函数及其图像测试题(含答案)

合集下载

(846)函数图像专项练习40题(有答案)39页 ok

(846)函数图像专项练习40题(有答案)39页 ok

函数图像专项练习40题(有答案)1.某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.2.如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是,因变量是;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.3.某农民带了若干千克玉米进城出卖,为了方便,他带了一些零用钱备用,他先按市场价出卖一些后,又降价卖,卖出玉米千克数x与他手中持有钱数y(含备用零钱)的关系如图所示,结合图象回答下列问题.(1)该农民自带的零用钱是多少?(2)降价前玉米的单价是多少?(3)降价后他按每千克0.3元将余下玉米卖完,这时他手中的钱(含零用钱)是36元,问他一共带多少千克玉米?4.某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑,当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)朱老师的速度为米/秒;小明的速度为米/秒;(3)小明与朱老师相遇次,相遇时距起点的距离分别为米.5.为一位旅行者在早晨8时从城市出发到郊外所走的路程s(km)与时间t(时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是,因变量是;(2)9时走的路程是km,12时走的路程是km;(3)他在途中休息了h;(4)他从休息中直至到达目的地这段时间的平均速度是多少?6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.7.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?8.杨师傅开车从A地出发去300千米远的B地游玩,其行驶路程s与时间t之间的关系如图所示,出发一段时间后,汽车发生故障,需停车检修,修好后又继续行驶.根据题意回答下列问题:(1)上述问题中反映的是哪两个变量之间的关系?并指出自变量和因变量;(2)汽车停车检修了多长时间?修车的地方离B地还有多远?(3)车修好后每小时走多少千米?9.如图,某校学习小组在做实验中发现弹簧挂上物体后会伸长,在弹簧限度内测得这个弹簧的长度y(cm)与悬挂的物体的质量x(kg)间有下面的关系:物体的质量x/kg012345…弹簧的长度y/cm101214161820…(1)上表变量之间的关系中自变量是,因变量是;(2)弹簧不悬挂重物时的长度为cm;物体质量每增加1kg,弹簧长度y增加cm;(3)当所挂物体质量是8kg时,弹簧的长度是cm;(4)直接写出y与x的关系式:.10.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)在这一时间段内:①什么时间甲在乙的前面;②什么时间甲与乙相遇;③什么时间甲在乙后面.11.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?12.如图是某汽车行驶的路程s(km)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)求汽车在前9分钟内的平均速度.(2)汽车在中途停留的时间.(3)求该汽车行驶30千米的时间.13.小明家有一大一小两个圆柱形的杯子,大杯子的杯口半径刚好是小杯子杯口半径的2倍,他将小杯子杯口朝上放入大杯子中,组成如图①所示的一个容器,并匀速向小杯子中注水,当小杯子注满后,水溢到大杯子中,直至整个容器注满水,注水过程中容器中水位高度h(cm)与时间t(s)之间的关系如图②所示,(小杯子的厚度忽略不计)根据图中提供的信息,回答下列问题:(1)小杯子的高度为cm,将小杯子注满水所用的时间为s,大杯子的高是小杯子高的倍;(2)请求出图象中a的值,并说明它表示的实际意义;(3)将整个容器注满水所需要的时间为s.14.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?15.某地区一天的气温变化较大,如图表示该地区一天24小时的气温变化情况.①上图描述的两个变量中自变量是什么?因变量是什么?②一天中哪个时间气温最高或最低,分别是多少?③在什么时间范围内气温上升,什么时间范围内气温下降?④该地区一天的温差是多少?若该地区是一旅游景点,你应向该地旅游的游客提出怎样的合理化建议?16.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同,他们将一头骆驼前两昼夜的体温变化情况绘制成右图,请根据图象回答:(1)在这个问题中,自变量是什么?因变量是什么?(2)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?(3)第三天12时这头骆驼的体温是多少?17.如图,已知自行车与摩托车从甲地开往乙地,OA与BC分别表示它们与甲地距离s(千米)与时间t(小时)的关系,则:(1)摩托车每小时走千米,自行车每小时走千米;(2)自行车出发后多少小时,它们相遇?(3)摩托车出发后多少小时,他们相距10千米?18.某车间甲、乙两名工人分别生产同种零件,他们生产的零件数量y(个)与生产时间t(小时)之间的关系如图所示(其中实线表示甲,虚线表示乙,且甲因机器故障停产了一段时间).(1)甲、乙中,先完成40个零件的生产任务.(2)甲在因机器故障停产之前,每小时生产个零件.(3)甲故障排除之后以原来速度的两倍重新开始生产,则甲停产了小时.(4)在第一次甲乙生产零件总数在同一时刻相同到甲完工这段时间,什么时候甲乙生产的零件总数相差3个?19.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是390元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?20.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.21.如图所示的是甲、乙两人在争夺冠军中的比赛图,其中t表示赛跑时所用时间,s表示赛跑的距离,根据图象回答下列问题:(1)图象反映了哪两个变量之间的关系?(2)他们进行的是多远的比赛?(3)谁是冠军?(4)乙在这次比赛中的速度是多少?22.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?23.如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程S甲、S乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为时;(3)乙从出发起,经过小时与甲相遇;(4)甲行走的平均速度是=千米/小时;(5)乙骑自行车出故障前的速度与修车后的速度,一样吗?24.容积为200L的水箱上装有两根进水管A,B和一根排水管C.如图,先由A,B两根进水管同时向水箱内注水,再由B管单独向水箱内注水,最后由C管将水箱内的水排完.(1)水箱内原有水L,B进水管每分钟向水箱内注水L,A,B两根进水管中工作效率较高的是(填“A”或“B”)进水管;(2)若一开始只由B管单独注水,则注满水箱要分钟?25.如图,梯形的下底是10cm,高是6cm,设梯形的上底为xcm,面积为ycm2,面积y随上底x的变化而变化.(1)在这个变化过程中,是自变量,是因变量.(2)y与x的关系式为:y=;(3)请根据关系式填写表:x12 2.58y3345(4)小亮用下面的图象来表示面积y与上底x的变化规律,请观察图象回答:梯形的面积y 随上底x的增大而;若要使面积y大于39cm2,则上底x的范围是.26.温度的变化,是人们经常讨论的话题.如图是某地某天温度变化的情况.(1)这一天的最高温度是多少?从最低温度到最高温度经过了多长时间?(2)这一天的温差是多少?在什么时间范围内温度在下降?(3)图中的A点表示的是什么?B点呢?27.德国心理学家艾宾浩斯(H.Ebbinghaus)研究发现,遗忘在学习之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐渐缓慢.他认为“记忆保持量是时间的函数”,他用无意义音节(由若干音节字母组成、能够读出、但无内容意义即不是词的音节)作记忆材料,用节省法计算保持和遗忘的数量.他通过测试,得到了一些数据如下表,然后又根据这些数据绘出了一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如下图.该曲线对人类记忆认知研究产生了重大影响.时间间隔记忆保持量刚记完100%20分钟后58.2%1小时后44.2%8~9小时后35.8%1天后33.7%2天后27.8%6天后25.4%观察图象及表格,回答下列问题:(1)2小时后,记忆保持量大约是多少?(2)说明图中点A的坐标表示的实际意义.(3)你从记忆遗忘曲线中还能获得什么信息?写出一条即可.28.如图,在一个半径为18cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如挖去的圆半径为x(cm),圆环的面积y(cm2)与x的关系式.(3)当挖去圆的半径为9cm时,剩下圆环面积为多少cm2.29.为纪念爱国诗人屈原,我市在俯南河隆重举行了一次龙舟比赛,如图是甲、乙两支龙舟队在比赛时的路程s(米)与时间t(分钟)之间的图象,请你根据图象回答下列问题:(1)在1.8分钟时,哪支龙舟队处在领先地位?(2)在这次龙舟比赛中哪支龙舟队先到达终点,先到多长时间?(3)甲队在这次比赛中的平均速度是多少?30.如图,AB两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也在同日下午骑摩托车从A地开往B地,如图所示折线PQR和线段MN分别表示甲乙所行驶的路程S 和时间t的关系根据图象,回答下列问题:(1)甲和乙谁出发的更早?做多长时间?(2)甲和乙谁先到达B城?早多长时间?(3)乙出发大约多长时间追上甲?(4)请根据图象求出甲和乙在整个过程中的平均速度?31.弹簧的长度与所挂物体的质量的关系如图所示,观察图象回答:(1)弹簧未挂物体的长度是多少?(2)弹簧所挂物体的最大质量是多少?这时弹簧的长度是多少?32.如图是一辆汽车油箱里剩油量y(L)与行驶时间x(h)的图象,根据图象回答下列问题:(1)汽车行使前油箱里有L汽油;(2)当汽车行使2h,油箱里还有L油;(3)汽车最多能行使h,它每小时耗油L;(4)求油箱中剩油y(L)与行使时间x(h)之间的函数关系式.33.甲、乙两个工程队完成某项工程,假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1.甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示.(1)甲队单独完成这项工程,需天.(2)求乙队单独完成这项工程所需的天数.(3)求出图中x的值.34.如图,直线m反映了北京2008年奥运专卖店某种商品的销售收入与销售量之间的关系,直线n反映了该专卖店的销售成本与销售量之间的关系.根据图象回答:(1)当销售量为3件时,销售收入为,销售成本是;(2)当销售量为6件时,销售收入为;(3)当销售量为件时,销售收入等于销售成本;(4)当销售量为时,该店赢利;(5)当销售量为时,该店亏本.35.某气象研究中心观察一场沙尘暴从发生到结束的全过程,开始时风速按一定的速度匀速增长,经过荒漠地时,风速增长就加快可.一段时间后,风速保持不变,当沙尘暴遇到绿色植被区时,风速保持不变,当沙尘暴遇到绿色植被区时,其风速开始逐渐减小,最终停止,如图是风速与时间的变化关系的图象,结合图象回答下列问题[其中水平数轴表示时间x(h),竖直数字表示风速y(km/h)](1)沙尘暴从开始发生到结束共经历了多长时间?(2)从图象上看,风速在哪一个时间段增大的比较快?增加的速度是多少?(3)风速从开始减小到最终停止,每小时减小多少?(4)风速在那一时间段保持不变?经历可多少?(5)为了防止沙尘暴,可以采取哪些措施?36.三峡工程在2003年6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡出平湖初现人间.如图是三峡水库水位变化图象,其中x表示下闸蓄水时间(天),y表示水库的平均水位(米).根据图象回答下列问题:(1)上述图象反映了哪两个变量之间的关系?(2)水库的平均水位y可以看成下闸蓄水时间x的函数吗?为什么?(3)求当x=7时的函数值,并说明它的实际意义.37.如图是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)时气温最高,时气温最低,最高气温是℃,最低气温是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.38.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.39.如图是周涛同学推出的铅球行进的曲线,其中y表示铅球行进的高度,x是铅球行进的水平距离.(1)这个图象反映了哪两个变量之间的关系?(2)铅球行进的高度y是水平距离x的函数吗?请说明理由,并指出自变量的取值范围;(3)根据图象回答:铅球行进的最高点距地面是多少千米?周涛投掷铅球的距离是多少?40.如图可以用来反映这样一个实际情况,一艘船从甲地航行到乙地,达到乙地后即返回,这里横坐标表示航行的时间,纵坐标表示船只与甲地的距离,你认为,船只从甲地到乙地航行的速度与返航的速度是否相同?说说理由.函数图像专项练习40题答案:1.【分析】(1)先观察图象得:1小时对应y=60,可知20分时含药为20微克,根据如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,可得结论;(2)根据图象得出;(3)利用y=20时,对应的x的差可得结论.【解答】解:(1)由图象可知:服药一个小时时,每毫升血液中含药60微克,所以大约20分钟后,每毫升血液中含药20微克,所以服药后,大约20分钟后,药物发挥作用.故答案为:20;(2)由图象得:服药后,大约2小时,每毫升血液中含药量最大,最大值是80微克;故答案为:2;80;(3)由图象可知:x=7时,y=20,7﹣=≈6.7(小时)则服药后,药物发挥作用的时间大约有6.7小时.故答案为:6.7.2.【分析】(1)在坐标系中横坐标是自变量,纵坐标是因变量,据此求解;(2)根据图象可以得到离家最远时的时间,此时离家的距离,据此即可确定;(3)根据图象可以得到有两个时间点,据此即可确定;(4)往返所用的总路程除以总时间可得.【解答】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离,故答案为:离家时间、离家距离;(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km;(3)当1≤t≤2时,设s=kt+b,将(1,10)、(2,30)代入,得:,解得:,∴s=20t﹣10,当s=20时,有20t﹣10=20,解得t=1.5,由图象知,当t=4时,s=20,故当t=1.5或t=4时,小李与家相距20km;(4)小李这次出行的平均速度为=12(km/h).3.【分析】(1)由图象可知,当x=0时,y=5,因此农民自带的零钱是5元.(2)根据图象中的信息即可得到结论;(3)可设降价后农民手中钱y与所售土豆千克数x之间的函数关系式,因为当x=a时,y=26,当x=30时,y=20,依此列出方程求解.【解答】解:(1)由图象可知,当x=0时,y=10.答:农民自带的零钱是10元.(2)设降价前土豆的单价是(25﹣10)÷30=0.5(元/千克);答:降价前玉米的单价是0.5元/千克;(3)设降价后农民手中钱y与所售玉米千克数x之间的函数关系式为y=0.3x+b.∵当x=30时,y=25,∴b=16,当x=a时,y=36,即0.3a+16=36,解得:a≈66.6.答:农民一共带了66.6千克玉米.4.【分析】(1)观察函数图象即可找出谁是自变量谁是因变量;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)根据函数图象即可得到结论.【解答】解:(1)观察函数图象可得出:自变量为小明出发的时间t,因变量为距起点的距离s.故答案为:小明出发的时间t;距起点的距离s.(2)朱老师的速度为:(300﹣200)÷50=2(米/秒);小明的速度为:300÷50=6(米/秒).故答案为:2;6.(3)小明与朱老师相遇2次,相遇时距起点的距离分别为300米或420米,故答案为:300米或420米.5.【分析】(1)根据自变量是横轴表示的量,因变量是纵轴表示的量,解答即可.(2)由图象看相对应的y值即可.(3)由图象可知,休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行的线段.(4)根据这段时间的平均速度=这段时间的总路程÷这段时间,算出即可.【解答】解:(1)由图象可得,时间是自变量,路程是因变量;故答案为:时间;路程;(2)由图可知:9时,12时所走的路程分别是4千米,15千米;故答案是:4;12;(3)根据图象可得,该旅行者休息的时间为:10.5﹣10=0.5(小时);故答案是:0.5;(4)根据图象得:(15﹣9)÷(12﹣10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.6.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.7.【分析】(1)图象与y轴的交点就是李大爷自带的零钱.(2)0到100时线段的斜率就是他每千克黄瓜出售的价格.(3)计算出降价后卖出的量+未降价卖出的量=总共的黄瓜.(4)赚的钱=总收入﹣批发黄瓜用的钱.【解答】解:(1)由图可得农民自带的零钱为50元.(2)(410﹣50)÷100=360÷100=3.6(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530﹣410)÷(3.6﹣1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530﹣160×2.1﹣50=144(元).答:李大爷一共赚了144元钱.8.【分析】(1)根据函数的图象可以知道横轴表示时间,纵轴表示路程,据此可以得到答案;(2)观察图象可以得到汽车在3﹣4小时之间路程没有增加,说明此时在检修,由B地或C 地的纵坐标即可得出答案;(3)检修后两小时走了150千米据此可以求得速度.【解答】解:(1)路程与时间之间的关系.自变量是时间,因变量是路程;(2)4﹣3=1(小时),300﹣150=150(千米),汽车停车检修了1小时,修车的地方离B地还有150千米;(3)(300﹣150)÷(6﹣4)=75(千米/小时),车修好后的速度为75千米/小时.9.【分析】(1)根据变量的含义可得;(2)由x=0时y的值可得不挂物体的长度,由表格中数据的变化可得;(3)根据(2)中结论可得;(4)利用(3)中计算所用相等关系可得.【解答】解:(1)上表变量之间的关系中自变量是悬挂的物体的质量,因变量是弹簧的长度,故答案为:悬挂的物体的质量、弹簧的长度;(2)弹簧不悬挂重物时的长度为10cm;物体质量每增加1kg,弹簧长度y增加2cm,故答案为:10、2;(3)当所挂物体质量是8kg时,弹簧的长度是10+2×8=26cm,故答案为:26;故答案为:y=10+2x .10.【分析】(1)因为当y=0时,x 甲=0,x 乙=10,所以甲先出发了10分钟,又因当y=6时,x甲=30,x 乙=25,所以乙先到达了5分钟;(2)都走了6公里,甲用了30分钟,乙用了25﹣10=15分钟,由此即可求出各自的速度;(3)根据图象,即可解决问题;【解答】解:(1)甲先出发,先出发10分钟.乙先到达终点,先到达5分钟.(2)甲的速度为:V 甲==12(千米/小时);乙的速度为:V 乙==24(千米/时);(3)观察图象可知:当10<x <20时,甲在乙的前面.②当x=20时,甲与乙相遇.③当20<x <25时,乙在甲的前面.11.【分析】(1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x ≤14时,直线最陡,故小明在12﹣14分钟最快,速度为=450米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.12.【分析】(1)直接利用总路程÷总时间=平均速度,进而得出答案;(2)利用路程不发生变化时,即可得出停留的时间;(3)利用待定系数法求出S 与t 的函数关系式,将S=30代入解析式求得t 即可.【解答】解:(1)汽车在前9分钟内的平均速度是:=(km/min );(2)汽车在中途停了:16﹣9=7(分钟);(3)当16≤t ≤30时,。

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析1.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为【】A.B.C.D.【答案】C【解析】动点问题的函数图象,正三角形的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理。

【分析】如图,过点C作CD垂直AB于点D,则∵正△ABC的边长为3,∴∠A=∠B=∠C=60°,AC=3。

∴AD=,CD=。

①当0≤x≤3时,即点P在线段AB上时,AP=x,PD=(0≤x≤3)。

∴(0≤x≤3)。

∴该函数图象在0≤x≤3上是开口向上的抛物线。

②当3<x≤6时,即点P在线段BC上时,PC=(6-x)(3<x≤6);∴y=(6-x)2=(x-6)2(3<x≤6),∴该函数的图象在3<x≤6上是开口向上的抛物线。

综上所述,该函数为。

符合此条件的图象为C。

故选C。

2.若m、n(m<n)是关于x的方程的两根,且a < b,则a、b、m、n 的大小关系是()A.m < a < b< n B.a < m < n < bC.a < m < b< n D.m < a < n < b【答案】A【解析】1-(x-a)(x-b)=0即为(x-a)(x-b)-1=0令f(x)=(x-a)(x-b)-1,g(x)=(x-a)(x-b)∴f(x)的图象是g(x)的图象向下平移1个单位又m,n是f(x)的两个零点,a,b是g(x)的两个零点;∴m<a<b<n故选A3.已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图像是(▲)【答案】B【解析】设三角形与正方形的重合面积为y,点A移动的距离为x,∴y关于x的函数关系式为:y=x2,①当x<a时,重合部分的面积的y随x的增大而增大,②当a<x<b时,重合部分的面积等于直角三角形的面积,且保持不变,③第三部分函数关系式为y=-当x>b时,重合部分的面积随x的增大而减小.故选B.4.向一容器内匀速注水,最后把容器注满.在注水过程中,容器的水面高度与时间的关系如下图所示,图中PQ为一条线段,则这个容器是()【答案】D【解析】根据图象,水面高度增加的先逐渐变快,再匀速增加;故容器从下到上,应逐渐变小,最后均匀.故选D.5.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元【答案】A【解析】由图像可知超过100面的部分,每面收费=(70-50)(150-100)=0.4元6.设函数(为任意实数)【1】求证:不论为何值,该函数图象都过点(0,2)和(-2,0);【答案】把代入,得;把代入,得【2】若该函数图象与轴只有一个交点,求的值.【答案】当时,函数为一次函数,显然与轴只有一个交点;当时,函数为二次函数,要使与轴只有一个交点,则∴此时综上所述,当或时,函数与轴只有一个交点7.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是()【答案】A【解析】分析:由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解答:解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短,故选A.8.(2011•潼南县)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.【答案】:解:(1)由图象可知:点A的坐标为(2,)点B的坐标为(﹣1,﹣1)(2分)∵反比例函数(m≠0)的图象经过点(2,)∴m=1∴反比例函数的解析式为:(4分)∵一次函数y=kx+b(k≠0)的图象经过点(2,)点B(﹣1,﹣1)∴解得:k=b=﹣∴一次函数的解析式为(6分)(2)由图象可知:当x>2或﹣1<x<0时一次函数值大于反比例函数值(10分)【解析】:(1)根据题意,可得出A、B两点的坐标,再将A、B两点的坐标代入y=kx+b(k≠0)与,即可得出解析式;(2)即求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.9.下列四个图象表示的函数中,当x<0时,函数值y随自变量x的增大而减小的是()【答案】D【解析】分析:本题需根据函数的图象得出函数的增减性,即可求出当x<0时,y随x的增大而减小的函数.解答:解:A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在每个象限内y随x的增大而增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,,故本选项错误;D、根据函数的图象可知在对称轴的左边y随x的减小而减小;在对称轴的右边y随x的增大而增大,故本选项正确.故选:D.10.如图,已知抛物线,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线,所围成的阴影部分的面积为S,平移的距离为m,则下列图象中,能表示S与m的函数关系的图象大致是().【答案】B.【解析】图中所求阴影的面积相对于抛物线向上平移m个单位时,抛物线在范围内扫过的面积,即两个平行四边形的面积之和,抛物线的对称轴为直线x=-1,所以阴影的面积,因为m0,所以能表示S与m的函数关系的图象大致是B.故选:B.【考点】二次函数的图象;图形的平移变换.11.函数的自变量x的取值范围是.【答案】.【解析】根据题意得,,解得.故答案为:.【考点】函数自变量的取值范围.12.若反比例函数的图象经过点(1,-2),则k的值为.【答案】-2【解析】把点(1,-2)代入反比例函数,即可求出K值.【考点】反比例函数图象上点的特征13.自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?【答案】(1)甲: y=-x+2 乙:y=x+1;(2)小时;(3)1小时;(4)4小时.【解析】(1)先设函数关系式,然后看甲乙两图分别取两组x、y的值得到一个二元一次方程组,解此方程组得出常数项,将常数项代入即可得出解析式;(2)根据甲、乙两个蓄水池水的深度相同,可以得到一个一元一次方程,解此方程组可得注水时间;(3)从函数图象判断当甲水池的水全部注入乙水池后,甲水深度下降2米,而乙水池深度升高3米,所以甲乙两水池的底面积比是3:2,再根据容积公式求水量得到一个一元一次方程,解此方程得甲、乙两个蓄水池的蓄水量相同时的注水时间;(4)由图可知乙蓄水池的水深为4米,乙蓄水池上升的速度为1米/小时,由此求得答案即可.试题解析:(1)设它们的函数关系式为y=kx+b,根据甲的函数图象可知,当x=0时,y=2;当x=3时,y=0,将它们分别代入所设函数关系式y=kx+b中得,k=-,b=2代入函数关系式y=kx+b中得,甲蓄水池中水的深度y与注水时间x之间的函数关系式为: y=-x+2根据乙的函数图象可知,当x=0时,y=1;当x=3时,y=4,将它们分别代入所设函数关系式y=kx+b中得,k=1,b=1代入函数关系式y=kx+b 中得,乙蓄水池中水的深度y 与注水时间x 之间的函数关系式为:y=x+1; (2)根据题意,得解得x=.故当注水小时后,甲、乙两个蓄水池水的深度相同;(3)从函数图象判断当甲水池的水全部注入乙水池后,甲水池深度下降2米,而乙水池深度升高3米,所以甲乙水池底面积之比S l :S 2=3:2 S 1(-x+2)=S 2(x+1)解得x=1.故注水1小时后,甲、乙两个蓄水池的蓄水量相同. (4)4÷(3÷3)=4小时.所以若将乙蓄水池中的水按原速全部注入甲蓄水池,又需要4小时. 【考点】一次函数的应用14. (8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度,如图,老师测得升旗台前斜坡FC 的坡比为i FC =1:10(即EF :CE=1:10),学生小明站在离升旗台水平距离为35m (即CE=35m )处的C 点,测得旗杆顶端B 的仰角为α,已知tanα=,升旗台高AF=1m ,小明身高CD=1.6m ,请帮小明计算出旗杆AB 的高度.【答案】12.1m .【解析】作DG ⊥AE 于G ,根据已知可得BG 与EF 的大小,进而求得BE 、AE 的大小,再利用AB=BE ﹣AE 可求出答案.试题解析:作DG ⊥AE 于G ,则∠BDG=α,易知四边形DCEG 为矩形.∴DG=CE=35m ,EG=DC=1.6m ,在直角三角形BDG 中,BG=DG•×tanα=35×=15m ,∴BE=15+1.6=16.6m ,∵斜坡FC 的坡比为i FC =1:10,CE=35m ,∴EF=35×=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE ﹣AE=16.6﹣4.5=12.1m .答:旗杆AB 的高度为12.1m .【考点】解直角三角形的应用-仰角俯角问题.15. 二次函数y=ax 2+bx+c 的图象如图所示,Q (n ,2)是图象上的一点,且AQ ⊥BQ ,则a 的值为()A.-B.-C.-1D.-2【答案】B.【解析】由勾股定理,及根与系数的关系可得.试题解析:设ax2+bx+c=0的两根分别为x1与x2.依题意有AQ2+BQ2=AB2.(x1-n)2+4+(x2-n)2+4=(x1-x2)2,化简得:n2-n(x1+x2)+4+x1x2=0.n2+n+4+=0,∴an2+bn+c=-4a.∵(n,2)是图象上的一点,∴an2+bn+c=2,∴-4a=2,∴a=-.故选B.【考点】1.抛物线与x轴的交点;2.勾股定理.16.如图,已知抛物线和直线。

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析1.对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,}=.若关于x 的函数y = min{,}的图象关于直线对称,则a、t的值可能是A.3,6B.2,C.2,6D.,6【答案】C【解析】如图所示,函数图象关于直线对称,则只能,观察图象两个函数交点为(3,0),则有18=,以上选项中2,6代入恰好合适。

时不存在。

故选C2.某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为(元)(利润=销售额-成本-广告费).若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为(元)(利润=销售额-成本-附加费).【1】当x=1000时,y= ▲元/件,w甲= ▲元【答案】190 67500;【2】分别求出,与x间的函数关系式(不必写x的取值范围);【答案】w甲= x2+150 x-72500,W乙= x2+(200)x【3】当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a的值;【答案】a=60【4】如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?【答案】选择甲3.对于一个函数,如果将=代入,这个函数将失去意义,我们把这样的数值叫做自变量x的奇异值,请写出一个函数,使2和-2都是这个函数的奇异值,你写出的函数为▲ .【答案】.答案不唯一,如等;【解析】函数自变量的奇异值就是函数没意义,如分式的分母为零等4.如图,直线(>0)与双曲线在第一象限内的交点为R,与轴的交点为P,与轴的交点为Q;作RM⊥轴于点M,若△OPQ与△PRM的面积是9∶1,则▲.【答案】2【解析】如图,有直线方程,得Q(0,-3)即因为RM⊥,所以△OPQ与△PRM相似。

第17章 函数及其图象【真题训练】(解析版)

第17章 函数及其图象【真题训练】(解析版)

第17章 函数及其图象[真题训练](解析版)一、选择题1.(2020湖北黄冈)在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A解:∵点(,)A a b -在第三象限,∴0a <,, ∴0b >,∴,∴点B 在第一象限, 故选:A .2.(2020四川遂宁)函数12-+=x x y 中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠1【答案】D .【解答】解:根据题意得:{x +2≥0x −1≠0解得:x ≥﹣2且x ≠1. 故选:D .3.(2020湖北武汉)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A. 32 B. 34C. 36D. 38【答案】C.解:设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知, 即201251235c +⨯-= 解得15()4c L =则当24x =时, 因此,解得36(min)a = 故选:C .4.(2020·安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(-1,2) B .(1,-2)C .(2,3)D .(3,4)【答案】B解:由一次函数的解析式,得:k =3y x -≠0,则y ≠3.∵一次函数y 随x 的增大而减小,∴k <0,即3y x-<0,故x >0、y <3或x <0、y >3,故选B.5.(2020·乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤-2B .x ≤-4C .x ≥-2D .x ≥-4【答案】C解析:先根据图像用待定系数法求出直线的解析式,然后根据图像可得出解集.因为直线y =kx +b 经过(0,1),(2,0)两点,所以⎩⎨⎧b =1,2k +b =0,解得⎩⎪⎨⎪⎧k =-12,b =1,故直线的解析式为y =-12x +1;将y =2代入得2=-12x +1,解得x =-2,由图像得到不等式kx +b ≤2的解集是x ≥-2.6.(2020·济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P,根据图象可知,方程x+5=ax+b 的解是( )A. x=20B.x=5C.x= 25D.x=15 【答案】A解析:由函数图象知,当x=20时,y=x+5=25,y=ax+b=25,所以方程x+5=ax+b 的解是x=20.7.(2020·湖北荆州)在平面直角坐标系中,一次函数1y x 的图象是( )A. B. C. D. 【答案】C解析:此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键. 观察一次函数的解析式,确定出k 与b 的符号,利用一次函数图象及性质判断即可.一次函数1yx 中,其中k =1,b =1,其图象为,故选C.8.(2020·凉山州)若一次函数y =(2m +1)x +m -3的图象不经过第二象限,则m 的取值范围是( ) A .m >-12 B .m <3 C .-12<m <3 D .-12<m ≤3 【答案】D解析:由题意得,解得-12<m ≤3,故选D . 9.(2020河南)若点A(-1,1y ), B(2,2y ),C(3,3y )在反比例函数xy 6-=的图像上,则1y , 2y ,3y 的大小关系为( ) A. 123y y y >> B. 231y y y >>C. 132y y y >>D. 321y y y >>【答案】C【详解】解:∵点在反比例函数6y x=-的图象上,∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<, ∴132y y y >>, 故选:C .10. (2020内蒙古呼和浩特)在同一坐标系中,若正比例函数y =k 1x 与反比例函数y =的图象没有交点,则k 1与k 2的关系,下面四种表述①k 1+k 2≤0;②|k 1+k 2|<|k 1|或|k 1+k 2|<|k 2|;③|k 1+k 2|<|k 1﹣k 2|;④k 1k 2<0.正确的有( ) A .4个 B .3个 C .2个 D .1个【答案】B解:∵同一坐标系中,正比例函数y =k 1x 与反比例函数y =的图象没有交点,若k 1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限, 则k 2<0,若k 1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限, 则k 2>0,综上:k 1和k 2异号,①∵k 1和k 2的绝对值的大小未知,故k 1+k 2≤0不一定成立,故①错误; ②|k 1+k 2|=||k 1|﹣|k 2||<|k 1|或|k 1+k 2|=||k 1|﹣|k 2||<|k 2|,故②正确; ③|k 1+k 2|=||k 1|﹣|k 2||<||k 1|+|k 2||=|k 1﹣k 2|,故③正确; ④∵k 1和k 2异号,则k 1k 2<0,故④正确; 故正确的有3个, 故选:B . 二、填空题11.(2020齐齐哈尔)在函数23-+=x x y 中,自变量x 的取值范围是 . 【答案】x ≥﹣3且x ≠2. 解:由题可得,{x +3≥0x −2≠0,解得{x ≥−3x ≠2,∴自变量x 的取值范围是x ≥﹣3且x ≠2, 故答案为:x ≥﹣3且x ≠2.12.(2020重庆B 卷)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚__________分钟到达B 地.【答案】12.解析:由图及题意易乙的速度为300米/分,甲原速度为250米/分,当x=25后,甲提速为400米/分,当x=86时,甲到达B地,此时乙距B地为250(25-5)+400(86-25)-300×86=3600.13.(2020·黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是________.【答案】y=-2x解析:本题考查了一次函数的性质、正比例函数的性质、点的坐标意义.∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=-x+1上,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2).设正比例函数解析式为y=kx,把P(-1,2)代入得2=-k,解得k=-2,∴正比例函数的解析式为y=-2x,因此本题答案为y=-2x.14.(2020·黔东南州)把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为__________ .【答案】y=2x+3解析:利用一次函数图象的平移规律“左加右减,上加下减”来解.∴把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1;再向上平移2个单位长度,得到y=2(x+1)﹣1+2=2x+3.15.(2020·宿迁)已知一次函数y=2x-1的图像经过点A(x1,1),B(x2,3)两点,则x1_______x2(填“>”、“<”或“=”).【答案】<.解析:∵k=2>0,∴y随x的增大而增大.∵1<3,∴x1<x2.故答案为<.16.(2020·南京)将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是________.【答案】y=12x+2解析:直线y=-2x+4与x、y轴的交点分别为(2,0)、(0,4),该两点逆时针旋转90°后的对应点分别是(0,2)、(-4,0).设旋转后的直线解析式为y=k x+b,代入点(0,2)、(-4,0),得:,解得:故旋转后的直线解析式为y=12x+2.17.(2020·毕节)一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象的两个交点分别是A(-1,-4),B(2,m),则a+2b=_________.【答案】-2,解析:本题考查一次函数与反比例函数的交点.解:把A (-1,-4)代入y =k x ,得-4=1k-,∴k =4.∴反比例解析式为y =4x.把B (2,m )代入,得m =42,∴m =2,∴B (2,2).把A (-1,-4),B (2,2)代入y =ax +b , 得解得∴a +2b =2+2×(-2)=-2. 故答案为-2.18.(2020北京)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_________. 【答案】0【解析】由于正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴021=+y y19.(2020成都)在平面直角坐标系中,已知直线与双曲线交于,两点(点在第一象限),直线与双曲线交于,两点.当这两条直线互相垂直,且四边形的周长为时,点的坐标为 .【答案】或. 【解答】解:联立与并解得:,故点的坐标为,, 联立与同理可得:点,这两条直线互相垂直,则,故点,,则点,则,同理可得:, 则,解得:或, 故点的坐标为或, 故答案为:或.xOy 4y x=A C A 1y x=-B D ABCD A 4y x =A 1y x=-D 1mn =-D (B 2255AB m AD m=+=14AB =⨯225552AB m m==+2m =12A20.(2020河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个. 【答案】 (1)-16 (2)5 (3)7 【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数ky x=(0x <)的图象经过T 1 ∴116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8) ∵L 过点4T ∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28 ∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值. 故答案为:(1)-16;(2)5;(3)7. 三、解答题21.(2020·宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地,两辆货车离开各自出发....地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?分析:本题考查了一次函数的图象和性质及实际应用.(1)根据函数图象中两点的坐标由待定系数法求得函数表达式;(2)计算出货车乙与货车甲相遇时间,货车甲正常到达B 地的时间,货车乙按要求到达B 地时间,根据速度、路程、时间关系列不等式求得最低速度.【答案】解:(1)设函数表达式为y =kx +b(k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得,解得.∴y 关于x 的函数表达式为y =80x -128(1.6≤x≤3.1)(注:x 的取值范围对考生不作要求)(2)当y=200-80=120(千米)时,120=80x-128,解得x=3.1.因为货车甲的行驶速度为80÷1.6=50(千米/小时),所以货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5-3.1-0.3=1.6(小时) .设货车乙返回B地的车速为v千米/小时,则1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米小时.22.(2020·绵阳)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?分析:(1)根据甲书店按标价8折出售,利用标价总额乘以0.8即为应支付金额y;在乙书店购书,若x≤100,则标价总额即为应支付金额;若x>100,则应支付金额y为100+0.6(x-100).(2)求出甲、乙两个书店应付金额相同的标价总额,当购书金额小于这个值时,则去甲书店省钱,购书金额大于这个值时,则去乙书店省钱.解:(1)甲书店应支付金额为:y1=0.8x;乙书店:当x≤100时,y=x;当x>100时,y=100+0.6(x-100).∴乙书店应支付金额为:y2=(2)当x>100时,若y1=y2,则0.8x=40+0.6x,解得x=200.∴当x<200时,去甲书店省钱,x=200时,去甲乙两家书店购书应付金额相同金额,当x>200时,去乙书店省钱.23.(2020·北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)值大于一次函数y=kx+b的值,直接写出m的取值范围.分析:(1)根据一次函数y=kx+b(k≠0)由y=x平移得到可得出k值,然后将点(1,2)代入y=x+b可得b值即可求出解析式;(2)由题意可得临界值为当x=1时,两条直线都过点(1,2),即可得出当x>1,m>2时,y=mx(m≠0)都大于y=x+1,根据x>1,可得m可取值2,可得出m的取值范围.解:(1)∵一次函数y=kx+b(k≠0)由y=x平移得到,∴k=1,将点(1,2)代入y=x+b可得b=1,∴一次函数的解析式为y=x+1;(2)当x>1时,函数y=mx(m≠0)的函数值都大于y=x+1,即图象在y=x+1上方,由下图可知:临界值为当x =1时,两条直线都过点(1,2), ∴当x >1,m >2时,y =mx (m ≠0)都大于y =x +1, 又∵x >1,∴m 可取值2,即m =2, ∴m 的取值范围为m ≥2.24.(2020·南通)如图,直线l 1:y =x +3与过点A (3,0)的直线l 2交于点C (1,m )与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.分析:(1)由已知先求出C 点坐标,再用待定系数法求出直线解析式.(2)由MN ∥y 轴可得M 、N 两点的横坐标相等,再由6MN AB ==,求出a 的值即可求出M 点坐标. 解:在y =x +3中,令x =0,得y =-3;∴B (-3,0), 把x =1代入y =x +3,得y =4,∴C (1,4), 设直线l 2的解析式为y =kx +b , ,解得. ∴y =-2x +6. (2)AB =3-(-3)=6,设(,3)M a a +,由MN ∥y 轴,得N (a,-2a +6),3(26)6MN a a AB =+--+==,解得3a =或1a =-, ∴M (3,6)或M (-1,2).25.(2020·抚顺本溪辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?分析:(1)将两组y 与x 的值代入解析式中,即可得解;(2)根据题意可以得到w 与x 之间的函数关系式,然后利用二次函数的性质,将其化成顶点式,然后在规定的取值范围内求出最大值.解:(1)设y 与x 之间的函数关系式为:y =kx +b (k≠0),根据题意,得 ,解得∴y 与x 之间的函数关系式为y =-5x +150. (2)根据题意,可得w =(x -10)(-5x +150) 整理得-5x2+200 x -1500=-5(x -20)2+500∵a=-5<0,开口向下,w 有最大值∴当x <20时,w 随x 的增大而增大,∵10≤x≤15,且x 为整数,∴当x =15时,w 有最大值,最大值=-5×(15-20)2+500=375 答:当每瓶洗手液的售价定为15元时利润最大,最大利润为375元. 26.(2020·滨州)如图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A 、B . (1)求交点P 的坐标; (2)求△PAB 的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.分析:本题考查了两条直线相交及面积,(1)把解析式联立,解方程组求出交点P 的坐标;(2)先求出A 、B 的坐标,然后根据三角形面积公式来求;(3)根据图象即可得出x 的取值范围. 解:(1)由直线112y x =--与直线22y x =-+得x=2,y=-2,∴P(2,-2); (2)直线112y x =--与直线22y x =-+中,令y=0,则- 12x-1=0与-2x+2=0,解得x=-2与x=1, ∴A(-2,0),B (1,0),∴AB=3,∴S△PAB= 12AB•|yP|=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.27.(2020·吉林)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L .在整个过程中,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如图所示.(1)机器每分钟加油量为_____L ,机器工作的过程中每分钟耗油量为_____L . (2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围. (3)直接写出油箱中油量为油箱容积的一半时x 的值.分析:(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可. 【详解】(1)由函数图象得:机器每分钟加油量为 机器工作的过程中每分钟耗油量为3050.5()6010L -=-故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作 则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点 设机器工作时y 关于x 的函数解析式y kx b =+ 将点代入得: 解得则机器工作时y 关于x 的函数解析式1352y x =-+; (3)设机器加油过程中的y 关于x 的函数解析式y ax = 将点(10,30)代入得:1030a = 解得3a =则机器加油过程中的y 关于x 的函数解析式3y x = 油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中 当30152y ==时,315x =,解得5x = ②在机器工作过程中 当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40.28.(2020北京)在平面直角坐标系xOy 中,一次函数的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【解析】(1)∵一次函数由x y =平移得到,∴1=k将点(1,2)代入b x y +=可得1=b ,∴一次函数的解析式为1+=x y .(2)当1>x 时,函数的函数值都大于1+=x y ,即图象在1+=x y 上方,由下图可知:临界值为当1=x 时,两条直线都过点(1,2),∴当2,1>>m x 时.都大于1+=x y .又∵1>x ,∴m 可取值2,即2=m ,∴m 的取值范围为2≥m29.(2020成都)在平面直角坐标系中,反比例函数的图象经过点,过点的直线与轴、轴分别交于,两点.(1)求反比例函数的表达式; (2)若的面积为的面积的2倍,求此直线的函数表达式.【解答】解:(1)反比例函数的图象经过点, , 反比例函数的表达式为; (2)直线过点,,过点的直线与轴、轴分别交于,两点,,,, 的面积为的面积的2倍,,,当时,, 当时,,直线的函数表达式为:,. 30.(2020乐山)如图,已知点A (-2,-2)在双曲线xk y =上,过点A 的直线与双曲线的另一支交于点B(1,a). (1)求直线AB 的解析式; (2)过点B 作BC x ⊥轴于点C ,连结AC ,过点C 作CD AB ⊥于点D .求线段CD 的长.解:(1)将点()22A --,代入k y x =,得4k =,即4y x=, 将(1)B a ,代入4y x=,得4a =,即(14)B ,, 设直线AB 的解析式为y mx n =+,将()22A --,、(14)B ,代入y mx n =+,得 ,解得∴直线AB 的解析式为22y x =+.(2)∵()22A --,、(14)B ,, xOy (0)m y x x=>(3,4)A A y kx b =+x y B C AOB ∆BOC ∆(0)m y x x=>(3,4)A 3412k ∴=⨯=12y x=y kx b =+A 34k b ∴+=A y kx b =+x y B C (b B k∴-0)(0,)C b AOB ∆BOC ∆2b ∴=±2b =23k =2b =-2k =223y x =+22y x =-∵BC x ⊥轴, ∴BC=4,∵,∴3BC CD AB ⨯===.。

一次函数及其图像练习(含答案详解)

一次函数及其图像练习(含答案详解)

一次函数及其图象一、选择题1.关于一次函数y =-x +1的图象,下列所画正确的是(C )【解析】 由一次函数y =-x +1知:图象过点(0,1)和(1,0),故选C.2.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为(D )A .(-1,4)B .(-1,2)C. (2,-1)D. (2,1)【解析】 一次函数y =-x +3与y =3x -5的图象的交点M 的坐标即为方程组⎩⎪⎨⎪⎧y =-x +3,y =3x -5的解, 解方程组,得⎩⎪⎨⎪⎧x =2,y =1,∴点M 的坐标为(2,1). 3.已知直线y =kx +b ,若k +b =-5,kb =6,则该直线不经过(A )A .第一象限B .第二象限C. 第三象限D. 第四象限【解析】 由kb =6,知k ,b 同号.又∵k +b =-5,∴k <0,b <0,∴直线y =kx +b 经过第二、三、四象限,∴不经过第一象限.4.直线y =-32x +3与x 轴,y 轴所围成的三角形的面积为(A )A .3B .6C.34D.32【解析】直线y=-32x+3与x轴的交点为(2,0),与y轴的交点为(0,3),所围成的三角形的面积为12×2×3=3.5.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(C)A.y1+y2>0 B.y1+y2<0C. y1-y2>0D. y1-y2<0【解析】∵正比例函数y=kx中k<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2,∴y1-y2>0.(第6题)6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.设他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象提供的信息,下列说法正确的是(C) A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发1 h D.甲比乙晚到B地3 h【解析】根据图象知:甲的速度是204=5(km/h),乙的速度是202-1=20(km/h),乙比甲晚出发1-0=1(h),甲比乙晚到B地4-2=2(h),故选C.7.丁老师乘车从学校到省城去参加会议,学校距省城200 km,车行驶的平均速度为80 km/h.若x(h)后丁老师距省城y(km),则y与x之间的函数表达式为(D)A. y=80x-200B. y=-80x-200C. y=80x+200D. y=-80x+200【解析】∵丁老师x(h)行驶的路程为80x(km),∴x(h)后距省城(200-80x)km.8.如果一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么下列对k和b的符号判断正确的是(D)A.k>0,b>0 B.k>0,b<0C .k <0,b >0D .k <0,b <0【解析】 ∵y 随x 的增大而减小,∴k <0.∵图象与y 轴交于负半轴,∴b <0.(第9题)9.张师傅驾车从甲地到乙地,两地相距500km ,汽车出发前油箱有油25L ,途中加油若干升,加油前、后汽车都以100km/h 的速度匀速行驶,已知油箱中剩余油量y (L)与行驶时间t (h)之间的函数关系如图所示,则下列说法错误的是(C )A .加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式是y =-8t +25B .途中加油21LC. 汽车加油后还可行驶4hD. 汽车到达乙地时油箱中还剩油6L【解析】 A .设加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式为y =kt +b .将点(0,25),(2,9)的坐标代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25,∴y =-8t +25,故本选项正确.B .由图象可知,途中加油30-9=21(L),故本选项正确.C .由图象可知,汽车每小时用油(25-9)÷2=8(L),∴汽车加油后还可行驶30÷8=334(h)<4h ,故本选项错误.D .∵汽车从甲地到乙地所需时间为500÷100=5(h),又∵汽车油箱出发前有油25L ,途中加油21L ,∴汽车到达乙地时油箱中还剩油25+21-5×8=6(L),故本选项正确.故选C.二、填空题10.写出一个图象经过第一、三象限的正比例函数y=kx(k≠0)的表达式:y =2x.【解析】∵图象经过第一、三象限,∴k>0,∴k可以取大于0的任意实数.答案不唯一,如:y=2x.11.已知一次函数y=(2-m)x+m-3,当m>2时,y随x的增大而减小.【解析】由一次函数的性质可知:当y随x的增大而减小时,k=2-m<0,∴m>2.12.如图是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的表达式为y=-2x-2.【解析】设原函数图象的表达式为y=kx.当x=-1时,y=2,则有2=-k,∴k=-2,∴y=-2x.设平移后的图象的表达式为y=-2x+b.当x=-1时,y=0,则有0=2+b,∴b=-2,∴y=-2x-2.(第12题)(第13题)13.如图所示是某工程队在“村村通”工程中修筑的公路长度y(m )与时间x(天)之间的函数关系图象.根据图象提供的信息,可知该公路的长度是504m .【解析】 当2≤x ≤8时,设y =kx +b.把点(2,180),(4,288)的坐标代入,得⎩⎪⎨⎪⎧180=2k +b ,288=4k +b ,解得⎩⎪⎨⎪⎧k =54,b =72.∴y =54x +72.当x =8时,y =504.14.直线y =kx +b 经过点A(-2,0)和y 轴正半轴上的一点B ,如果△ABO(O 为坐标原点)的面积为6,那么b 的值为__6__.【解析】 S △ABO =12×2·b =6,∴b =6.(第15题)15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q(0,2)和动点P(a ,0)的直线与矩形ABCD 的边有公共点,则a 的取值范围是-2≤a ≤2.【解析】 当QP 过点C 时,点P(2,0);当QP 过点D 时,点P(-2,0).∴-2≤a ≤2.16.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图所示,则这次越野跑的全程为2200m.,(第16题))【解析】 设小明的速度为a (m/s),小刚的速度为b (m/s),由题意,得 ⎩⎪⎨⎪⎧1600+100a =1400+100b ,1600+300a =1400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.∴这次越野跑的全程为1600+300×2=2200(m).17.已知直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)交于点A (-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于__4__.【解析】 如解图,设直线y =k 1x +b 1(k 1>0)与y 轴交于点B ,直线y =k 2x +b 2(k 2<0)与y 轴交于点C ,则OB =b 1,OC =-b 2.(第17题解)∵△ABC 的面积为4,∴12OA·OB +12OA·OC =4,∴12×2·b 1+12×2·(-b 2)=4,∴b 1-b 2=4.三、解答题(第18题)18.A ,B 两城相距600 km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km)与行驶时间x (h)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数表达式,并写出自变量x 的取值范围.(2)当它们行驶7 h 时,两车相遇,求乙车的速度.【解析】 (1)①当0≤x ≤6时,易得y =100x .②当6<x ≤14时,设y =kx +b .∵图象过点(6,600),(14,0),∴⎩⎪⎨⎪⎧6k +b =600,14k +b =0,解得⎩⎪⎨⎪⎧k =-75,b =1050.∴y =-75x +1050.∴y =⎩⎪⎨⎪⎧100x (0≤x ≤6),-75x +1050(6<x ≤14).(2)当x =7时,y =-75×7+1050=525,∴v 乙=5257=75(km/h).19.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留了一段相同的时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x (h),两车之间的距离为y (km),如图中的折线表示y 与x 之间的函数关系.(第19题)请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__km.(2)求快车和慢车的速度.(3)求线段DE 所表示的y 关于x 的函数表达式,并写出自变量x 的取值范围.【解析】 (1)由图象可得:甲、乙两地之间的距离为560 km.(2)由图象可得:慢车往返分别用了4 h ,慢车行驶4 h 的距离,快车3 h 即可行驶完,∴可设慢车的速度为3x (km/h),则快车的速度为4x (km/h).由图象可得:4(3x +4x )=560,解得x =20.∴快车的速度为4x =80(km/h),慢车的速度为3x =60(km/h).(3)由题意可得:当x =8时,慢车距离甲地60×(4-3)=60(km),∴点D (8,60).∵慢车往返一次共需8h ,∴点E (9,0).设直线DE 的函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧9k +b =0,8k +b =60,解得⎩⎪⎨⎪⎧k =-60,b =540.∴线段DE 所表示的y 关于x 的函数表达式为y =-60x +540(8≤x ≤9).20.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (kg)与上市时间x (天)的函数关系如图①所示,樱桃价格z (元/kg)与上市时间x (天)的函数关系如图②所示.(第20题)(1)观察图象,直接写出日销售量的最大值.(2)求小明家樱桃的日销售量y 与上市时间x 之间的函数表达式.(3)第10天与第12天的销售金额哪天多?请说明理由.【解析】 (1)日销售量的最大值为120 kg.(2)当0≤x ≤12时,设日销售量y 与上市时间x 之间的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上,∴120=12k ,∴k =10,∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 之间的函数表达式为y =k 1x +b 1.∵点(12,120),(20,0)在y =k 1x +b 1的图象上,∴⎩⎪⎨⎪⎧12k 1+b 1=120,20k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-15,b 1=300.∴函数表达式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 之间的函数表达式为y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)当5<x ≤15时,设樱桃价格z 与上市时间x 之间的函数表达式为z =k 2x +b 2.∵点(5,32),(15,12)在z =k 2x +b 2的图象上,∴⎩⎪⎨⎪⎧5k 2+b 2=32,15k 2+b 2=12,解得⎩⎪⎨⎪⎧k 2=-2,b 2=42.∴函数表达式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22,∴销售金额为100×22=2200(元).当x =12时,y =10×12=120,z =-2×12+42=18,∴销售金额为120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。

28道初中数学函数及其图像检测题每道都是经典(内含答案)

28道初中数学函数及其图像检测题每道都是经典(内含答案)

28道初中数学函数及其图像检测题,每道都是经典(内含答
案)
函数是初中数学中的一个基本概念,也是代数学里面最重要的概念之一。

函数就是设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。

我们将自变量x取值的集合叫做函数的定义域,和自变量x 对应的y的值叫做函数值,函数值的集合叫做函数的值域。

函数对于很多初中同学还说都是一个重难点,下面是小编今天带来的28道初中数学函数及其图像检测题,同学们赶紧练习一下,看自己掌握的如何。

初中数学对函数的学习只是基本的知识学习,进入高中后还会更深入的学习函数知识。

同学们在初中学习的时候一定要掌握好,打好基础,不然高中学习函数的时候就无法跟上老师的进度!如果您的孩子在学科知识点记忆上存在问题、学习效率不高,。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为,瓶中水位的高度为,下列图象中最符合故事情景的是:【答案】D【解析】观察瓶子形状,下边较细,中间最粗,上面最细,乌鸦向瓶中放石子的过程中,水位不断上升,由于瓶子粗细不同,所以水位上升也不是均匀的,等到水位上升到一定程度时,乌鸦开始喝水,水位开始下降,据此,选D2.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)10时和13时,他分别离家多远?(2)他到达离家最远的地方是什么时间?离家多远?(3)他由离家最远的地方返回时的平均速度是多少?【答案】(1)10时和13时,分别离家15千米和30千米;(2分)(2)到达离家最远的时间是12时(或12-13),离家30千米;(2分)(3)共用了2时,因此平均速度为15千米/时.(3分)【解析】(1)根据图象可以直接看出纵坐标表示离家的距离,从横坐标中找到时间点,可直接得到答案;(2)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;(3)根据返回时所走路程和使用时间即可求出返回时的平均速度.3.如图,已知函数和的图象交于点P,则根据图象可得,关于的二元一次方程组的解是【答案】.【解析】函数和的图象交点P的坐标是二元一次方程组的解,所以二元一次方程组的解为.【考点】一次函数与二元一次方程组方程组的关系.4.(本小题6分)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.(1)求直线AB的解析式;(2)点P在直线AB上,是否存在点P使得△AOP的面积为1,如果有请直接写出所有满足条件的点P的坐标【答案】(1)y=-x+2;(2)存在,P(1,) P(-1,).【解析】(1)设一次函数解析式,将A,B两点坐标代入这个解析式,求出k,b即确定了一次函数解析式.(2)因为OA是2作为△AOP的底,利用△AOP的面积为1,把P点的横坐标求出来,代入一次函数解析式求出纵坐标,这样满足条件的P点就求出来了.试题解析:(1)根据题意得,A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则∴,∴直线AB的解析式为y=-x+2.(2)设P点横坐标为x,S△AOP=×2×=1,∴x=±1,分别代入直线AB解析式得:y1=,y2=∴P(1,) P(-1,).【考点】一次函数与三角形综合题.5.(本小题满分7分)甲、乙两人沿同一路线登山,图中线段、折线分别是甲、乙两人登山的路程(米)与登山时间(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【答案】(1);(2)分钟,200米.【解析】(1)由图像可知甲登山的路程(米)与登山时间(分)之间的函数是正比例函数,设正比例函数解析式为y=kx,将点(30,600)代入求k,即得其函数解析式,自变量的取值范围可以看图像得出;(2)所求第一个问题为AB与OC交点的横坐标,第二个问题为AB与OC交点的纵坐标.先求AB的解析式,然后和OC的解析式组成方程组求解.试题解析:(1)设甲登山的路程与登山时间之间的函数解析式为.∵点在函数的图象上,∴.解得.∴.(2)设乙在段登山的路程与登山时间之间的函数解析式为,依题意,得,解得∴.设点为与的交点,∴,解得∴乙出发后分钟追上甲,此时乙所走的路程是米.【考点】1.一次函数的实际应用;2.一次函数与二元一次方程组的关系.6.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)【答案】=【解析】令PM与QB的交点为C,根据反比例函数的性质可知矩形AOMP和矩形QBON的面积均为,然后可知矩形PCBA的面积等于矩形QNMC的面积,由PB、QM为对角线,因此△ABP的面积等于矩形PCBA的面积的一半,△QMN的面积等于矩形QNMC的面积的一半,因此△ABP的面积等于△QMN的面积,即填“=”.【考点】反比例函数的图像与性质,矩形的面积,矩形的性质7.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.8.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x≥ax+4的解集为().A.B.C.D.【答案】A.【解析】利用图像比较大小,以交点A为界,看A的横坐标,大于等于1时,函数y=3x高于等于y=ax+4,因此x≥1时,不等式3x≥ax+4,故选A.【考点】利用图像比较一次函数大小.9.已知一次函数y=(k+2)x-k,函数y的值随自变量x的值的增大而增大,则k的取值范围是为.【答案】k>-2.【解析】因为函数y的值随自变量x的值的增大而增大,所以k+2>0,所以k>-2.【考点】一次函数性质.10.)冷冻一个0℃的物体.使它每分钟下降2℃,物体的温度T(单位℃)与冷冻时间t(单位:分)的函数关系式是.【答案】T=﹣2t.【解析】由题意可知,它每分下降2℃,即可得t分钟下降2t℃,所以T=0+(﹣2t)=﹣2t.【考点】列函数关系式.11.将直线y=﹣2x+1向下平移4个单位得到直线l,则直线l的解析式为()A.y=﹣6x+1B.y=﹣2x﹣3C.y=﹣2x+5D.y=2x﹣3【答案】B【解析】一次函数的平移法则为“左加右减,上加下减”,直接根据平移规律求解即可.根据平移法则可得直线l的解析式为y=﹣2x+1﹣4,即y=﹣2x﹣3.【考点】一次函数图象与几何变换.12.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是()【答案】C.【解析】分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.【考点】1.反比例函数的图象;2.一次函数的图象.13.若反比例函数的图象经过点A(2,﹣1),则k= ,该函数的图象还经过点B(-2,).【答案】﹣2,1.【解析】∵k=xy,过(2,﹣1)点,∴k=2×(﹣1)=﹣2.∵B点的横坐标为﹣2.∴y==1.【考点】1.待定系数法求反比例函数解析式;2.反比例函数图象上点的坐标特征.14.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.15.下列各式中,y随x的变化关系式是正比例函数的是()A.y="2x"B.y=C.y=x﹣1D.y=x2﹣1【答案】A.【解析】形如y=kx,k为常数且k≠0,这样的函数称为正比例函数,符合条件的只有选项A,故答案选A.【考点】正比例函数的定义.16.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()A.m<0B.m<3C.0<m<3D.m>0【答案】A【解析】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.根据题意可得:m-3<0,-m>0,解得:m<0.【考点】一次函数图象与系数的关系17.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空)【答案】>【解析】根据一次函数y=kx+b的增减性:当k>0时,y随x的增大而增大,当k<0时,y随x 的增大而减小。

函数及其图像测试题(含答案)

函数及其图像测试题(含答案)

1 /2 函数及其图像测试题班级: 姓名: 学号:一、单项选择(每题3分,共24分)1. 下列图像中,表示y 是x 的函数的是( )Y y y yx x x2.下列函数中,分别是一次函数和反比列函数的是( )A.和 B.和 C.和 D.和 3.已知函数,则自变量x 的取值范围是( ) A. B. C.x ≠1且x ≤2 D.任意实数4.已知一次函数(k 为常数),则这个函数的图像可能经过( ) A.第一、二、三象限或第一、三、四象限B.第一、二、三象限或第二、三、四象限C.第一、二、四象限或第一、三、四象限D.第二、三、四象限或第一、三、四象限5.在平面直角坐标系中,点A (2a+3,1-b )与点B(2-3a,4b-1)关于y 轴对称,则点C(a+1,b+2) 在( )A.第一象限B.第二象限C.第三象限D.第四象限6.函数和函数(k ≠0,k 为常数)在同一指教坐标系内的图像可能是( ) y y y yx 7.的关系是( )A.不是函数关系B.正比列函数关系C.反比例函数关系D.8.如右图,MN ⊥PQ,垂足为点O ,点A 、C 在直线MN 上运动,点B 、D 在直线PQ 上运动。

顺次连结点A 、B 、C 、D ,围成四边形ABCD 。

当四边形ABCD 的面积为12时,设AC 长为x , BD 长为y ,则下图能表示x 与y 关系的图像是( )y yNP Q2 / 2xx x分,共24 1.一次函数与反比例函数的交点坐标是 。

2.已知函数是正比列函数,则m= ,n= 。

3.一次函数的自变量x 的取值范围是,相应函数y 的取值范围是,则此函数解析式为 。

4.直线,及x 轴围成的三角形的面积为 。

5.已知(x 1,y 1)和(x 2,y 2)是反比例函数(b 为常数)的图像上两点,当x 1<x 2<0时, y 1 y 2 (填“>”或“<”)。

6.若直线不经过第三象限,则k 的取值范围是 。

函数图象的变换测试题(含解析)

函数图象的变换测试题(含解析)

函函函函函函函函函函一、单选题(本大题共11小题,共55分)1. 为了得到函数y =sin(2x −π3)+1的图象,可将函数y =sin2x 的图象( ) A. 向右平移π6个单位长度,再向上平移1个单位长度 B. 向右平移π3个单位长度,再向下平移1个单位长度 C. 向左平移π6个单位长度,再向下平移1个单位长度 D. 向左平移π3个单位长度,再向上平移1个单位长度2. 若函数y =sin(ωx +π3)的图象向右平移π6个单位长度后与函数y =cosωx 的图象重合,则ω的值可能为( )A. −1B. −2C. 1D. 23. 为了得到函数y =sin(3x −π6)的图象,需将函数y =sin(x −π6)的图象上所有点的( ) A. 纵坐标变为原来的3倍,横坐标不变 B. 横坐标变为原来的3倍,纵坐标不变 C. 横坐标变为原来的13,纵坐标不变D. 纵坐标变为原来的13,横坐标不变4. 函数y =sin2x 的图象可由函数y =cos(2x +π6)的图象( ) A. 向左平移π12个单位长度得到 B. 向右平移π6个单位长度得到 C. 向左平移π4个单位长度得到D. 向右平移π3个单位长度得到5. 将函数y =sin(4x −π3)图象上的横坐标进行怎样的变换,得到y =sin(2x −π3)的图象( ) A. 伸长了2倍B. 伸长了12倍C. 缩短了12倍D. 缩短了2倍6. 把函数y =sin(2x −π4)的图象向左平移π8个单位长度,所得到的图象对应的函数是( ) A. 奇函数B. 偶函数C. 既是奇函数也是偶函数D. 非奇非偶函数7. 已知函数f(x)=sin(x +π3).给出下列结论:①f(x)的最小正周期为2π; ②f(π2)是f(x)的最大值;③把函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象. 其中所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③8. 把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像,则f(x)=( )A. sin(x 2−7π12)B. sin(x 2+π12)C. sin(2x −7π12)D. sin(2x +π12)9. 为了得到函数y =sin (2x −π3)的图象,只需把函数y =sin (2x +π6)的图象( ) A. 向左平移π4个单位长度 B. 向右平移π4个单位长度 C. 向左平移π2个单位长度D. 向右平移π2个单位长度10. 先把函数f(x)=sin (x −π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g(x)的图象,当x ∈(π4,3π4)时,函数g(x)的值域为( )A. (−√32,1]B. (−12,1]C. (−√32,√32)D. [−1,0)11. 要得到函数y =2cos(x2+π6)sin(π3−x2)−1的图象,需将y =12sinx +√32cosx 的图象( ) A. 向左平移π4个单位长度 B. 向右平移π4个单位长度 C. 向左平移π2个单位长度D. 向右平移π2个单位长度二、多选题(本大题共2小题,共10分)12. (多选)下列四种变换方式,其中能将y =sinx 的图象变为y =sin(2x +π4)的图象的是( ) A. 向左平移π4个单位长度,再将横坐标缩短为原来的12 B. 横坐标缩短为原来的12,再向左平移π8个单位长度 C. 横坐标缩短为原来的12,再向左平移π4个单位长度 D. 向左平移π8个单位长度,再将横坐标缩短为原来的1213. 将函数y =cos (2x +π3)的图象向左平移π4个单位长度得到函数f(x)图象,则( )A. y =sin (2x +π3)是函数f(x)的一个解析式 B. 直线x =7π12是函数f(x)图象的一条对称轴 C. 函数f(x)是周期为π的奇函数D. 函数f(x)的递减区间为[kπ−5π12,kπ+π12](k ∈Z)三、填空题(本大题共4小题,共20分)14. 函数y =sin(2x −π4)图象上所有点的横坐标保持不变,将纵坐标 (填“伸长”或“缩短”)为原来的 倍,将会得到函数y =3sin(2x −π4)的图象.15. 函数y =sin(2x +π3)的图象可由y =cos(2x +π4)的图象 得到.16. 函数y =cos(2x +φ)(−π≤φ<π)的图象向右平移π2个单位后,与函数y =sin(2x +π3)的图象重合,则φ= .17. 若函数f(x)=32sin2x −3√32cos2x 的图象为C ,则下列结论中正确的序号是 .①图象C 关于直线x =11π12对称; ②图象C 关于点(2π3,0)对称;③函数f(x)在区间(−π12,5π12)内不是单调的函数;④由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C . 四、解答题(本大题共1小题,共12分)18. (本小题12分)把函数y =f(x)的图象上的各点向右平移π6个单位长度,然后把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23,所得图象的解析式是y = 2sin(12x +π3),求f(x)的解析式.答案和解析1.解:∵y =sin⁡(2x −π3)+1=sin2(x −π6)+1,∴把y =sin2x 的图象上所有的点向右平移π6个单位长度,再向上平移1个单位长度 即可得到函数y =sin(2x −π3)+1的图象.故选A .2.解:函数y =sin(ωx +π3)的图象向右平移π6个单位后,可得函数y =sin [ω(x −π6)+π3]的图象,再根据所得函数的图象与函数y =cosωx 的图象重合,∴π3−ω⋅π6=2kπ+π2,k ∈Z , ∴当k =0时,ω=−1.故选A .3.解:将函数y =sin(x −π6)的图象横坐标变为原来的13,纵坐标不变即可得到函数y =sin(3x −π6)的图象.故选C .4.解:由sin2x =cos⁡(2x −π2)=cos⁡[2(x −π3)+π6],所以函数y =sin2x 的图象可由函数y =cos(2x +π6)的图象向右平移π3个长度单位,故选D . 5.解:将函数y =sin(4x −π3)图象上的横坐标伸长为原来的2倍即可得到y =sin(2x −π3)的图象.故选A .6.解:把函数y =sin(2x −π4)的图象向左平移π8个单位长度,得到y =sin[2(x +π8)−π4]=sin2x 为奇函数,故选A .7.解:因为f(x)=sin(x +π3),①由周期公式可得,f(x)的最小正周期T =2π,故①正确; ②f(π2)=sin(π2+π3)=sin 5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象,故③正确.故选:B .8.解:∵把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像,∴把函数y =sin(x −π4)的图像,向左平移π3个单位长度,得到y =sin(x +π3−π4)=sin(x +π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变,可得f(x)=sin(12x +π12)的图像.故选:B .9.解:y =sin (2x +π6)=sin 2(x +π12),y =sin (2x −π3)=sin 2(x −π6),所以将y =sin (2x +π6)的图象向右平移π4个单位长度得到y =sin (2x −π3)的图象.故选B . 10.解:把函数f(x)=sin(x −π6)的图象上各点的横坐标变为原来的12倍(纵坐标不变),可得函数y =sin(2x −π6)的图象;再把新得到的图象向右平移π3个单位,得到y =g(x)=sin[2(x −π3)−π6]=sin(2x −5π6)的图象.当x ∈(π4,3π4)时,2x −5π6∈(−π3,2π3), 故当2x −5π6趋于−π3时,g(x)的最小值趋于−√32,当2x −5π6=π2时,g(x)取得最大值为1,故选:A .11.解:y =2cos(x 2+π6)sin(π3−x 2)−1=2cos(x 2+π6)sin[π2−(π6+x 2)]−1=2cos(x 2+π6)cos(π6+x2)−1=cos(x +π3),又y =12sinx +√32cosx = sin(x +π3)向左平移π2个单位长度y =sin(x +π3+π2)=cos(x +π3),故选C .12.解:将y =sinx 的图象先向左平移π4个单位长度,再将横坐标缩短为原来的12或先横坐标缩短为原来的12,再向左平移π8个单位长度都可以得到y =sin(2x +π4)的图象.故选AB13.解:由题意,函数y =cos (2x +π3)的图象向左平移π4个单位长度得到函数f(x)=cos⁡[2(x +π4)+π3]=cos⁡(2x +5π6),于是下面对各选项进行分析: 对A ,因为y =cos⁡(2x +5π6)=−sin⁡(2x +π3),x ∈R ,故A 不正确;对B ,因为f(x)=cos⁡(2x +5π6),根据余弦函数图像性质可知,其对称轴为2x +5π6=kπ,k ∈Z ,即x =kπ2−5π12,k ∈Z ,取k =2,可知x =7π12是函数f (x )图象的一条对称轴,故B 正确;对C ,因为f(x)=cos⁡(2x +5π6),其最小正周期为T =2π2=π,又f(0)=cos⁡(5π6)=−√32≠0,可知C 不正确;对D ,因为f(x)=cos⁡(2x +5π6),根据余弦函数图像性质可知,令2kπ⩽2x +5π6⩽2kπ+π, k ∈Z ,即得单调递减区间为x ∈[kπ−5π12,kπ+π12](k ∈Z),故D 正确.故选BD .14. 解:A =3>1,故函数y = sin(2x −π4)图象上所有点的横坐标保持不变,将纵坐标伸长为原来的3倍即可得到函数y =3sin(2x −π4)的图象.15.解:y =cos(2x +π4)=sin(2x +π4+π2)=sin(2x +3π4), 将函数y =sin(2x +3π4)的图象向右平移5π24个单位长度可得函数y =sin(2x +π3)的图象.16.解:将y =cos (2x +φ)的图象向右平移π2个单位长度后,得到y =cos [2(x −π2)+φ]的图象,化简得y =−cos (2x +φ),又可变形为y =sin (2x +φ−π2).由题意可知φ−π2=π3+2kπ(k ∈Z ),所以φ=5π6+2kπ(k ∈Z ),结合−π≤φ<π,知φ=5π6.故答案为5π6.17.解:f(x)=32sin2x −3√32cos2x =3sin(2x −π3),因为当x =11π12时,f(x)=3sin(2×11π12−π3)=3sin3π2=−3,所以直线x =11π12是图象C 的对称轴,故①正确;因为当x =2π3时,f(x)=3sin(2×2π3−π3)=0,所以函数图象C 关于点(2π3,0)对称,故②正确;令−π2≤2x −π3≤π2,解得x ∈[−π12,5π12],所以函数的一个增区间是[−π12,5π12],因此f(x)在区间(−π12,5π12)上是增函数,故③不正确; 由y =3sin2x 的图象向右平移π3个单位,得到的图象对应的函数表达式为 y =3sin2(x −π3)=3sin(2x −2π3),故④不正确.故答案为:①②. 18.解:y =2sin(12x +π3)的图象的纵坐标伸长为原来的32,得到y = 3sin(12x +π3);再将其横坐标缩短到原来的12,得到y =3sin(x +π3);再将其图象上的各点向左平移π6个单位长度,得到y =3sin(x +π2)=3cosx ,故f(x)=3cosx.。

华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、若点(1,2)同时在函数y=ax+b和y=的图象上,则点(a,b)为()A.(-3,-1)B.(-3,1)C.(1,3)D.(-1,3)2、如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B. C. 或 D.或3、反比例函数y= 的图象经过的象限是()A.第一二象限B.第一三象限C.第二三象限D.第二四象限4、两个一次函数的图象如图所示,下列方程组的解满足交点P的坐标的是()A. B. C. D.5、如图,点M是反比例函数(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定6、若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限;C.第三象限D.第四象限7、过和两点的直线一定 ( )A.垂直于轴B.与轴相交但不平行于轴C.平行于轴 D.与轴、轴都不平行8、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮9、甲、乙两名运动员同时从地出发前往地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程(千米)与行驶时间(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,或.其中正确的个数有( )A.1个B.2个C.3个D.4个10、如图,已知两点的坐标分别为,点分别是直线和x轴上的动点,,点D是线段的中点,连接交y轴于点E;当⊿ 面积取得最小值时,的值是()A. B. C. D.11、一次函数y1=kx+b和反比例函数y2= 的图象如图,则使y1>y2的x范围是()A.x<﹣2或x>3B.﹣2<x<0或x>3C.x<﹣2或0<x<3 D.﹣2<x<312、一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A.9B.16C.25D.3613、如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,),则该坐标系的原点在()A.G点处B.F点处C.E点处D.EF的中点处14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h(甲车休息前后的速度相同),甲、乙两车行驶的路程y(km)与行驶的时间x(h)的函数图象如图所示.根据图象的信息有如下四个说法:①甲车行驶40千米开始休息②乙车行驶3.5小时与甲车相遇③甲车比乙车晚2.5小时到到B地④两车相距50km时乙车行驶了小时其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,一次函数与正比例函数的图象交于点P(-2,-1),则关于的方程的解是________.17、写出一个一次函数,使该函数图像经过第一,二,四象限和点(0, 5),则这个一次函数可以是________.18、剧院里5棑2号可用(5,2)表示,则(7,4)表示________ .19、如图,矩形ABCD中,AB=2,BC=4,点A,B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是________.20、某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费元,如果乘客白天乘坐出租车的路程为千米,乘车费为元,那么与之间的关系为________.21、如图,在直角坐标系中,正方形的中心在原点,且正方形的一组对边与轴平行,点是反比例函数的图象上与正方形的一个交点.若图中阴影部分的面积等于,则这个反比例函数的解析式为________.22、如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点的对应点落在直线上……,依次进行下去,若点的坐标是(0,1),点的坐标是,则点的横坐标是________.23、三角形的面积公式中S=ah其中底边a保持不变,则常量是________ ,变量是________ .24、函数有意义,则自变量x的取值范围是________.25、已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、已知矩形中,米,米,为中点,动点以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求与间的函数关系式.28、在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.29、请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x …﹣3 ﹣2 ﹣1 0 1 2 3 …y ……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)写出函数y=|x|与y=|x+2|图象的平移关系.30、一次函数y=kx+b中(k、b为常数,k≠0),若-3≤x≤2,则-1≤y≤9,求一次函数的解析式.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、A6、A8、D9、B10、B11、B12、C13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.定义新运算:,则函数的图象大致是().【答案】B【解析】先根据新定义运算列出y的关系式,再根据此关系式及x的取值范围画出函数图象即可.解答:解:根据新定义运算可知,=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.2.已知一次函数图象经过点(3 , 5) , (–4,–9)两点.【1】求一次函数解析式.【答案】y=2x-1【2】求图象和坐标轴交点坐标.【答案】(0,-1)(,0)【3】求图象和坐标轴围成三角形面积.【答案】【4】点(a , 2)在图象上,求a的值.【答案】a=3.(本小题满分8分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【答案】【解析】略4.函数的自变量的取值范围是.【答案】>1【解析】依题意可得,解得,所以函数的自变量的取值范围是5.在反比例函数的图像上,到轴和轴的距离相等的点有A.1个B.2个C.4个D.无数个【答案】B.【解析】根据k=xy求值即可.试题解析:∵到x轴和y轴的距离相等∴x2=9解得:x=3或x=3.故选B.【考点】函数图象上点的坐标特征.6.写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小;(2)图像经过点(0,-3)【答案】y=-x-3.【解析】满足第一条k小于0,满足第二条b=-3,,所以可以是y=-x-3.(k值不唯一,解析式也不唯一)【考点】确定一次函数解析式.7.(10分)如图,四边形ABCD为菱形,A(0,4),B(﹣3,0).(1)求点D的坐标(2)求经过C点的反比例函数解析式.【答案】(1)D(0,﹣1).(2)y=.【解析】(1)根据A,B点坐标用勾股定理把AB边求出,因为是菱形,所以AD=AB,用AD 长减去A的纵坐标即可求出D点坐标.(2)先求出C点坐标,因为BC=AB,CB∥AD,∴CB⊥x轴,C点纵坐标的绝对值是CB的长,而C的横坐标和B的横坐标相同,从而求出经过C点的反比例函数解析式.试题解析:(1)∵A(0,4),B(﹣3,0),∴OB=3,OA=4,∴AB=5.在菱形ABCD中,AD=AB=5,∴OD=1,∴D(0,﹣1).(2)∵BC∥AD,BC=AB=5,∴C(﹣3,﹣5).设经过点C的反比例函数解析式为y=.把(﹣3,﹣5)代入解析式得:k=15,∴经过点C的反比例函数解析式为y=.【考点】菱形性质与反比例函数综合题.8.直线的图象经过第()象限A.二、三、四B.一、二、四C.一、三、四D.一、二、三【答案】C.【解析】一次函数解析式中的K,b值决定过哪些象限,K=1>0过一,三象限,b=-1<0,与y轴交于负半轴,所以图像过1,3,4象限,故选C.【考点】一次函数性质.9.(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求直线AC的解析式;(2)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)动点P从点A出发,沿线段AB方向以2个单位/秒的速度向终点B匀速运动,当∠MPB与∠BCO互为余角时,试确定t的值.【答案】(1)y=-x+.(2)S=-t+(0≤t<).S=-(<t≤5)(3).【解析】(1)要求出AC的解析式,需要知道两点坐标,A点坐标是已知的,由A点坐标可知AO的长,因为是菱形,OA=OC,这样C点坐标就知道了,于是求出直线AC的解析式;(2)分两个时间段建立函数关系,①当0≤t<时,P在AB上,由直线AC解析式求出M点坐标,再求出M,用t表示出PB,建立S△PMB与t之间的函数关系式;②当<t≤5时,P在BC上,可证△MOC≌△MBC(SAS),∴∠MBP=90°,BM=MO,用t表示出PB的长,建立S△PMB与t之间的函数关系式;(3)此题关键是求出PA的长度,由题意可得到∠AOM=∠ABM,∠BAO=∠BCO,∠BAO+∠AOM=90°,又∵∠MPB与∠BCO互为余角∴∠MPB=∠AOM,∴∠MPB =∠ABM.△PMB是等腰三角形,PH=BH,,可求出PH长度,于是求出PA长度,t值就求出来了.试题解析:(1)如图1,过点A作AE⊥x轴,垂足为E.∵A(-3,4),∴AE=4,OE=3,∴OA==5.∵四边形ABCO是菱形,∴OC=CB=BA=OA=5,∴C(5,0).设直线AC的解析式为y=kx+b,将A(-3,4),C(5,0)代入得:,解得,∴直线AC的解析式为y=-x+.(2)由(1)得点M的坐标为(0,),∴OM=.如图1,当点P在AB边上运动时.由题意得OH=4,∴HM=.∴S=BP·MH=(5-2t)×,∴S=-t+(0≤t<).如图2,当点P在BC边上运动时.∵∠OCM=∠BCM,OC=BC,MC=MC.∴△MOC≌△MBC.∴BM=OM=,∠MBC=∠MOC=90°,∴S=BP·BM=(2t-5)×,∴S=-(<t≤5).(3)∵∠AOC=∠ABC,∠MOC=∠MBC,∴∠AOM=∠ABM.∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOM=90°,∴∠MPB=∠AOM,∴∠MPB=∠ABM.如图3,当点P在AB边上运动时,∵∠MPB=∠ABM,∴PM=BM,∵MH⊥PB,∴PH=HB=5-3=2,∴PA=3-2=1.∴t=.【考点】1.一次函数的实际应用;2.图形的动点问题;3.与三角形有关的知识;3.菱形性质.10.在平面直角坐标系中,若直线经过第一、三、四象限,则直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.由题意知k>0,b<0,因此可得的图像过一二四象限,不经过三象限.故选C【考点】一次函数的图像与性质11.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点的坐标;(2)求四边形PQOB的面积.【答案】(1)A(﹣1,0),B(1,0),P();(2)【解析】(1)令y=x+1=0求出点A的坐标,令y=﹣2x+2 =0可求出B的坐标,再解方程组可求出点P的坐标;(2)根据四边形PQOB的面积=即可求解.试题解析:(1)∵一次函数y=x+1的图象与x轴交于点A,∴A(﹣1,0),一次函数y=﹣2x+2的图象与x轴交于点B,∴B(1,0),由,解得,∴P().(2)设直线PA与y轴交于点Q,则Q(0,1),直线PB与y轴交于点M,则M(0,2),∴四边形PQOB的面积==×1×2﹣×1×= .【考点】一次函数综合题.12.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣【答案】B.【解析】由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.【考点】一次函数图象与系数的关系.13.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【答案】D【解析】根据一次函数的图像与性质可知:当k<0时,y随x的增大而减小,可知a>b.故选D【考点】一次函数的图像与性质14. (本题满分8分)直线y=kx+b 交坐标轴于A (-2,0),B (0,3)两点,求不等式kx+b >0的解集. 【答案】x>-2.【解析】先把两点坐标代入y=kx+b ,将直线y=kx+b 解析式求出来,再解不等式kx+b>0,求解集.试题解析:先把两点坐标代入y=kx+b ,解得b=3,k=,∴y=x+3,解不等式x+3>0,得:x>-2.【考点】1.用代入法求一次函数解析式;2.解一元一次不等式.15. 如图的四个图象中,不表示某一函数图象的是( )【答案】B .【解析】根据函数的定义,对于自变量x 的某一取值,函数y 都有唯一值与之对应,可知选项A 、C 、D 的图象满足函数的定义,选项B 的图象中,对于自变量x 的某一取值,y 有两个值与之对应,不是函数图象. 故答案选B .【考点】函数的图象;函数的概念.16. 一次函数y=2x ﹣6的图象经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】B【解析】对于一次函数y=kx+b 而言,当k >0,b <0时,图象经过一、三、四象限.本题中k >0,b <0.先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可. 【考点】一次函数图象与系数的关系.17. 直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( ) A .x >3 B .x <3 C .x >﹣1 D .x <﹣1【答案】D .【解析】当k 2x >k 1x+b 时,y=k 2x 的图象应位于y=k 1x+b 图象的上方;观察图象可得,当x <﹣1时,直线y=k 2x 图象在直线y=k 1x+b 图象的上方,所以不等式k 2x >k 1x+b 的解集为x <﹣1,故答案选D .【考点】一次函数与一元一次不等式的关系.18. 根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )A .1B .-1C .3D .-3【答案】A .【解析】:一次函数的解析式为y=kx+b (k≠0), ∵x=-2时y=3;x=1时y=0, ∴, 解得,∴一次函数的解析式为y=-x+1, ∴当x=0时,y=1,即p=1. 故选A .【考点】一次函数图象上点的坐标特征.19. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示的方式放置,点A 1,A 2,A 3,…在直线y=x+1,点C 1,C 2,C 3,…在x 轴上,则B 6的坐标是 .【答案】(63,32).【解析】已知点A 1在直线y=x+1,可得OA 1=1,又因正方形A 1B 1C 1O ,所以C 1坐标为(1,0),B 1的坐标(1,1);已知A 2在直线y=x+1图象上,所以A 2坐标为(1,2),A 2B 2C 2C 1是正方形,可得C 2坐标为(1,0),点B 2的坐标为(3,2),A 3在直线y=x+1图象上,可得点A 3的坐标为(3,4),以此类推可得点B 3的坐标为(7,4),所以B 1的纵坐标是:1=20,B 1的横坐标是:1=21﹣1;B 2的纵坐标是:2=21,B 2的横坐标是:3=22﹣1;B 3的纵坐标是:4=22,B 3的横坐标是:7=23﹣1;…B n 的纵坐标是:2n ﹣1,横坐标是:2n ﹣1,则B n (2n ﹣1,2n ﹣1).所以B 6的坐标是:(26﹣1,26﹣1),即(63,32).【考点】一次函数图象上点的坐标特征;正方形的性质;规律探究题.20. (8分)如图,直线AC 是一次函数y=2x+3的图象,直线BC 是一次函数y=﹣2x ﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.21.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC【答案】(1)直线AB的解析式为y=2x﹣2;(2)点C的坐标是(2,2).【解析】(1)设直线AB的解析式为y=kx+b,根据直线AB过点A(1,0)、点B(0,﹣2),列出方程组,解方程组求得k、b的值,即可得直线AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式可得•2•x=2,解得x的值再代入直线即可求出y的值,即可得点C的坐标.试题解析:解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),∵S=2,△BOC∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).【考点】待定系数法求一次函数解析式.22.一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)【答案】A【解析】本题考查了一次函数与坐标轴的交点坐标的求法,是一个基础题,掌握y轴上点的横坐标为0是解题的关键.令x=0,得y=﹣2×0+4=4,则函数与y轴的交点坐标是(0,4).【考点】一次函数图象上点的坐标特征23.直线y=kx+2过点(1,﹣2),则k的值是()A.4B.﹣4C.﹣8D.8【解析】B本题考查了用待定系数法求解析式,是基础知识要熟练掌握.将点(1,﹣2)代入y=kx+2,求出k的值.∵直线y=kx+2过点(1,﹣2),∴k+2=﹣2,解得k=﹣4,【考点】待定系数法求一次函数解析式24.如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k= .【答案】3.【解析】如图,过点D作DE⊥x轴,垂足为E,连OD.由题意可知∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,根据同角的余角相等可得∠DAE=∠OBA,根据正方形的性质可得∠BOA=∠AED,AB=DA,根据AAS可证出△BOA≌△AED,得到AE=BO,AO=DE,所以=•OE•DE=×3×1=,,根据反比例函数k的几何意义,即可得S△DOEk=3..【考点】反比例函数综合题.25.关于x的一次函数y=3kx+k-1的图象无论k怎样变化,总经过一个定点,这个定点的坐标是.【答案】(-,-1).【解析】∵y=3kx+k-1,∴(3x+1)k=y+1,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴3x+1=0且y+1=0,∴x=-,y=-1,∴一次函数y=3kx+k-1过定点(-,-1).【考点】一次函数图象上点的坐标特征.26.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A.x=B.x=3C.x=﹣D.x=﹣3【答案】A【解析】可先求得A点坐标,再结合函数图象可知方程的解即为两函数图象的交点横坐标,可求得方程的解.∵A点在直线y=2x上,∴3=2m,解得m=,∴A点坐标为(,3),∵y=2x,y=ax+4,∴方程2x=ax+4的解即为两函数图象的交点横坐标,∴方程2x=ax+4的解为x=,【考点】一次函数与一元一次方程27.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组解是.【答案】.【解析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【考点】一次函数与二元一次方程(组).28.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【答案】(1)直线AB的解析式为:y=﹣x+5;(2)点C(3,2);(3)x>3.【解析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.试题解析:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)由图象可得x>3.【考点】 1.待定系数法;2.一次函数与一元一次不等式;3.两条直线相交或平行问题.29.将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,(1)求y与x之间的函数关系式,并画出函数图象,(2)若x=20,求纸条的面积.【答案】(1)y=18x+2;(2) 3620cm2.【解析】(1)根据白纸粘合后的总长度=x张白纸的长-(x-1)个粘合部分的宽,列出函数解析式即可;(2)根据长方形的面积计算公式,把相关数值代入即可求解.试题解析:(1)由题意得:y=20x-(x-1)×2=18x+2;(2)当x=20时,y=18x+2=362(cm),纸条的面积=362×10=3620(cm2).【考点】一次函数的应用.30.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.【答案】(1)200米.(2) y=200x-1000;(3) 小文离家600米.【解析】从图象可以知道,2分钟时小文返回家,在家一段时间后,5分钟又开始回学校,10分钟到达学校.试题解析:(1)200米(2)设直线AB的解析式为:y=kx+b由图可知:A(5,0),B(10,1000)∴解得∴直线AB的解析式为:y=200x-1000;(3)当x=8时,y=200×8-1000=600(米)即x=8分钟时,小文离家600米.【考点】一次函数的应用.31.如果是方程组的解,则一次函数y=mx+n的解析式为()A.y="-x+2"B.y="x-2"C.y="-x-2"D.y=x+2【答案】D.【解析】根据题意,将代入方程组,得,即,①×2得,6m-2n=2…③,②-③得,3m=3,∴m=1,把m=1代入①,得,3-n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【考点】一次函数与二元一次方程(组).32.已知函数是正比例函数,且图象在第二、四象限内,则m的值是()A.2B.-2C.±2D.【答案】B.【解析】∵函数是正比例函数,且图象在第二、四象限内,∴m2-3=1,m+1<0,解得:m=±2,则m的值是-2.故选B.【考点】1.正比例函数的定义;2.正比例函数的性质.33.下列描述一次函数y=-2x+5图象性质错误的是()A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)【答案】D【解析】A,B,C都符合一次函数的定义;D直线与y轴的交点为(0,5),故错误.【考点】一次函数34.下列图象不能表示y是x的函数的是()A.B.C.D.【答案】D.【解析】根据函数的定义可知:对于x的任何值y都有唯一的值与之相对应,分析图象可知只有D不能表示函数关系.故选D.【考点】函数的图象.35.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为.【答案】x>1.【解析】由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;故答案为:x>1.【考点】一次函数与一元一次不等式.36.将直线向下平移1个单位长度后得到的图像的函数解析式是【答案】y=2x-1.【解析】根据一次函数图象与几何变换得到直线y=2x向下平移1各单位得到函数解析式y=2x-1.【考点】一次函数的图象与几何变换37.若一次函数的图象经过点(,),则的值为.【答案】4.【解析】把点(,)代入可得10=2k+2,解得k=4.【考点】一次函数图象上点的特征.38.(本小题满分8分)如图,已知一次函数与正比例函数图像相交于点A,与轴交于点B.(1)求出m、n的值;(2)求出的面积.【答案】(1)n=4,m=2;(2)4.【解析】(1)把A(2,n)代入可求得n的值,再把A点的坐标代入求得m 的值即可;(2)求得与轴的交点B的坐标,利用即可求得的面积.试题解析:解:(1)∵点A(2,n)在函数的图象上,∴∴A(2,4)∵点A(2,4)也在函数的图象上,∴解得:(2)∵与轴交于点B ,∴令,则∴B (-2,0)∴【考点】一次函数.39. (10分)如图,在△ABC 中,∠BAC=90°,AB=AC=6,D 为BC 的中点.(1)若E 、F 分别是AB 、AC 上的点,且AE=CF ,求证:△AED ≌△CFD ;(2)当点F 、E 分别从C 、A 两点同时出发,以每秒1个单位长度的速度沿CA 、AB 运动,到点A 、B 时停止;设△DEF 的面积为y ,F 点运动的时间为x ,求y 与x 的函数关系式;(3)在(2)的条件下,点F 、E 分别沿CA 、AB 的延长线继续运动,求此时y 与x 的函数关系式.【答案】(1)详见解析;(2);(3).【解析】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC ,再利用SAS 可判定△AED ≌△CFD ; (2)利用S 四边形AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC ="9" 即可得到y 与x 之间的函数关系式;(3)依题意有:AF=BE=x-6,AD=DB ,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF ≌△BDE ,利用全等三角形面积相等得到S △ADF =S △BDE 从而得到S △EDF =S △EAF +S △ADB 即可确定两个变量之间的函数关系式.试题解析:(1)证明:∵∠BAC="90°" AB=AC=6,D 为BC 中点∴∠BAD=∠DAC=∠B=∠C=45° ∴AD=BD=DC ∵AE=CF ∴△AED ≌△CFD(2)解:依题意有:FC=AE=x ,∵△AED ≌△CFD ∴S 四边AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC =9S △EDF =S 四边AEDF -S △AEF =9-=;∴ (3)解:依题意有:AF=BE=x ﹣6,AD=DB ,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135° ∴△ADF ≌△BDE ∴S △ADF =S △BDE∴S △EDF =S △EAF +S △ADB=+9=;∴. 【考点】等腰直角三角形的性质;全等三角形的判定与性质.40. (本题8分)如图,在平面直角坐标系中,O 是坐标原点,点A 坐标为(2,0),点B 坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC 垂直于x 轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.=4时,求点P的坐标;(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【答案】(1)①y=-1.5x+3 ②P(,4)(2)或【解析】(1)①利用待定系数法求解即可;由①知点P坐标为(a,-a+3),可求出点P坐标,再利用求出a的值,即可得出点P的坐标;(2)分两种情况①当∠QAC=90°,且AQ=AC时,QA∥y轴,②当∠AQC=90°,且QA=QC时,过点Q作QH⊥x轴于点H,分别求解即可.试题解析:解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得所以直线AB的函数表达式为y=-x+3,由①知点P坐标为(a,-a+3),∴点Q坐标为(-a,-a+3),∴=×2×==-a+3=4,解得a=-∴P点的坐标为(-,4)(2)设P点的坐标为(a,n),(a<0,n>0),则点C,Q的坐标分别为C(a,0),Q(-a,n),①如图1,当∠QAC=90°且AQ=AC时,QA∥y轴,∴-a=2,解得a=-2∴AC=4,从而AQ=AC=4,即=4,由n>0得n=4∴P点的坐标为(-2,4)设直线AB的解析式为y=cx+b(c≠0),将P(-2,4),A(2,0)代入得,解得∴a=-2,b=2②如图2,当∠AQC=90°,且QA=QC时,过点Q作QH⊥x轴于点H,∴QH=CH=AH=AC,由Q(-a,n)知H(-a,0)Q的横坐标为-a=,解得a=-,Q的纵坐标为QH=∴Q(,),P(-,)由P(-,),点A坐标为(2,0),可得直线AP的解析式为y=-x+1,∴b=1,∴a=-,b=1综上所述,当△QAC是等腰三角形时,a=-2,b=2或a=-,b=1.【考点】待定系数法,一次函数的图像与性质41.若点A(0,2)和点B(-2,8)在一次函数y=kx+b的图像上,则该函数关系式为.【答案】y=-3x+2【解析】根据待定系数法可知,解得,因此该函数的解析式为y=-3x+2.【考点】待定系数法42.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【答案】(1);(2)x=25时,y取得最大值为1875.【解析】(1)根据题意列出方程即可;(2)根据一次函数的增减性求解即可.试题解析:解:(1)y=(45﹣30)x+(70﹣50)(100﹣x)=15x+2000﹣20x=﹣5x+2000;(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).【考点】一次函数的应用.43.如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.【答案】(1)900.(2)y=.【解析】(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.试题解析:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:900.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.【考点】一次函数的应用.44.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.45.已知点M(2,1)和点N(1,-2)在直线l:y=kx+b上,则直线l与x轴的交点坐标是()A.(0,-5)B.(-5,0)C.(0,)D.(,0)【答案】D.【解析】试题解析:∵点M(2,1)和点N(1,-2)在直线y=kx+b上,∴,解得,∴直线l的解析式为y=3x-5.∵当y=0时,x=,∴直线l与x轴的交点坐标是(,0).故选D.【考点】一次函数图象上点的坐标特征.46.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【答案】D.【解析】试题解析:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=-6,∴一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),故D选项错误.故选D.【考点】一次函数的性质.47.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.48.如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1) (1)A(2,0);C(0,4);(2) 直线CD解析式为y=-x+4.(3)P1(0,0);P2(,);P3(-,).【解析】(1)已知直线y=-2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.试题解析:(1)A(2,0);C(0,4)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4-x,根据题意得:(4-x)2+22=x2解得:x=此时,AD=,D(2,)设直线CD为y=kx+4,把D(2,)代入得=2k+4解得:k=-∴该直线CD解析式为y=-x+4.(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD=4-=,AP=BC=2由AD×PQ=DP×AP得:PQ=3∴PQ=∴xP=2+=,把x=代入y=-x+4得y=此时P(,)(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:CQ=∴OQ=4-=此时P(-,)综合得,满足条件的点P有三个,分别为:P1(0,0);P2(,);P3(-,).【考点】一次函数综合题.49.将直线y=2x﹣1的图象向上平移3个单位长度所得的函数表达式.【答案】y=2x+2【解析】函数图象的平移法则为:上加下减,左减右减.【考点】函数图象的平移50.已知:y-1与x+2成正比例,且x=1时,y=4.(1)写出与之间的函数关系式;(2)在图中画出此函数的图像;(3)求此直线与坐标轴围成的三角形的面积.(4)观察图像,直接写出时的取值范围.【答案】(1)y="x+3" ;(2)详见解析;(3)4.5;(4)x<-3.【解析】(1)根据题意设y-1=k(x+2),将x与y的值代入求出k的值,即可确定出y与x关系式;(2)求出直线与x轴、y轴的交点坐标,连接即可;(3)根据三角形的面积公式即可解答;(4)观察图象,可得时的取值范围.试题解析:(1)根据题意得:y-1=k(x+2),将x=1,y=4代入得:3=3k,即k=1,则y-1=x+2,即y=x+3;直线y=x+3与x轴的交点坐标为(-3,0),与y轴的交点坐标为(0,3),函数图象如图,直线y=x+3与坐标轴围成的三角形的面积为×3×3=4.5;观察图象可得时的取值范围为)x<-3.【考点】一次函数的图象及性质.51.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:。

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析1.如图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A.B.C.D.【答案】A【解析】思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.点评:本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案.2.如图,在矩形ABCD中,AB=4cm,AD=2cm,动点M自点A出发沿A→B的方向,以每秒1cm的速度运动,同时动点N自点A出发沿A→D→C的方向以每秒2cm的速度运动,当点N 到达点C时,两点同时停止运动,设运动时间为x(秒),△AMN的面积为y(cm2),则下列图象中能反映y与x之间的函数关系的是【答案】D【解析】在矩形ABCD中,AB=4cm,AD=2cm,AD+DC=AB+AD=4+2=6cm,∵点M以每秒1cm的速度运动,∴4÷1=4秒,∵点N以每秒2cm的速度运动,∴6÷2=3秒,∴点N先到达终点,运动时间为3秒,①点N在AD上运动时,y=AM?AN=x?2x=x2(0≤x≤1);②点N在DC上运动时,y=AM?AD=x?2=x(1≤x≤3),∴能反映y与x之间的函数关系的是D选项.故选D.3.(11·贵港)若记y=f(x)=,其中f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==;…;则f(1)+f(2)+f()+f(3)+f()+…+f(2011)+f()=_ ▲.【答案】2011【解析】此题需先根据y=f(x)=,计算出f()的值,发现f(x)+f()=1,再根据此规律,即可得出结果.解:∵y=f(x)=,∴f()==,∴f(x)+f()=1,∴f(1)+f(2)+f()+f(3)+f()+…+f(2011)+f()=f(1)+[f(2)+f()]+[f(3)+f()]+…+[f(2011)+f()]=+1+1+…+1=+2011=2011.故答案为:2011.4.在同一直角坐标系中,正比例函数的图象与反比例函数的图象有公共点,则0(填“>”、“=”或“<”).【答案】>【解析】当大于0时,正比例函数过第一三象限,要使它与反比例函数有交点,反比例函数也必须过第一三象限,即大于0,所以>0.同理可以推出小于0时,>0.5.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以的速度移动;同时,点Q沿折线A→B→C从点A开始向点C以的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发秒时,△PAQ的面积为,与的函数图象如图②,则线段EF所在的直线对应的函数关系式为_________.【答案】.【解析】试题分析∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC 从点A开始向点C以2cm/s的速度移动,∴当Q到达B点,P在AD的中点时,△PAQ的面积最大是9cm2,设正方形的边长为acm,∴,解得a=6,即正方形的边长为6,当Q 点在BC上时,AP=6﹣x,△APQ的高为AB,∴y=(6﹣x)×6,即.故答案为:.【考点】1.动点问题的函数图象;2.动点型.6.(本小题满分14分)根据下列要求,解答相关问题.(1)请补全以下求不等式的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数;并在下面的坐标系中(见图1)画出二次函数的图象(只画出图象即可).②求得界点,标示所需:当y=0时,求得方程的解为;并用锯齿线标示出函数图象中y≥0的部分.③借助图象,写出解集:由所标示图象,可得不等式的解集为 .(2)利用(1)中求不等式解集的步骤,求不等式的解集.①构造函数,画出图象:②求得界点,标示所需:③借助图像,写出解集:(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式的解集.【答案】(1)②;③.(2)②当y=4时,求得方程的解为;③借助图象,直接写出不等式的解集:.【解析】(1)正确画出图像,借助图像可知与x轴的交点的横坐标的值就是y=0时的一元二次方程的解,然后借助图像找到x轴上方的部分的x的取值就是不等式的解集;(2)利用(1)的方法直接能得结果;(3)根据求根公式可以得到与x轴的两点的值,然后分三种情况①与x轴有两个交点,时;②与x轴有一个交点时;③与x轴没有交点,时,判断出的解集.试题解析:解:(1)①②;③.((2)①构造二次函数,并画出图象.②当y=4时,求得方程的解为;③借助图象,直接写出不等式的解集:.(说明:以上三步中某一步出现错误,则以后的各步均不得分;若把不等式化为,构造函数进行求解亦可,具体评分参照上述标准)(3)①当时,解集为或(用“或”与“和”字连接均可).②当时,解集为(或亦可) .③当时,解集为全体实数.【考点】二次函数的图像与一元二次方程的解,与不等式的解集7.甲经销商库存有1200套A品牌服装,每套进价400元,每套售价500元,一年内可卖完,现市场流行B品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B 品牌服装,一年内B品牌服装销售无积压,因甲经销商无流动资金可用,只有低价转让A品牌服装,用转让来的资金购进B品牌服装,并销售,经与乙经销商协商,甲、乙双方达成转让协议,转让价格y(元/套)与转让数量x(套)之间的函数关系式为(),若甲经销商转让x套A品牌服装,一年内所获总利润为W(元).(1)求转让后剩余的A品牌服装的销售款(元)与x(套)之间的函数关系式;(2)求B品牌服装的销售款(元)与x(套)之间的函数关系式;(3)求W(元)与x(套)之间的函数关系式,并求W的最大值.【答案】(1)();(2);(3)W=,=180500.【解析】(1)直接根据销售款=售价×套数即可得出结论;(2)根据转让价格y(元/套)与转让数量x(套)之间的函数关系式为()得出总件数,再与售价相乘即可;(3)把(1)、(2)中的销售款相加再减去成本即可.试题解析:(1)∵甲经销商库存有1200套A品牌服装,每套售价500元,转让x套给乙,∴=500×(1200﹣x)=﹣500x+600000(100≤x≤1200);(2)∵转让价格y(元/套)与转让数量x(套)之间的函数关系式为(),B品牌服装,每套进价300元,∴转让后每套的价格=元,∴==();(3)∵由(1)、(2)知,,,∴W= ==,当x=550时,W有最大值,最大值为180500元.【考点】二次函数的应用.8.(本小题12分)已知二次函数的图象经过点(2,1)。

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

八年级数学下册第十七章函数及其图像达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(n >0).若△ABC 是等腰直角三角形,且AB =BC ,当0<a <1时,点C 的横坐标m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >32、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米3、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--4、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇5、如果点P (﹣5,b )在第二象限,那么b 的取值范围是( )A .b ≥0B .b ≤0C .b <0D .b >06、已知()231m y m x -=-+是一次函数,则m 的值是( )A .-3B .3C .±3D .±27、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5xy =8、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是()A .x ≥2B .x ≤2C .x ≥3D .x ≤39、在下列图象中,y 是x 的函数的是( )A .B .C .D .10、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x (秒),甲、乙两人之间的距离为y (米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A .503B .18C .553D .20第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、点P (5,﹣4)到x 轴的距离是___.2、函数y x π=,当x >0时,图象在第____象限,y 随x 的增大而_________.3、一次函y =kx +b (k ≠0)的图象可以由直线y =kx 平移______个单位长度得到(当b >0时,向______平移;当b <0时,向______平移).4、在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为______5、反比例函数k y x=的图像是由两支_______组成的. (1)当k >0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______;(2)当k <0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______.6、将一次函数22y x =-的图像向上平移5个单位后,所得图像的函数表达式为______.7、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.8、如图,直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P ,若点P (1,n ),则方程组4y kx b y x =+⎧⎨=-+⎩的解是_____.9、若点(),2P m m +在x 轴上,则m 的值为______.10、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.三、解答题(5小题,每小题6分,共计30分)1、如图,一次函数y =-x +5的图象与反比例函数k y x= (k ≠0)在第一象限的图象交于A (1,n )和B 两点.(1)求反比例函数的表达式与点B 的坐标;(2)在第一象限内,当一次函数y =-x +5的值小于反比例函数k y x =(k ≠0)的值时,直接写出自变量x 的取值范围 .2、在平面直角坐标系xOy 中,已知点A 的坐标为(4,1),点B 的坐标为(1,﹣2),BC ⊥x 轴于点C .(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标;(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为;(3)求出以A,B,O为顶点的三角形的面积;(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.4、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E 的对应点E′;(2)如图2,当点E 的对应点E′落在x 轴上时,求点P 的坐标;(3)如图3,直线l 上有A ,B 两点,坐标分别为(-2,-6),(4,6),当点P 从点A 运动到点B 的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.5、直线()10l y kx b k =+≠:,与直线2:l y ax =相交于点(1,2)B .(1)求直线2l 的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线1l 与直线2l 和x 轴围成的区域内(不含边界)为W .k=-时,直接写出区域W内的整点个数;①当1②若区域W内的整点恰好为2个,结合函数图象,求k的取值范围.-参考答案-一、单选题1、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB 和△BDC 中,AOB BDC BAO CBD AB BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB +BD =2+a =m ,∴2a m =-∴2<m <3,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.2、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A 选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,,A BOD=∠=︒∠+∠=︒∠+∠=︒909090≌,OA OB AOB A AOC AOC BOD∠=∠,故有AOC OBD ,,进而可得B点坐标.21====OD AC BD OC【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.4、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.5、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b 的取值范围.【详解】解:∵点P (﹣5,b )在第二象限,∴b >0,故选D .【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.6、A【解析】略7、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.8、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.9、D【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【详解】解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.故选:D.【点睛】本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.10、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=10050,63故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.二、填空题1、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】点P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.2、一减少【解析】略3、 b 上 下【解析】略4、1x >【解析】【分析】根据函数图象写出一次函数y kx =在y x b =-+上方部分的x 的取值范围即可.【详解】解:一次函数y kx =和y x b =-+的图象交于点()1,2所以,不等式kx x b >-+的解集为1x >.故答案为:1x >【点睛】本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.5、 双曲线 一、三 减小 二、四 增大【解析】略6、23y x =+【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数22y x =-的图像向上平移5个单位,∴所得图像的函数表达式为:22523y x x =-+=+故答案为:23y x =+【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.7、 象限 不属于 一 三 y 轴【解析】略8、13x y =⎧⎨=⎩【解析】【分析】由两条直线的交点坐标P (1,n ),先求出n ,再求出方程组的解即可.【详解】解:∵y =﹣x +4经过P (1,n ),∴n =-1+4=3,∴n =3,∴直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P (1,3),∴13x y =⎧⎨=⎩, 故答案为13x y =⎧⎨=⎩. 【点睛】本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 积 和 一次【解析】略三、解答题1、 (1)反比例函数的表达式为4y x=,B 的坐标为(4,1); (2)4x >或01x <<【解析】【分析】(1)将点A 的横坐标代入直线的解析式求出点A 的坐标,然后将的A 的坐标代入反比例函数的解析式即可;(2)一次函数y =−x +5的值大于反比例函数k y x=(k≠0)的值时,双曲线便在直线的下方,所以求出直线与双曲线及x 轴的交点后可由图象直接写出其对应的x 取值范围.(1)解:∵一次函数y =-x +5的图象过点A (1,n ),∴n =-1+5=4∴点A 坐标为(1,4), ∵反比例函数k y x =(k ≠0)过点A (1,4), ∴k =4, ∴反比例函数的表达式为4y x= 联立54y x y x =-+⎧⎪⎨=⎪⎩,解得1114x y =⎧⎨=⎩,2241x y ,即点B 的坐标为(4,1)(2)解:如图:由图象可知:当4x >或01x <<时一次函数y =−x +5的值小于反比例函数4y x=的值.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是掌握反比例函数与一次函数的交点与它们的解析式的关系.2、 (1)作图见解析,C 点坐标为()1,0(2)()23--,(3)4.5(4)E 点坐标为()5.52-,或()3.52--, 【解析】【分析】(1)在平面直角坐标系中表示出A ,B ,C 即可.(2)由题意知,AB CD ,将点C 向下移动3格,向左移动3格到点D ,得出坐标.(3)利用分割法求面积,ABC 的面积等于矩形减去3个小三角形的面积,计算求值即可.(4)设E 点坐标为()2m ,-,由题意列方程求解即可.(1)解:如图,点A ,B ,C 即为所求,C 点坐标为(1,0)故答案为:(1,0).(2)解:∵点A 向下移动3格,向左移动3格到点B ,AB CD∴点C 向下移动3格,向左移动3格到点D∴D 点坐标为()23--,故答案为:()23--,. (3) 解:∵11134141233 4.5222AOB S ⨯-⨯⨯-⨯⨯-⨯⨯== ∴以A ,B ,O 为顶点的三角形的面积为4.5.(4)解:设E 点坐标为()2m ,-由题意可得112 4.52m ⨯⨯﹣= 解得: 5.5m =或 3.5m =∴E 点坐标为()5.52-,或()3.52--,. 【点睛】本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.3、 (1)k =2;(2)7; (3)32≤m ≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l 2的解析式,分别求得D 、C 、N 的坐标,再利用四边形OCNB 的面积=S △ODC - S △NBD 求解即可;(3)先求得点P 的纵坐标,根据题意列不等式组求解即可.(1)解:令x =0,则y =2;∴B (0,2),∴OB =2,∵AB∴OA 1,∴A (-1,0),把B (-1,0)代入y =kx +2得:0=-k +2,∴k =2;(2)解:∵直线l 2平行于直线y =−2x .∴设直线l 2的解析式为y =−2x +b .把(2,2)代入得2=−2⨯2+b ,解得:b =6,∴直线l 2的解析式为26y x =-+.令x =0,则y =6,则D (0,6);令y =0,则x =3,则C (3,0),由(1)得直线l 1的解析式为22y x =+.解方程组2226y x y x =+⎧⎨=-+⎩得:14x y =⎧⎨=⎩, ∴N (1,4),四边形OCNB 的面积=S △ODC - S △NBD =()113662122⨯⨯-⨯-⨯=7;(3)解:∵点P 的横坐标为m ,∴点P 的纵坐标为26m -+,∴PM =26m -+,∵PM ≤3,且点P 在线段CD 上,∴26m -+≤3,且m ≤3. 解得:32≤m ≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.4、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭ (3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-=解得:52 a=当52a=时,5232232a-=⨯-=所以点P的坐标为5,3 2⎛⎫ ⎪⎝⎭(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM 上运动,根据对称性知,点E'运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点E'运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.5、 (1)直线2l 为2y x =;(2)①当1k =-时,整点个数为1个,为(1,1);②k 的取值范围为112k -<-或1132k < 【解析】【分析】(1)根据待定系数法求得即可;(2)①当k =1时代入点A 坐标即可求出直线解析式,进而分析出整点个数;②当k <0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k 的值;当k >0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k 的值,根据图形即可求得k 的取值范围.(1)解:直线2:l y ax =过点(1,2)B .2a ∴=,∴直线2l 为2y x =.(2)解:①当1k =-时,y x b =-+,把(1,2)B 代入得21b =-+,解得:3b =,3y x ∴=-+,如图1,区域W 内的整点个数为1个,为(1,1).②如图2,若0k <,当直线过(1,2),(2,1)时,1k =-.当直线过(1,2),(3,1)时,12k =-. 112k ∴-<-, 如图3,若0k >,当直线过(1,2),(1,1)-时,12k =. 当直线过(1,2),(2,1)-时,13k =. ∴1132k <. 综上,若区域W 内的整点恰好为2个,k 的取值范围为112k -<-或1132k <. 【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.。

(夺分金卷)华师大版八年级下册数学第17章 函数及其图象含答案

(夺分金卷)华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B 的坐标为(3,),点C的坐标为(, 0),点P为斜边OB上的一动点,则PA+PC的最小值为( ).A. B. C. D.22、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量 C.0.6元/千瓦时是自变量,y是因变量 D.x是自变量,y是因变量3、如图,四边形的顶点坐标分别为,当过点的直线将四边形分成面积相等的两部分时,直线所表示的函数表达式为()A. B. C. D.4、对于反比例函数,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(-1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值5、已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1, y2, y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y26、甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是()A.货车的速度是60千米/小时B.离开出发地后,两车第一次相遇时,距离出发地150千米C.货车从出发地到终点共用时7小时D.客车到达终点时,两车相距180千米7、如图,某个反比例函数的图象经过点P,则它的解析式为()A.y= (x>0)B.y=- (x>0)C.y= (x<0)D.y=- (x<0)8、对于反比例函数,下列说法不正确的是()A.点(-2,-1)在它的图像上B.它的图像在第一、三象限C.当时,y随x的增大而增大 D.当时,y随x的增大而减小9、若<2,>-3,则x的取值范围()A. B. 或 C. 或D.以上答案都不对10、已知点A(2,-3),直线AB与x轴没有交点,则点B的坐标可能是()A.(-2,3)B.( 2,3)C.(1,-3)D.(-3,-2)11、直线y =a x+b经过第二、三、四象限,那么下列结论正确的是()A. B.反比例函数,当x > 0时的函数值y随x增大而减小 C.一元二次方程的两根之和大于零 D.抛物线的对称轴过第一、四象限12、要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为( )。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.已知反比例函数的图象上两点,,当时,有,则m的取值范围是.【答案】m<.【解析】考查反比例函数图象的特点,当k>0时,图象在一三象限,k<0时,图象在二四象限解答.试题解析:∵时,有∴反比例函数的图象在一、三象限,∴1-2m>0解不等式得m<.【考点】1.反比例函数图象上点的坐标特征;2.不等式的解集.2.在平面直角坐标系中,把直线沿y轴向上平移两个单位后,得到的直线的函数关系式为____________________.【答案】y="2x-1"【解析】根据平移法则上加下减可得出平移后的解析式.由题意得:平移后的解析式为:y=2x-3+2=-2x-1.【考点】函数图像的平移3.(10分)如图,直线与相交于点P,的函数表达式y=2x+3,点P的横坐标为-1,且交y轴于点A(0,1).求直线的函数表达式.【答案】y=-2x-1.【解析】设点P坐标为(-1,y),代入y=2x+3得y=1,即P(-1,1).再把P(-1,1),A的解析式y=kx+b可求出k,b的值,进而求出其解析式.(0,-1)分别代入直线l2试题解析:、解:设点P坐标为(-1,y),代入y=2x+3,得y=1,∴点P(-1,1).设直线的函数表达式为y=kx+b,把P(-1,1)、A(0,-1)分别代入y=kx+b,得1=-k+b,-1=b,∴k=-2,b=-1.∴直线的函数表达式为y=-2x-1.【考点】利用函数图象求一次函数的表达式.4.(本题满分8分)已知与成正比例,当=-1时,=4,(1)求出与的函数表达式;(2)设点(,-2)在这个函数的图像上,求的值.【答案】(1)y=-2x+2;(2)2.【解析】(1)先设解析式,代入x,y值求待定系数,再代回,即可确定函数表达式.(2)把y=-2代入表达式,求出a值.试题解析:(1)设y=k(x-1),把x=-1,y=4代入,4=k(-1-1),解得k=-2,∴y=-2(x-1)即:y=-2x+2.(2)把y=-2代入:-2=-2x+2,∴x=2,即a=2.【考点】求一次函数解析式及点的坐标.5.(本小题6分)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.(1)求直线AB的解析式;(2)点P在直线AB上,是否存在点P使得△AOP的面积为1,如果有请直接写出所有满足条件的点P的坐标【答案】(1)y=-x+2;(2)存在,P(1,) P(-1,).【解析】(1)设一次函数解析式,将A,B两点坐标代入这个解析式,求出k,b即确定了一次函数解析式.(2)因为OA是2作为△AOP的底,利用△AOP的面积为1,把P点的横坐标求出来,代入一次函数解析式求出纵坐标,这样满足条件的P点就求出来了.试题解析:(1)根据题意得,A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则∴,∴直线AB的解析式为y=-x+2.(2)设P点横坐标为x,S△AOP=×2×=1,∴x=±1,分别代入直线AB解析式得:y1=,y2=∴P(1,) P(-1,).【考点】一次函数与三角形综合题.6.已知一次函数的图象与轴正半轴相交,且随的增大而减小,请写出符合上述条件的一个解析式:.【答案】或等.【解析】∵与y轴的正半轴相交,∴b>0,∵随的增大而减小,∴k<0,写出满足条件的解析式即可,如:y=-x+1,y=-2x+1,等等.【考点】一次函数图像性质.7.小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】观察图象:由点(2,20)和(2.5,20)可得他们都行驶了20km,所以说法(1)正确;小陆全程共用了:2﹣0.5=1.5h,所以说法(2)正确;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,所以说法(3)正确;表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,所以说法(4)正确,故选:A.【考点】一次函数的应用.8.(本题满分12分)已知一次函数的图像经过点M(-1,3)、N(1,5)。

[必刷题]2024高三数学下册函数图像专项专题训练(含答案)

[必刷题]2024高三数学下册函数图像专项专题训练(含答案)

[必刷题]2024高三数学下册函数图像专项专题训练(含答案)试题部分一、选择题:1. 已知函数f(x) = 2x^3 3x^2 12x + 5,则f(x)的图像在x 轴上的截距个数为()A. 0个B. 1个C. 2个D. 3个2. 若函数g(x) = (1/2)^x 的图像向右平移1个单位,再向上平移3个单位,得到的新函数图像对应的函数表达式为()A. g(x+1) + 3B. g(x1) + 3C. (1/2)^(x1) + 3D. (1/2)^(x+1) 33. 已知函数h(x) = |x 2|,则h(x)的图像在x=2处()A. 连续B. 断开C. 不可导D. 可导4. 下列函数中,图像关于y轴对称的是()A. y = x^3 4xB. y = x^2 + 3C. y = 2^x 1D. y = |x| 25. 已知函数f(x) = (1/3)^x 在区间(0,+∞)上的图像是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增6. 若函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,2),则该函数的图像与x轴的交点个数为()A. 0个B. 1个C. 2个D. 3个7. 已知函数f(x) = (x 1)^2,则f(x)的图像在x=1处()A. 取得最小值B. 取得最大值C. 斜率为0D. 斜率不存在8. 下列函数中,图像关于原点对称的是()A. y = x^3 + 1B. y = x^2 1C. y = 3^x 1D. y = |x| + 19. 已知函数g(x) = log_2(x 1),则g(x)的定义域为()A. x > 1B. x < 1C. x ≠ 1D. x ∈ R10. 若函数f(x) = |x| 2在区间(∞,0)上的图像是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、判断题:1. 函数y = 3x^3 4x的图像是中心对称图形。

初三数学函数及其图像试题

初三数学函数及其图像试题

初三数学函数及其图像试题1.请写出符合以下三个条件的—个函数的解析式_________①过点(3,1);②在第一象限内y随x的增大而减小;③当自变量的值为2时,函数值小于2.【答案】答案不唯一,如y=-x+2【解析】当此函数是一次函数时,设y=kx+b,此时k<0,3k+b=1,2k+b<2;当此函数是二次函数y=ax2+bx+c,设解析式y=ax2+bx+c,此时a<0,b≤0,c>0,9a+3b+c=1;当此函数反比例函数y=,此时k=3.答案不唯一,如y=-x+22.已知M、N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数的图象上,设点M的坐标为(a,b),则二次函数()A.有最小值,且最小值是B.有最大值,且最大值是C.有最大值,且最大值是D.有最小值,且最小值是【答案】A【解析】略3.(9分)已知图中的曲线为反比例函数(为常数)的图象的一支.(1)求常数的取值范围;(2)若该函数的图象与正比例函数y=3x的图象交于A、B两点,且点A坐标为(1,);①求出反比例函数解析式②请直接写出不等式的解集.【答案】(1)k>-2;(2)①;②x≤-1或0<x≤1.【解析】(1)反比例函数在第一象限,k+2>0;(2)①把交点的横坐标代入正比例函数解析式,即可求得完整的交点坐标,代入反比例函数解析式,就能求得反比例函数解析式;由②中求得的值并结合图像,即可直接写出不等式的解集.试题解析:(本小题9分)解:(1)根据题意得:k﹣5>0,即k>5; 3分(2)①将x=1代入y=3x得:y=3,即A(1,3), 4分将A(1,3)代入得:k+2=3(即k=1), 5分,则反比例解析式为.6分②x≤-1或0<x≤1.9分(注:写一个得1分,写两个得3分)【考点】反比例函数综合题.4.(14分)如图,在Rt△ABC中,∠ACB=900,AC=6,BC=8.动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)当t=秒时,动点M、N相遇;(2)设△PMN的面积为S,求S与t之间的函数关系式;(3)取线段PM的中点K,连接KA、KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.【答案】(1);(2)S=;(3)在整个运动过程中,△KAC的面积会发生变化,最小值为,最大值为4.【解析】(1)由∠ACB=900,AC=6,BC=8,得到AB=10,当M、N相遇时,AM+BN=AB=10,即,解得;(2)由于N比M运动的速度快,故P先在BC上运动,然后在CA上运动.先算出当P与C重合时,所用的时间,由于相遇的时间,停止的时间,故分三种情况讨论,①当时,M在N的左边,P先在BC上向C靠近;②当时,M在N的左边,在AC上逐渐远离C;③当时,M在N的右边,在AC上逐渐远离C.由于S== MN•PG,MN=10-4t,只需要表示出三种情况中的PG即可,用三角函数计算比较简单;(3)分两种情况讨论,①当P在BC上运动时,如图4,当P与C重合时,最小,当t=0是,M与A重合,N与B重合,如图5,此时三角形最大;②当P在CA上运动时,如图6,过K作KE⊥AC于E,过M作MF⊥AC于F,可以得到=,而,故当时,的最小值=,当时,的最大值=.综合①②可得到结论.试题解析:(1)∵∠ACB=900,AC=6,BC=8,∴AB=10,当M、N相遇时,有,∴;(2)∵N比M运动的速度快,∴P先在BC上运动,然后在CA上运动.当P与C重合时,∵=AC•BC=AB•GC,∴GC=6×8÷10=4.8,∴AG==3.6,∴BG=10-3.6=6.4,∵AM=t,BN=3t,∴MN=10-4t,MG=GN=MN==,∴,∴.①当时,M在N的左边,P先在BC上向C靠近,如图1,∵AM=t,BN=3t,∴MN=10-4t,MG=GN=MN==,∴GB=GN+NB==,∵tanB=,∴,∴PG=,∴S==MN•PG= GN•PG==;②当时,M在N的左边,在AC上逐渐远离C,如图2,由①可知,GN=MG=,AM=t,∴AG=MG+AM=,tanA=,∴,∴PG=,∴S==MN•PG= GN•PG==;③当时,M在N的右边,在AC上逐渐远离C,如图3.MN=NB+AM-AB==,GN=MG=,AM=t,∴AG= AM-MG ==,tanA=,∴,∴PG=,∴S==MN•PG= GN•PG==;∴S=;(3)①当P在BC上运动时,如图4,当P与C重合时,最小,过M作MF⊥AC于F,则MF∥BC,∴,,∴,∴MF=1.12,∴==•AC•MF==,当t=0是,M与A重合,N与B重合,此时三角形最大,如图5,此时BG=AG=5,cosB=,∴,∴PB=,∴PC=BC-PB=8-=,∴=AC•PC= =,∵K是AP 的中点,∴==,∴当P在BC上运动时,△KAC面积的最小值为,最大值为;②当P在CA上运动时,如图6,过K作KE⊥AC于E,过M作MF⊥AC于F,∴EK∥FM,∵K为PM的中点,∴EK=FM,∵FM⊥AC,CB⊥AC,∴FM∥CB,∴,∴,∴FM=,∴EK=FM=,∴=AC•EK==,∵,∴当时,的最小值=,当时,的最大值=.∴当P在CA上运动时,△KAC面积的最小值为,最大值为4.综合①②可得:在整个运动过程中,△KAC的面积会发生变化,最小值为,最大值为4.【考点】1.三角形综合题;2.动点型;3.分类讨论;4.最值问题;5.分段函数;6.压轴题.5.选择一组你喜欢的a,b,c的值,使二次函数y=ax2+bx+c(a≠0)的图像同时满足下列条件:①开口向下;②当x﹤2时,y随x的增大而增大;③当x﹥2时,y随x的增大而减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其图像测试题
班级: 姓名: 学号:
一、单项选择(每题3分,共24分)
1. 下列图像中,表示y 是x 的函数的是( )
Y y y y
x x x
A B C D
2.下列函数中,分别是一次函数和反比列函数的是( )
A.y 2=2x +1和y =x 5
B.y =1x +1和y =π2
C.|y |=x +2和y =4x
D.y =34+x 和y =5x −1 3.已知函数y =√2−x 1−x ,则自变量x 的取值范围是( )
A.x ≠1
B.x ≤2
C.x ≠1且x ≤2
D.任意实数
4.已知一次函数y =k 2x +k (k 为常数),则这个函数的图像可能经过( )
A.第一、二、三象限或第一、三、四象限
B.第一、二、三象限或第二、三、四象限
C.第一、二、四象限或第一、三、四象限
D.第二、三、四象限或第一、三、四象限
5.在平面直角坐标系中,点A (2a+3,1-b )与点B(2-3a,4b-1)关于y 轴对称,则点C(a+1,b+2) 在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.函数y =kx +b 和函数y =k
x (k ≠0,k 为常数)在同一指教坐标系内的图像可能是( ) y y y y
x
A B C 7.在匀速直线运动中,有公式v =s t ,其中v 表示速度,s 表示路程,t 表示时间,则s 与t 的关系是( )
A.不是函数关系
B.正比列函数关系
C.反比例函数关系
D.是不能确定的函数关系
8.如右图,MN ⊥PQ,垂足为点O ,点A 、C 在直线MN 上运动,
点B 、D 在直线PQ 上运动。

顺次连结点A 、B 、C 、D ,围成
四边形ABCD 。

当四边形ABCD 的面积为12时,设AC 长为x
, BD 长为y ,则下图能表示x 与y
关系的图像是( )
y
y
3
x
A B
y y
x x C D
二、填空题(每小题3分,共24分)
1.一次函数y =4x 与反比例函数y =16
x 的交点坐标是 。

2.已知函数y =(m +1)x 2−|m |+n +4是正比列函数,则m= ,n= 。

3.一次函数y =kx +b 的自变量x 的取值范围是−3≤x ≤6,相应函数y 的取值范围是 −5≤y ≤−2,则此函数解析式为 。

4.直线y =x −1,y =−2x +4及x 轴围成的三角形的面积为 。

5.已知(x 1,y 1)和(x 2,y 2)是反比例函数y =2b 2+1
x (b 为常数)的图像上两点,当x 1<x 2<0时,
y 1 y 2 (填“>”或“<”)。

6.若直线y =−7x +(2k −4)不经过第三象限,则k 的取值范围是 。

7.直线y =−4
3x −4分别与x 、y 轴的交点的距离是 。

8.将直线y =2x −1先向上平移2个单位长度,再向左平移3个单位长度,得到的函数解
析式是 。

三、解答题(共52分)
1.如图,已知一次函数y =mx +n 的图像与反比例函数y =k x 的图像交于点P(-1,-3)、Q(a,3
2)。

你能求出反比例函数和一次函数的解析式吗?(17分)
2.已知直线y =3x −2过点A(2,4)和点B(0,-2)。

设点C 在x 轴上,且∠ACB 是直角,求点C 的坐标。

(17分)
3.已知直线y =x −3与双曲线y =4x 交于A 、B 两点。

求三角形ABO 的面积。

(18分) N
P Q O 4
一、1.B 2.D 3.C 4.A 5.A 6.A 7.B 8.C
二、1. (2,8)或(-2,-8) 2. 1 ;-4 3.y=1
3x−4或y=−1
3
−3 4. 1
3
5.>
6.k>2
7.5
8.y=2x+7
三、1.y=3
x y=3
2
x−3
2
2.(-2,0)或(4,0)
3.71
2。

相关文档
最新文档