变频器开关电源故障检修五例
变频器开关电源的原理及维修(整理)
![变频器开关电源的原理及维修(整理)](https://img.taocdn.com/s3/m/bccd2737bceb19e8b8f6bac9.png)
变频器开关电源的原理及维修(整理)变频器开关电源的原理及维修维修部杨海涛电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。
电源的种类很多,开关电源由于体积小、重量轻、效率高、动态稳压效果好,因此被广泛应用到了各种电子设备中。
下面就以UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。
右图a-1所示为开关电源PWM波形调制芯片。
该图为8脚双列直插封装。
7脚是芯片的电源输入端,该端在内部集成了稳压器和最低门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只降压电阻即可。
最低门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。
正常工作时该端电压约为12V—16V之间。
4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。
a—1 2脚、3脚是输出取样反馈端,用于检开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。
在变频器系统中,开关电源需要输出:一组5V/DC、一组?12V/DC、四组20V/DC等多组电压。
其中5V/DC 主要用作主板及控制板的供电,?12V/DC用作霍尔检测器件的供电,四组20V/DC用作IGBT的触发供电。
变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。
a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过降压电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。
此时6脚输出PWM信号去控制开关管Q1的通断,R10是开关管的电流检测电阻,通过检测R10的电压值来实时调整PWM的脉冲宽度,从而达到自动稳压的目的。
在图中变压器的副绕通过D6、C7、C8整流滤波之后到了UC3844的7脚,增强了UC3844的驱动能力。
变频器常出现的故障现象及处理方法例
![变频器常出现的故障现象及处理方法例](https://img.taocdn.com/s3/m/2d5eb13add3383c4bb4cd2d4.png)
代码 ER17 表示电流检测故障,通用变频器电流检测一般采用电流传感器,通过检测变频 器两相输出电流来实现变频器运行电流的检测、显示及保护功能,输出电流经电流传感器(如 图 2 示中 H1、H2 为电流传感器)输出线性电压信号,经放大比较电路输送给 CPU 处理器, CPU 处理器根据不同信号判断变频器是否处于过电流状态,如果输出电流超过保护值,则 故障封锁保护电路动作,封锁 IGBT 脉冲信号,实现保护功能。
(3)故障 ER02/ER05
故障代码 ER02/ER05 表示变频器在减速中出现过流或过压故障,主要原因为减速时间过 短、负载回馈能量过大未能及时被释放。若电机驱动惯性较大的负载时,当变频器频率(即 电机的同步转速)下降时电机的实际转速可能大于同步转速,这时电机处于发电状态,此部 分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场 处理时在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大,又要求在一 定时间内停机时,则要加装外部制动电阻和制动单元,康沃 G2/P2 系列变频器 22kW 以下
(2)故障 ER08
康沃变频器出现 ER08 故障代码表示变频器处于欠压故障状态。主要原因有输入电源过低 或缺相、变频器内部电压检测电路异常、变频器主电路异常。通用变频器电压输入范围在 3 20V~460V,在实际应用中变频器满载运行时,当输入电压低于 340V 时可能会出现欠压保 护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中出现 ER 08 故障,则可判断为变频器内部故障,如图 1 示可能为主回路中 KS 接触器跳开,使限流 电阻在变频器运行时串联到主回路中,这时若变频器带负载运行便会出现 ER08 故障,这 时可排除是否为接触器损坏或接触器控制电路异常;若变频器主回路正常,出现 ER08 报警 的原因大多为电压检测电路故障,一般变频器的电压检测电路为开关电源的一组输出,经过 取样、比较电路后给 CPU 处理器,当超过设定值时,CPU 根据比较信号输出故障封锁信号, 封锁 IGBER11 故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、 散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情 况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现 ER11 报警,则 故障原因为温度检测电路故障。康沃 22kW 以下机型采用的七单元逆变模块,内部集成有 温度元件,如果模块内此部分电路故障也会出现 ER11 报警,另一方面当温度检测运算电 路异常时也会出现同样故障现象。
变频器的常见故障分析及维修
![变频器的常见故障分析及维修](https://img.taocdn.com/s3/m/0c5aa0c97f1922791688e857.png)
变频器的常见故障分析及维修变频器在检测出故障时,故障接点输出动作,切断输出使电机停止运行,据显示内容对照下表,寻求解决方法。
再启动前需进行故障复位。
下面对所使用的变频器CIMR-G7A075和能量再生单元RC5分别予以介绍。
一. CIMR-G7A075故障、报警显示及处理方法1.故障显示及处理方法故障显示及处理方法按表1所示,寻求解决方法。
表1故障显示及处理方法2.警告显示及处理方法变频器检测出“警告”值报警时,故障接点输出不动作,当报警的原因消除则自动返回原来的状态。
发生“警变频器逆变电路告”值报警时,根据下表调查原因,实施适当处理。
表2警告显示及处理方法二、能量再生单元RC5故障、报警及处理方法能量再生单元与变频器共同工作以实现牵引电机的启动,调速,停止等状态,如果系统无法正常工作,除检查变频器外应观察能量再生单元的状态显示,确保变频器与能量再生单元故障均排除时才可以开机。
1.故障显示及处理方法当能量再生单元检测出故障时,将在LED显示器上显示该故障内容,并使故障接点动作输出。
根据下表3所述内容检查并处理故障,在重新启动变频器之前,须将故障复位。
2.警告显示及处理方法当能量再生单元检测到一个小错误时,在LED监视器上显示报警信号。
一旦小故障原因被排除之后,能量再生单元自动回复初始状态。
根据下表采取相应的措施。
表4警告显示及处理方法3. 工序错误显示及处理方法如果变频器在起重机方式(在要求四象限运行的场合,须将变频器设置在起重机方式,并与能量再生单元相配合)期间出现错误,它会给出工序错误指示,停止输出,实施抱闸,并发送信号到故障接点。
根据表5采取相应的措施。
表5 工序错误变频器和能量再生单元的简单测试当变频器出现“OC”过电流、“GF”接地、“PUF”主回路的保险丝被熔断等故障时,变频器有可能损坏,此时绝对不能对变频器进行复位操作,那样有可能使故障进一步加剧。
应对变频器做一简单判断,以便为厂家服务人员提供预判的依据。
变频器开关电源故障原因判断及如何维修?
![变频器开关电源故障原因判断及如何维修?](https://img.taocdn.com/s3/m/42225e5233687e21af45a986.png)
变频器开关电源故障原因判断及如何维修?在变频器开关电源使用的过程中会遇到有故障或者损坏的情况,今天我们就来给大家详细的介绍一下变频器开关电源出现故障的如何判断?变频器开关电源损坏的原因有哪些?以及出现故障的开关电源如何修理?变频器开关电源损坏的判断(1)有输入电压,而无开关电源输出电压,或输出电压明显不对。
(2)开关电源的开关管、变压器印制板周边元件,特别是过电压吸收元件有外观上可见的烧黄、烧焦,用万用表测开关管等元件已损坏。
(3)开关变压器漆包线长期在高温下使用,出现发黄、焦臭、变压器绕阻间有击穿、变压器绕阻特别是高压线包有断线、骨架有变形和跳弧痕迹。
变频器开关电源损坏原因(1)开关电源变压器本身漏感太大。
运行时一次绕阻的漏感造成大能量的过电压,该能量被吸收的元件(阻容元件、稳压管、瞬时电压抑制二极管)吸收时发生严重过载,时间一长吸收的元件就损坏了。
以上原因又会使开关电源效率下降、开关管和开关变压器发热严重,而且开关管上出现高的反峰电压,促使开关管损坏及变压器损坏,特别在密闭机箱里的变压器、开关管、吸收用电阻、稳压管或瞬时电压抑制二极管的温度会很高。
(2)变压器导线因氧化、助焊剂腐蚀而断裂。
(3)元器件本身寿命问题,特别是开关管和或开关集成电路因电流电压负担大,更易损坏。
(4)环境恶劣,由灰尘、水汽等造成绝缘损坏。
开关电源的修理(1)开关电源因局部高温已使印制板深度发黄碳化或印制线损坏时,印制板的绝缘和覆铜箔、导线已不能使用时,只能整体更换该印制板。
(2)查出损坏的元件后更换新元件,元件型号应与原型号一致,在不能一致时,要确认元件的功率、开关频率、耐压以及尺寸上能否安装,并要与周边元件保持绝缘间距。
(3)认为已修好后,应通电检查。
通电时不应使整个变频器通电而只对有开关变压器的那一部分,即在开关变压器的电源侧通电,检查工作是否正常、二次电压是否正确,改变电源侧的电压在+15%耀-20豫变动范围内,输出电压应基本不变。
变频器开关电源模块常见故障的检测方法及维修办法
![变频器开关电源模块常见故障的检测方法及维修办法](https://img.taocdn.com/s3/m/3dd6e4b2f5335a8103d220cb.png)
变频器开关电源模块常见故障的检测方法及维修办法变频器的开关电源电路完全可以简化为下图的电路模型,电路中的主要关键要素都包含在里面了,而任何复杂的开关电源,当我们熟悉后,也会剩下下圈这样的主干。
其实在检修中,要具备对复杂电路”化简”的能力,要在杂乱无章的电路伸展中,找出这几条主要脉络,训练自己,使眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——震荡回路,稳压回路,保护回路和负载回路等。
pRj 才7虹8 \'r 行1元3t �j西2氐..•,+5V开关电源简化电路图我们再熟悉一下该图,看一下电路中有几路脉络:0 震荡回路:开关变压器的主绕组N1, Q1的漏-源极,R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2, D1 , C1形成震荡芯片的供电电压。
这三个环节的正常运行,是电源能够震荡起来的先决条件。
当然,PC 1的4脚外接定时原件R2,C2和PC1芯片本身,也构成了震荡回路的一部分。
三检查方法:A测量供电电路CS,C6两端电阻值,如有短路直通现象,可能为整流二极管D3,D4有短路;观察CS,C6外观有无鼓包,喷液等现象,必要时拆下测量,供电电路无异常,可能为负载电路有短路故障。
B检查供电电路无异常,上电,用排除法,对各路供电进行逐一排除,如,拔下风扇供电端子,或者拔下+SV供电端子,若电源正常了说明改器件有损坏。
3)负载电路的供电电压过高或者过低,开关电源振荡回路正常,问题出在稳压回路,输出电压过高,稳压回路元件损坏或者低效,使得反馈电压幅度不足。
一三检查方法:A在PC2输出端并接10KO电阻,输出电压回落,说明PC2输出侧稳压电路正常,故障在PC2本身以及输入侧电路。
B在R7上并联5000电阻,输出电压有明显回落,说明光耦PC2良好,故障在PC3低效或者PC3外接电阻元件变值,反之,为PC2不良。
负载供电电压过低,有三个故障可能:负载过重,使输出电压下降;稳压回路元件不良,导致电压反馈信号过大;开关管低效,使得开关变压器储能不足。
ABB变频器开关电源损坏故障维修
![ABB变频器开关电源损坏故障维修](https://img.taocdn.com/s3/m/9108403c81c758f5f71f67b6.png)
ABB变频器开关电源损坏故障维修ABB变频器开关电源损坏故障维修对于ACS300的变频器,我们经常会碰到的故障就是开关电源的损坏,ACS300变频器开关电源采用了近似UC3844功能的一块叫LT1244的波形发生器集成块,受工作电压的突变,以及开关电源所带负载的损坏,而导致此集成块的损坏时有发生。
由于使用了较长年数,电解电容也到了它的使用年限,那用于滤波的电容也就成了开关电源损坏的直接原因。
我们在维修中会碰到ACS300变频器的整流桥经常损坏,也许从经济角度考虑,选用了国际整流器公司的一款最紧凑的三相全桥整流器,体积和带载电流都较小,散热也较差,所以在使用一段时间后就会出现损坏。
ACS300主控板发生故障的几率也是相当高的,控制盘与主板之间的通讯故障,主板CPU故障都时有发生,通常此类故障较难排除。
ACS300选用了三菱的IPM 模块,相对来说故障几率较低,模块损坏,只能更换,但更换前必须保证驱动电路完全正常。
对于ACS500变频器我们较常见的故障有驱动厚膜的损坏,此驱动厚膜已不仅仅包含驱动电路了,还包括短路检测,IGBT模块检测,过流检测等,由于良好的保护功能,ACS500的大功率模块很少损坏。
在维修中如果碰到驱动厚膜损坏,在没有配件的情况下,我们只能对厚膜进行维修,由于厚膜元器件都焊接于陶瓷片上,散热相当快,特别注意不要因为长时间把烙铁加热于元器件上,而导致器件的损坏。
由于受到使用时间的限定,ACS500的散热风扇也会出现故障,常见现象是上电后只听到嗡嗡声音,但风扇不转,由于是轴流风扇,风扇线圈和轴承往往都是正常的,检查后发现是偏转电容发生故障了,更换后就恢复了正常。
对于ACS600变频器,应该说性能,质量还是相当可靠,但由于受到周围环境的影响,参数设置的不当,以及不正当的操作,都有可能对变频器造成损坏,当然自然损坏也是每个品牌的变频器不可避免的因素。
与以往的ABB变频器不同,ACS600变频器采用了光纤通讯,大大提高了CPU板和I/O板之间的通讯时间,但也有可能引起了LINKORHWCPPCCLINK这样的故障出现,这种故障的出现与光纤的损坏不是绝对的。
值得收藏!5种常见变频器驱动电路故障及维修方法
![值得收藏!5种常见变频器驱动电路故障及维修方法](https://img.taocdn.com/s3/m/ab415934580102020740be1e650e52ea5518cec9.png)
值得收藏!5种常见变频器驱动电路故障及维修方法专业的电工电气领域自媒体,不容错过欢迎转发朋友圈,欢迎文末留言相信各位维修工作者,对于变频器这种工控电子设备一定不陌生。
在日常工作中我们难免遇到变频器因各种原因而发生故障的情况,下面搜集了五款常见变频器驱动电路故障及维修方法,希望能对大家有所帮助!ABB变频器首先我们应从变频器的显示面板上读取故障代码,此类代码每一种变频器的代码信息均不会一致,但基本都会有过流、过压、过载、失压、超温、模拟量丢失、通讯丢失等故障记录。
在ABB-ACS550变频器中可由04组参数查得历史故障记录。
同时一般故障时我们可以从面板上的指示灯变为红色加以判断。
在分析故障时,我们还可以从变频器的实际检测数据中检查实际的开关量信号、模拟量信号及实际变频器运行数据加以判断是否正常,ABB-ACS550变频器此类信号值的检查可在01号参数组查得。
另外我们应注意变频的特性参数是否设定合理,对U/F曲线,加、减速时间,电流限制,各类保护等参数的设定特别需加以检查分析。
西门子变频器西门子变频器黑屏一般故障原因有(电源损坏、igbt短路造成内部保险烧毁)等。
6se7016-1ta61-z故障现象:控制面板pmu液晶显示屏无显示,用外接24v电源试机,屏幕显示正常,再用万用表测低压交流输出,无电压说明故障在电源处,测uc3844(6)脚脉冲输出正常,到q36栅极没有,经表测量r321由28ω变为无穷大换新后试机,故障消失。
台达变频器故障现象是变频器输出端打火,拆开检查后发现IGBT逆变模块击穿,驱动电路印刷电路板严重损坏,正确的解决办法是先将损坏IGBT逆变模块拆下,拆的时候主要应尽量保护好印刷电路板不受人为二次损坏,将驱动电路上损坏的电子原器件逐一更换以及印刷电路板上开路的线路用导线连起来(这里要注意要将烧焦的部分刮干净,以防再次打火),再六路驱动电路阻值相同,电压相同的情况下使用视波器测量波形,但变频器一开,就报OCC故障(台达变频器无IGBT逆变模块开机会报警)使用灯泡将模块的P1和印板连起来,其他的用导线连,再次启动还跳,确定为驱动电路还有问题,逐一更换光耦,后发现该驱动电路的光耦带检测功能,其中一路光耦检测功能损坏,更换新的后,启动正常。
变频器开关电源维修技巧
![变频器开关电源维修技巧](https://img.taocdn.com/s3/m/7aff62b0bdeb19e8b8f67c1cfad6195f312be831.png)
变频器开关电源维修技巧
变频器开关电源维修技巧是一项非常重要的技能,因为开关电源是变频器电路中的核心组件之一,它提供电源给变频器控制电路、驱动电路等各个部分。
如果开关电源出现故障,将会导致整个变频器无法正常工作。
以下是一些常见的变频器开关电源故障及其维修技巧:
1. 故障:开关电源没有输出电压
维修技巧:首先检查开关电源输入端是否有电压,如果没有,检查电源输入端的保险丝、开关、插头等是否正常;如果有电压,那么可能是开关电源本身出现了问题,需要检查开关电源的输出端是否有电压,如果没有,可能是开关电源输出电容、输出二极管、输出电感等元器件出现问题,需要逐一排查和更换。
2. 故障:开关电源输出电压不稳定
维修技巧:这可能是由于开关电源内部的反馈电路出现问题,导致输出电压不稳定。
需要检查反馈电路中的元器件是否正常,如电容、电阻、二极管等,同时也需要检查输出负载是否合适,如果负载过大或过小都会导致输出电压不稳定。
3. 故障:开关电源输出电压过高或过低
维修技巧:如果开关电源输出电压过高或过低,可能是开关电源内部的电压反馈电路出现问题,需要检查电压反馈电路中的限压二极管、调节电阻等元器件是否正常,同时也需要检查输入电压是否正常。
4. 故障:开关电源输出电流过大或过小
维修技巧:如果开关电源输出电流过大或过小,可能是开关电源内部的电流反馈电路出现问题,需要检查电流反馈电路中的电流传感器、调节电阻等元器件是否正常,同时也需要检查输出负载是否合适。
总之,对于变频器开关电源的维修,需要对开关电源电路和变频器整个电路有较深入的了解,同时也需要有丰富的电子元器件知识和实践经验。
如果您不确定自己的维修能力,请务必寻求专业的技术支持。
变频器开关电源无输出故障分析和检修技巧
![变频器开关电源无输出故障分析和检修技巧](https://img.taocdn.com/s3/m/859d282f30126edb6f1aff00bed5b9f3f90f72e3.png)
变频器开关电源无输出故障分析和检修技巧
变频器的开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况一般是由于开关电源未产生震荡所致。
进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V之后慢慢下降,则说明开关电源未产生振荡。
开关电源未产生振荡的原因有:
1.开关管集电极未得到足够的工作电压;
2.开关管基极未得到启动电压和相关电路漏电;
3.开关管正反馈元件失效。
判断故障的方法和步骤
检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况:
1.开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常;
2.开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大;
3.开关管具备导通条件:开关管基极电压为0.6~0.7V,集电极电压大于250V,说明开关管具备了工作条件,故障在正反馈电路,包括正
反馈电阻,电容,续流二极管及开关变压器正反馈绕组及其之间的连接应制板。
变频器开关电源维修故障处理实例祥解(1)
![变频器开关电源维修故障处理实例祥解(1)](https://img.taocdn.com/s3/m/5724372d3169a4517723a384.png)
变频器开关电源维修故障处理实例祥解变频器开关电源电路板维修需求市场在我国非常大。
这其中,有不少原因是企业技术人员对对开关电源的故障判断不够正确、以及错误的电路板故障排除方法,导致设备出现必须进行P C B板卡检测与维修的严重后果。
本文以丹佛斯和台达两个品牌的变频器开关电源故障作为案例解析,供大家参考交流,如有不正确的地方,望网友指出批正。
一丹佛斯变频器上电操作面板闪烁故障。
该故障属于开关电源工作不正常,起振后又关断。
损坏的可能有:1、负载太大,以丹佛斯V L T5000为例,可能风机损坏、I G B T驱动线路短路,导致开关电源负载太重,开关电源电流过大,自动关断。
2、开关电源线路工作不正常。
丹佛斯V L T5000变频器开关电源线路有稳压、直流电压检测等,如果有任何一方面出现问题,都有可能导致此现象发生。
二丹佛斯变频器上电只有O N等亮,面板没有显示。
该现象大多数人会认为是控制卡损坏,但是维修中心最近总结出经验。
由于丹佛斯变频器V L T5000的开关电源线路有2路+5V D C,其中一路是开关电源反馈用,另外一路+5V D C是给控制卡供电,如果这路电源损坏,或者是没有电压,就会导致此现象。
所以在维修时候关键还是要多测量,对整个开关电源要有全面的了解,才不会素手无策。
只要把开关电源线路全部画出图纸,那么再困难的电源也好修复。
三丹佛斯变频器上电没有显示。
有些客户送修的变频器送点没有任何异常声音,没有异味,没有闪烁,也没有O N灯亮的状况。
维修中心修复了不少此类变频器,这些变频器就是开关电源线路损坏,对于此类故障,就需要有耐心和能力去维修了。
从起振线路、稳压回路,各类检测线路中逐步的检测。
可以先测量逐个元件,后送弱电测试,最后可以强电测试,才可以修复。
四台达变频器显示8888故障。
该故障产生的原因,基本上会先更换控制卡试一下。
其实有时候可能是控制卡损坏,但是大多数情况下是开关电源损坏导致。
以台达变频器为例,显示8888后,可以去测量该开关电源的反馈电压,如果是+5V D C就正常,很多情况下是+5V D C工作不正常。
干货!九例变频器主电路故障检修(带图)
![干货!九例变频器主电路故障检修(带图)](https://img.taocdn.com/s3/m/5330df2415791711cc7931b765ce050876327505.png)
干货!九例变频器主电路故障检修(带图)故障实例1[故障表现和诊断]一台正弦SINE303型7.5kW变频器,现场启动运行中,频率上升到7Hz左右,跳欠电压故障代码而停机。
故障复位后再行起动,电机才动一下,面板不显示了,机器像没通电一样,模变频器外壳,感觉很热。
测量R和+之间的正向电阻值,正常时应等于整流二极管的正向电阻(或正向导通电压值),现在测量值为无穷大,初步判断充电电阻断路。
[电路构成] 正弦SINE303型7.5kW变频器的主电路,如图1所示(将逆变功率电路省略未画),整流和储通电容之间,接有R92限流充电电阻和充电继电器REYAY1。
在三相电源输入端子之间,并联有压敏电阻元件和电容,以吸收电网侧的电压尖峰。
[故障分析和检修]拆机检查,充电电阻R92已烧断。
另行提供DC24V电源,单独给充电继电器REYAY1上电,细听其触点动作声音,由此判断REYAY1的工作状态。
在触点闭合状态,由电阻挡测量触点的接触电阻,未见异常,本着“眼见为实”的原则,拆光继电器外壳,观测触点状态,发现触点有烧灼现象,换新继电器和充电电阻后,故障排除。
图1 正弦SINE303型7.5kW变频器的整流、充电和储能电路故障实例2[故障表现和诊断] 台达DVP-1 22kW变频器,上电无反应,操作面板无显示,测量控制端子的24V电压为0。
判断为开关电源或开关电源的供电回路故障。
[电路构成]台达DVP-1 22kW变频器的主电路,由晶闸管半控桥,储能电路和逆变电路构成。
晶闸管3相半控桥的工作原理简述如下:变频器上电初始时期,VT1~VT3等3只晶闸管器件因无触发信号送入,处于截止状态。
R相输入交流电压(与S、T相构成通路)经D1半波整流、R1/R4限流、直流电抗器L为直流回路的储能电容充电,使主电路的P、N端子间的直流电压逐渐上升至一定值时,开关电源电路起振工作,主板MCU器件检测到直流回路的电压值上升至某一阈值后,从DJP1的23端子输出低电平的“晶闸管开通信号”,光耦合器DPH7由此产生输入侧电流,输出侧内部光敏晶体管导通,将振荡器DU2由3脚输出的脉冲信号输入晶体管DQ14的基极,经复合放大器DQ14、DQ15进行功率放大,由二极管DD16、DD30、DD31将触发脉冲信号分为3路,输入至晶闸管VT1~VT3等3只晶闸管的栅阴结,使VT1~VT3等3只晶闸管同时开通,由3只晶闸管和3只整流二极管构成的半控桥电路“变身为”3相桥式整流电路。
movipro变频器日常使用维护及故障案例
![movipro变频器日常使用维护及故障案例](https://img.taocdn.com/s3/m/c25c2bbb2e3f5727a4e96264.png)
30囱0工科抗2020年•第1期MOVIPRO变频器日常使用维护及故障案例◊吉林大学机械学院马力戈汽车行业内机械化输送设备大量使用变频器,主要作用是可调整生产线的节拍,同时避免直接启动给机械设备造成冲击和损坏。
现场升降机和剪式升降机已大量使用SEW公司MOVIPRO变频器,此变频器由于进入中国市场比较晚,可能好多用户对它并不是很熟悉,本文主要介绍了MOVIPRO变频器的合理选用和安装、日常管理维护、更换变频器时注意事项及故障案例。
1选用合理变频器MOVIPRO^频器使用过程中发生的问题和故障,很多是因为变频器型号选择不洽当造成的。
所以,选择变频器型号时一定要考虑其安装环境、电机额定参数、电机接等方面。
1.1MOVIPRQ变频器与电机规定额定参数相匹配MOVIPRO变频器用来驱动三相异步电机或永磁交流同步电机,所以选择变频器型号应与其驱动电机规定额定参数相匹配。
(1)电压匹配:变频器的额定输出电压与电机额定符。
(2)电流匹配:变频器额定输出电流取决于变频器功率大小,因雌择变频出电是酬变频器功率。
变频器额定输出电流一定大于电机额定电流并且有一定量的余量。
如果使用环境温度高或电机角接,一軽变频器功率比电机功率要大一档最好,比如0.37kW 电机应选0.55kW功率变频器。
(3)制动电压匹配:变频器制动电压与电机抱闸制动电压相符。
1.2安装环境要求(1)环境温度:SEW公司要求变频器使用环境温度最高不超过如贮,使用环境温度在5贮~40贮范围内,否则将影响变频器使用寿^和可靠性。
另外,需考 虑变频器自身谢塾及周围环境可能出现的极端情况下导致环境温度超过40贮时候,一旦环境温度超过处£,每升高变频器功率将降低3%直至最高温度60匕变频器功率选择时应充分考虑到。
(2)振动和冲击:变频器在运行过程中,要注意避免受到振动和冲击。
以避 免引起变频器内部元件损坏和插头松动。
故通常要求安装场所的振动加速度多限制0.6g以下,特殊场所可加防震措施。
变频器开关电源故障检修五例
![变频器开关电源故障检修五例](https://img.taocdn.com/s3/m/0d8c781e5f0e7cd1842536a3.png)
变频器开关电源故障检修五例例一:康沃CVF-G1 型开关电源故障检修接手了3台康沃CVF-G1型小功率机器,故障皆为开关电源无输出,无屏显。
该机开关电源的IC为3844B,手头无此型号的IC,况不可能3台机器都是3844B 损坏了吧?故先从其外围电路查起。
所有开关电源不外乎有以下几条支路:1、上电启动支路,往往由数只较大阻值的电阻串联而成,上电时将500V直流引至3844B供电脚,提供开关管的起振电压;2、正反馈和工作电源支路,由反馈绕组和整流滤波电路组成(有的机器由两绕组供电支路组成,有的兼用。
);3、稳压支路,一般由次级5V供电支路,将5V电压的变化与一基准电压相比较,其变量由光耦反馈到初级3844B 的2脚,但该机型的电压反馈是取自初级。
电路起振的条件是:1、500V供电回路正常,500V直流经主绕组加至开关管漏极,开关管源极经小阻值电流采样电阻形成供电回路;2、上电启动支路正常,提供足够幅度的起振电压(电流);3、正反馈和工作电源支路正常,提供满足幅度要求的正反馈电压(电流)和工作电源;4、负载侧无短路,负载侧短路无法使反馈电压建立起来足够的幅度,故电路不能起振。
以上电路可称之为振荡回路。
为缩小故障,应采用将稳压支路开路,看电路能否起振。
应施行降、调压供电并将易受过电压冲击损坏的电路供电切断,确保安全。
若能起振,说明满足起振条件的4个支路大致正常,可进而排查稳压支路的故障元件。
若仍不能起振,说明故障在振荡回路,可查找上述的四个支路。
依上述检查次序,甲、乙、丙机开关电源的故障都在振荡电路。
检查甲机四个支路及3844B外围元件都无异常,试将一块3845B代换之,电源输出正常,修复;乙机,换用3845B后仍不能起振,4个支路元件都无异常,试将上电启动支路的300k电阻并联200k 电阻后,上电恢复正常;丙机也为3844B损坏,换新块后故障排除。
只有乙机的故障稍微有趣,试分析如下:表面看起来,乙机查不出一个坏件,致使维修陷入困境。
变频器开关电源的原理及维修(整理)
![变频器开关电源的原理及维修(整理)](https://img.taocdn.com/s3/m/bccd2737bceb19e8b8f6bac9.png)
变频器开关电源的原理及维修(整理)变频器开关电源的原理及维修维修部杨海涛电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。
电源的种类很多,开关电源由于体积小、重量轻、效率高、动态稳压效果好,因此被广泛应用到了各种电子设备中。
下面就以UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。
右图a-1所示为开关电源PWM波形调制芯片。
该图为8脚双列直插封装。
7脚是芯片的电源输入端,该端在内部集成了稳压器和最低门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只降压电阻即可。
最低门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。
正常工作时该端电压约为12V—16V之间。
4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。
a—1 2脚、3脚是输出取样反馈端,用于检开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。
在变频器系统中,开关电源需要输出:一组5V/DC、一组?12V/DC、四组20V/DC等多组电压。
其中5V/DC 主要用作主板及控制板的供电,?12V/DC用作霍尔检测器件的供电,四组20V/DC用作IGBT的触发供电。
变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。
a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过降压电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。
此时6脚输出PWM信号去控制开关管Q1的通断,R10是开关管的电流检测电阻,通过检测R10的电压值来实时调整PWM的脉冲宽度,从而达到自动稳压的目的。
在图中变压器的副绕通过D6、C7、C8整流滤波之后到了UC3844的7脚,增强了UC3844的驱动能力。
ABB变频器维修上电无显示
![ABB变频器维修上电无显示](https://img.taocdn.com/s3/m/fee35028192e45361066f5ca.png)
ABB变频器维修上电无显示【案例1】:变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。
按照上述维修步骤对开关电源板进行测量。
在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W 的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM 调制芯片得不到启动的电源,所以无法起振工作。
为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关居上键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常,此变频器修复完毕(注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要把功率大的、容易坏的元件都测一下,确定没问题后再试机,这样既安全又保险)。
变频器维修【案例2】:变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。
按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量时发现开关管c-e结击穿,将其拆下,然后检测变压器、及整流二极管、滤波电容等关键器件,在确定没问题之后上电试验,输出各组电压正常,装机测试正常,故障排除。
【案例3】:变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。
按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量通过,第三步测量通过,第四步测量通过,然后单独对电源板加电测量PWM调制芯片的电源端对地有12.5V左右的电压,说明供电正常。
用示波器看芯片的PWM输出端,发现没有PWM调制波形。
更换PWM 调制芯片后,上电试验正常,故障排除。
变频器维修【案例4】:变频器(故障现象:上电无显示)屡烧开关管经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。
按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量发现开关管击穿,第三步测量通过,第四步测量通过,更换新的开关管,单独对电源板加电,管子又烧了。
变频器常见故障代码及处理实例
![变频器常见故障代码及处理实例](https://img.taocdn.com/s3/m/076bdd326f1aff00bfd51e67.png)
一、过流(OC)过流是变频器报警最为频繁的现象。
1.1现象(1) 重新启动时,一升速就跳闸。
这是过电流十分严重的现象。
主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。
(2) 上电就跳,这种现象一般不克不及复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。
(3) 重新启动时其实不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩抵偿(V/F)设定较高。
1.2 实例(1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC”分析与维修:打开机盖没有发现任何烧坏的迹象,在线丈量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后丈量7个单元的大功率晶体管开通与关闭都很好。
在丈量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。
模块装上上电运行一切良好。
(2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不克不及复位。
分析与维修:首先检查逆变模块没有发现问题。
其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。
二、过压(OU)过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。
2.1 实例一台台安N2系列3.7kW变频器在停机时跳“OU”。
分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,丈量放电电阻没有问题,在丈量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。
安川变频器的常见故障
![安川变频器的常见故障](https://img.taocdn.com/s3/m/0a6e83aef111f18582d05a75.png)
安川变频器的常见故障1 开关电源损坏开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说是比较成功的。
616G3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。
然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。
在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。
前几期我们谈到的LG变频器也使用了类似的控制方式。
用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。
此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。
我们可以从输出侧查找故障。
此外当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。
2 SC故障SC故障是安川变频器较常见的故障。
IGBT模块损坏,这是引起SC故障报警的原因之一。
此外驱动电路损坏也容易导致SC故障报警。
安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款部带有放大电路,及检测电路的光耦。
此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。
IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。
其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC 故障报警。
3 OH—过热过热是平时会碰到的一个故障。
当遇到这种情况时,首先会想到散热风扇是否运转,观察机器外部就会看到风扇是否运转,此外对于30kW以上的机器在机器部也带有一个散热风扇,此风扇的损坏也会导致OH的报警。
安川变频器开关电源维修方法
![安川变频器开关电源维修方法](https://img.taocdn.com/s3/m/b6dc7a3c25c52cc58bd6bef2.png)
安川变频器开关电源维修方法摘要: 安川变频器开关电源损坏所导致变频器故障。
开关电源损坏是安川变频器最常见的故障之一,开关电源损坏后导致的故障情况是变频器的操作面板没有任何显示,测量开关电源各输出均无直流电压输出。
这种情况通常是安川变频...安川变频器开关电源损坏所导致变频器故障。
开关电源损坏是安川变频器最常见的故障之一,开关电源损坏后导致的故障情况是变频器的操作面板没有任何显示,测量开关电源各输出均无直流电压输出。
这种情况通常是安川变频器开关电源部分电路中的开关击穿或烧坏比较多见,有时也会出现脉宽调制芯片损坏或启动电阻出现阻值变大或烧断等情况。
我们采用万用表的电阻档只要检查上述部分的元件,就可以找出损坏的原件,然后采用同型号同规格的进行更换,就能把安川变频器开关电源部分的故障排除了。
安川变频器开关电源的另一常见的故障就是在给它上电后会听到刺耳的尖叫声,这种情况多是由脉冲变压器发出的,一般是开关电源输出侧有短路现象所导致的。
维修这种故障时我们可以从输出侧查找故障,以24V 风扇机械故障出现故障卡死导致开关电源负载过重所致。
安川G7 变频器内部结构原理图安川变频器最常见的另一个故障是SC 过电流故障SC 故障是安川变频器较常见的故障。
通常变频器内部的IGBT 模块损坏是引起SC 故障报警的主要原因之一;此外驱动电路损坏也会导致SC 故障报警。
安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT 模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。
如果出现运行时电机出现抖动,三相输出电流或电压不平衡都会引发SC 故障报警,如果报sc 故障是由于驱动电路引起时,只要对驱动电路中的光耦、二极管、三极管等元件认真进行检查,一般都能查出损坏的元件,把这些损坏的元件加以更换,就能解决SC 故障了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器开关电源故障检修五例例一:康沃CVF-G1 型开关电源故障检修接手了3台康沃CVF-G1型小功率机器,故障皆为开关电源无输出,无屏显。
该机开关电源的IC为3844B,手头无此型号的IC,况不可能3台机器都是3844B 损坏了吧?故先从其外围电路查起。
所有开关电源不外乎有以下几条支路:1、上电启动支路,往往由数只较大阻值的电阻串联而成,上电时将500V直流引至3844B供电脚,提供开关管的起振电压;2、正反馈和工作电源支路,由反馈绕组和整流滤波电路组成(有的机器由两绕组供电支路组成,有的兼用。
);3、稳压支路,一般由次级5V供电支路,将5V电压的变化与一基准电压相比较,其变量由光耦反馈到初级3844B 的2脚,但该机型的电压反馈是取自初级。
电路起振的条件是:1、500V供电回路正常,500V直流经主绕组加至开关管漏极,开关管源极经小阻值电流采样电阻形成供电回路;2、上电启动支路正常,提供足够幅度的起振电压(电流);3、正反馈和工作电源支路正常,提供满足幅度要求的正反馈电压(电流)和工作电源;4、负载侧无短路,负载侧短路无法使反馈电压建立起来足够的幅度,故电路不能起振。
以上电路可称之为振荡回路。
为缩小故障,应采用将稳压支路开路,看电路能否起振。
应施行降、调压供电并将易受过电压冲击损坏的电路供电切断,确保安全。
若能起振,说明满足起振条件的4个支路大致正常,可进而排查稳压支路的故障元件。
若仍不能起振,说明故障在振荡回路,可查找上述的四个支路。
依上述检查次序,甲、乙、丙机开关电源的故障都在振荡电路。
检查甲机四个支路及3844B外围元件都无异常,试将一块3845B代换之,电源输出正常,修复;乙机,换用3845B后仍不能起振,4个支路元件都无异常,试将上电启动支路的300k电阻并联200k 电阻后,上电恢复正常;丙机也为3844B损坏,换新块后故障排除。
只有乙机的故障稍微有趣,试分析如下:表面看起来,乙机查不出一个坏件,致使维修陷入困境。
但减小启动支路的电阻值后,则能正常工作。
乙机的“异常之处”到底在哪里呢?可能是元器件性能的微弱变化导致电器参数的的变动,如开关管放大能力的些微降低、或开关变压器因轻度受潮使Q值变化、或3844B输出内阻有所增大,或阻容元件有轻微变异,上述原因的查找与确认委实不易,或者是有一种,甚至有可能是数种原因参与其中。
但上述多种原因只导致了一个后果:开关管不能被有效启动,电路不能起振!解决的办法是转变掉现有状态,往促成开关管起振的方面下力气,在起动支路并联电阻是最省力也是最有效的一个方法。
顺便说明一下,该机的启动支出路电阻为300k,再加上其它环节的电阻,实际加到开关管栅极的启动电流仅1mA多一点。
虽然场效应管为电压控制器件,理论上不吸取电流,但能使其导通的结电容充电电流,恰恰是使其导通的硬指标。
从此一角度来讲,场效应管仍为电流驱动器件。
当电路参数产生变动后,原启动支路的供给电流不足以使开关管导通乃至微导通,所以电路不能起振。
将此启动电流值稍稍加大,电路便有可能起振。
300k启动电阻有阻值偏大之嫌,我认为稍稍减小其阻值有利无弊。
因而高效率的修理方法不妨走以下的路子:检查开关管不坏,4个支路大致无异常,先在启动支路上并联电阻试验,无效后,再换用3844B,再无效,才下功夫细查电路。
往往第一、二个步骤,故障就已经排除了。
例二:佳灵JP6C-9开关电源故障一例上电,操作面板无显示,检测主电路输入、输出端子电阻均正常。
判断为控制板开关电源故障。
细听有轻微的间隔的嗒、嗒声,显然为电源起振困难。
据经验,此种现象多为电源负载异常引起。
查各路电源的整流、滤波及负载电路,均无异常;先后脱开散热风扇电源、逆变驱动电源、操作面板显示电源等电流较大的电源支路,故障现象依旧。
检查并联在开关变压器一次绕组的尖峰电压吸收网络(由电阻与电容并联后与二极管串联),用指针式万用表测量二极管正反向电阻均为15欧姆,感觉异常。
将两只并联二极管拆开检测,正常。
细观察,电容器有细微裂纹,测其引脚,查出为2kV 103电容击穿短路。
更换后,机器恢复正常。
此电容短路引起开关电源起振困难的故障殊不多见。
此电压尖峰电压吸收网络的设置,本是为了吸收开关管截止期间产生的异常的危及开关管安全的尖峰电压,但电容击穿后,开关变压器一次绕组相当于并联了二极管。
对开关变压器来说,开关变压器在开关管导通期间吸入的能量在开关管截止期间,被二极管快速泻放,不能够积累产生振荡能量,同时二极管相当开关变压器一个过重的负载,因而造成开关电源起振困难的故障现象。
例三:台安N2-1013变频器开关电源故障上电即跳OC故障,检测逆变输出模块未损坏,六块逆变驱动IC已损坏大半。
进一步检查发现,开关电源有一奇特现象:甩开CPU主板供电时,测+5V 正常,但其它支路的供电较正常偏高,如+15V为+18V,22V的驱动供电为26V,担插上CPU主板的接线排时,测+5V仍正常,但其它支路的供电较则出现异常升高现象!如22V的驱动供电甚至于上升为近40V(PC923、PC929的供电极限电压为36V),驱动IC的损坏即源于此。
重点检查稳压环节,IC202、PC9等外围电路皆无异常。
进一步查找其它电路也无“异常”,检修陷入僵局。
分析:电路的稳压环节是起作用的。
稳压电路的电压采样取自+5V电路,拔掉CPU主板的接线排时,相当于+5V轻载或空载,+5V的上升趋势使电压负反馈量加大,电源开关管驱动脉冲的占空比减小,开关变压器的激磁电流减小,其它支路的输出电压相对较低;当插入CPU主板的接线排时,相当于+5V带载或重载,+5V的下降趋势使电压负反馈量减小,电源开关管驱动脉冲的占空比加大,开关变压器的激磁电流上升,使其它支路的输出电压幅度上升。
现在的状况是,+5V电路空载时,其它供电虽输出较低,但仍偏高。
+5V加载后,其它供电支路则出现异常高的电压输出!故障环节要么是电源本身故障导致带载能力变差,要么是负载电路异常,两者的异常都使得稳压电路进行了恪尽职守的“误”调节,结果是维护了+5V故障电路的“电压稳定”,出现了其它供电支路“异常的电压变化”!下手检修+5V电路,拔下电源滤波电容C239,220u10V,检测:容量仅十几个微法,存在明显的漏电电阻。
一只电容的失效正好满足了两个条件:容量变小使电源带载能力差,漏电使负载变重。
更换此电容后,试机正常。
例四:东元7200GA-30kW变频器开关电源故障一例该机在遭受雷击损坏修复后,运行了一个多月,又出现了奇怪的故障现象:运行当中有随机停机现象,可能几天停机一次,也可能几个小时停机一次;起动困难,起动过程中电容充电短接接触器哒哒跳动,起动失败,但操作面板不显示故障代码。
费些力气起动成功后又能运转一段时间。
将控制板从现场拆回,将热继电器的端子短接,以防进入热保护状态不能试机;将电容充电接触器的触点检测端子短接以防进入低电压保护状态不能试机,进行全面检修,检查不出什么异常,都是好的呀。
又将控制板装回机器,上电试机,起动时接触器哒哒跳动,不能起动。
拔掉12CN插头散热风扇的连线后,情况大为好转,起动成功率上升。
仔细观察,起动过程中显示面板的显示亮度有所降低,判断故障为控制电源带负载能力差。
各路电源输出空载时,输出电压为正常值。
将各路电源输出加接电阻性负载,电压值略有降低;+24V接入散热风扇和继电器负载后,+5V降为+4.7V,此时屏显及其它操作均正常。
但若使变频器进入启动状态,则出现继电器哒哒跳动,间或出现“直流电压低”、“CPU与操作面板通讯中断”等故障代码,使操作失败。
测量中,当+5V降为+4.5V以下时,则变频器马上会从启动状态变为待机状态。
详查各电源负载电路,均无异常。
分析:控制电源带负载能力差的判断是正确的。
由于CPU对电源的要求比较苛刻,不低于4.7V时,尚能勉强工作;但当低于4.5V时,则被强制进入“待机状态”;在4.7V到4.5V之间时,则检测电路工作发出故障警报。
可是意想不到的是此故障的检修竟然相当棘手,遍查开关电源的相关元器件竟“无一损坏”!无奈之下,试将U1(KA431AZ)的基准电压分压电阻之一的R1(5101)并联电阻试验,其目的是改变分压值而使输出电压上升。
测输出电压略有上升,但带载能力仍差。
细观察线路板,分流调整管Q1似有焊接痕迹,但看其型号为原型号,即使更换也是从同类机中拆换的。
该机的开关管Q2为高反压和高放大倍数的双极型三极管,市场上较难购到,况电路对这两只管子的参数有较严格的要求。
再结合故障分析,分流调整管的工作点有偏移,对Q2基极电流的分流太强,将导致电源带载能力差。
试将与电压反馈光耦串接的电阻R6(330欧)串联47欧电阻以减小Q1的基极电流,进而降低其对Q2的分流能力,使电源的带载能力有所增强。
上电试机,无论加载或启动操作,+5V均稳定输出5V,故障排除!故障推断:开关管Q1有老化现象,放大能力下降,故经分流后的Ib值不足使其饱合导通(导通电阻增大)而使电源带载能力变差;分流支路有特性偏移现象,使分流过大,开关管得不到良好驱动,从而使电源带载能力差。
例五:英威腾P9/G9-55kW变频器开关电源检修一例在雷雨天气中突然停机,面板无显示,疑遭雷击损坏。
检查:输入整流模块与输出逆变模块俱无损坏。
开关电源无输出,开关管损坏,电源引入铜箔条及开关管漏极回路的铜箔条都已与基板脱离,说明此回路承受了大电流冲击。
更换开关管与振荡块3844B后,给开关电源先送入交流220V整流电源,不起振,也验明了无短路现象;再送入500V直流电源,上电即烧电源引入保险丝F1。
停电测量检查,无短路现象,更换保险丝后上电,低于300V直流时,不起振,送入500V时仍烧保险丝。
分析电源的负载电路有短路故障时,电源往往不能起振;怀疑起振后开关管回路存在短路故障,但测量检查,确实无短路现象。
检修进入死胡同。
仔细观察开关电源的线路板,开关电源的约550V直流电源通过主直流回路引入,线路板为双面线路板。
电源引入端子在线路板的边缘,正面为+极引线铜箔条,反面为-极引线铜箔条,发现线路板边缘——+、-铜箔条之间有一条“黑线”!由于潮湿天气,使线路板材的绝缘降低,引起+、-铜箔条之间跳火,线路板碳化。
电源电压低于某值时不会击穿,高于500V时便使碳化线路板击穿,烧掉保险丝。
烧保险的原因并非起振后开关管回路有短路故障,而由线路板碳化引起。
清除线路板边缘的碳化物并做好绝缘处理,送入500V时不再烧保险,但不能起振。
检查3844B供电支路的整流二极管D38(LL4148)有一定的反向电阻,更换后试机正常。
由线路板潮湿后被击穿碳化,引起烧保险故障,这也是开关电源中较少碰到的故障现象。