、钢铁等行业, 专业配套偶合器、鼓风机等设备。
该系列仪表使用简便、性能稳定、抗干扰能力强,满足UL 标准,工作可靠,是工业生产和实验室各类旋转轴转速测量的专业仪表。
二、主要技术参数1.测量范围: 0~9999 r/min ,0~49999 r/min2.测量精度: 绝对精度2r/min3.变送输出: 4~20mA (或1~5V )4.传感器和测速仪距离:小于200米5.传送距离:小于500米6.供电电源:~220V±10%, 50~60Hz ;功耗:小于6W7.带载能力:小于500欧姆8.使用环境:温度:0~45℃,相对湿度:≤85%9.通信方式:RS-48510.配备XS12JK(XG)磁电式传感器使用11.ZYCMT 系列带有反转监控保护装置(请查阅ZYCMT 系列转速控制仪表说明书)三、 仪表的外形和开口尺寸A :外形尺寸:160×80×160(宽×高×长)金属壳B :外形尺寸:160×80×100(宽×高×长)塑壳四、仪表的安装与使用1、磁电传感器的安装磁电式传感器不需要外供电源,频率响应高,性能稳定。
此示意图不代表反转监测的使用(齿盘等分数可以任意设定)。
4-20mA计算公式
![4-20mA计算公式](https://img.taocdn.com/s3/m/2b17a1d36f1aff00bed51e08.png)
为要输入的参数为输出结果4-20mA.DC(1准。
仪表传输信号采用4-20mA 接收的信号系统。
一.远传信号用电流源优于电压因为现场与控制室之间的距离远传,由于电线电阻与接收仪流源信号作为远传,只要传送而改变,从而保证了传送的精二.信号最大电流选择20mA的原最大电流20mA的选择是基于:安采用低电压、低电流;综合考素;还有就是功耗及成本问题三.信号起点电流选择4mA的原4-20mA变送器两线制的居多,现场变送器与控制室仪表之间为什么起点信号不是0mA?这是基于两点:1.变送器电路没有静态工作电静态工作电流。
2.同时仪表电气零点为4mA.D 断电和断线等故障。
.DC(1-5V.DC)信号制是国际电工委员会(IEC):过程控制系统用模拟信号标准。
仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。
一.远传信号用电流源优于电压源的原因因为现场与控制室之间的距离较远,连接电线的电阻较大时,如果用电压源信号远传,由于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,而用恒电流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。
二.信号最大电流选择20mA的原因最大电流20mA的选择是基于:安全、实用、功耗、成本的考虑。
安全火花仪表只能采用低电压、低电流;综合考虑生产现场仪表之间的连接距离,所带负载等因素;还有就是功耗及成本问题,对电子元件的要求, 供电功率的要求等因素。
三.信号起点电流选择4mA的原因4-20mA变送器两线制的居多,两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线。
为什么起点信号不是0mA?这是基于两点:1.变送器电路没有静态工作电流将无法工作,信号起点电流4mA.DC就是变送器的静态工作电流。
2.同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。
4-20ma信号
![4-20ma信号](https://img.taocdn.com/s3/m/44211ad56f1aff00bed51e44.png)
4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。
4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI 拥有一些很方便的用于RTD和电桥的变送器芯片。
由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。
4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。
电子器件和传感器调整起来不够方便。
现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。
流量仪表选择规定
![流量仪表选择规定](https://img.taocdn.com/s3/m/5dd05c4a30b765ce0508763231126edb6f1a76a5.png)
一、性能要求和仪表规范方向的考虑选择仪表在性能要求上考虑的内容有:瞬时流量还是总量(累计流量)、精确度、重复性、线性度、流量范围和范围度、压力损失、输出信号特性和响应时间等。
不同测量对象有各自测量目的,在仪表性能方面有其不同侧重点。
1测量流量还是总量使用对象测量的目的有两类,即测量流量和计量总量。
管道连续配比生产或过程控制使用场所主要测量瞬时流量;灌装容器批量生产以及商贸核算、储运分配等使用场所大部分只要取得总量或辅以流量。
两种不同功能要求,再选择测量方法上就有不同侧重点。
有些仪表如容积式流量计、涡轮流量计等,测量原理上就以机械技术或脉冲频率输出,直接得到总量,因此具有较高精确度,适用于计量总量。
电磁流量计、超声流量计、节流式流量计等仪表原理上是以测量流体流速推导出流量,响应快,适用于过程控制,但装有积算功能环节后也可获得总量。
涡街流量计具有上者优点,但其抗震、抗干扰性能差,不适用于过程控制而适用于计量总量。
2精确度整体的测量精确度要求多少?在某一特定流量下使用,还是在某一流量范围内使用?在什么测量范围内保持上述精确度?所选仪表的精确度能保持多久?是否易于重新校验?是否要(或能)现场在线核对仪表精确度?这些问题必须细致地考虑。
如不是单纯计量总量,而是应用在流量控制系统中,则检测仪表精确度的确定要在整个系统控制精确度要求下进行,因为整个系统不仅有流量检测的误差,还包含有信号传输、控制调节、操作执行等环节的误差和各种影响因素,如操作执行环节往往有2%左右的回差,对测量仪表确定过高的精确度(比如说0.5级)是不合理和不经济的。
就流量仪表本身而言,检测元件(或传感器)和转换/显示仪表之间只精确度亦应适当确定,如未经实流标定均速管、楔形管、弯管等差压装置误差在1%~5%之间,选用高精度差压计与之相配也就没有意义了。
3重复性重复性在过程控制应用中是重要的指标,由仪器本身原理与制造质量所决定,而精确度除取决于重复性外,尚与量值标定系统有关。
常用压力仪表工作原理
![常用压力仪表工作原理](https://img.taocdn.com/s3/m/1cef74222af90242a895e5f4.png)
压力类仪表的工作原理压力是工业生产过程中的重要参数之一。
在许多生产过程中,要求系统只有在一定的压力条件下工作,才能达到预期效果,同时,压力也是监控安全生产的保证。
因此,压力检测与控制是保证工业生产过程经济性和安全性的重要环节。
在物理学中,垂直作用在单位面积上的力称为压强,在工程上称为压力。
如下式: S Fp表示受力面积。
表示垂直作用力;表示压力;式中,S F p由于参照点不同,在工程技术中压力分为以下几种:1.大气压:地球表面上的空气质量所产生的压力。
它和所处的海拔高度、纬度及气象状况有关。
2.差压(压差):两个压力之间的相对差值。
3.绝对压力:绝对压力是相对零压力(绝对真空)而言的压力。
4.表压力(相对压力):如果绝对压力和大气压的差值是一个正值,那么这个正值就是表压力,即表压力=绝对压力-大气压>0。
5.负压(真空表压力):和“表压力“相对应,如果绝对压力和大气压的差值是一个负值,那么这个负值就是负压力,即负压力=绝对压力-大气压<0。
在工程上,按压力随时间的变化关系分为以下两类:1、静态压力:一般理解为“不随时间变化的压力,或者是随时间变化较缓慢的压力,即在流体中不受流速影响而测得的表压力值”。
2、.动态压力:和“静态压力”相对应,“随时间快速变化的压力,即动压是指单位体积的流体所具有的动能大小。
”通常用1/2ρν2计算。
式中ρ为流体密度;v 为流体运动速度。
”压力单位换算关系见下表:牛顿/米2(帕斯卡)(N/m 2)(Pa)公斤力/米2 (kgf/m 2) 公斤力/厘米2 (kgf/cm 2) 巴 (bar) 标准大气压 (atm) 毫米水柱 4o C (mmH 2O) 毫米水银柱 0o C (mmHg) 磅/英寸2(lb/in 2,psi) 牛顿/米2(帕斯卡)(N/m 2)(Pa)1 0.101972 10.1972×10-6 1×10-5 0.986923×10-5 0.101972 7.50062×10-3 145.038×10-6 公斤力/米2(kgf/m 2)9.80665 1 1×10-4 9.80665×10-5 9.67841×10-5 1×10-8 0.0735559 0.00142233 公斤力/厘米2(kgf/cm 2)98.0665×103 1×104 1 0.980665 0.967841 10×103 735.559 14.2233 巴(bar)1×105 10197.2 1.01972 1 0.986923 10.1972×103 750.061 14.5038 标准大气压(atm)1.01325×105 10332.3 1.03323 1.01325 1 10.3323×103 760 14.6959 毫米水柱4o C(mmH 2O)0.101972 1×10-8 1×10-4 9.80665×10-5 9.67841×10-5 1 73.5559×10-3 1.42233×10-3 毫米水银柱0o C(mmHg) 133.322 13.5951 0.00135951 0.00133322 0.00131579 13.5951 1 0.0193368磅/英寸2(lb/in 2,psi) 6.89476×103 703.072 0.0703072 0.0689476 0.0680462 703.072 51.7151 1压力测量系统根据测量的原理,分为如下几类:一、净重式。
TKL型超声波流量计说明书(新改)
![TKL型超声波流量计说明书(新改)](https://img.taocdn.com/s3/m/b0e6f942e518964bcf847c11.png)
武汉泰肯1 TKL-1 型系列超声波明渠流量计说明书一、概述TKL-1 型超声波明渠流量计广泛适用于冶金、石油、化工、化纤、轻纺、制药、电镀、食品加工等工矿企业自然管道(明渠)的污水排放量的计量,是城市水污染防治和环境保护部门监控污水排放的主要仪表之一。
二、仪表的功能与特点:1. 仪表采用气介式集成超声波传感器进行液位测量,从而实现非接触测量。
2. 仪表采用8051单片微机及大规模CMOS 集成电路,仪表智能化程度高、功能强、可靠性高、功耗小。
3. 仪表可以将每天、每月及每年的流量值(即污水排放量) 保存三年,并可以在任意时刻进行查询、打印。
测量数据即是在断电状态下也可保持10年,而无需电池。
4. 仪表特别设计了液位高度的光柱显示(显示液位高度百分比),使显示更加直观。
5. 仪表具有多参数驻留显示功能,可以驻留显示瞬时流量、总累积流量、温度、液位及计量时间等5个参数。
驻留显示选择只需通过单键操作完成。
也可选择时钟作为驻留显示。
6. 仪表还设有显示内容单位指示、交流掉电指示、溢出报警指示、淹没流报警指示、水面漂浮物报警(即失测指示)、通信指示等10个指示灯,使仪表工作状态及显示内容一目了然。
7. 仪表仅采用6个触摸键即可完成所有操作,故仪表操作非常简便。
8. 仪表可以允许选择多种打印模式,包括定时打印、每日趋势曲线打印、随时手动打印,及查询打印等。
(注:本机不含打印机) 9. 仪表工作不受打印机工作状态的影响,即使打印机关机或故障,也不影响仪表的正常工作。
10. 仪表特设有RS-232通信接口,使仪表具有与上位计算机通讯的功能。
11. 仪表也可以进行淹没流测量或多通道测量(需定制)。
注:本仪表仅适用于非防爆要求、流体表面不含大量泡沫及非淹没流场合(若要求须定制)。
武汉泰肯21.流量范围: 0.1×10-3m 3/s ~93m 3/s2 < ±5%; 3.显示分辨率:瞬时流量: 0.1m3/h累积流量: 1m 3液 位: 0.001m 温 度: 1℃ 计量时间: 1h 4.仪表工作条件:一次仪表: 环境温度: -25℃~+70℃ 相对湿度: <5~100% 介质温度: 0~40℃ 二次仪表: 环境温度: -10℃~+55℃ 相对湿度: <85% 5.超声波盲区:500mm6.超声波传感器信号传送距离:100m (更长需定制)7.输出信号: RS232标准通信接口、4-20mA 标准电流信号 8.电源: 交流:220V ±10% , 50HZ ± 1HZ 直流:12V,6.5Ah(机内自备) 1、 流量范围:1、上述仪表型号中的“P ”表示流量计使用帕歇尔槽;2、其它流量规格可根据用户需要定做。
自动化仪表施工规范
![自动化仪表施工规范](https://img.taocdn.com/s3/m/f07a0f91964bcf84b9d57bc4.png)
自动化仪表工程施工及验收规范GB 50093━20021 总则1.0.1 为了提高自动化仪表(以下简称仪表)工程施工技术和管理水平,确保工程质量,制订本规范。
1.0.2 本规范适用于工业和民用仪表工程的施工及验收。
本规范不适用于制造、贮存、使用爆炸物质的场所以及交通工具、矿井井下、气象等仪表安装工程。
1.0.3 仪表工程施工应符合设计文件及本规范的规定,并应符台产品安装使用说明书的要求。
对设计的修改必须有原设计单位的文件确认。
1.0.4 对直接安装在设备和管道上的仪表和仪表取源部件,应按设计文件对专业分界的规定施工。
1.0.5 仪表工程所采用的设备及材料应符合国家现行的有关强制性标准的规定。
1.0.6 仪表工程中的焊接工作,应符合现行国家标准《现场设备、工业管道焊接工程施工及验收规范》GB 50236—98中的有关规定。
1.0.7 仪表工程的施工除应按本规范执行外,尚应符合国家现行的有关强制性标准的规定。
2 术语2.0.1 自动化仪表 automation instrumentation对被测变量和被控变量进行测量和控制的仪表装置和仪表系统的总称。
2.0.2 测量 measurement以确定量值为目的的一组操作。
2.0.3 控制 control为达到规定的目标,在系统上或系统内的有目的的活动。
2.0.4 现场 site工程项目施工的场所。
2.0.5 就地仪表 local instrument安装在现场控制室外的仪表,一般在被测对象和被控对象附近。
2.0.6 检测仪表 detecting and measuring instrument用以确定被测变量的量值或量的特性、状态的仪表。
2.0.7 传感器 transducer接受输入变量的信息,并按一定规律将其转换为同种或别种性质输出变量的装置。
2.0.8 转换器 converter接受一种形式的信号并按一定规律转换为另一种信号形式输出的装置。
2.0.9 变送器 transmitter输出为标准化信号的传感器。
工业自动化仪表验收规范(GB50093-)-(1)
![工业自动化仪表验收规范(GB50093-)-(1)](https://img.taocdn.com/s3/m/be119ee184254b35eefd3455.png)
1 总则1.0.1 为了提高自动化仪表(以下简称仪表)工程施工技术和管理水平,确保工程质量,制订本规范。
1.0.2 本规范适用于工业和民用仪表工程的施工及验收。
本规范不适用于制造、贮存、使用爆炸物质的场所以及交通工具、矿井井下、气象等仪表安装工程。
1.0.3 仪表工程施工应符合设计文件及本规范的规定,并应符合产品安装使用说明书的要求。
对设计的修改必须有原设计单位的文件确认。
1.0.4 对直接安装在设备和管道上的仪表和仪表取源部件,应按设计文件对专业分界的规定施工。
1.0.5 仪表工程所采用的设备及材料应符合国家现行的有关强制性标准的规定。
1.0.6 仪表工程中的焊接工作,应符合现行国家标准《现场设备、工业管道焊接工程施工及验收规范》GB 50236—98中的有关规定。
1.0.7 仪表工程的施工除应按本规范执行外,尚应符合国家现行的有关强制性标准的规定。
2 术语2.0.1 自动化仪表 automation instrumentation对被测变量和被控变量进行测量和控制的仪表装置和仪表系统的总称。
2.0.2 测量 measurement以确定量值为目的的一组操作。
2.0.3 控制 control为达到规定的目标,在系统上或系统内的有目的的活动。
2.0.4 现场 site工程项目施工的场所。
2.0.5 就地仪表 local instrument安装在现场控制室外的仪表,一般在被测对象和被控对象附近。
2.0.6 检测仪表 detecting and measuring instrument用以确定被测变量的量值或量的特征、状态的仪表。
2.0.7 传感器 transducer接受输入变量的信息,并按一定规律将其转换为同种或别种性质输出变量的装置。
2.0.8 转换器 converter接受一种形式的信号并按一定规律转换为另一种信号形式输出的装置。
2.0.9 变送器 transmitter输出为标准化信号的传感器。
仪表接地规范标准[详]
![仪表接地规范标准[详]](https://img.taocdn.com/s3/m/68d9bfb56c85ec3a86c2c5a5.png)
1.0. 1本规适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。
本规不适用于操作控制室、DCS机房、计算机机房等的防靜电接地设计。
1.0. 2接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。
1.0. 3执行本规时,尚应符合现行有关标准规的要求。
2保护接地2.0. 1用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。
它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。
2.0. 2 24V或低于24Y供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。
2.0. 3安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。
3工作接地3.0. 1仪表、PLC、DCS、计算机系统等,应作工作接地。
工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。
3.0. 2当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。
3.0. 3当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。
3. 0. 4仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屛蔽接地。
除信号源本身接地者外,屏蔽接地应在控制室侧实施。
3.0.5本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。
3. 0. 6本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一4仪表系统防雷接地4.0. 1位于多雷击区或强雷击区的石油化工装置,当控制室PLC、DCS、计算机系统仪表电缆引入处及现场仪表已设置了电涌保护器时,电涌保护器应进行仪表系统防雷接地。
仪表 进近的方式
![仪表 进近的方式](https://img.taocdn.com/s3/m/ef547f41b307e87101f6967f.png)
仪表进近的方式上海进近区域最普遍使用的仪表进近程序有仪表着陆(ILS ),航向台(LLZ),VOR,和NDB 进近。
进近整个过程分:起始进近阶段,中间进近阶段,最后进近阶段,复飞阶段1.起始进近阶段作用是为飞行员提供加入进近航道的方法。
可以通过飞DME弧,程序转弯,或一条连接最后进近航道的航线飞行来完成起始进近阶段。
2.中间进近阶段主要这段时间飞行员减速达到或接近进近速度,建立必要的着陆形态。
3.最后进近阶段的目的就是将航空器引导到可以建立目视参考的某点上,这样航空器才能最终着陆。
4.复飞阶段就是航空器从复飞点重新被引导到能进行下一次进近或飞往令一个机场的某一点。
对于精密进近来说复飞点设在决断高度(高)处(DH DA),非精密进近中,复飞点(mapt)是一个由导航设备定义的定位点,或飞过最后进近定位点后飞行一定时间的某点。
仪表进近程序的定义是:航空器根据飞行仪表并对障碍物保持规定的超障余度所进行的一系列预定的机动飞行。
这种飞行程序是从规定的进场航路或起始进近定位点开始,到能够完成目视着陆的一点为止:并且包括失误进近的复飞程序。
很重要的一点“目视着陆”,这就告诉我们,仪表进近并不是想像的,只看仪表不看地面的进近:任何进近程序最后都要且必须建立目视参考。
(不考虑Ⅲ类ILS)仪表进近可以分为“精密进近”(提供航向道和下滑道引导,比如ILS、PAR、MLS。
所以不要以为只有ILS是盲降,PAR和MLS也可以叫盲降的。
)和“非精密进近”(只提供航迹引导,比如NDB、VOR)。
复飞点和决断高度/高。
复飞点是相对与“非精密进近”而言,配合“最低下降高度/高”使用:航图上会公布非精密进近程序飞机的最低下降高度/高,意思是飞机在到复飞点之前所能下降到的最低高度/高,不能低于这个高度/高,然后保持平飞至复飞点,能建立目视参考(能见跑道/引进灯)继续进近,否则立刻复飞;而“决断高度/高”是相对于精密进近而言:没有复飞点的概念,飞机在下滑道的引导下所能下降到的最低高度/高,在这个高度/高的时候,能建立目视参考(能见跑道/引进灯)继续进近,否则立刻复飞。
仪表信号传送距离
![仪表信号传送距离](https://img.taocdn.com/s3/m/397d5f727fd5360cba1adbe5.png)
信号传送距离看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。
因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。
决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。
已知:RL=250Ω,Vo=24V.DC 其允许误差为24V +10% -5%,电源允许波动△V=24V*5%=1.2V,Imax=20mA=0.02A,最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此笔者取16.28V。
即Vmin=16.28≤24-1.2-0.02(250+r)则连接导线的电阻 r=24-1.2-16.28/0.02-250=76Ω仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。
已知t=75℃时铜的电阻系数ρ=0.0217Ω.mm2/m。
根据L=Sr/ρ就可计算出铜导线的最大长度。
用标称截面1.5mm2导线时L=1.5*76/0.0217=5253m用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m因为仪表的接线往返是两根线,所以计算结果应除2即:用标称截面1.5mm2导线时L1=5253.5/2=2626m用标称截面0.8mm2导线时L2=2801.8/2=1400m在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。
4-20ma信号
![4-20ma信号](https://img.taocdn.com/s3/m/44211ad56f1aff00bed51e44.png)
4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。
4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI 拥有一些很方便的用于RTD和电桥的变送器芯片。
由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。
4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。
电子器件和传感器调整起来不够方便。
现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号传送距离
看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?
但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。
因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。
决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。
已知:RL=250Ω,
Vo=24V.DC 其允许误差为24V +10% -5%,
电源允许波动△V=24V*5%=1.2V,
Imax=20mA=0.02A,
最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此笔者取16.28V。
即Vmin=16.28≤24-1.2-0.02(250+r)
则连接导线的电阻 r=24-1.2-16.28/0.02-250=76Ω
仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。
已知t=75℃时铜的电阻系数
ρ=0.0217Ω.mm2/m。
根据L=Sr/ρ就可计算出铜导线的最大长度。
用标称截面1.5mm2导线时L=1.5*76/0.0217=5253m
用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m
因为仪表的接线往返是两根线,所以计算结果应除2即:
用标称截面1.5mm2导线时L1=5253.5/2=2626m
用标称截面0.8mm2导线时L2=2801.8/2=1400m
在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。
如果遇到现场距离超过上述的长度时,可采取以下措施:增大电线的线径,来减少导线电阻;适当调高仪表的供电电压。
八十年代,上海自动化仪表一厂针对其生产的DDZ-Ⅲ型电动单元组合仪表的变送器、调节器、电气转换器、操作器等单元,在最低供电电压(22.8V)时允许的导线电阻,曾列过一个表格供用户参考,由于其还有现实意义,特把此表格提供如下。
看了以上的计算及表格,有的网友会说,我的现场实际接线长度并不太长,但在使用中仍无法正常使用,哪又是什么原因呢?究其原因,可能是:
1.电流传送信号导线过长时,没有采取必要的屏蔽措施,或者没有遵守一点接地规则而引入了干扰。
2.在一个系统中应选择电位最低的一点作为信号的公共点,在电单仪表中,24V电源的负线电位最低,它就是信号公共线。
因此在电流传送的一对信号线中,其电位较低的一根,即信号负线应在发送仪表的输出处与24V负线相连。
如果接线错误或漏接而造成信号负线浮空而引入了干扰。
铜电阻率为 0.0175 Ω · mm2/m
金属的电阻和它的长度(L表示,单位:米)、截面积(用S表示吧!单位:平方米)、温度等有关系。
理论上,均匀金属物质的电阻(R 表示,单位:欧姆)为:R= ρ L/S (Ω),式中,ρ是物质的电阻率,单位是:Ω. m。
实际上我们常说的某金属的电阻率,说的是它在常温下的电阻率。
是不够严谨的,更学术的定义应该考虑温度系数,而金属的温度系数的定义是:设该金属在 0℃时的电阻率为ρo,100℃时的电阻率为ρ100,则0℃到100℃之间的平均温度系数为αo ...100 =(ρ100—ρo)/100ρo。
这么算下来铜的电阻率在20和100摄氏度的时候,电阻率分别在0.0175和0.0228。
实验证明,当温度改变时,导体的电阻率也要改变。
所有金属的电阻率都随温度的升高而增大。
在一般的温度范围内,几乎所有金属导体的电阻率都与温度之间近似地有如下的线性关系:
式中和分别为温度t℃和0℃时的电阻率,α称为电阻的温度系数,单位为(每度)。
纯金属铜在20℃的电阻率为:1.7376X10^ -8 Ω·m(欧·米) 100℃的电阻率为:2.288X10^ -8 Ω·m(欧·米)
25摄氏度时,铜的电阻是不是0.01724?
可以用下面的公式自己计算.将t 换成25就可以了.
金属的电阻率和温度的关系
铜线坯的电阻率有牌号和软硬之分.详见GB/T 3952--1998 <电工用铜线坯>第4.6条.
牌号状态电阻率
T1 TUI R 0.01707
T2 T3 TU2 R 0.01724
TU1 Y 0.01750
TU2 Y 0.01777。