多元复合函数关系图与求导法则
多元复合函数的求导法则
z = f (u, v), u = ϕ(x, y), v =ψ (y)
z = f (u, v, t), u = ϕ(t),
v =ψ (t)
z = f (u, x, y), u = ϕ(x, y)
解 (1)
z = f (u, v), u = ϕ(x, y), v =ψ (y)
+
∂z ∂z ∂u = ∂x ∂u ∂x ∂z = ∂u ∂z = ∂u ∂z ∂z = ∂y ∂u
2 2 x2 + y2 +x4 sin2 y
x2 + y2 +z2
∂f ∂u ∂f ∂f ∂z ∂f ∂f ∂z = = + ⋅1 + ⋅0 + ∂y ∂y ∂x ∂z ∂y ∂y ∂z ∂y
= 2ye
x2 + y2 +z2
4
x2 + y2 +z2 x2 cos y ⋅ + 2ze
x2 + y2 + x4 sin2 y
y
∂z ∂u ∂z ∂v ∂z + = ∂y ∂u ∂y ∂v ∂y
注
设 u = ϕ( x, y)、 =ψ( x, y)及w = ω( x, y) 都在点 v
(x,y) 具有对x及对y的偏导数,函数z=f(u,v,w)在对应点 (u,v,w)有连续偏导数,则复合函数
z = f [ϕ(x, y),ψ (x, y),ω(x, y)]
= eu (sin v + y cos v) = ex+ y[sin( xy) + y cos(xy)]
∂z ∂z ∂u ∂z ∂v = + ∂y ∂u ∂y ∂v ∂y
= eu sin v ⋅1 + eu cos v ⋅ x
§8.4 多元复合函数的求导法则与隐函数的求导公式
M
26
机动 目目录录 上上页页 下下页页 返返回回 结结束束
定理2 若函数 F (x, y, z) 满足:
① 在点
的某邻域内具有连续偏导数 ,
② F (x0 , y0, z0) 0 ③ Fz (x0 , y0, z0) 0
则方程
在点
某一邻域内可唯一确
定一个单值连续函数 z = f (x , y) , 满足
机动 目目录录 上上页页 下下页页 返返回回 结结束束
导数的另一求法 — 利用隐函数求导
sin y ex xy 1 0, y y(x) 两边对 x 求导
两边再对 x 求导
y x0
ex y cos y x (0,0)
sin y ( y)2 cos y y
令 x = 0 , 注意此时 y 0 , y 1
8
目录 上页 下页 返回 结束
例3 设 z uv sin t , u et , v cos t , 求全导数 dz .
dt
解 dz z du
z
dt u dt
t
z
vet
cos t
e t (cost sin t) cos t
uvt tt
注意:多元抽象复合函数求导在偏微分方程变形与 验证解的问题中经常遇到, 下列两个例题有助于掌握 这方面问题的求导技巧与常用导数符号.
x y
解 z
z v
x
v x
eu sin v eu cos v 1
z
z
z v
y
v y
eu sin v eu cos v 1
uv x yx y
7
目录 上页 下页 返回 结束
例2 u f (x, y, z) ex2 y2 z2 , z x2sin y, 求 u , u x y
多元多重复合函数的求导法则
多元多重复合函数的求导法则多元多重复合函数是多元函数中重要的一类函数,常用来描述多元关系,其中常用求导法则如下: 1. 链式法则:链式法则是求导最基本的法则,其定义为:若函数y=f(x)是关于变量x的函数,而z=F(y)是关于y的函数,则关于x的F(y)的导数由z的导数乘以y的导数的乘积来决定,即:∂z/∂x = (∂z/∂y) *(∂y/∂x) 2. 偏导数法则:偏导数法则认为多元函数是关于各独立变量变化而变化,即每个变量是由与它独立变量组成的函数组合而成。
这时,只要将函数分解为每个独立变量的函数,分别求出偏导数后,组合即可得到多元函数的极限导数。
3. 偏导数链式法则:偏导数链式法则是将链式法则与偏导数法则相结合而推出的求多元复合函数极限的法则,其定义为:若函数u=f(x,y,z)是三元函数,而v=F(u,z)是关于u,z的多元函数,则u的偏导数即得到v的偏导数,即:∂v ∂x = (∂v/∂u)(∂u/∂x) + (∂v/∂z)(∂z/∂x) 4.Derivative of a composite function:This rule states that for a function y = f(x) composed of two functions u = g(x) and v = h(x), then the derivative of y with respect to x is equal to the product of the derivatives of u and v with respect to x. This can be written as y'(x) = u'(x)·v'(x) 以上是多元多重复合函数常用的求到法则,而求多元复合函数极限的步骤可由偏导数链式法则推导而得。
首先,求出函数中每个变量的偏导数,然后分别乘以各自的函数值,最后将结果进行相乘组合计算即可得到多元复合函数的极限值。
高等数学第八章多元微分第四节多元复合函数求导
x yx y
上页 下页 返回 结束
上述求导规则称为多元复合函数的链式法则. 具有 如下特点:
1. 复合后的函数有几个自变量,对应地就有几个 偏导数;
2. 有几个中间变量,就有几项相加;
3. 相加的每一项都是复合函数对某一中间变量的
偏导数和该中间变量对特定自变量的偏导数的乘积;
4. 中间变量或自变量只有一个时,公式中的求导
记号用 d ,不止一个时用偏导数记号
dx
x
5
上页 下页 返回 结束
特例1. z f( u ,v ) ,u ( x ,y ) ,v ( y )
z z u z 0 z u x u x v u x
z z u z dv y u y v d y
特例2. z f( x ,v ) ,v ( x ,y )
2001考研
解 由题设 ( 1 ) f(1 ,f(1 ,1 ))f(1,1)1
d 3(x)
dx
x
132(x)ddx
x1
3 f1(x,f(x,x))
f 2 ( x , f ( x , x ) )
32 3(23)51
x 1
上页 下页 返回 结束
个人观点供参考,欢迎讨论!
续的偏导数, 则复合函数
的导数为
dzzduzdv dt u dt v dt
全导数 证略(利用全增量公式)
z
uv tt
注 求多元复合函数的偏导数,只要对每一个中间
变量施行一元函数的链式法则,再相加即可. 重要的是
搞清楚函数的复合关系.
上页 下页 返回 结束
推广 设 zf(u,v,w ),而
u ( t ) ,v ( t ) ,w ( t )
上页下页返回结束dtdzdtdzdtdudtdvcoslnsinlncosln上页下页返回结束解利用全导数求导数dxdydxdydxdudxdvcossinlnlnlnlnsin上页下页返回结束引入中间变量cossin上页下页返回结束1211上页下页返回结束xyzxyxyzxy上页下页返回结束二全微分形式的不变性是自变量还是中间变量则复合函数其全微分的表达形式都一样这一性质称为全微分形式的不变性
多元复合函数求导法则和隐函数求导公式
z
= e [ y ⋅ sin( x + y ) + cos( x + y )]
xy
u x yx
v y
∂ z ∂ z ∂u ∂ z ∂v = ⋅ + ⋅ ∂ y ∂u ∂ y ∂v ∂ y = e u sin v ⋅ x + e u cos v ⋅1 = e [ x ⋅ sin( x + y ) + cos( x + y )]
4
x 2 + y 2 + x 4 sin 2 y
dz . 例3. 设 z = u v + sin t , u = e , v = cos t , 求全导数 dt d z ∂ z du ∂ z dv ∂ z + = ⋅ + ⋅ 解: z d t ∂u d t ∂v dt ∂t
t
= v e t− u sin t + cos t = e t (cos t − sin t ) + cos t
u
x y z
= 2 x (1 + 2 x sin y ) e
2
x 2 + y 2 + x 4 sin 2 y
∂u ∂ f ∂ f ∂ z + ⋅ = ∂ y ∂ y ∂z ∂ y
x
cos y
y
= 2 ye
x2 + y2 + z 2
+2 z e
x2 + y2 + z 2⋅ x 2
= 2 ( y + x sin y cos y ) e
多元复合函数的求导法则
一元复合函数
y = f (u ), u = ϕ ( x)
dy dy d u 求导法则 = ⋅ dx du dx 微分法则 d y = f ′(u ) d u= f ′(u ) ϕ ′ ( x) d x
9-4-多元复合函数求导法则
一、多元复合函数概念
类型
u f (x) x (s,t)
u f ((s,t))
多 元 复 合 函 数
一、多元复合函数概念
类型一
s
➢复合关系图
u
x
t
一、多元复合函数概念
类型
u f (x) x (s,t)
u f ((s,t))
多
x x(t) u f (x, y) y y(t)
一、多元复合函数概念 二、多元复合函数求导法则 三、多元复合函数的高阶偏导数
u f (x, y,(x, y)) F(x, y)
一、多元复合函数概念
类型一
➢复合关系图
类型二
➢复合关系图
类型三
➢复合关系图
类型四
➢复合关系图
类型五
➢复合关系图
s ux
t x uy t
xs u
yt
x
u
y t
t
xx
u
y z
y
二、多元复合函数求导法则
类型
u f (x) x (s,t)
u f ((s,t))
u f (x, y, z) z (x, y)
u f (x, y,(x, y)) F(x, y)
类型三
➢复合关系图 ➢求导法则
xs u
yt
定理 如果函数x=x(s,t),y=y(s,t)在点(s,t)具有导数,则复合函数u=f(x(s,t),y(s,t))
多
u f (x, y)
x x(t)
y
y(t)
u f (x(t), y(t)) F(t)
元 复 合
u f (x, y)
x x(s,t)
7(4)多元复合函数的求导法则
f u
u t
f v
v t
f w w t
kt k1
f
( x,
y, z)
tx
f u
t
y
f v
t
z
f w
tkt k1
f
(
x,
y,
z)
k tk f ( x, y, z) kf (u,v, w)
uxf ux
yv
f
vy
wz
f
wz
kf (xu,yv, wz )
(C ) x f y f z f kf ( x, y, z); x y z
求fxy (0, 0)和f yx (0, 0)
解 当( x, y) (0,0)时, 有
f x ( x,
y)
3x2 y( x2 (x2
y2) x3 y y2 )2
2x
3x2 y x2 y2
2x4 y ( x2 y2 )2
,
fy(x, y)
x3 x2 y2
(
2 x2
x3
y2 y2
)2
.
19
设多元f 复( x合,函y)数的求x导2x法3则yy2 0
当( x, y) (0,0),
当(
x,
y
)
求f (0,0).
xy
(0,0)和f
xy
(0,0).
当( x, y) (0,0)时, 按定义得
f x (0,0)
lim x0
f
(0
x,0) x
f
(0,0)
lim 0 x0 x
0
f
y
4
多元复合函数的求导法则
分量原则
问: 函数对某自变量的偏导数之结构
9(4)多元复合函数的求导法则
∂u ∂u ∂u sinθ = cosθ − ∂x ∂ r ∂θ r
∂ u ∂ u = ∂u + 1 ∂u 得 + ∂ y ∂r r 2 ∂ θ ∂x
2 2
2 2
多元复合函数的求导法则
∂u ∂u ∂u sin θ cos θ − = ∂x ∂r ∂θ r
x2 + y2 +z2
∂u ∂u 求 , ∂x ∂y
u
+2ze
x2 + y2 +z2
2 2
⋅ 2 xsin y
4 2
= 2 x (1+ 2 x2 sin2 y) ex
∂u ∂ f ∂ f ∂z + ⋅ = ∂y ∂y ∂z ∂y
+ y +x sin y
x y z
x y
= 2ye
x2 + y2 +z2
∂z ∂z ∂u ∂z ∂v ∂z ∂w = + + ∂x ∂u ∂x ∂v ∂x ∂w ∂x
∂z ∂z ∂u ∂z ∂v ∂z ∂w = + + ∂y ∂u ∂y ∂v ∂y ∂w ∂y
u
z
x
v w
y
多元复合函数的求导法则
例2 设z = e u sin v , u = xy , v = x + y , 求 ∂z 和 ∂z . ∂x ∂y ∂z ∂z ∂u ∂z ∂v 解 = ⋅ + ⋅
r θ
x y
多元复合函数的求导法则
y u = F(r,θ ), r = x + y , θ = arctan x ∂ u ∂ u ∂ r ∂u ∂ θ ∂ u y ∂ u x = + = + ∂ y ∂ r ∂ y ∂ θ ∂ y ∂r r ∂ θ r 2 r x ∂u ∂u cos θ sin θ + u = ∂r ∂θ r y θ
多元复合函数的求导法则与隐函数的求导公式
8.3 多元复合函数的求导法则与隐函数的求导公式一.多元复合函数的求导法则类似于一元复合函数的定义,我们现在给出二元复合函数的定义。
定义 设函数),(v u f z =,而u 、v 均为x 、y 的函数,即),(y x u u =,),(y x v v =,则函数)],(),,([y x v y x u f z =叫做x 、y 的复合函数。
其中u 、v 叫做中间变量,x 、y 叫做自变量。
现在再将一元函数微分学中的复合函数的求导法则,推广到多元复合函数。
多元复合函数的求导法则在多元函数微分学中也起着重要作用。
定理 如果函数),(y x u u =,),(y x v v =在点(x,y )处都具有对x 及对y 的偏导数,函数),(v u f z =在对应点(u,v )处具有连续偏导数,则复合函数)],(),,([y x v y x u f z =在点(x,y )处存在两个偏导数,且具有下列公式xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ 定理中的公式叫做复合函数的偏导数的锁链法则,它可以推广到各种复合关系的复合函数中去。
作为初学者,我们常用图示法表示各变量之间的关系(如图所示)。
u xzv y图中的每一条线表示一个偏导数,如“z —u ”表示u z ∂∂。
现在我们利用图来求xz ∂∂,首先看z 通过中间变量到达x 有两条路径:x u z →→和x v z →→,那么结果就一定是两项之和,又在第一项中有u z →和x u →两个环节,那么这一项一定是两式相乘,即xu u z ∂∂∂∂。
同理第二项为xv v z ∂∂∂∂。
于是 xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ 一般地,无论复合函数的复合关系如何,因变量到达自变量有几条路径,就有几项相加,而一条路径中有几个环节,这项就有几个偏导数相乘。
8.6(2)多元复合函数的求导法则
解
由 u x 3 y 2 z ,可得
u 3 x 2 y 2 z x 3 y 2 z x x
再由所给方程,利用隐函数导数公式来求 z . x
设 F ( x , y , z ) x 2 y 2 z 2 3 xyz ,则
Fx 2 x 3 yz ,
Fz 2 z 3 xy
v 1 (F ,G ) y J ( u, y )
u 1 (F ,G ) , y J ( y, v )
例 16
u 3 xv y u v 设 3 ,求 和 . x y v yu x
解
此题采用推导公式(1)的方法求解
由所给方程可确定 u, v 是 x , y 的函数,
2
x2 y
2 x )dx
( x cos xy x e
x2 y
2 y )dy 0
x2 y
于是得
dy y cos xy 2 xye 2 x 2 x2 y dx x cos xy x e 2 y
例 14
设 u x 3 y 2 z ,其中 z f ( x , y ) 由方程 u 2 2 2 x y z 3 xyz 0 所确定,求 |(1,1,1) . x
隐函数存在定理 3 设 F ( x , y , u , v ) 、 G ( x , y , u, v ) 在
点 P ( x0 , y0 , u0 , v0 )的某一邻域内有对各个变量的连
续偏导数,且 F ( x0 , y0 , u0 , v0 ) 0,G( x0 , y0 , u0 , v0 )
Fu Fx v 1 (F ,G ) Gu G x x J ( u, x )
多元复合函数及其求导法则
(10-1)
1.1 多元复合函数的求导法则
证明 因为 z f (u ,v) 具有连续的偏导数,所以它是可微的,即有
dz z du z dv . u v
又因为 u (t) 及 v (t) 都可导,因而可微,即有
以此代入 dz 的表达式中得
du du dt , dv dv dt ,
dt
dt
1.1 多元复合函数的求导法则
例 4 设 u f (x ,y ,z) ex2 y2 z2 , z x2 sin y ,求 u 和 u . x y
解 u f f z 2xex2 y2 z2 2zex2 y2 z2 2x sin y 2x(1 2x2 sin2 y)ex2 y2 x4 sin2 y , x x z x
dz
z u
du dt
dt
z v
dv dt
dt
z u
du dt
z v
dv dt
dt
,
从而
dz z du z dv . dt u dt v dt
1.1 多元复合函数的求导法则
推广 设 z f (u ,v ,w) ,u (t) ,v (t) ,w (t) ,则 z f [(t) , (t) ,(t)] 对 t
6x(4x 2 y)(3x2 y )2 4x2y1 4(3x2 y2 )4x2 y ln(3x2 y2 ) , z z u z v v uv1 2y uv ln u 2 y u y v y
2 y(4x 2 y)(3x2 y )2 4x2y1 2(3x2 y2 )4x2y ln(3x2 y2 ) .
解 本例中的变量有函数 z ,中间变量u ,v ,自变量 x,y ,根据链式法则式(10-3),有 z z u z v eu sin v y eu cosv 1 x u x v x eu ( y sin v cos v) exy[ y sin(x y) cos(x y)], z z u z v eu sin v x eu cos v 1 y u y v y eu (x sin v cos v) exy[x sin(x y) cos(x y)].
0804多元复合函数的求导法则
w x
f1 1
f2yz
f(x y z ,x y z ) y z f ( x y z ,x y z )
1
2
2w
xz
f1fxy
11
12
y
f 2
yz[f 1 21
f22xy]
为简便 起f 见1 ,1 y 引( x 入 记z ) 号f 1 f12 x y 2 z uff ,2 f12 y 2f 2 u2fv,
练习3 u f(x ,y ,z ) e x 2 y 2 z 2 ,z x 2 sy i,n 求 u , u x y
解: u f f z x x z x
2xex2y2z2 2zex2y2z22xsiny
u
2 x (1 2 x 2 s2 iy ) n e x 2 y 2 x 4 s2 iy n x y z
( 3 ) s f [ u ( x , y , z ) v ( x , y , z ) w ( x , , y , z )],
s f u f v f w , x u x v x w x
s y
f u f v u y v y
f w , w y
s f u f v f w . z u z v z w z
二、全微分形式不变性*: 若 zf(u,v)关于自 u,v具 变有 量连续 , 偏导 则z的全微 dz分 f duf dv; u v 若又 u u (x 有 ,y)v , v(x ,y)关 x ,y 于 偏导 , 数 则 z 对 f[ u (x ,y )于 v ( ,x ,y )有 ]dzzdxzdy x y
t ut vt t
令t0, 则 u 有 0 , v 0 ,
udu, vdv t dt t dt
z
多元复合函数的求导法则ppt课件
一、链锁法则
( x ,y ), u ,v ), u v ( x ,y ) 引入: zf(
复合函数
z f [ ( x , y ), ( x , y )]
问: 怎样求它的偏导数? 若上面三个函数都是具体函数,那么, 它们的
复合函数也是具体函数, 当然, 我们会求它的 偏导数。
2 2 2 2 x y z x cos y
2 ( y x sin y cos y ) e
2 2 4 2 x y x si y n
t 例3 设 z uv sin t ,而 u e , v cos t ,
d z 求全导数 . d t
解: d z
z du z dv z + 1 + v dt dt u d t t
这时的对应增量为获得增量由第三节定理2的证明过程我们可得到具有连续的偏导数limdtdulimdtdvdtdvdtdudtdvdtdudtdvdtdu按定义得dtdz且其导数dtdvdtdu如果函数都在点t可导函数zfuvw在对应点uvw具有连续偏导数则复合函数的导数存在且有dtdwdtdvdtdudtdz2复合函数的中间变量均为多元函数的情形定理2如果函数具有连续偏导数现在将y取定为常数则由定理1得同理将x取定为常数则可得4式
u ( x ,y ) z f( u ,x ,y ),
+
f u z u x x f = u z f y u
f 1 x
+
f 0 y
u f + x x u f f + + 1 0 y y x
f f u = + y u y
u
z z u z v x u x v x
9-5 多元复合函数的求导法则
注:本题也可通过将 u, v 的表达式代入 z eu sin v 后直接求出 下列例 9.5.3、例 9.5.4 相仿.
z z , . x y
26-14
u v ) ,u 例 9.5.3 设 z xs i n (
arcta xn v , ,求 x
dz . dx
解 变量关系图见图 9-5-6.
z
x
(3)解 变量关系图为右图.
u
v
此时既有直接连线,又有多次复合,还有单出口,综合得
d z f f f d f d f v fuv . f x fu x d x x u x v d x u v d x
变量关系图:
u ( x) , v ( x) .
链式法则:
dz z du z dv . dx u dx v dx
(9.5.13)
注 1: u ( x) 和 v ( x) 均为一元函数,注意记法 注 2:
dz 称为全导数. dx
du dv 和 . dx dx
由于 z f (u, v) 在对应点 (u, v) 处可微,所以
z z z u v o( (u)2 (v)2 ) . u v
(9.5.8)
z z 令 y 0 ,则有 x z xu xv o( ( xu)2 ( xv)2 ) , u v
(1)解 变量关系图见图 9-5-4.
复合后 z 为 x, y 的二元函数,图中 z 和 x 之间有一连线,表明函数 z f ( x, u, v) 中 z 与 x 有直接的依赖关系.
为避免记法混淆,记 视 u, v 为常量.同样用
f 表示 z f ( x, u, v) 中 z 关于 x 的偏导数,此时 x
多元复合函数的求导法则
第四节 多元复合函数的求导法则要求:熟练地计算复合函数的一阶偏导数,会计算抽象函数的二阶偏导数计算。
重点:各种类型复合函数的求导与计算。
难点:抽象函数的二阶偏导数计算。
作业:习题8-4(36P )2)3)2)2)3)4)2,4,6,8,10,11,12,13一.多个中间变量,一个自变量情况定理1 如果函数()u t ϕ=及()v t ψ=都在点t 可导,且函数),(v u f z =在对应点具有连续偏导数,则复合函数[](),()z f t t ϕψ=在点t 可导,且其导数公式为dz z du z dvdt u dt v dt∂∂=+∂∂ (全导数) 证明 设t 有增量t ∆,相应函数()u t ϕ=及()v t ψ=的增量为,u v ∆∆,此时函数),(v u f z =相应获得的增量为z ∆.又由于函数),(v u f z =在点(,)u v 处可微,于是由上节定理3证明有 这里,当0,0u v ∆→∆→时,120,0εε→→,上式除以t ∆得12z f u f v u vt u t v t t tεε∆∂∆∂∆∆∆=+++∆∂∆∂∆∆∆. 当0t ∆→时,0,0u v ∆→∆→,,u du v dvt dt t dt∆∆→→∆∆, 所以 0lim t dz z f du f dvdt t u dt v dt∆→∆∂∂==+∆∂∂,即 dz f du f dv z du z dvdt u dt v dt u dt v dt ∂∂∂∂=+=+∂∂∂∂. 此时,dz z du z dv dt u dt v dt ∂∂=+∂∂从形式上看是全微分z zdz du dv u v ∂∂=+∂∂两端除以dt 得到的,常将dzdt称为全导数.推论 若),,(w v u f z =,()u t ϕ=,()v t ψ=,)(t w w =复合而的复合函数[](),(),()z f t t w t ϕψ=满足定理条件,则有全导数公式例1.设函数yx u =,而tx e =,sin y t =,求全导数dtdu . 解dt du u dx u dyx dt y dt∂∂=+∂∂1sin ln cos (sin cos )y t y t t yx e x x t e t t t -=+=+. 二.多个中间变量,多个自变量情况定理2 若(,)u x y ϕ=及(,)v x y ψ=在点),(y x 具有偏导数,而函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数[(,),(,)z f x y x y ϕψ=在点),(y x 两个偏导数存在,且有公式xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂; 例2.设函数vu z =,而223y x u +=,y x v 24+= 解16ln 4v v z z u z v vu x u u x u x v x-∂∂∂∂∂=+=+⋅∂∂∂∂∂ 224212242222(42)(3)2(3)ln(3)x y x y y x y x y x y x y +-+=+++++.注意 为了帮助记忆,我们按各变量间的复合关系画出复合关系图如下:首先从自变量z 向中间变量,u v 画两个分枝,然后再分别从,u v 向自变量,x y 画分枝,并在每个分枝旁边写上对其的偏导数.求z x ∂∂(z y∂∂)时,我们只要把从z 到x (y )的每条路径上的各偏导数相乘后,再将这些积相加即可得到xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂,(y v v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂) 推论1. 设函数(,)u x y ϕ=,(,)v x y ψ=,),(y x w w =在点),(y x 有偏导数,而函数),,(w v u f z =在对应点),,(w v u 偏导数连续,则复合函数[](,),(,),(,)z f x y x y w x y ϕψ=在点),(y x 的两个偏导数存在,且有公式x w w z x v v z x u u z x z ∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂;yww z y v v z y u u z y z ∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂. 推论2. 设函数),(y x u ϕ=具有偏导数,而函数),,(y x u f z =可微,则复合函数],),,([y x y x f z ϕ=在点),(y x 偏导数存在,且有公式xf x u u f x z ∂∂+∂∂∂∂=∂∂;yf y u u z y z ∂∂+∂∂∂∂=∂∂. 注意x z ∂∂与xf ∂∂区别:x z∂∂是把函数[](,),,f x y x y ϕ中的y 看成常数,对x 求偏导, xf∂∂是把),,(y x u f 中y u ,看常数,对x 求偏导. 前者是复合后对x 的偏导数,后者是复合前对x 的偏导数.例3.设函数222),,(z y xe z y xf u ++==,而y x z sin 2=,求x u ∂∂和yu ∂∂. 解y x ze xe xzz f x f x u z y x z y x sin 222222222⋅+=∂∂∂∂+∂∂=∂∂++++ yx y xe y y x y 2422sin 4)cos sin (2+++=.例4.设函数t uv z sin +=,而te u =,t v cos =求全导数dtdz . 解tz dt dv v z dt du u z dt dz ∂∂+∂∂+∂∂= t t u ve tcos )sin (+-+=t t t e tcos )sin (cos +-=. 例5.设抽象函数),(22xye y xf z -=,其中f 偏导数连续,求yz x z ∂∂∂∂,. 解x v v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂,其中22y x u -=,xye v =, 其中u v uf u z f ∂∂=∂∂='),(1,v v u f v z f ∂∂=∂∂='),(2. 三.复合函数的二阶偏导数若函数),(v u f z =,(,)u x y ϕ=,(,)v x y ψ=二阶偏导数连续,则复合函数[](,),(,)z f x y x y ϕψ=存在二阶偏导数.记号2211u z f ∂∂='',v u z f ∂∂∂=''212,u v z f ∂∂∂=''221,2222vz f ∂∂=''. 例6.设复合函数),32(yxy x f z +=,其中),(v u f 对v u ,具有二阶连续偏导数,求yx z∂∂∂2. 解2112f yf x v v z x u u z x z '+'=∂∂∂∂+∂∂∂∂=∂∂ ))(3(11))(3(222222221211y xf f y f y y x f f -''+⋅''+'--''+⋅''=22122223111236f yf y x y f y x f '-''-+''-''=. 练习题 设函数2(,)yz f x y x =,其中),(v u f 对v u ,具有二阶连续偏导数,求y x z ∂∂∂2.(y x z ∂∂∂23'1122122132122y x yf f yf f xf x x'''''''=-+-+) 复合函数求偏导数步骤:(1)搞清复合关系——画出复合关系图;(2)分清每步对哪个变量求导,固定了哪些变量;(3)对某个自变量求导,应注意要经过一切与该自变量有关的中间变量而最后归结到该自变量.例7.设复合函数),(xyz z y x f w ++=,且f 具有二阶连续偏导数,求x w ∂∂,zx w∂∂∂2.解21f yz f xw'+'=∂∂ 22122211)(f y f yz xy f z xy f '+''++''+''=. 例8.设函数),(y x f u =的所有二阶偏导数连续,把下列表达式转换为极坐标形式(1) 22)()(y u x u ∂∂+∂∂;(2) 2222yux u ∂∂+∂∂解 (1)直角坐标与极坐标关系θcos r x =,θsin r y =,则 这里(,)u f x y =看作由函数(,)u F r θ=及22y x r +=,xyarctan =θ,复合而成的复合函数,按复合函数求导公式,得x u x r r u x u ∂∂∂∂+∂∂∂∂=∂∂θθru r u θθθsin cos ∂∂-∂∂=, 其中θθcos cos 22==+=∂∂r r y x x xr;r y x y xy x y x θθsin 1222222-=+-=+-=∂∂, 同理y u y r r u y u ∂∂∂∂+∂∂∂∂=∂∂θθcos sin u u r rθθθ∂∂=+∂∂,其中θθsin sin 22==+=∂∂r r y x y yr ;r y x x xy x y θθcos 112222=+=+=∂∂, 上边两式平方后相加,得 22222)(1)()()(θ∂∂+∂∂=∂∂+∂∂ur r u y u x u . (2)y y u y r y u r yu ∂∂∂∂∂∂+∂∂∂∂∂∂=∂∂θθ)()(22 同理上边两式相加得四.全微分形式不变形设函数),(v u f z =具有连续偏导数,则全微分dv vzdu u z dz ∂∂+∂∂=, 若函数(,)u x y ϕ=,(,)v x y ψ=有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ= 的全微分为dv vzdu u z ∂∂+∂∂=. 可见无论z 是自变量y x ,的函数或中间变量v u ,的函数,它的全微分形式是一样的,这个性质叫全微分形式不变性.例9.利用全微分形式不变性求微分)sin (v e d dz u=,其中xy u =,y x v +=.解 因为vdv e vdu e v e d dz uu u cos sin )sin (+== 又因为 xdy ydx xy d du +==)(,dy dx y x d dv +=+=)(, 所以 sin ()cos ()uudz e v ydx xdy e v dx dy =⋅+++若先求出(sin()cos())xy ze y x y x y x∂=+++∂,(sin()cos())xy z e x x y x y y ∂=+++∂代入公式dy yzdx x z dz ∂∂+∂∂=得结果完全一样. 思考题1. 如何求复合函数的偏导数?需要注意什么问题?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
exy [ y sin(x y) cos(x y)]
v
y
z z u z v y u y v y
eu sin v x eu cos v 1
exy [x sin(x y) cos(x y)]
多元复合函数的求导法 则
思考题. 设 u f x , y , 求 u , u , u .
一个自变量的情形
因变量z到自变量x的路径有:
z z
u.
x
z du u dx
v. x z dv v dx
du
相加得 dz dx
z u dx
u
z
dv
z
dx
v
v
x x
注 (1) “连线相乘,分线相加” (2) 外层函数可微,内层函数可导.
多元复合函数的求导法则
多个自变量的情形(两个为例)
定理2 设函数 u u x, y ,v v x, y 在点 x, y D 处可微
• 一个自变量的情 形
• 多个自变量的情 形
多元复合函数的求导法则
一个自变量的情形
定理1.若函数u x ,v x 在点 x 可导,z f u,v
在点 u,v 处可微,则复合函数z f x,x在点x可导
且有
dz z du z dv dx u dx v dx
( 全导数公式 )
多元复合函数的求导法 则
z z u z v z w x u x v x w x z z u z v z w y u y v y w y
ux zvy
w
多元复合函数的求导法 则
例1.设 z uv sin t , u et , v cost , 求全导数 dz .
dt
解: dz z du z dv z
y z x y z
dt u dt v dt t
u
v et u sin t cost
zv
t
t
e t (cost sin t) cost
多元复合函数的求导法
则
例2.
设
z
eu
sin v , u
xy , v
x
y,
求
z
,
z
.
x y
解:
z z u z v x u x v x
u
x
eu sin v y eu cosv 1
第九章 多元函数微分学
多元复合函数关系图 与求导法则
多元复合函数关系图与求导法 则
一元复合函数的求导法则
设 y f u ,u x, y f x
则 dy dy du =f ux
dx du dx
dy
du
因变量 y du
dx u
x 自变量
中间变量
一元复合函数的求导的链式法则
多元复合函数的求导法则
函数 z f u,v 在对应的点 u,v=x,y ,x,y 处可微
则复合函数 z f ux, y ,v x, y 在点 x, y 处可微,且有
z z u z v , x u x v x z z u z v . y u y v y
“连线相乘,分线相加”
多元复合函数的求导法 则
1) z f u,v,w,u x,v x ,w x
求全导数
dz z du z dv z dw dx u dx v dx w dx
=f1 f2 f3
u
zv
x
w
多元复合函数的求导法 则
2) z f u,v, w u (x, y) 、v (x, y) 、w (x, y)
求z关于x,y的偏导数.
多个自变量的情形(两个为例)
因变量z到自变量x的路径有:
z
u
x z u
u x 相加得 z
z
v
x z v
x
v x
u
z
u u
x
x
z
z v
v
y
v x
z z u z v , x u x v x z z u z v . y u y v y
“连线相乘,分线相加”
多元复合函数的求导法 则
推广: 设下面所涉及的函数都可微.