三角形面积与铅垂法
三角形水平宽铅垂高面积公式
三角形水平宽铅垂高面积公式在我们学习数学的奇妙旅程中,三角形这个家伙可是个常客。
今天咱们就来聊聊三角形的水平宽铅垂高面积公式,这可是个相当有趣又实用的小知识!先来说说啥是三角形的水平宽和铅垂高。
想象一下,有一个三角形稳稳地躺在平面直角坐标系里。
水平宽呢,就是三角形底边在 x 轴上的投影长度;铅垂高呢,则是从三角形的顶点向 x 轴作垂线,垂线的长度就是铅垂高。
我记得有一次给学生们讲这个知识点的时候,有个小家伙瞪着大眼睛一脸懵地问我:“老师,这水平宽和铅垂高怎么就跟面积有关系啦?”我笑着告诉他:“别着急,咱们一起来探究探究。
”咱们来看个具体的例子。
假设有个三角形,三个顶点的坐标分别是A(1, 2),B(3, 4),C(5, 1)。
首先,咱们来找出底边,假设底边是线段BC,那它在 x 轴上的投影长度就是水平宽。
B 点和 C 点的横坐标分别是 3 和 5,所以水平宽就是 5 - 3 = 2。
接下来找铅垂高。
咱们从 A 点向 x 轴作垂线,与 x 轴交点设为 D,那 AD 的长度就是铅垂高。
A 点的纵坐标是 2,所以铅垂高就是 2。
这时候,根据三角形水平宽铅垂高面积公式,面积就等于水平宽乘以铅垂高的一半。
也就是 2×2÷2 = 2。
再比如,还有个三角形,顶点坐标是 E( -1, 3),F(2, 5),G(4, -1)。
同样的方法,先找底边 FG 在 x 轴上的投影,也就是水平宽,4 - 2 = 2。
再找顶点 E 到 x 轴的垂线长度,也就是铅垂高,是 3。
那这个三角形的面积就是 2×3÷2 = 3。
同学们在做这类题的时候,可一定要仔细看准坐标,别把数值弄混了。
有个同学就因为粗心,把横坐标看成纵坐标,算出的面积差了十万八千里,自己还纳闷怎么不对呢!其实啊,这个公式的妙处就在于,它能让我们在面对一些复杂的三角形时,不用费力地去分割或者转化,就能轻松算出面积。
在实际生活中,这个公式也有大用处。
2023年九年级中考数学微专题+铅垂法求三角形面积课件
知识回顾
在平面直角坐标系中,已知A、B、C的坐标,你有 哪些计算△ABC的面积方法?
y
C C(4,7)
方法一:海伦公式
S △ABC p( p a )( p b )( p c ) (其中p= a b c )
2
方法二:割补法
D
A (1,1)
A
o
B (7,3)
B
x
知识回顾
SABC
1 铅垂高h • 水平宽a 2
知识归纳
(1)取AB作水平宽,过点C作铅垂高CD.
y C
铅
垂
高
B
A O
水平宽
D
x
y C
A 水平宽 O
铅 垂
特征:纵向割补
高
B
x
SABC
1 铅垂高h • 水平宽a 2
解决问题
在平面直角坐标系中,已知A(1,1)、B(7,3)、C(7,3) 求△ABC的面积.
y
y 铅垂线
A
铅垂高 h E
D
B
Fa
O
水平宽
C
铅垂足
SABC
1 铅垂高h • 水平宽a 2
x
SABC
1 2
yA yD
xC xB
例题精讲
例1:在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7), 求△ABC的面积.
解:过点C作x轴的垂线交AB于点D 设直线AB的表达式为y=kx+b,将 A(1,1)、B(7,3)代入得
y
思考1:与例1有什么不同?
C (4,7) C(4,7)
思考2:怎样确定水平宽?
D
A (1,1)
A (1,1)
2024成都中考数学二轮复习专题:三角形面积求最大值问题——铅垂法
铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯=.【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++---如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1)二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=,点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x ∆∆=+=⋅=⨯⨯--++=-+,304-<,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-+3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<<,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A -,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =,点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB ∆∆∽,则14OQ OA OB OC ==即134OQ =,解得34OQ =,13(0,4Q ∴或23(0,)4Q -;②AOC BOQ ∆∆∽,则14OB OA OQ OC ==即314OQ =,解得12OQ =,3(0,12)Q ∴或4(0,12)Q -,综上所述,存在y 轴上的点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似,这样的点一共4个:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,故答案为:存在这样的点Q ,坐标分别是:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得22MQ NQ MN ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1)点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2)点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下:抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,22(|4|)42n n ∴-=+,2880n n ∴+-=,4n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,4-+或(1,4--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为31y =+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,231)P n n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n n '+,得出2733PP n n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出7(33C ,4)3-,设(3Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,(3B ,0),设直线AB 的解析式为y kx m =+,∴301k m m ⎧+=⎪⎨=⎪⎩,解得331k m ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为313y x =+,点F 43F ∴点纵坐标为343113=-,F ∴点的坐标为,1)3-,又点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,2PP n '∴=-+,22172222ABP S OB PP n n ∆'==-+=--+,∴当n =ABP ∆,此时P 47)12.(3)211y y x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或x =C ∴,43-,设Q ,)m ,①当AQ 为对角线时,7()3R m ∴+,R 在抛物线2(4y x =--+上,27(43m ∴+=--+,解得443m =-,443Q ∴-,37(3R -;②当AR 为对角线时,73R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=-+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l对称,若存在,求出点P 的坐标及直线l的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =-,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-=,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m2m =,31m =,41m =-,31m =,41m =-不合题意,舍去,当1m =1)2P -,线段PQ的中点为1(1)2-,∴112k +=-,∴1k =,∴直线l的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ的中点为1(2,1)-,∴112-=-,∴1k =,∴直线l的解析式为(1y x =+.综上,点P ,12-,直线l的解析式为(1y x =或点(P 1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。
铅垂法求三角形面积
二次函数三角形之面积问题(铅垂法)专题前请先思考以下问题:问题1坐标系背景下问题的处理原则是什么?问题2:坐标系中处理面积问题的思路有哪些?问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?问题4:铅垂法的具体做法是什么?问题5:如何利用铅垂法表达三角形的面积?以下是问题及答案,请对比参考:问题1坐标系背景下问题的处理原则是什么?答:充分利用横平竖直线段长,几何特征函数特征互转问题2:坐标系中处理面积问题的思路有哪些?答:公式法(规则图形);割补法(分割求和,补形作差);转化法(例:同底等高)问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?答:三边均是斜放置在坐标系中的三角形在表达面积时一般使用铅垂法。
问题4:铅垂法的具体做法是什么?答:若是固定的三角形,贝冋从任意一点作铅垂;若为变化的图形,贝以动点向另外两点所在的定直线作铅垂。
问题5:如何利用铅垂法表达三角形的面积?答:从动点向另外两点所在的固定直线作铅垂,将变化的竖直线段作为三角形的底,则高就是两个定点的横坐标之差,然后结合三角形的面积公式表达。
由T E S思‘=用心血十災-BMP*用卫眩二㊁(% -勺)*仏就二㊁心-仏),专叱(心-©) + #妣包F)二m叱(心_心+心_也)例1:如图,在平面直角坐标系中,顶点为(4, -1)的抛物线交y轴于A点,交x轴于B,4B C0 B C0 (铅垂线在三角形内部)将d 点坐标(0, 3)代入,可得“ 当vn~3时,APAC 的面积最大 此时点尸的坐标为® --)二 B(2, 0),C(6? 0) +如图,过点尸作严创]轴,交M 于点0•二次函数的解析式为尸"工T 斗最大值为兰斗x 轴分别交于点A , B,抛物线y = -X 2 • bx • c 易得匚匚:尹二—[龙+3 ■■设点P 的橫坐标为也,贝lj 0 < w< 6试题难度:三颗星知识点:铅垂法求面积 1 例2:如图,一次函数y = -x * 2与y 轴、2过A ,B 两点.Q 为直线AB 下方的抛物线上一点,设点 Q 的横坐标为n , △ QAB 勺面积为 S,求出S 与n 之间的函数关系式并求出S 的最大值3,解得,a~-4点,且位于A, C 两点之间,当△ PAC 的面积最大时,求P 的坐标和A PAC 的最大 面积.解: -- ■- •・ JC 两点(点B 在点C 的左侧),已知A 点坐标为(0,3) •点P 是抛物线上的一个动解:;'\r. .■:“/. c=2.把点£ (T, 0)代入二次函数表达式.得一16-肪+2 = 0,/* b —^―,2••二次函数的表达式为y ~ -X1 x+ 2.£如图,过点。
二次函数之“铅垂法”求三角形面积
二次函数之“铅垂法”求三角形面积求三角形面积往往用公式12S a h∆=或1sin2S ab C∆=进行计算。
在二次函数里,有时用公式求三角形面积有一定的难度,我们不妨考虑用“铅垂法”来解决。
图1 图2作法:1、作铅直线PM交线段AB于点M;2、分别过A、B两点作PM的垂线段。
计算:如图1:S△PAB= S△PMA+S△PMB=12×PM×h2+12×PM×h1=12×PM×(h2+h1);①如图2:S△PAB= S△PMA﹣S△PMB=12×PM×h2-12×PM×h1=12×PM×(h2-h1)。
②理解:我们把公式中的PM称为三角形的“铅直高度”,把(h2+h1)或(h2-h1)称为三角形的“水平宽度”,则三角形的面积等于“铅直高度”与“水平宽度”积的一半。
特别地,在二次函数中,三角形的“铅直高度”就是动点P和铅直线PM与线段AB交点M的纵坐标之差(y P -y M),“水平宽度”就是两定点A与B的横坐标之差(x B-x A),即S△=12×(y P-y M)×(x B-x A)。
我们把这种求三角形面积的方法叫做“铅垂法”。
运用:例:如图,直线l:y=−x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+a+4(a<0)经过点B。
(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标。
解答:(1)y=-x 2+2x+3;(2)过点M 作MC ⊥x 轴交直线AB 于点C 。
设M (t ,-t 2+2t+3),则C (t ,-t+3)。
∵A (3,0),B (0,3)∴S=12×〖(-t2+2t+3)-(-t+3)〗×(3-0)化简整理得:23327()224S t =--+。
铅锤高求三角形面积法
作三角形铅锤高是解决三角形面积问题的一个好方法------------ 二次函数教课反思近来教课二次函数遇到很多求三角形面积的问题,经过研究,我发现作三角形铅锤高是解决三角形 面积问题的一个好方法。
在课堂上我还风趣地说遇到“歪歪三角形中间砍一刀” ,同学们很快掌握了这类方法现总结以下:如图1,过△ ABC 的三个极点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ ABC 的“水平宽” ( a ) ,中间的这条直线在△ ABC 内部线段的长度叫△ ABC 的“铅垂高 ( h ) ” . 我们可得出一种计算三角形面积的新方法:S ABC1ah ,即三角形面积等于水平宽与铅垂高乘积的一半.2yy铅垂高BBChCDB水平宽A O xA Oxa图 1P例 1.(2013 深圳) 如图,在直角坐标系中,点A 的坐标为(- 2, 0),连接 OA ,将线段 OA 绕原点O 顺时针旋转 120°,获得线段OB. ( 1)求点 B 的坐标;( 2)求经过 A 、O 、B 三点的抛物线的分析式;( 3)在( 2)中抛物线的对称轴上能否存在点 C ,使△ BOC 的周长最小?若存在,求出点 C 的坐标;若不存在,请说明原由 . ( 4)假如点 P 是( 2)中的抛物线上的动点,且在 x 轴的下方,那么△ PAB 能否有最大面积?如有,求出此时 P 点的坐标及△ PAB 的最大面积;若没有,请说明原由.解:( 1)B ( 1, 3 )( 2)设抛物线的分析式为 y=ax(x+a ),代入点 B ( 1,3 ),得 a3,所以 y3 x 2 2 3 x33 3( 3)如图,抛物线的对称轴是直线x=—1,当点 C 位于对称轴与线段AB 的交点时,△ BOC 的周长最小 .k 3k b3,33 2 3 3设直线 AB 为 y=kx+b.所以解得,所以直线 AB 为 y ,2k b 0.2 3 x,当 x=-1 时,yb3333所以点 C 的坐标为(- 1, 3 /3) .( 4)如图,过 P 作 y 轴的平行线交 AB 于 D .1 SPABSPADSPBD( y D y P )( x Bx A )21 3 x23 3 x 2 2 3 x 323 3 333 x 2 3 x 3 2 2 23 1392x82当 x=- 1 时,△ PAB 的面积的最大值为9 3,此时 P 1 ,3 .28 24例 2.(2014 益阳 ) 如图 2,抛物线极点坐标为点 C( 1, 4), 交 x 轴于点 A( 3, 0) ,交 y 轴于点 B. (1)求抛物线和直线 AB 的分析式; (2)点 P 是抛物线 ( 在第一象限内 )上的一个动点, 连接 PA ,PB ,当 P 点运动到极点C 时,求△ CAB 的铅垂高 CD 及 S CAB ;(3)能否存在一点 P ,使 S △ PAB =98若不存在,请说明原由 .S △ CAB ,若存在, 求出 P 点的坐标;解: (1) 设抛物线的分析式为:y 1 a(x 1) 2 4 把 A (3,0)代入分析y 式求得 a1所以 y 1(x1) 2 4x 22x 3 设直线CAB 的解B析式为: y 2 kx b 由 y 1x 2 2x 3 求得 B 点的坐标为 (0,3) 把DA(3,0) , B(0,3) 代入 y 2kx b 中1x解得 :AO1k1, b3 所以 y 2x3图- 2(2) 因为 C 点坐标为 (1 ,4)所以当 x =1时, y 1= 4, y 2= 2 所以 CD = 4- 2= 2S CAB13 2 3 (平方单位 ) 2(3) 假设存在吻合条件的点 P ,设 P 点的横坐标为 x ,△ PAB 的铅垂高为 h ,则h y 1y 2 ( x22x 3) ( x 3)x 291 3 ( x23x) 9 3化简3x 由 S = S得△ PAB8 △ CAB2 8得: 4x 212 x9 0解得, x3 将 x3代入 y 1 x 22x3 中,解得 P 点坐标为 ( 3 , 15 )2 22 4例 3.( 2015 江津) 如图,抛物线 yx 2 bxc 与 x 轴交于 A(1,0),B(- 3, 0) 两点,( 1)求该抛物线的分析式;( 2)设( 1)中的抛物线交 y 轴于 C 点,在该抛物线的对称轴上能否存在点Q ,使得△ QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明原由 . ( 3)在( 1)中的抛物线上的第二象限上能否存在一点 P ,使△ PBC 的面积最大?,若存在,求出点P 的坐标及△ PBC 的面积最大值 . 若没有,请说明原由 .解: (1) 将 A(1 , 0) , B( - 3,0) 代 yx2bx c 中得1 b =b 2c 0 ∴9 3b c 0 c3∴抛物线分析式为: yx 22x 3(2) 存在。
三角形面积与铅垂法
三角形面积与铅垂法-CAL-FENGHAI.-(YICAI)-Company One1题目:如图,直线y=与x 轴交于点C ,与y 轴交于点B,抛物线y=ax 2+ 经过B 、C 两点。
⑴ 求抛物线的解析式 ⑵ 如图,点E 是直线BC 上方抛物线上的一个动点,当BEC 面积最大时,求点E的坐标和BEC 面积的最大值。
解⑴,由直线y=可知,B y =3, C x ==4, 即B(0,3), C(4,0).把其代入y=ax 2+得解得∴抛物线的解析式为y=x 2+解⑵ 过点E 作x 轴的垂线交AB 于点F,设直线BC 解析式为:y=, 把B(0,3), C(4,0)代入得y=, 设E(x, x 2+), 则F(x,,) S?BEC ==(4-0) =x 2+ ∵<0, ∴当x==时,S?BEC 有最大值,最大值是:+= 即E(). 举一反三铅 垂 法适用范围:坐标系中的图形面积目 的:构造三角形的公共底(EF ,称为铅垂)优 点:可借用其它点的坐标 (EF 两点的横标相同)要 点:找出或表示出关键点(三角形有4个点)的坐标(图形的三个顶点与F 点)如上图, 要表示BEC 的面积,须找出B,C,E 三点及铅垂线与BC 的交点坐标B(0, 3 ), E(x, y 抛), C(4, 0), F( x, y BC )其中,铅垂线上的点横坐标相同,纵坐标为其所在图象的y 值 ,因为点F 在直线BC 上,要求点F y ,须先求出BC 的解析式三角面积很好算,铅垂一半乘两端 即S BEC =第1题图第2题图1.如图,A(-1,0)、B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3图象上.(1)求m的值和二次函数的解析式.(2)设二次函数的图象交y轴于点C,求?ABC的面积。
2.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求?ACE的最大面积及E点的坐标.。
用铅垂高法计算三角形的面积
证明如下 :
h 。 S  ̄B c = S △ c s 。- 1 - 一
2
} n 2
=
) =
利 用 茎 三 嘉 角 形 面 积 等 于 水 平 宽 与 铅 垂 L 函
稠
高乘积的一半的方法去求三角形 的面积会有三种方法 , 这三种方 法中的铅垂高有一种是在三角形的里面 , 有两种是在三角形的外
样s “ 1
。
此 时 , 点 E 坐 标 为( 一 孚, 孚)
【 小结 】 对 于不规则 四边形 面积的求法 , 我们常规 的方法是
把它化成规则 的图形去解决。但 是在平面直角坐标系 中求图形 的面积 , 涉及 到坐标 与线段的转化 , 是很麻烦的 。如果把四边形 分 割成一个斜三角形和一个 固定 的三角形 , 斜三角形用“ 铅垂 高 法” 就会很 方便 。 三、 体 会
・ . .
f s 。 \
{
P E= 一 a 2 — 2 。 + 3 一 ( 口 + 3= - a 2 — 3 a
‘ .
.
S 口 ∞ 忸 = s s △ ∞ } D 曰 ‘ O C + }O B ‘ 船
= 一×3 ×3 + — 1× 3 ・ ( 一 6 2 — 3 a )
一
一
手 一 9 叶 9 3 ) + 譬( 一 3 < 。 < 0 )
3
叶
・
直线之间的距离 叫做 AA B C的“ 水平宽( n ) , 过点 B的直线与 鲋
.
.
当 一 孚 时 , S 踟最 大 , 且 最 大 值 为 6 3 .
与 的延长线之间线段 的长度 叫 AA B C的“ 铅垂 高 B D( A ) , 同
1
三角形面积铅垂法公式
三角形面积铅垂法公式
就是沿三角形的最高点做一条垂直于平面的直线,另外两点作这条线的垂线,如果在平面直角坐标系中,两条高就是两个点横坐标的差,再求出那条直线在三角形内的长就行了。
设三角形abc,铅垂线ad垂直bc焦点d,面积为ad*bc/2。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常用的三角形按边棕斑普通三角形(三条边都不成正比),等腰三角(腰与底左右的等腰三角形、腰与底成正比的等腰三角形即为等边三角形);按角分存有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形泛称横三角形。
从动点向另外两点所在的固定直线作铅垂,将变化的竖直线段作为三角形的底,则高就是两个定点的横坐标之差,然后结合三角形的面积公式表达。
6.抛物线求三角形面积(割补法铅垂法)
抛物线与三角形面积问题
———割补法、铅垂法
例1:在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC 的面积.解:过点C 作x 轴的垂线交AB 于点D。
1.如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴
于点B .
(1)求抛物线和直线AB 的解析式.
(2)求CAB S .2.如图,抛物线经过A(1,0),B(4,0),C(0,-4)三点,D 是直线BC 上方的抛物线上的一个动点,连接DC,DB,
(1)求抛物线的表达式.
(2)求△BCD 面积的最大值,并写出D 点的坐标.
x
C O y A B 1
1C (4,7)
B (7,3)
A (1,1)
o x y D
121-=⨯k k (3)x y A B C P E O x y A B
C Q
O
(2)3.如图,二次函数的图象经过点A(0,1),它的顶点B(1,3).
(1)求这个二次函数的表达式.
(2)过点A 作AC⊥AB 交抛物线于点C,P 是直线AC 上方抛物线上的
一点,当△APC 面积最大时,求点P 的坐标和△APC 面积的最大
值.(提示:若两条直线互相垂直,则)
4.如图,抛物线c bx x y ++-=2与x 轴交于A(1,0),B(-3,0)两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC 的面积最大?若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.。
最新铅垂法求三角形面积资料
二次函数三角形之面积问题(铅垂法)专题前请先思考以下问题:问题1:坐标系背景下问题的处理原则是什么?问题2:坐标系中处理面积问题的思路有哪些?问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?问题4:铅垂法的具体做法是什么?问题5:如何利用铅垂法表达三角形的面积?以下是问题及答案,请对比参考:问题1:坐标系背景下问题的处理原则是什么?答:充分利用横平竖直线段长,几何特征函数特征互转。
问题2:坐标系中处理面积问题的思路有哪些?答:公式法(规则图形);割补法(分割求和,补形作差);转化法(例:同底等高)。
问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?答:三边均是斜放置在坐标系中的三角形在表达面积时一般使用铅垂法。
问题4:铅垂法的具体做法是什么?答:若是固定的三角形,则可从任意一点作铅垂;若为变化的图形,则从动点向另外两点所在的定直线作铅垂。
问题5:如何利用铅垂法表达三角形的面积?答:从动点向另外两点所在的固定直线作铅垂,将变化的竖直线段作为三角形的底,则高就是两个定点的横坐标之差,然后结合三角形的面积公式表达。
例1:如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).点P是抛物线上的一个动点,且位于A,C两点之间,当△PAC的面积最大时,求P的坐标和△PAC的最大面积.解:试题难度:三颗星知识点:铅垂法求面积(铅垂线在三角形内部)例2:如图,一次函数122y x=+与y轴、x轴分别交于点A,B,抛物线2y x bx c=-++过A,B两点.Q为直线AB下方的抛物线上一点,设点Q的横坐标为n,△QAB的面积为S,求出S与n之间的函数关系式并求出S的最大值. 解:试题难度:三颗星知识点:铅垂法求面积 (铅垂线在三角形外部)……………………………………………………………………………………………………… 总结反思篇:决胜中考:1.如图,在平面直角坐标系中,二次函数213222y x x =-++的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧).点P 是第二象限内抛物线上的点,△PAC的面积为S ,设点P 的横坐标为m ,求S 与m 之间的函数关系式.2. 如图,已知抛物线213222y x x =+-与x 轴交于A ,B 两点,与y 轴交于点C .M 为抛物线上一动点,且在第三象限,若存在点M使得12ACM ABCS S∆∆=,求此时点M的坐标.3.如图,已知直线12y x=与抛物线2(0)y ax b a=+≠交于A(-4,-2),B(6,3)两点,抛物线与y轴的交点为C.在抛物线上存在点P使得△PAC的面积是△ABC面积的34,求时点P的坐标.。
用铅垂高法计算三角形的面积
用铅垂高法计算三角形的面积作者:刘学斌来源:《语数外学习·中旬》2014年第06期在计算一些不规则的三角形的面积时,往往很难确定它的底和高。
本文通过把三角形的面积公式作进一步的延伸和拓展,得出了一个新的求三角形的面积方法,对于求这类不规则的三角形的面积有很好的作用。
一、知识引入如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”。
我们可得出一种计算三角形面积的新方法:S△ABC=■ah,即三角形面积等于水平宽与铅垂高乘积的一半。
证明如下:S△ABC=S△ABD+S△ACD=■ha1+■ha2=■h(a1+a2)=■ah同样,如图2,左边的两条直线之间的距离也可以叫△ABC的“水平宽”(a),过点C的直线与BA的延长线之间线段的长度叫△ABC的“铅垂高CD(h),同样S△ABC=■ah。
证明如下:S△ABC=S△BCD-S△ACD=■ha1-■ha2=■h(a1-a2)=■ah同样,如图3,也可以把右边两条直线之间的距离叫做△ABC的“水平宽(a),过点B的直线与BA与CA的延长线之间线段的长度叫△ABC的“铅垂高BD(h),同样S△ABC=■ah。
证明如下:S△ABC=S△BCD-S△ACD=■ha1-■ha2=■h(a1-a2)=■ah综合上述三种情况可以看出,利用三角形面积等于水平宽与铅垂高乘积的一半的方法去求三角形的面积会有三种方法,这三种方法中的铅垂高有一种是在三角形的里面,有两种是在三角形的外面。
利用这种方法可以很容易的求出一些斜放着的三角形的面积。
二、知识的应用【例1】如图4,抛物线的解析式为y=-x2+2x+3,顶点为C,交x轴于点A),交y轴于点B,求△ABC的面积。
解:(铅垂高法)由点A(3,0),B(0,3)可以求出直线AB的解析式,所以点D(1,2),CD=2S△ABC=■OA·CD=■×3×2=3【小结】通过上面两个例题可以看出计算一些不规则三角形的面积,常规的方法是割补法,这种方法显然是比较麻烦的,计算量大,用铅垂高的方法简单计算方便,不容易出错。
二次函数 动态三角形面积解题方法汇总 (1)
【中考】二次函数与三角形面积问题【面积最大值】每年的中考题中都会出现大量与面积有关的压轴题,要学会三角形的面积求法,并推广到任意多边形面积的求法。
这是非常重要!【典型例题】如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【分析】求面积的最值问题,通常设出点的动点的坐标,引入未知数来表示出面积,再利用二次函数的性质求解即可。
【方法一】分割——铅垂(高)法过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2OB·CE【方法二】补全过点C作CD⊥y轴,垂足为D,过点B作BE⊥x轴,交CD于点E,S△ABC=S矩形OBED -S△OAB -S△ACD -S△BCES△ABC=S梯形ABED -S△ACD -S△BCE备注:本题此法繁琐,不建议用连接OCS△ABC=S△OAC +S△OBC -S△OAB备注:此法最容易掌握【方法四】平移过点C作CD∥AB,分别交y轴,x轴于点D,E S△ABC=S△ABD过点C作CD∥AB,分别交y轴,x轴于点D,ES△ABC=S△ABE【方法五】直接求过点C作CF⊥AB,垂足为FS△ABC=1/2AB·CF =√2/4AB·CE备注:一般此类题目皆可直接求三角形面积,用相似或三角函数表示高。
拓展:如图,A(x1,y1),B(x2,y2),则S△ABC=1/2 |x1y2−x2y1 |把△ABC向左平移3个单位长度,得到△OA′C′S△ABC=S△OA′C′=1/2 |xAyC-xCyA |备注:以上三角形面积公式可用于选择、填空题快速求得。
发现:当点C在OB的垂直平分线上时,S△ABC最大,即x=(0+3)/2=3/2时,S△ABC最大注意:点C的位置和点A、B关系密切,聪明的你,思考下,为什么会如此?【举一反三】如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A 的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.。
二次函数背景下三角形面积最值问题的几种解法
数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。
三角形面积公式——之水平宽铅垂高
1支付宝首页搜索“933314”领红包,每天都能领。
付款前记得用红包三角形的面积公式计算较多,垂高面积公式会更加的方便. 公式呈现如右图所示,过△ABC 三个顶点分别作x 线,其中过A ,C 两条垂线与x 轴交于点E ,F 线段EF 的长度称为△ABC 的水平宽,而过B 的垂线与边AC 交于点D ,线段BD 度,对应铅垂高取经过夹在中间的顶点(B )之间的距离.公式推导如右图,过点A ,C 作铅垂高BD 上的高AG ,则有S △ABC =S △ABD +S △BCD =1122AG BD CH +=()12AG CH BD +=12EF BD .公式应用1——上下垂线例1(适合八年级) 如图,已知边长为a 形E ABCD ,为AD 的中点,P 为CE 的中点,F 为中点,则△BFD 的面积是( ).A .281a B . 2161a C . 2321a D .说明:本题可以连结CF ,由△BCD 的面积减去与△CDF2利用三角形水平宽铅垂高面积公式求得.解析:不妨以B 为原点,BC 为x 轴,BA 为y 轴建立平面直角坐标系,则点C 坐标为(a ,0),点D 坐标为(a ,a ),∵E 为AD 的中点,∴点E 坐标为(12a ,a ), ∵P 为CE 的中点,∴点P 坐标为(34a ,12a ),∵F 为BP 的中点,∴点F 坐标为(38a ,14a ).过F 点作BC 的垂线交BD 于点G ,则点G 的横坐标为38a ,又直线BD 的解析式为y x =,∴点G 的纵坐标为38a ,∴△BDF 的铅垂高FG =38a -14a =18a ,∴S △BDF =2111122816BC FG a a a ==.公式应用2——左右垂线例2(适合八年级) 如图,直线13y x =-+与x 轴,y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,且∠BAC =90°.如果在第二象限内有一点P 1,2a ⎛⎫⎪⎝⎭,且△ABP 的面积与Rt △ABC 的面积相等,求a值.说明:本题常见解法有三,一是连结OP ,△的面积=△AOB 面积+△BOP 面积-△AOP 积,然后用a 的代数式表示,与Rt △ABC 相等列方程求解;3二是将点C 沿AB 翻折到C ’位置,则△ABC 面积与△ABC ’面积相等,若△ABP 的面积与Rt △ABC 的面积相等,则可得PC ’//AB ,因此,可以由点A ,C 坐标先求C ’坐标,再根据AB 的斜率与点C ’坐标求直线PC ’的解析式,将点P 纵坐标代入,即可求a 的值.三是考虑水平宽铅垂高公式来计算,但如果从A ,B ,P 三点向x 轴作垂线,较为复杂,不妨换个角度应用公式,即从A ,B ,P 向y 轴作垂线(即左右方向作垂线)解析:过线,则OB 而PE 度)由AB OB =1,而P 的纵坐标为12,所以E 为AB 的中点, 所以PE =-a 从而有11221222a ⎛⨯⨯=⨯⨯-+ ⎝⎭, 解得42a =-.公式应用3——内外垂线从例2可以看到,三条垂线不一定作向x 轴,也可以作向y 轴,仿公式用即可.一般地,水平宽取的是最外的两条直线的距离,但这个做法不是绝对的,有12EF CG . 简单推导:S △ABC =S △ACG -S △BCG =1122CG EH CG FH -=12EF CG .4说明:当取相邻两条垂线距离为水平宽时,第三条垂线将与第三边(AB )的延长线相交,此时顶点(C )到交点(G )的距离为铅垂高(CG ). 例3(适合九年级) 如图所示,直线l :y =3x +3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线过点B ,C 和D (3,0). (1)求直线BD 和抛物线的解析式.(2)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N ,B ,D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.(3)在抛物线上是否存在点P ,使S △PBD =6?若存在,求出点P 的坐标;若不存在,说明理由.(4)点Q使得CQ BQ 的值最大,若存在,请直接写出点Q 解析:本题只解(3),由已知条件可以得抛物线解析式为243y x x =-+,BD 解析式为3y x =-+,由于问题中并未交待P 点在BD 的上方或下方,故要分类讨论:当P 在BD 下方时,如右上图,水平宽为OD =3,铅垂高为PE =224333x x x x x -++-=-; 当P 在BD 上方时,P 可能在左,也可以在右,但两者本质相同,如右下图,此时依然取OD =3为水平宽,则铅垂高PE =223433x x x x x -+-+-=-+.两种情况合起来就是213362x x ⨯⨯-=,即234x x -=±.当234x x -=-时,方程无实数根,即P 在BD 下方时,不可能面积为6;5当234x x -=时,解得121,4x x =-=, 即当P (-1,8)或P (4,3)时,S △PBD =6.解后:从以上几例可以看到,灵活运用水平宽与铅垂高公式,可以有效解决三角形面积问题,尤其是在例3,可以将P 点的两种不同的位置分类统一为PE 长(绝对值)问题求解,可以有效回避原本点P 在BD 上方时,几何法要构造高等繁杂作法,使得问题解决简洁而快捷.老叶2015年1月26日记于温十七中。
铅锤高定理公式
铅锤高定理公式
解析
铅垂线定理公式是三角形面积=铅锤高×水平宽的一半三角形面积。
物体重心与地球重心的连线称为铅垂线(用圆锥形铅垂测得)。
多用于建筑测量。
用一条细绳一端系重物,在相对于地面静止时,这条绳所在直线就是铅垂线,又称重垂线。
铅垂线地球重力场中的重力方向线。
它与水准面正交,是野外观测的基准线。
悬挂重物而自由下垂时的方向,即为此线方向,包含它的平面则称铅垂面。
判断物体是否与地面垂直,可用铅垂线法,即一根线加上一个重物。
此重物称为铅锤,铅锤受重力作用,即受万有引力的一个分力作用,让线与地面垂直,成90度角度。
三角形外部铅垂高面积问题
三角形外部铅垂高面积问题
三角形外部铅垂高面积问题是一个求解三角形外接圆半径的问题。
在三角形ABC中,假设D为BC边上的一点,垂直于
AB边,并且距离AB边的垂直距离为h。
现在需要求解的是,当点D在BC边上变动时,三角形ABC外接圆的半径r与h
的关系。
根据三角形的性质,在直角三角形ABD中,有
AB^2 = BD^2 + AD^2
又根据三角形面积的性质,有
Area(ABD) = (AB * h) / 2
根据外接圆的定义,有
OD = r
由于OD是AB的垂直平分线,所以ADB和ADC都是直角三
角形。
接下来,我们可以利用这些关系来求解r和h之间的关系。
根据勾股定理,有
AB^2 = AD^2 + BD^2
BD = BC - CD = BC - r
将这个关系代入到Area(ABD)的计算中,有
Area(ABD) = (AB * h) / 2
= (AB * (BC - BD))/ 2
= (AB * (BC - (BC - r)))/ 2
= (AB * r)/ 2
再利用三角形面积的性质,有
Area(ABD) = (AB * r)/ 2
= (AB * OD)/ 2
= (AB * r)/ 2
所以,通过以上计算,我们可以得到结论:
Area(ABD) = (AB * r)/ 2
这就是三角形外部铅垂高面积问题的解答。
通过这个关系,我们可以得到当点D在BC边上变动时,r和h之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:如图,直线y=−34
x +3与x 轴交于点C ,与y 轴交于点B,抛物线y=ax 2+34x +c 经过B 、C 两点。
⑴ 求抛物线的解析式
⑵ 如图,点E 是直线BC 上方抛物线上的
一个动点,当∆BEC 面积最大时,求点E 的坐标和∆BEC 面积的最大值。
解⑴,由直线y=−34x +3可知,B y =3, C x =−3
−
3
4
=4, 即B(0,3), C(4,0).把其代入y=ax 2+3
4
x +c 得{
c =3
16a +34×4+3=0 解得{c =3a =−38
∴抛物线的解析式为y=−38
x 2+34
x +3
解⑵ 过点E 作x 轴的垂线交AB 于点F,
设直线BC 解析式为:y=kx +b , 把B(0,3), C(4,0)代入得y=−34
x +3, 设E(x, −3
8
x 2+3
4
x +3), 则F(x,−34
x +3,)
S ∆BEC =12(E y −F y )(C x −B x )= 12 [(−38x 2+34x +3)− ( −3
4x +3)](4-0)
= −3
4x 2+3x
∵−3
4<0, ∴当x=−
3
2×(−3
4
)
=2时,S ∆BEC 有最大值,最大值是:−3
4×4+3×2=3
即E(2,3).
铅 垂 法
适用范围:坐标系中的图形面积
目 的:构造三角形的公共底(EF ,称为铅垂) 优 点:可借用其它点的坐标 (EF 两点的横标相同)
要 点:找出或表示出关键点(三角形有4个点)的坐标(图形的三个顶点与F 点)
如上图, 要表示∆BEC 的面积,须找出B,C,E 三点及铅垂线与BC 的交点坐标 B(0, 3 ), E(x, y 抛), C(4, 0), F( x, y BC )
其中,铅垂线上的点横坐标相同,纵坐标为其所在图象的y 值 ,因为点F 在直线BC 上,要求点F y ,须先求出BC 的解析式
三角面积很好算,铅垂一半乘两端 即S ∆BEC =1
2(E y −F y )(C x −B x )
举一反三
第1题图第2题图
1.如图,A(-1,0)、B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3图象上.
(1)求m的值和二次函数的解析式.
(2)设二次函数的图象交y轴于点C,求∆ABC的面积。
2.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求∆ACE的最大面积及E点的坐标.。