保护电路设计方法_-_过电压保护模板
直流电源过电压过流保护电路
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
如何进行电路的电压和电流保护
如何进行电路的电压和电流保护电路的电压和电流保护是电子工程中非常重要的一部分。
如果电路没有得到有效的保护,可能会导致设备损坏、电击事故甚至发生火灾。
因此,正确的电压和电流保护策略对于确保电路的安全运行至关重要。
本文将向读者介绍如何进行电路的电压和电流保护,以及常见的保护方法和设备。
在电路设计中,保护电路免受过电流和过电压的伤害是至关重要的。
过电流和过电压可能是由故障、电源不稳定、操作失误或外部干扰等原因引起的。
因此,我们需要采取适当的措施来保护电路,以防止这些问题的发生。
一、电流保护1. 熔断器熔断器是一种常用的电流保护设备。
它们一般安装在电路中的关键位置,当电流超过其额定值时,熔断器会自动断开电路,以保护设备免受过电流的伤害。
熔断器的额定电流应根据电路负载和设计要求来选择合适的数值。
2. 电流限制器电流限制器可以限制电路中通过的电流,确保其值不会超过安全范围。
它们可以采用不同的工作原理,例如可调电阻、电感或电感与电容的组合。
具体选择哪种类型的电流限制器取决于电路的要求和应用环境。
3. 电流传感器电流传感器可以监测电路中的电流变化,并在电流超过安全范围时提供相应的信号。
这些传感器可以用于实时监测电流,并与其他保护装置结合使用,以及进行电路的自动断开,确保电路安全运行。
二、电压保护1. 过压保护器过压保护器可以检测电路中的电压,一旦电压超过额定值,它们会快速切断电路,以保护设备。
过压保护器通常采用电压比较器等电子元器件来实现,可以根据具体的应用要求进行调整和设置。
2. 电压稳压器电压稳压器可以将电路中的电压稳定在一个安全的范围内。
电路中的电压变化常常会对设备的正常运行产生不利影响,因此使用电压稳压器可以确保设备在电压波动较大的情况下仍能正常工作。
3. 电压监测器电压监测器可以实时监测电路中的电压,并在电压异常时提供报警或自动断电保护。
这些监测器可以用于检测电压波动、电压失真或供电故障等情况,提醒用户采取相应的措施以确保电路安全。
保护电路常见设计
保护电路常见设计保护电路是电子设计中非常重要的一环,它能有效地保护电子设备免受电路故障或异常工作的损害。
下面将介绍一些常见的保护电路设计。
1. 过载保护电路过载保护电路用于监测电路中的电流,当电流超过设定值时,它会立即切断电路以防止设备过载。
这种保护电路通常由热敏电阻或电流传感器组成,一旦检测到过载电流,它会触发继电器或开关,切断电源供应。
2. 过压保护电路过压保护电路用于防止电路受到过高的电压损害。
它通常由电压比较器和继电器组成。
当电路输入电压超过设定值时,电压比较器会触发继电器,切断电源供应。
3. 短路保护电路短路保护电路用于防止电路发生短路故障,它能够及时切断电源供应,以避免设备损坏。
这种保护电路通常由电流传感器和继电器组成,一旦检测到短路电流,电流传感器会触发继电器,切断电源供应。
4. 过温保护电路过温保护电路用于监测电路中的温度,当温度超过设定值时,它会触发继电器或开关,切断电源供应。
这种保护电路通常由温度传感器和继电器组成,一旦检测到过温,温度传感器会触发继电器,切断电源供应。
5. 欠压保护电路欠压保护电路用于监测电路输入电压,当输入电压低于设定值时,它会触发继电器或开关,切断电源供应。
这种保护电路通常由电压比较器和继电器组成,一旦检测到欠压,电压比较器会触发继电器,切断电源供应。
以上介绍了一些常见的保护电路设计,它们在电子设备中起着至关重要的作用,能够有效地保护电路免受损坏。
在设计过程中,需要根据实际需求选择合适的保护电路,并注意电路的可靠性和稳定性。
保护电路的设计需要经过充分的测试和验证,以确保其正常工作和可靠性。
只有在保护电路设计得当的情况下,才能更好地保护电子设备,延长其使用寿命。
过电压保护ppt课件
3.阀式避雷器 (1).普通型阀式避雷器
a.结构与元件的作用:
火花间隙:
作用原理:
根据火花间隙的结构,使间隙的放电时间 缩短,由于其伏秒特性曲线平缓,放电分散性 也较小,由于火花间隙由若干个小间隙组合串 联,易于切断工频续流,且不易重燃。
具有分路电阻的火花间隙:
1.保护间隙
作用原理: 当雷电侵入波要危及它所
保护的电气设备的绝缘时, 间隙首先击穿,工作母线 接地,避免了被保护设备 上的电压升高,从而保 护了设备。
6KV和10KV保护间隙,主间隙分别不小于15mm和25mm 辅助间隙不小于10mm。
优缺点:
优点: 结构简单、制造方便 缺点: 伏秒特性曲线比较陡,绝缘配合不理
优缺点
熄弧能力比保护间隙要强,但伏秒特 性较陡且放电分散性大,且会形成截波, 并受大气条件影响较大,所只用在线路 保护和变电所进线段保护
5.金属氧化物(氧化锌)避雷器
(1)、工作原理
正常运行时,在工频电压下氧化物 电阻片具有极高阻值,呈绝缘状态;当 出现过电压时,阀片呈低阻状态,泄放 电流,避雷器两端维持较低的残压,保 护电气设备不受损坏。过电压过后,立 即恢复高电阻值,继续保持绝缘。金属 氧化物避雷器不需要设置火花间隙,也 不需要进行灭弧。
第二节 直接雷击过电压
一.避雷针和避雷线
1.保护作用的原理
能使雷云电场发生突变,使雷电先导的发展沿 着避雷针的方向发展,直击于其上,雷电流通 过避雷针(线)及接地装置泄入大地而防止避 雷针(线)周围的设备受到雷击
独立避雷针
构架避雷针
消雷器
2.保护范围
(1).单支避雷针
hx
h 2
直流电源过电压过流保护电路
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
电力设备过电压保护设计技术规程
电力设备过电压保护设计技术规程
一、引言
二、过电压的基本概念和特点
2.1 过电压的定义
2.2 过电压的产生原因
2.3 过电压的分类
三、过电压保护设计思路
3.1 设备保护与系统保护
3.2 过电压保护的基本原则
3.3 过电压保护器的种类和特点
四、具体过电压保护设计方法
4.1 入户过电压保护设计
1.安装过电压保护器设备
2.设置合适的过电压阈值
3.定期检测和维护设备
4.2 输电线路过电压保护设计
1.选择合适的过电压保护器类型
2.设计合理的接地系统
3.定期检测和维护设备
4.3 电力设备内部过电压保护设计
1.采用合适的过电压抑制器
2.设计可靠的保护电路
3.进行必要的故障测试和验证
4.4 电力系统整体过电压分析与保护设计
1.分析系统中可能出现的过电压情况
2.设计合理的过电压保护策略
3.考虑系统的可靠性和稳定性
五、过电压保护装置的选用与调试
5.1 过电压保护装置的选用原则
5.2 过电压保护装置的调试方法
5.3 过电压保护装置的运行与维护
六、过电压保护设计实例分析
6.1 电力设备过电压保护设计实例一6.2 电力设备过电压保护设计实例二
6.3 电力设备过电压保护设计实例三
七、结论
八、参考文献。
完整的电路保护-过流过压保护
通用应用 ---接口电路
1、高速接口电路(USB2.0、IEEE1394、RF 电路、Gigabit以太网、DVI)
C、TVS Diodes/Silicon Avalance Diodes(SADs)
• 4、气体放电管(GDTs)
• 5、工业&轴向压敏电阻
A、Radial Leaded MOVs(UltraMOVTM,C-III,LA,ZA,RA and TMOVTM Varistors)
B、轴向引脚的压敏电阻(MA Series MOVs)
应用电路
• AC / DC DC / DC 转换电路 • 全波 / 半波整流电路 / 逆变电路
推荐产品
• 可控硅(SCR) • 压敏电阻(MOV) • TVS / ULTraMOV
雷电的防护
---电力系统器件应用比较
• 气体放电管 能承受数百微秒内数千安培瞬态雷电电流的冲击。
缺点是对雷电过电压的波头无法进行有效的保护。
C、工业级的压敏电阻(CA,NA,PA,HA,HB34,DA and DB Series varistors )
Teccor产品应用领域
➢1、个人电子消费产品 ➢2、电源产品 ➢3、通信设备 ➢4、汽车电子 ➢5、其它工业设备
电源产品
A、交流电源
B、不间断电源(UPS)
C、电能表
D、交流电器控制板
用户端设备 1、传真机 2、 xDSL / Modem 3、公用电话 / 无绳电话 / 手机 / VoIP 4、T1 / E1 /J1 5、ISDN 设备 6、用户线路板(SLIC)
局端设备 1、公共分组交换机(PBX) 2、Internet 网关 3、交换机 / 路由器 / 中继器(HUB)
电路保护方法概述
电路保护方法概述1. 引言在电路设计和使用中,保护电路是非常重要的一项工作。
电路保护的主要目的是确保电路的平安运行,防止因外界因素或内部故障引起的电路损坏或故障。
本文将概述一些常见的电路保护方法,包括过电压保护、过流保护、短路保护和过温保护等。
2. 过电压保护过电压保护是指在电路中采取措施来保护电路免受过高电压的损害。
过电压可能是因外界原因引起的,比方雷击、电力系统故障等;也可能是因内部故障引起的,比方电压压降不良、开关故障等。
常见的过电压保护方法包括使用过压保护器、电压稳压器、电压限制器等。
这些保护器能够及时检测并切断过高电压,确保电路的平安运行。
过流保护是指在电路中采取措施来保护电路免受过高电流的损害。
过流可能是因外界原因引起的,比方短路、故障电流波动等;也可能是因内部故障引起的,比方电路元件损坏、电压调整不良等。
常见的过流保护方法包括使用过流保护器、保险丝、电流限制器等。
这些保护器能够及时检测并切断过高电流,防止电路的过载运行。
4. 短路保护短路保护是指在电路中采取措施来保护电路免受短路电流的损害。
短路是指电路中两个或多个导体直接接触而导致电流异常增加的现象。
短路会引起电路过热、设备损坏甚至火灾等严重后果。
常见的短路保护方法包括使用熔断器、自动断路器、短路保护器等。
这些保护器能够在检测到电路短路时迅速切断电路,保护电路的平安运行。
过温保护是指在电路中采取措施来保护电路免受过高温度的损害。
过高的温度可能是因大电流通行引起的,也可能是因环境温度过高引起的,还可能是因散热不良引起的。
过高的温度会导致电路元件老化、烧坏、减寿等。
常见的过温保护方法包括使用温度传感器、风扇散热、散热片等。
这些保护器能够及时检测并采取相应的措施来降低电路温度,保护电路的正常运行。
6. 总结电路保护是保证电路平安运行的重要手段。
本文概述了一些常见的电路保护方法,包括过电压保护、过流保护、短路保护和过温保护。
这些保护方法能够有效地防止电路因外界因素或内部故障引起的损坏或故障。
断路器保护及过电压保护配置和基本原理
断路器保护及过电压保护配置和基本原理在电力系统中,断路器保护和过电压保护是非常重要的安全设备。
它们起着保护电力设备和系统的作用,以防止电气故障和意外事故的发生。
本文将探讨断路器保护和过电压保护的配置和基本原理。
一、断路器保护的配置与原理1.断路器的作用断路器是一种用于保护电力设备和系统的电器设备。
当电力设备或电路发生故障时,断路器能够迅速切断电路,以避免电流过大造成设备损坏和触电事故。
断路器的作用类似于电路中的安全开关,能够即时切断电流,保护系统的安全性和可靠性。
2.断路器的配置断路器的配置需要考虑不同的电力系统和设备的要求。
一般来说,电力系统中的断路器配置包括主断路器、分段断路器和支路断路器。
主断路器通常用于主电源入口处,用于切断主电源。
分段断路器用于切断不同的电源分段,以便进行维护和保护。
支路断路器用于连接系统中的支路电路,并在需要时切断电流。
3.断路器的原理断路器的工作原理基于熔断器和保险丝的概念。
当电路中的电流超过断路器额定电流时,断路器内部的熔丝会熔断,切断电路。
断路器的额定电流是指它能够正常工作的最大电流值。
当电路中出现过载或短路时,熔丝熔断,阻断电流,起到保护电路的作用。
断路器还具有过电流和过负荷保护功能,能够保证设备和系统的安全运行。
二、过电压保护的配置与原理1.过电压的危害过电压是指电力系统中电压高于正常工作范围的现象。
过电压会对设备和系统造成严重的损害,甚至导致火灾和爆炸。
常见的过电压包括雷击过电压、开关电压冲击和感应过电压等。
2.过电压保护的作用过电压保护设备用于控制和限制过电压的发生,减少电力设备受损的风险。
过电压保护设备可以及时检测到过电压,并迅速切断电源,以防止过电压对电力系统和设备造成损坏。
3.过电压保护的原理过电压保护设备使用各种技术和元件来控制和限制过电压。
常见的过电压保护装置包括避雷器、放电管和TVS二极管等。
避雷器是一种通过将过电压分散到接地来保护电力设备的装置。
电力设备过电压保护设计技术规程SDJ
第一章总则第二章一般规定第三章过电压保护装置第四章架空电力线路的过电压保护第五章发电厂和变电所的过电压保护第六章旋转电机的过电压保护第七章架空配电网的过电压保护第八章微波通信站的过电压保护附录一有关外过电压计算的一些参数和方法附录二电晕对雷电波波形的影响附录三雷击有避雷线线路杆塔顶部时耐雷水平的拟定附录四绕击率的拟定附录五建弧率的拟定附录六有避雷线线路的雷击跳闸率的拟定附录七送电线路耐雷水平和跳闸率的计算附录八 35~330kV架空送电线路常用杆塔的耐雷水平和雷击跳闸率附录九大档距导线与避雷线间距离的拟定附录十非标准普通阀型避雷器的组合原则附录十一雷电波在电缆中的衰减附录十二阀型避雷器的电气特性附录十三全国年平均雷暴日数分布图附录十四名词解释打印刷新相应的新标准:DL/T 620-97电力设备过电压保护设计技术规程SDJ7—79中华人民共和国水利电力部关于颁发《电力设备过电压保护设计技术规程》SDJ7—79的告知(79)水电规字第4号《电力设备过电压保护设计技术规程》SDJ—76于一九七六年颁发试行后,对电力设备过电压保护设计工作起到了一定的指导和提高作用。
现根据近年来的建设经验和各单位的意见,对本规程的内容作了必要的修改和补充,并颁发执行。
在执行中如碰到问题,请告我部规划设计管理局。
一九七九年一月八日基本符号电流、电压和功率I——雷电流幅值;I c——接地电容电流;I1——雷击杆塔时的耐雷水平;I2——雷击导线或绕击导线时的耐雷水平;i——总雷电流瞬时值;i gt——通过杆塔的电流瞬时值;U e——额定电压;U xg——设备的最高运营相电压;U go——空气间隙的工频放电电压;U ne——内过电压间隙的工频放电电压或操作冲击波50%放电电压;U sh——绝缘子串工频湿闪电压或操作冲击波50%湿闪电压;U——进行波的幅值;U50%——绝缘子串的50%冲击放电电压;U g——感应过电压的最大值;u g——感应过电压的瞬时值;U j——杆塔上绝缘承受的过电压最大值;u j——杆塔上绝缘承受的过电压瞬时值;U td——杆塔顶部电位的最大值;u td——杆塔顶部电位的瞬时值;W——消弧线圈的容量。
(完整word版)过电压保护
电力电子器件的保护一 、过电压保护电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。
外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。
电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。
内因过电压主要来自电力电子装置内部器件的开关过程,包括:(1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。
(2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。
电力电子电路常见的过电压有交流测过电压和直流测过电压。
常用的过电压保护措施及配置位置如图1-1所示。
SFRVRCDTDCUMRC 1RC 2RC 3RC 4L BS DC图9-10 过电压保护措施及装置位置F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。
由于电容两端电压不能突变,所以能有效抑制尖峰过电压。
串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。
视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。
图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。
+-+-a)b)网侧阀侧直流侧C a R aC a R aC dcR dc C dcR dc C a R aC a R a图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相二、过电流保护过电流分为过载和短路两种情况。
ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。
电路中的保护装置过电压保护与过流保护的实现
电路中的保护装置过电压保护与过流保护的实现过电压保护与过流保护是电路中常见的保护装置,它们在保证电路正常运行的同时,对电路中可能出现的故障进行及时的检测和保护。
本文将从原理、实现方式以及应用范围等多个方面进行探讨。
一、过电压保护的原理与实现过电压是指电路中电压超过了设定的安全范围,这可能对电路中的元器件和设备造成损坏,甚至引发火灾等严重事故。
过电压保护装置的作用就是在电路中检测到过电压信号时,及时采取措施使电路保持在安全范围内。
过电压保护的实现方式有多种,其中最常见的是采用过压保护器。
过压保护器是一种电子元器件,其工作原理是通过检测电路中的电压,一旦检测到超过设定范围的电压,即会迅速切断电路。
过压保护器通常由过压继电器、电流互感器和触发器等组成。
当电路中出现过电压时,电流互感器可以感测到电流的变化,并将信号传递给过压继电器。
过压继电器在接收到信号后,会启动触发器,切断电路以达到保护的目的。
二、过流保护的原理与实现过流保护是指电路中电流超过了设定的安全范围,可能造成线路短路、电器损坏等情况。
过流保护的主要作用是在电路中检测到过大电流时,及时切断电路以防止故障的进一步发展。
过流保护的实现方式也有多种,其中最常见的是采用保险丝或熔断器。
保险丝和熔断器在电流超过额定值时,会迅速熔断,切断电路以达到保护电路的目的。
保险丝和熔断器的工作原理是在电流通过时,热量会使保险丝或熔断器中的导体熔断,从而切断电路。
这样可以保护电路中的元器件和设备免受过大电流的破坏。
三、过电压保护与过流保护的应用范围过电压保护与过流保护广泛应用于各种电路中,其应用范围包括但不限于以下几个方面:1. 低压电力系统:低压电力系统中常常使用过电压保护器和熔断器等装置,以保护电力设备和电器设备的安全运行。
2. 通信设备:在通信设备中,过电压和过流保护装置可以对网络设备进行保护,避免由于电压异常或电流过大导致的设备故障。
3. 电动机保护:在电动机的运行中,过电压和过流保护可以及时切断电路以避免电机过负荷运行或发生故障。
过电压保护
KZ
Ud
;
R1 C2
R2
Z
C1
反相阻断式阻容保护及综合阻容网络, 当整流桥 Z 的交流侧发生过电压时,其直流侧的阻容保护可以 吸收交流电源发生的浪涌电压,,以避免可控 硅桥 KZ 承受过电压。而交流侧电压下降或短接时,由于整流桥 Z 的反向阻断作用,可以阻止电容器向交流侧 的可控硅元件放电。其参考下列算式,
多雷地区的 3~10 千伏 和 Y/Y 接线的配电变压器,除在高压侧装设避雷器外,宜在低压侧装设一组 220 伏避雷器,440 伏压敏电阻,或击穿保险,以防止反变换波和低压侧雷电侵入波击穿高压侧绝缘,接线如图,
。
3 10kv
380/220v
FB 或 GB
4~10
MY 或 FB
3~10KV,Y/YO 变压器反变换防护接线 MY—压敏电阻,
压敏电阻是由金属氧化物烧结制成的压敏电阻(对电压很敏感的非线性电阻),是一种多晶的半导体陶瓷器 件,它具有很高非线性系数,通流及耐受能量力很大。用这种元件做成的所谓压敏电阻浪涌吸收器,具有良 好的吸收浪涌抑制过电压的功能。
压敏电阻的主要成分是氧化锌,在氧化锌中加入微量的氧化铋, 氧化钴,氧化锰,氧化锑等杂质,烧 结制成多晶陶瓷结构。这些晶粒之间的境界层具有硅稳压管那样的非线性特性。在正常电压下,境界层呈高 电阻状态,只有极其余微弱的泄漏电流。当发生浪涌过电压时,境界层便迅速变为低电阻抗,使浪涌电流通 过。 至于氧化锌晶粒则是良导体,电阻很低,具有很大的热容量。整个压敏电阻承受的电压。由境界层的串联数 来控制,通流容量(浪涌承受量)则由它的面积来控制。因而原则上作出很高电压和很大通流容量的压敏电 阻元件。 这种压敏电阻浪涌吸收器,在工业的许多了领域中已广泛使用, 以硒堆等非线性元件比较,有如 下一些特点; (1 ,非线性系数大,残压低,抑制过电压的能力强,通过非线性元件的电流与电压呈高次方关系;
开关电源常用保护电路-过热、过流、过压以及软启动保护电路
1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。
同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。
但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流开关电源的核心部分是一个直流变压器。
2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。
ms1242保护电路设计
ms1242保护电路设计【原创实用版】目录1.MS1242 保护电路的概述2.MS1242 保护电路的设计原理3.MS1242 保护电路的具体设计步骤4.MS1242 保护电路的应用实例5.MS1242 保护电路的优点与局限性正文一、MS1242 保护电路的概述MS1242 保护电路是一种针对电子设备电源系统设计的过电压保护电路,能够有效地防止电源系统中的过电压现象,保护电子设备免受损坏。
MS1242 保护电路采用了一种特殊的设计原理,使得电路具有较高的稳定性和可靠性。
二、MS1242 保护电路的设计原理MS1242 保护电路的设计原理主要基于其内部的保护元件——双向硅控整流器(SCR)和限流电阻。
当电源电压超过设定值时,SCR 导通,将电源系统与负载隔离,防止过电压对负载造成损害。
同时,限流电阻限制了电流大小,避免了电源系统中的电流过大。
三、MS1242 保护电路的具体设计步骤1.选取合适的双向硅控整流器(SCR)型号,根据电源电压和负载电流大小确定其额定电压和电流参数。
2.根据电源电压波动范围和负载电流大小,选择合适的限流电阻值。
3.根据电路板尺寸和电气连接要求,设计电路板布局,并在电路板上安装 SCR 和限流电阻。
4.连接电路,进行功能测试,确保保护电路在正常工作范围内可靠地实现过电压保护功能。
四、MS1242 保护电路的应用实例MS1242 保护电路广泛应用于各种电子设备的电源系统中,如通信设备、计算机、家电等。
这些设备在正常工作过程中,可能会受到外界干扰或电源系统本身的波动,导致电源电压异常。
采用 MS1242 保护电路后,可以有效地防止过电压对电子设备造成的损害,提高设备的稳定性和可靠性。
五、MS1242 保护电路的优点与局限性优点:1.高效的保护性能,可有效防止电源系统中的过电压现象。
2.稳定性和可靠性较高,可以保护电子设备免受损坏。
3.设计简单,实现容易,应用范围广泛。
局限性:1.保护范围受到 SCR 额定电压和电流参数的限制。
ms1242保护电路设计
ms1242保护电路设计摘要:一、引言二、保护电路设计的重要性三、ms1242 保护电路设计原理1.过电压保护2.过电流保护3.短路保护4.温度保护四、ms1242 保护电路在实际应用中的优势五、总结正文:一、引言随着科技的发展,各类电子设备广泛应用于各个领域。
为了确保电子设备在各种工况下的稳定运行,保护电路的设计显得尤为重要。
ms1242 保护电路是一种在电子设备中广泛应用的保护电路设计,具有出色的保护性能。
二、保护电路设计的重要性保护电路设计的主要目的是确保电子设备在正常工作范围内运行,防止因电压、电流、温度等异常情况导致的设备损坏。
合理的保护电路设计可以提高设备的可靠性和稳定性,延长设备的使用寿命。
三、ms1242 保护电路设计原理ms1242 保护电路是一种集成了多种保护功能的电路,主要包括过电压保护、过电流保护、短路保护、温度保护等。
1.过电压保护:当输入电压超过ms1242 保护电路的额定电压时,保护电路会启动,将多余的电压通过保护元件释放,确保电路中的其他元件不受损坏。
2.过电流保护:当电路中的电流超过ms1242 保护电路的额定电流时,保护电路会启动,通过限制电流大小,防止设备因过载而损坏。
3.短路保护:当电路发生短路时,ms1242 保护电路会立即切断电源,防止短路电流对设备造成损害。
4.温度保护:当设备运行过程中温度过高时,ms1242 保护电路会启动,通过降低设备的工作电流,降低设备温度,以保护设备不受损。
四、ms1242 保护电路在实际应用中的优势ms1242 保护电路具有体积小、性能稳定、保护功能齐全等优点,在各种电子设备中有着广泛的应用。
通过使用ms1242 保护电路,可以有效降低设备故障率,提高设备的可靠性和稳定性,降低设备的维修成本。
五、总结ms1242 保护电路是一种高效、可靠的电路保护方案,在各类电子设备中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保护电路设计方法- 过电压保护2.过电压保护⑴过电压的产生及抑制方法①过电压产生的原因对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。
这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。
为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。
关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。
关断浪涌电压的峰值可用下式求出:VCESP=Ed+(-L dIc/dt)式中dlc/dt为关断时的集电极电流变化率的最大值;VCESP为超过IGBT的C-E间耐压(VCES)以至损坏时的电压值。
②过电压抑制方法作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种:在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。
缓冲电路的电容,采用薄膜电容,并靠近IGBT 配置,可使高频浪涌电压旁路。
调整IGBT的驱动电路的VCE或RC,使di/dt最小。
尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。
为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。
⑵缓冲电路的种类和特缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。
①个别缓冲电路为个别缓冲电路的代表例子,可有如下的缓冲电路RC缓冲电路充放电形RCD缓冲电路放电阻止形RCD缓冲电路表3中列出了每个缓冲电路的接线图。
特点及主要用途。
表3 单块缓冲电路的接线圈特点及主电用途关断浪涌电压抑制效果好。
最适合于斩波电路。
使用大容量IGBT时,必须使缓冲电阻值很小,这样开通时的集电极电流增大,IGBT功能受到限制。
可抑制关断浪涌电压。
与Rc缓冲电路不同。
因加了缓冲二极管使缓冲电阻变大,因而避开了开通时IGBT功能受到限制的问题。
与放电阻止形RCD缓冲电路相比,缓冲电路中的损耗(主要由缓冲电阻产生)非常大,因而不适用于高频开关用途。
在充放典型RCD缓冲电路中缓冲电阻产生的损耗可由下式求出。
式中L:主电路中分布电感一lo:IGBT关断时集电极电流Cs:缓冲电容值Ed:直流电源电压f:开关频率放电阻止形缓冲电路有抑制关断浪涌电压效果。
最适合用于高频开关用途。
在缓冲电路中产生的损耗小。
在充放电形RCD缓冲电路的缓冲电阻上产生的损耗可用下式求出。
式中L:主电路的分布电感Io:IGBT关断时的集电极电流f:开关频率②整体缓冲电路作为这类缓冲电路的代表例子,有下面几种缓冲电路C缓冲电路RCD缓冲电路最近,为简化缓冲电路的设计,大多采用整体缓冲电路。
表4列出了各种整体缓冲电路的接线图和特点,主要用途。
表5中列出了采用整体缓冲电路时的缓冲电路容量的数值,图8示出了这类缓冲器开断波形的例子。
表4 整体缓冲电路的接线图特点及主要用途表5 整体(缓冲容量数值)(µR G(Ω)样品:2MBI100N-060 Ed (Vcc)=300V VGE =+15,-15V RG=24 Cs =0.47UF⑶ 放电阻止形RCD 缓冲电路设计方法作为IGBT 缓冲电路,认为最合理的放电阻止形RCD 缓冲电路的基本设计方法说明如下: ① 是否适用的研讨图9 示出了使用放电阻止形RCD 缓冲电路时关断时的动作轨迹图放电阻止形RCD 缓冲器,当IGBT 的C-E 间电压超过直流电源电压时开始工作,其理想的动作轨迹用点线来表示。
但是,在实际装置中’由於缓冲电路接线电感及缓冲二极管过渡正向电压下降的影响,关断时尖峰电压的存在,变成了向右扩张的,如实线所示。
放电阻止形RCD 缓冲电路是否时适用取决於关断时动作轨述能否收拔在IGBT 的RBSOA 内而定另外。
关断时的峰值电压可用下式求出:式中 Ed : VFM : Ls : dlc/dt :直流电源电压缓冲二极管过渡止向电压降 缓冲电路的接线电感关断时的集电极电流变化率的最大值缓冲二极管的一般过度正向电压降的参考值通常如下 600V 级:20-30V 1200V 级:40~60V②缓冲电容(Cs)容量值的计示方法缓冲电容所必须的容量值可用下式求出:式中 L : Io : VCEF : Ed :主电路的分布电感IGBT 关断时的集电极电流 缓冲电容电压的最终值 直流电源电压VCEF 必须控制在小於IGBT 的C-E 间耐压值。
此外,缓冲电容,要选用高频特性优良的电容(薄膜电容器等)。
③缓冲电阻(Rs)值的求法对缓冲电阻性能要求是IGBT能进行关断动作,能将缓冲电容上积聚电荷通放电来进行。
IGBT 关断时,以放电90%的积聚电荷为条件,由下式可求出缓冲电阻值。
如果将缓冲电阻值设定得过低,缓冲电路冲电流可能振荡,由於IGBT接通时集电极电流峰值增加、在上式荡是的范围内,请设定在最高值为佳。
缓冲电阻产生的损耗P(Rs)和阻值系可由下式求得。
④缓冲二极管的选定缓冲二极管过渡正向电压降减小是关断时尖峰电压产生的主要原因之一。
另外,缓冲二极管逆向恢复时间变长,在高频开关工作时,使缓冲二极管产生的损耗变大“,缓冲二极管的逆向恢复动作变得困难,在缓冲二极管逆向恢复动作时,IGBT的C-E间电压急剧增大且产生振荡。
对于缓冲二极管,要选择过度正向电压低,逆向恢复时间短,逆向恢复特性较软(容易)的为佳。
⑤跟随电路接线上的注意事项由于缓冲电路的接线是导致尖峰电压产生的主要原因,所以,电路器件的配置,尽量使分布电感降低为好。
在带变压器的开关电源拓扑中,开关管关断时,电压和电流的重叠引起的损耗是开关电源损耗的主要部分,同时,由于电路中存在杂散电感和杂散电容,在功率开关管关断时,电路中也会出现过电压并且产生振荡。
如果尖峰电压过高,就会损坏开关管。
同时,振荡的存在也会使输出纹波增大。
为了降低关断损耗和尖峰电压,需要在开关管两端并联缓冲电路以改善电路的性能。
缓冲电路的主要作用有:一是减少导通或关断损耗;二是降低电压或电流尖峰;三是降低dV/dt或dI/dt。
由于MOSFET管的电流下降速度很快,所以它的关断损耗很小。
虽然MOSFET管依然使用关断缓冲电路,但它的作用不是减少关断损耗,而是降低变压器漏感尖峰电压。
本文主要针对MOSFET管的关断缓冲电路来进行讨论。
1 RC缓冲电路设计在设计RC缓冲电路时,必须熟悉主电路所采用的拓扑结构情况。
图l所示是由RC组成的正激变换器的缓冲电路。
图中,当Q关断时,集电极电压开始上升到2Vdc,而电容C限制了集电极电压的上升速度,同时减小了上升电压和下降电流的重叠,从而减低了开关管Q 的损耗。
而在下次开关关断之前,C必须将已经充满的电压2Vdc放完,放电路径为C、Q、R。
假设开关管没带缓冲电路,图1所示的正激变换器的复位绕组和初级绕组匝数相同。
这样,当Q关断瞬间,储存在励磁电感和漏感中的能量释放,初级绕组两端电压极性反向,正激变换器的开关管集电极电压迅速上升到2Vdc。
同时,励磁电流经二极管D流向复位绕组,最后减小到零,此时Q两端电压下降到Vdc。
图2所示是开关管集电极电流和电压波形。
可见,开关管不带缓冲电路时,在Q关断时,其两端的漏感电压尖峰很大,产生的关断损耗也很大,严重时很可能会烧坏开关管,因此,必须给开关管加上缓冲电路。
当开关管带缓冲电路时,其集电极电压和电流波形如图3所示(以正激变换器为例)。
在图1中,当Q开始关断时,其电流开始下降,而变压器漏感会阻止这个电流的减小。
一部分电流将继续通过将要关断的开关管,另一部分则经RC缓冲电路并对电容C充电,电阻R的大小与充电电流有关。
Ic的一部分流进电容C,可减缓集电极电压的上升。
通过选取足够大的C,可以减少集电极的上升电压与下降电流的重叠部分,从而显著降低开关管的关断损耗,同时还可以抑制集电极漏感尖峰电压。
图3中的A-C阶段为开关管关断阶段,C-D为开关管导通阶段。
在开关管关断前,电容C 两端电压为零。
在关断时刻(B时刻),C会减缓集电极电压的上升速度,但同时也被充电到2Vdc(在忽略该时刻的漏感尖峰电压的情况下)。
电容C的大小不仅影响集电极电压的上升速度,而且决定了电阻R上的能量损耗。
在Q关断瞬间,C上的电压为2Vdc,它储存的能量为0.5C(2Vdc)2焦耳。
如果该能量全部消耗在R上,则每周期内消耗在R上的能量为:对限制集电极上升电压来说,C应该越大越好;但从系统效率出发,C越大,损耗越大,效率越低。
因此,必须选择合适的C,使其既能达到一定的减缓集电极上升电压速度的作用,又不至于使系统损耗过大而使效率过低。
在图3中,由于在下一个关断开始时刻(D时刻)必须保证C两端没有电压,所以,在B时刻到D时刻之间的某时间段内,C必须放电。
实际上,电容C在C-D这段时间内,也可以通过电阻R经Q和R构成的放电回路进行放电。
因此,在选择了一个足够大的C后,R应使C在最小导通时间ton内放电至所充电荷的5%以下,这样则有:式(1)表明R上的能量损耗是和C成正比的,因而必须选择合适的C,这样,如何选择C就成了设计RC缓冲电路的关键,下面介绍一种比较实用的选择电容C的方法。
事实上,当Q开始关断时,假设最初的峰值电流Ip的一半流过C,另一半仍然流过逐渐关断的Q集电极,同时假设变压器中的漏感保持总电流仍然为Ip。
那么,通过选择合适的电容C,以使开关管集电极电压在时间tf内上升到2Vdc(其中tf为集电极电流从初始值下降到零的时间,可以从开关管数据手册上查询),则有:因此,从式(1)和式(3)便能计算出电容C的大小。
在确定了C后,而最小导通时间已知,这样,通过式(2)就可以得到电阻R的大小。
2 带RC缓冲的正激变换器主电路设计2.1 电路设计图4所示是一个带有RC缓冲电路的正激变换器主电路。
该主电路参数为:Np=Nr=43匝。
Ns=32匝,开关频率f=70 kHz,输入电压范围为直流48~96 V,输出为直流12 V和直流0.5 A。
开关管Q为MOSFET,型号为IRF830,其tf一般为30 ns。
Dl、D2、D3为快恢复二极管,其tf很小(通常tf=30 ns)。
本设计的输出功率P0=V0I0=6 W,假设变换器的效率为80%,每一路RC缓冲电路所损耗的功率占输出功率的1%。
这里取Vdc=48 V。
2.2 实验分析下面分两种情况对该设计进行实验分析,一是初级绕组有缓冲,次级无缓冲;二是初级无缓冲,次级有缓冲。
(1)初级绕组有缓冲,次级无缓冲该实验测量的是开关管Q两端的漏源电压,实验分以下两种情况:第一种情况是RS1=1.5 kΩ,CS1不定,输入直流电压Vdc为48 V。