二次函数喷泉拱桥问题
二次函数中抛物线形拱桥及答案
二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y=ax2,且过点(10,-4)∴-==-4101252a a×,故y x=-1252(2)设水位上升h m时,水面与抛物线交于点(dh24,-)则hd-=-412542×∴d h=-104(3)当d=18时,18104076=-=h h,.0762276..+=∴当水深超过2.76m时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶?解:以AB所在的直线为x轴,AB中点为原点,建立直角坐标系,则抛物线的顶点E在y轴上,且B 、D两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗?(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
二次函数与实际问题(拱桥)
二次函数的运用拱桥问题学习过程:一、预备练习:1、如图所示的抛物线的解析式可设为 ,若AB ∥x 轴,且AB=4,OC=1,则点A 的坐标为 ,点B 的坐标为 ;代入解析式可得出此抛物线的解析式为 。
2、 某涵洞是抛物线形,它的截面如图所示。
现测得水面宽AB=4m ,涵洞顶点O 到水面的距离为1m ,于是你可推断点A 的坐标是 ,点B 的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。
二、新课导学:例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶4m ,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?三、练习:1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=2251x ,当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m 后,水面的宽度是多少?(结果精确到0.1m).3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-41x 2+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?6.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,OA=1.25m ,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m .(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m )7.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m. ①问此球能否投中? (选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?8.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 10又3分之3m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3又5分之3m,问此次跳水会不会失误?并通过计算说明理由.例1、例2:例3:第3题:第8题、。
二次函数与拱桥问题
建立二次函数模型解决建筑类实际问题的一般步骤:(1) 根据题意建立适当的 ________________________ ; (2) 把已知条件转化为 __________________ ; (3) 合理设出函数 ___________________ ; (4) 利用 _________________ 法求出函数解析式;(5) 根据求得的解析式进一步分析、判断并进行有关的计算. 知识点1 :二次函数在桥梁中的应用1. 有一座抛物线拱桥,正常水位时桥下水面宽度为 20米,拱顶距离水面4米.在如图所示 的直角坐标系中,该抛物线的解析式为 ________________________ .2.有一座抛物线形的立交桥拱 ,这个桥拱的最大高度为 16 m ,跨度为40 m ,现把它的图形放在坐标系中(如图).若在离跨度中心 M 点5 m 处垂直竖立一根铁柱支撑拱顶 ,则这根铁柱的长为 _____ m.3. 如图是一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于 A , B 两点,拱桥最高 点C 到AB 的距离为9 m , AB = 36 m , D , E 为拱桥底部的两点,且DE // AB ,点E 到直线 AB 的距离为7 m ,则DE 的长为 ___________ m .知识点2 :二次函数在隧道中的应用 4. 某隧道横断面由抛物线与矩形的三边组成,尺寸如图如示,以隧道横断面抛物线的顶点16为原点,以抛物线的对称轴为y 轴,建立直角坐标系,则该抛物线的解析式为 知识点3:二次函数在其他建筑问题中的应用5.如图,某工厂大门是抛物线形水泥建筑, 大门底部地面宽4米,顶部距地面的高度为 4.4 米,现有一辆满载货物的汽车欲通过大门,其装货宽度为 2.4米,该车要想通过此门, 装货 后的高度应小于( ) A. 2.80 米B . 2.816 米C . 2.82 米D. 2.826 米\比米L -4 棊_'6•如图,某建筑的屋顶设计成横截面为抛物线形(曲线AOB 的薄壳屋顶.它的拱宽AB 为4 m拱高CO 为0.8 m •建立如图的直角坐标系,则屋顶的轮廓线所在的抛物线的解析式为知识点4 :二次函数在运动中的应用7.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平 面直角坐标系,水在空中划出的曲线是抛物线 y = — x 2 + 4x(单位:米)的一部分,则水喷出 的最大高度是( )A . 4米B . 3米C . 2米D .1米----- 6m ----- ►A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒&军事演习在平坦的草原上进行 ,一门迫击炮发射的一发炮弹飞行的高度 y(m)与飞行时间 x(s)的关系满足y = — 5X 2 + 10x.经过 ________ 秒炮弹到达它的最高点,最高点的高度是________ 米,经过 ________ 秒炮弹落到地上爆炸了.9•竖直向上发射的小球的高度 h(m)关于运动时间t(s)的函数解析式为h = at + bt ,其图象如图所示.若小球在发射后第 2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是y(m)与滑行时间x(s)之间的函数关系式是 m 才能停下来.12.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y = — 3x 1 2+ 3x + 1的一部分.5 (1)求演员弹跳离地面的最大高度;⑵已知人梯高BC = 3.4米,在一次表演中,人梯到起跳点 A 的水平距离是4米,问这次表 演是否成功?请说明理由.13•如图,小河上有一座拱桥,拱桥及河道的截面轮廓线由抛物线的一部分 ACB 和矩形的三 边AE, ED, DB 组成.已知河底 ED 是水平的,ED = 16米,AE = 8米,抛物线的顶点 C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为 y 轴建立平面直角坐标系. (1) 求抛物线的解析式;(2) 已知从某时刻开始的 40小时内,水面与河底 ED 的距离h(单位:米)随时间t(单位:时) 的变化满足函数关系 h =- ±(t — 19)2+ 8(0 w tw 40),且当水面到顶点 C 的距离不大于5米 时,需禁止船只通行,请过计算说明:在这一时段内 ,需多少小时禁止船只通行?1 当h = 2.6时,求y 与x 的关系式;(不要求写出自变量 x 的取值范围)2 当h = 2.6时,球能否越过球网?球会不会出界?请说明理由?10.如图,有一座抛物线形拱桥 水面下降1 m 后,水面宽为( ,当水位线在AB 位置时,拱顶离水面2 m ,水面宽为4 m , ) A . 5 mB . 6 mC/, 6 mD . 2 6m11.某一型号飞机着陆后滑行的距离 1.5x 2,该型号飞机着陆后滑行 —y = 60x —14.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y = a(x —6)2 + h.已知球网与O 点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.4、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
二次函数应用——喷泉问题
题型一:二次函数应用-喷泉问题例题解析例1.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA, 。
恰好在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之5间的关系式是y= - x2+2x+ 4 ,请回答下列问题.(1)柱子OA的高度为多少米?(2)喷出的水流距水平面的最大高度是多少?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?习题精练1.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子 OA,。
恰 为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相 同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水 流喷出的高度y (m)与水平距离x (m)之间的关系式是 ??= -?? + 2??+ 3 , 则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是 4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外其中正确的有 o2 .小明家的洗手盆上装有一种抬启式水龙头(如图 1),完全开启后,水流路线 呈抛物线,把手端点A,出水口 B 和落水点C 恰好在同一直线上,点A 至出水管 BD 的距离为12cm,洗手盆及水龙头的相关数据如图 2所示,现用高10.2cm 的 圆柱型水杯去接水,若水流所在抛物线经过点 D 和杯子上底面中心E,则点E 到 洗手盆内侧的距离EH 为 cm.2.两幢大楼的部分截面及相关数据如图, 小明在甲楼A 处透过窗户E 发现乙楼F处331出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了m,恰好把水喷到F处进行灭火.单位;斯14.如图所示,有一建筑工地从10m高的窗A处用水管向外喷水,喷出的水呈抛物线状,如果抛物线的最高点M离墙1m,离地面40m.3(1)求抛物线的解析式;(2)求水流落地点B离墙的距离OB.5.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?6.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水7中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.。
二次函数的实际应用(拱桥问题)教师
二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4) ∴ 故(2)设水位上升h m 时,水面与抛物线交于点()则∴(3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水 位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B 、D 两点在抛物线上,有-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=解这个方程组,得所以,顶点的坐标为(0,)则OE=÷=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
22.3二次函数与实际问题-拱桥、体育、喷泉、面积2(动点)教案
1.教学重点
-二次函数在实际问题中的应用:本节课的核心是让学生掌握如何将实际问题转化为二次函数模型,包括拱桥、体育、喷泉和动态面积等问题。重点是让学生理解二次函数的标准形式、图像特点及其在实际问题中的应用。
-数形结合思想的运用:通过图形与代数式的结合,让学生直观地理解二次函数的性质,如顶点、开口方向、对称轴等,并能够运用这些性质解决实际问题。
其次,数形结合思想在二次函数的学习中尤为重要,但在课堂上我发现有些同学在这一点上还不够熟练。我们需要在今后的教学中加强数形结合的训练,让学生更好地理解二次函数的图像与性质。
此外,小组讨论环节,同学们的参与度很高,但个别小组在讨论过程中出现了偏离主题的现象。这提醒我在今后的教学活动中,要加强对学生讨论方向的引导,确保讨论内容紧扣主题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax^2+bx+c的函数,它在数学和物理学中有着广泛的应用。它是描述物体运动、几何形状和许多其他现象的重要数学工具。
2.案例分析:接下来,我们来看一个具体的案例。比如,拱桥的设计中,如何通过二次函数来计算桥的最高点,以及这个最高点对桥的稳定性和承重能力的影响。
3.在小组讨论中,注重引导学生紧扣主题,避免讨论偏离方向。
4.提高学生的数据分析能力,让他们在解决实际问题时能够更加得心应手。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如模拟跳远,通过收集数据来观察和分析二次函数在实际中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
二次函数的应用-----拱桥问题
作业:配套52页1、2、5
1、如图所示是抛物线形拱桥的截面图, 当水面在AB时,宽为4 6 m,当水面上 升3 m到达CD时,水面的宽为4 3 m, 若水面以0.25 m/h的速度匀速上升,再 过多长时间,水面可达到桥顶?
2、如图所示,有一座抛物线型拱桥,在正常水 位AB时,水面宽20米,水位上升3米,就达到警 戒线CD,这时水面宽为10米。 1)求抛物线型拱桥的解析式。 2)若洪水到来时,水位以每小时0.2米的速度 上升,从警戒线开始,在持续多少小时才能达 到拱桥顶? 3)若正常水位时, 有一艘宽8米,高2.5米 的小船能否安全通过 这座桥?
A
C D
Байду номын сангаас
20m
B
3、如图,隧道的截面由抛物线AED和矩形ABCD 构成,BC为8m,AB为2m,以BC所在的直线为x 轴,线段BC的中垂线为y轴,建立平面直角坐标 系,y轴是抛物线的对称轴,顶点E到坐标原点O 的距离为6m.1)求抛物线的解析式; 2)一辆货车高4.5m,宽2.4m,它能通过该隧道吗? 3)若该隧道内设双行道,现有一辆高4.2米宽2.4米 的货车还能通过隧道吗? 4)若该隧道内设双行道,且在隧 道正中间设有0.4m的隔离带, 则该货车还能通过隧道吗?
二次函数---(拱桥问题)
22.3(4.1)---(拱桥问题)一.【知识要点】1.现实生活中的抛物线:喷射的水流、投出的篮球运动轨迹、两端固定自然下垂的绳子、一些拱桥、涵洞等,都给人留下抛物线的印象。
如果把它们放到平面直角坐标系中,结合实际数据即可求解得出抛物线的解析式,再通过二次函数的性质来解决测量问题、最值问题等.二.【经典例题】1.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m。
2.(6分)如右图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,•是否采取紧急措施?三.【题库】【A】1.如图,是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,建立适当坐标系.则两盏景观灯之间的水平距离_________.【B】1.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需_____________ s.【C】1.一位运动员投掷铅球的成绩是14m,当铅球运行的水平距离是6m时达到最大高度4m,若铅球运行的路线是抛物线,则铅球出手时距地面的高度是m.【D】1.小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m,y2m,y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,①两人何时相距180m?②两人何时相距最近?最近距离是多少?。
二次函数喷泉类问题(带解析及详细答案)
1、(2011•定西)如图,抛物线C 1:y=x 2+2x-3的顶点为M ,与x 轴相交于A 、B 两点,与y 轴交于点D ;抛物线C 2与抛物线C 1关于y 轴对称,顶点为N ,与x 轴相交于E 、F 两点.(1)抛物线C 2的函数关系式是___________;(2)点A 、D 、N 是否在同一条直线上?说明你的理由;(3)点P 是C 1上的动点,点P′是C 2上的动点,若以OD 为一边、PP′为其对边的四边形ODP′P (或ODPP′)是平行四边形,试求所有满足条件的点P 的坐标;(4)在C 1上是否存在点Q ,使△AFQ 是以AF 为斜边且有一个角为30°的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.2、如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?3、公园要建造一个如图1的圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,OA=1.25米,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图2所示.为使水流形状较为漂亮,设计成水流在与OA水平距离为1米时,达到距水面最大高度2.25米(不计其他因素).(1)在如图2的直角坐标系中,求y轴两侧抛物线的解析式;(2)请你通过计算回答水池的半径至少要多少米,才能使喷出的水流不致落到池外?4、近日,湘湖音乐喷泉落成,吸引大量游客.某小区也计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,0A为1.25m,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到OA距离lm处达到距水面最大高度2.25m.(1)请求出其中一条抛物线的解析式;(2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?。
专题11 二次函数的实际应用-九年级数学上册(解析版)
专题11二次函数的实际应用考点1:拱桥问题;考点2:抛球、喷泉问题;考点3:面积问题;考点4:利润问题。
1.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=−125x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=−125x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.答案:C.2.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=−1400(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC ⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米B.174米C.16740米D.154米题型01拱桥问题解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=−1400(x﹣80)2+16=−1400(﹣10﹣80)2+16=−174,∴C(﹣10,−174),∴桥面离水面的高度AC为174m.答案:B.3.(易错题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=−350,∴大孔所在抛物线解析式为y=−350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,−3625),∴−3625b)2,∴x1=b,x2=−b,∴MN=4,+b﹣(b)|=4∴m=−925,∴顶点为A的小孔所在抛物线的解析式为y=−925(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=−92,∴−92925(x﹣b)2,∴x1=b,x2∴单个小孔的水面宽度=|+b)﹣(+b)|=52(米),答案:B.4.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需36秒.解:如图,设从O到A花10秒,从O到B花26秒,则由对称性可知OA=BC,故从B到C也花10秒,故从O到C一共花26+10=36(秒),答案:36.5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±6,所以水面宽度增加到26米,答案:26米.6.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,2=1222,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=−19,∴y=−19(x﹣6)2+4=−19x2+43x;∴方案一中抛物线的函数表达式为y=−19x2+43x;(2)在y=−19x2+43x中,令y=3得:3=−19x2+43x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>122,∴S1>S2.7.(易错题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=−124,∴y1=−124x2,当x=12时,y1=−124×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=112,∴右边钢缆所在抛物线表达式为:y2=112(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=112(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=112(x﹣6)2+1﹣(−124x2)=182−+4=18(−4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.8.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为()A.9m B.10m C.11m D.12m解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入,得:4+=836+=0,解得=−14=9,∴抛物线解析式为y=−14(x﹣2)2+9,所以当x=2时,y=9,即AD=9m,答案:A.9.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面403米,则水流下落点B离墙距离OB是()题型02抛球、喷泉问题A.2米B.3米C.4米D.5米解:设抛物线解析式:y=a(x﹣1)2+403,把点A(0,10)代入抛物线解析式得:a=−103,∴抛物线解析式:y=−103(x﹣1)2+403.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3米.答案:B.10.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,因为a=﹣5<0,故当t=2时,h取得最大值,此时h=21.5,答案:C.11.(易错题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点4m.解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=−23,b=23,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=−23x2+23x+h,将(4,0)代入可得−23×42+23×4+h=0,解得h=8.答案:8.12.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2s.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答案:2.13.某学生在一平地上推铅球,铅球出手时离地面的高度为53米,出手后铅球在空中运动的高度y(米)与水平距离x(米)之间的函数关系式为y=−112x2+bx+c,当铅球运行至与出手高度相等时,与出手点水平距离为8米,则该学生推铅球的成绩为10米.解:设铅球出手点为点A,当铅球运行至与出手高度相等时为点B,根据题意建立平面直角坐标系,如图:由题意可知,点A(0,53),点B(8,53),代入y=−112x2+bx+c,得:==−112×82+8+,解得=23=53.∴y=−112x2+23x+53,当y=0时,0=−112x2+23x+53,解得x1=10,x2=﹣2(不符合题意,舍去).∴该学生推铅球的成绩为10m.答案:10.14.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=−112,∴抛物线的函数表达式为y=−112(x﹣2)2+3;当x=0时,y=−112×4+3=83>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=−112(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=−112(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.15.(易错题)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为66;(2)①若运动员落地点恰好到达K点,且此时a=−150,b=910,求基准点K的高度h;②若a=−150时,运动员落地点要超过K点,则b的取值范围为b>910;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,答案:66;(2)①∵a=−150,b=910,∴y=−150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=−150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=−150,∴y=−150x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即−150×752+75b+66>21,解得b>910,答案:b>910;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=−2125,∴抛物线解析式为y=−2125(x﹣25)2+76,当x=75时,y=−2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.16.(易错题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵函数图象过点(0,30)和(1,35),则+=35=30,解得:=5=30,∴y1与x之间的函数关系式为y1=5x+30;(2)∵x=6时,y1=5×6+30=60,∵y2的图象是过原点的抛物线,设y2=ax2+bx,∴点(1.35),(6.60)在抛物线y2=ax2+bx上,∴+=3536+6=60,解得:=−5=40,∴y2=﹣5x2+40x,答:y2与x的函数关系式为y2=﹣5x2+40x;(3)设小钢球和无人机的高度差为y米,由﹣5x2+40x=0得,x=0或x=8,①1<x≤6时,y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x−72)2+1254∵a=﹣5<0,∴抛物线开口向下,又∵1<x≤6,∴当x=72时,y的最大值为1254;②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x−72)2−1254,∵a=5>0,∴抛物线开口向上,又∵对称轴是直线x=72,∴当x>72时,y随x的增大而增大,∵6<x≤8,∴当x=8时,y的最大值为70,∵1254<70,∴高度差的最大值为70米.题型03面积问题17.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方)案是(A.方案1B.方案2C.方案3D.方案1或方案2解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:如图,过点B作BH⊥AC于H,则BH≤AB=4,=12•AC•BH,∵S△ABC;∴当BH=4时,△ABC的面积最大为12×4×4=8方案3:半圆的半径=8米,∴此时菜园最大面积=H(8)22=32米2>8米2;答案:C.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193B.194C.195D.196解:∵AB=m米,∴BC=(28﹣m)米.则S=AB•BC=m(28﹣m)=﹣m2+28m.即S=﹣m2+28m(0<m<28).由题意可知,≥628−≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S=195,最大值即花园面积的最大值为195m2.答案:C.19.(易错题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2D.4532m2解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,∴CD=AE,∠DCE=∠CEB=90°,设CD=AE=xm,则∠BCE=∠BCD﹣∠DCE=30°,BC=(12﹣x)m,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=(6−12x)m,∴AD=CE=3BE=(63−32x)m,AB=AE+BE=x+6−12x=(12x+6)m,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(63−32x)338x2+33x+183=−338(x﹣4)2+243,=243.∴当x=4时,S最大即CD长为4m时,使梯形储料场ABCD的面积最大为243m2;答案:C.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,答案:75.21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=150m时,矩形土地ABCD的面积最大.解:设AB=xm,则BC=12(900﹣3x),由题意可得,S=AB×BC=x×12(900﹣3x)=−32(x2﹣300x)=−32(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,答案:150.22.(易错题)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是300m2.解:如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=−14x+10,3a=−34x+30,∴矩形区域ABCD的面积S=(−34x+30)x=−34x2+30x,∵a=−14x+10>0,∴x<40,则S=−34x2+30x(0<x<40);∵S=−34x2+30x=−34(x﹣20)2+300(0<x<40),且二次项系数为−34<0,∴当x=20时,S有最大值,最大值为300m2.答案:300.23.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m 长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),∴36﹣a=32,解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x−72)2+1474,∵﹣3<0,∴当x =72时,总种植面积有最大值为1474m 2,即BC 应设计为72m 总种植面积最大,此时最大面积为1474m 2.24.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A .5元B .10元C .0元D .36元解:设每件需降价的钱数为x 元,每天获利y 元,则y =(135﹣x ﹣100)(100+4x )即:y =﹣4(x ﹣5)2+3600∵﹣4<0∴当x =5元时,每天获得的利润最大.答案:A .25.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A .252元/间B .256元/间C .258元/间D .260元/间解:设每天的利润为W 元,根据题意,得:W =(x ﹣28)(80﹣y )﹣5000=(x ﹣28)[80﹣(14x ﹣42)]﹣5000=−14x 2+129x ﹣8416=−14(x ﹣258)2+8225,∵当x =258时,y =14×258﹣42=22.5,不是整数,∴x =258舍去,∴当x =256或x =260时,函数取得最大值,最大值为8224元,题型04利润问题又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元.答案:B.26.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,9+3+=0.816+4+=0.925+5+=0.6,解得=−0.2=1.5=−1.9,所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−2=−1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.答案:C.27.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解得a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.答案:1264.28.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:10+=2020+=10,解得=−1=30,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,答案:121.29.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.解:设未来30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴−260−42×(−4)>29.5,解得,a<6,又∵a>0,即a的取值范围是:0<a<6.30.(易错题)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x(天)1≤x≤3031≤x≤60日销售价(元/件)0.5x+3550日销售量(件)124﹣2x(1≤x≤60,x为整数)设该商品的日销售利润为w元.(1)直接写出w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?解:(1)当1≤x≤30时,w=(0.5x+35﹣30)•(﹣2x+124)=﹣x2+52x+620,当31≤x≤60时,w=(50﹣30)•(﹣2x+124)=﹣40x+2480,∴w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60),答案:w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)当1≤x≤30时,w=﹣x2+52x+620=﹣(x﹣26)2+1296,∵﹣1<0,∴当x=26时,w有最大值,最大值为1296;当31≤x≤60时,w=﹣40x+2480,∵﹣40<0,∴当x=31时,w有最大值,最大值为﹣40×31+2480=1240,∵1296>1240,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.31.(易错题)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A产品成本价m元/件(m 为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y =80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】解:(1)根据题意,得w1=(8﹣m)x﹣30,(0≤x≤500).w2=(20﹣12)x﹣(80+0.01x2)=﹣0.01x2+8x﹣80,(0≤x≤300).(2)∵8﹣m>0,∴w1随x的增大而增大,又0≤x≤500,∴当x=500时,w1有最大值,即w最大=﹣500m+3970(元).∵w2=﹣0.01x2+8x﹣80=﹣0.01(x﹣400)2+1520.又∵﹣0.01<0.对称轴x=400.∴当0≤x≤300时,w2随x的增大而增大,∴当x=300时,w2最大=﹣0.01×(300﹣400)2+1520=1420(元).(3)①若w1最大=w2最大,即﹣500m+3970=1420,解得m=5.1,②若w1最大>w2最大,即﹣500m+3970>1420,解得m<5.1,③若w1最大<w2最大,即﹣500m+3970<1420,解得m>5.1.又4≤m≤6,综上可得,为获得最大日利润:当m=5.1时,选择A,B产品产销均可;当4≤m<5.1时,选择A种产品产销;当5.1<m≤6时,选择B种产品产销.答:当A产品成本价为5.1元时,工厂选择A或B产品产销日利润一样大,当A产品4≤m<5.1时,工厂选择A 产品产销日利润最大,当5.1<m≤6时,工厂选择B产品产销日利润最大.。
二次函数的应用喷泉跳水 投球 过隧道问题
二次函数的应用(拱桥跳水投球过隧道喷泉)一、选择题1.有一拱桥的桥拱是抛物线形,其表达式是Y=-0.25x2,当桥下水面宽为12米时,水面到拱桥拱顶的距离为()A. 3米B. 2 米C. 4 米D. 9米2.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A. 3B. 2C. 2D. 23.如图为一座抛物线型的拱桥,AB、CD分别表示两个不同位置的水面宽度,O为拱桥顶部,水面AB宽为10米,AB距桥顶O的高度为12.5米,水面上升2.5米到达警戒水位CD位置时,水面宽为()米.A. 5B. 2C. 4D. 84.烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 3s B. 4s C. 5s D. 6s5.某种电缆在空中架设时,两端挂起的电缆下垂都近似抛物线y=x2的形状.今在一个坡度为1:5的斜坡上,沿水平距离间隔50米架设两固定电缆的位置离地面高度为20米的塔柱(如图),这种情况下在竖直方向上,下垂的电缆与地面的最近距离为()A. 12.75米B. 13.75米C. 14.75米 D. 17.75米6. 图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC ⊥x 轴,若OA=10米,则桥面离水面的高度AC 为( )米A. 16B.C. 16D.米7.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加( )A. 1mB. 2mC. 3mD. 6m二、填空题9.一位运动员投掷铅球,如果铅球运行时离地面的高度为y (米)关于水平距离x (米)的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为________米.10.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣5(t ﹣1)2+6,则小球距离地面的最大高度是________ .11.如图是某拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=﹣(x ﹣80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若OA=10米,则桥面离水面的高度AC 为________米.三、解答题12.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地 面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为9.02++=bx ax y .(1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD 之间,且离点O 的距离为 t 米,绳子甩到最高处时超过她的头顶,请结合图像,写出 t 的取值范围 .13.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用4412+-=x y 表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗? (2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?14.如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系. (1) 直接写出点M 及抛物线顶点P 的坐标; (2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD- DC- CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?第1题图。
二次函数的应用(3与4)喷泉与桥洞问题
建立如图所示的坐标系,其函数的解析式为
y= -
1 25
x2 ,
当水位线在AB位置时,水面宽
AB = 30米,这时水面离桥顶的高度h是( D )
A、5米
B、6米;
C、8米; D、9米
y
A
B
0
h
x
A
B
练习
(2)一座抛物线型拱桥如图所示,桥下水面 宽度是4m,拱高是2m.当水面下降1m后,水面的宽 度是多少?(结果精确到0.1m).
分析:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直
角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,
所以可设它的函数关系式是 yax2(a0).此时只需抛物线上的一个点就能求
出抛物线的函数关系式.
解:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角 坐标系。
实际问题
抽象 转化
数学问题 运用 问题的解 数学知识
返回解释 检验
当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).
根据对称性,如果不计其它因素,那么水池的半径至少要2.5m, 才能使喷出的水流不致落到池外.
喷泉与二次函数
解:(2)如图,根据题意得,A点坐标为(0,1.25),点C坐标为(3.5,0).
y
●B (1.57,3.72)
练习
(3)某工厂大门是一抛物线型水泥建筑 物,如图所示,大门地面宽AB=4m,顶部C离 地面高度为4.4m.现有一辆满载货物的汽车 欲通过大门,货物顶部距地面2.8m,装货宽 度为2.4m.请判断这辆汽车能否顺利通过大 门.
P29练习第2 题, P30第6,7题
喷泉问题
8
x
1 2 y x 4 4 (0≤x≤8) 9
y ax 4 4
2
(0≤x≤8)
20 抛物线经过点 0, 9 20 2 a0 4 4 9
探究延伸
若假设出手的角度和力度都不变,
则如何才能使此球命中?
(1)跳得高一点 (2)向前平移一点
喷泉与二次函数
解:(2)如图,根据题意得,A点坐标为 (0,1.25),点C坐标为(3.5,0).
11 729 y x 7 196
2
y
●
●
B(1.57,3.72)
A (0,1.25)
x
数学化
● ●
D(-3.5,0) O
C(3.5,0)
或设抛物线为y=-x2+bx+c, 由待定系数法可求得抛物线表达为: y=-x2+22/7X+5/4.
B(1,2.25
数学化
●
D(-2.5,0)
O
●
x
C(2.5,0)
当y=0时,可求得点C的坐标为(2.5,0); 同理,点D的坐标为(-2.5,0).
喷泉与二次函数
解:(1)如图,建立如图所示的坐标系,根据题意 得,A点坐标为(0,1.25),顶点B坐标为(1,2.25).
y x 1 2.25
喷泉与二次函数
解:(2)如图,根据题意得,A点坐标为 (0,1.25),点C坐标为 (3.5,0) . 2
11 729 y x 7 196
●
y
● ● ●
B(1.57,3.72) B
A (0,1.25)
x
数学化
二次函数中抛物线形拱桥及答案
二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4) ∴-==-4101252a a ×, 故y x =-1252 (2)设水位上升h m 时,水面与抛物线交于点(d h 24,-)则h d -=-412542× ∴d h =-104 (3)当d =18时,18104076=-=h h ,. 0762276..+= ∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水 位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶?解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B 、D 两点在抛物线上,有 解这个方程组,得 所以,顶点的坐标为(0,) 则OE= ÷0.1=(h )所以,若洪水到来,水位以每小时0.1m 速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m .(1)在正常水位时,有一艘宽8m 、高2.5m 的小船,它能通过这座桥吗?(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时, 忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能, 要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
二次函数与拱桥问题
建立二次函数模型解决建筑类实际问题的一般步骤:(1)根据题意建立适当的_______________________;(2)把已知条件转化为_________________;(3)合理设出函数__________________;(4)利用_________________法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.知识点1:二次函数在桥梁中的应用1.有一座抛物线拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.在如图所示的直角坐标系中,该抛物线的解析式为___________________.2.有一座抛物线形的立交桥拱,这个桥拱的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心M点5 m处垂直竖立一根铁柱支撑拱顶,则这根铁柱的长为_____m.3.如图是一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9 m,AB=36 m,D,E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为_______m.知识点2:二次函数在隧道中的应用4.某隧道横断面由抛物线与矩形的三边组成,尺寸如图如示,以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,则该抛物线的解析式为__________________.知识点3:二次函数在其他建筑问题中的应用5.如图,某工厂大门是抛物线形水泥建筑,大门底部地面宽4米,顶部距地面的高度为4.4米,现有一辆满载货物的汽车欲通过大门,其装货宽度为2.4米,该车要想通过此门,装货后的高度应小于( )A .2.80米B .2.816米C .2.82米D .2.826米6.如图,某建筑的屋顶设计成横截面为抛物线形(曲线AOB)的薄壳屋顶.它的拱宽AB 为4 m ,拱高CO 为0.8 m .建立如图的直角坐标系,则屋顶的轮廓线所在的抛物线的解析式为___________.知识点4:二次函数在运动中的应用7.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米8.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m )与飞行时间x(s )的关系满足y =-15x 2+10x.经过_______秒炮弹到达它的最高点,最高点的高度是________米,经过________秒炮弹落到地上爆炸了.9.竖直向上发射的小球的高度h(m )关于运动时间t(s )的函数解析式为h =at 2+bt ,其图象如图所示.若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒 10.如图,有一座抛物线形拱桥,当水位线在AB 位置时,拱顶离水面2 m ,水面宽为4 m ,水面下降1 m 后,水面宽为( ) A .5 m B .6 m C . 6 m D .2 6 m11.某一型号飞机着陆后滑行的距离y(m )与滑行时间x(s )之间的函数关系式是y =60x -1.5x 2,该型号飞机着陆后滑行_______m 才能停下来.12.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-35x 2+3x +1的一部分. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.13.如图,小河上有一座拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成.已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请过计算说明:在这一时段内,需多少小时禁止船只通行?14.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2 m 的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y =a(x -6)2+h.已知球网与O 点的水平距离为9 m ,高度为2.43 m ,球场的边界距O 点的水平距离为18 m.(1)当h =2.6时,求y 与x 的关系式;(不要求写出自变量x 的取值范围)(2) 当h =2.6时,球能否越过球网?球会不会出界?请说明理由?课后习题1、赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为2251x y -=当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米2、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?3. 某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.4、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶4m ,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
二次函数应用3桥及喷泉问题
跳水运动与二次函数
某跳水运动员进行10米跳台跳水训练时, 某跳水运动员进行10米跳台跳水训练时, 10米跳台跳水训练时 身体(看成一点)在空中的运动路线是经 身体(看成一点) 过原点O的一条抛物线. 过原点O的一条抛物线.在跳某规定动作 正常情况下, 时,正常情况下,该运动员在空中的最高 处距水面32/3 32/3米 处距水面32/3米,入水处距池边的距离为 同时,运动员在距水面高度为5 4米,同时,运动员在距水面高度为5米以 前,必须完成规定的翻腾动作,并调整好 必须完成规定的翻腾动作, 入水姿势,否则就会出现失误. 入水姿势,否则就会出现失误. (1)求这条抛物线的解析式 求这条抛物线的解析式; (1)求这条抛物线的解析式; (2)在某次试跳中 在某次试跳中, (2)在某次试跳中,测得运动员在空中运 动路线是(1)中的抛物线, (1)中的抛物线 动路线是(1)中的抛物线,且运动员在空 中调整好入水姿势时,距池边的水平距离 中调整好入水姿势时, 18/5米 问此次跳水会不会失误? 为18/5米,问此次跳水会不会失误?并通 过计算说明理由. 过计算说明理由.
跳绳与二次函数 你知道吗,平时我们在跳绳时, 你知道吗,平时我们在跳绳时,绳甩到最高处的形 状可以看为抛物线.如图所示, 状可以看为抛物线.如图所示,正在甩绳的甲乙两 名学生拿绳的手间距为4 距地面均为1 名学生拿绳的手间距为4米,距地面均为1米,学生 丙丁分别站在距甲拿绳的手水平距离1 2.5米处 米处, 丙丁分别站在距甲拿绳的手水平距离1米2.5米处, 绳子到最高处时刚好通过他们的头顶. 绳子到最高处时刚好通过他们的头顶.已知学生丙 的身高是1.5 1.5米 求学生丁的身高? 的身高是1.5米,求学生丁的身高?
解:(1)如图,建立如图所示的坐标系,根据题意得,A点坐标为 (1)如图,建立如图所示的坐标系,根据题意得,A点坐标为 如图 ,A (0,1.25),顶点 坐标为(1,2.25). 顶点B (0,1.25),顶点B坐标为(1,2.25).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、根据已知条件建立适当的平面直角坐标 系。
3、选用适当的解析式求解。
4、根据二次函数的解析式解决具体的实际 问题。
拱桥问题
问题2 一个涵洞成抛物线形,它的截面如图.
现测得,当水面宽AB=1.6 m时,涵洞
顶点与水面的距离为2.4 m.这时,离
开水面1.5 m处,涵洞宽ED是多少?
是否会超过1 m?
l
4
2
变式2:一艘宽2m,长5m,高1.4m的矩形 货船现在卸完货物后,高为2m.等到水 面下降几米才能通过? 若水面以10cm/h的速度下降,则要等 多长时间才能通过?
l
4
2
谈谈你的学习体会
实际问题 抽象 转化
数学问题 运用 问题的解决 数学知识
解题步骤:
1、分析题意,把实际问题转化为数学问 题,画出图形。
问题1
某公园要建造一个圆形的喷水池,在水池中
央垂直于水面竖一根柱子,上面的A处安装
一个喷头向外喷水.连喷头在内,柱高为 0.8 m.水流在各个方向上沿形状相同的抛 物线路径落下,根据设计图纸已知:图中所
示直角坐标系中,水流喷出的高度y(m) 与水平距离x(m)之间的函数关系式是
y最大高x度2 是2多x少?54.如喷果出不的计水其流他距因水素平,面那的么 水池的半径至少为多少时,才能使喷出的水 流都落在水池内?
探究 下图是抛物线形拱桥,当水面在 l 时, 拱顶离水面 2 m,水面宽 4 m. 水面下降 1 m,水面宽度增加多少?
l 4
2
探究3. 下图是抛物线形拱桥,当水面
在 l 时,拱顶离水面 2 m,水面宽 4 m.
水面下降 1 m,水面宽度增加多少?
变式1:当水面在 l 时,一艘宽2m,长5m,
高1.4m的矩形货船能否顺利通过这座桥?
3;2.25 2.5
问题2.如图,桥拱是抛物线形,其函数
的表达式为y= - 1 x2,当水位线在 AB位置时,水面的4宽为12米,这时 水面离拱顶的高度h是___米.
【解析】把x=-6代入y=-1 x2,得y=-9,
4
∴A点坐标为(-6,-9), 故拱顶的高度h=9米. 答案:9
练习1: 如图是某公园一圆形喷水池,水 流在各方向沿形状相同的抛物线落下。 建立如图所示的坐标系,如果喷头所在处 A(0,1.25),水流路线最高处B (1,2.25),求该抛物线的解析式。 如果不考虑其他因素,那么水池的半径 至少要多少米,才能使喷出的水流不致落 到池外。
Y
.B(1,2.25)