2014高中数学 一题多变一题多解特训(一)
“一题多解与一题多变”在培养学生思维能力中的应用
探索篇誗方法展示在高中数学课标中,要求数学教师注重培养学生的数学思维能力,并把它作为重要的教学内容。
培养思维能力,既能提高学生的理解能力,又能提高学生分析解决问题的能力,还能提高教学效益。
“一题多解与一题多变”是培养高中学生的数学思维能力,特别是发散思维能力的好方法。
数学教师在讲解数学例题时,不仅要讲解题方法,最重要的是教给学生如何正确理解题意,抓住解题的关键,如何开拓解题思路,也就是培养学生的思维能力。
一、“一题多解与一题多变”的教学价值1.“一题多解”的教学价值“一题多解”就是从多个视角去分析思考数学问题,用多种方法途径去解答数学问题。
这种方法可以拓宽解题思路,增强数学知识之间的联系,培养学生学会运用多种方式多种方法解题和灵活多变的思考方式,而灵活的思维方式正是创新能力的基础。
教师在教学中,要运用“一题多解”的方式进行教学,就要培养学生在解答数学问题时善于从多角度观察感知和思考问题,运用多种方法推导验证问题,多方面寻找运用关联条件,不但要考虑条件本身,还要考虑条件之间的联系,用多种方式进行表述,只有这样才能培养学生数学思维的灵活性。
2.“一题多变”的教学价值“一题多变”是指在数学解题练习中,将原来数学题目中的一些已知条件进行变换,或者把要求解答的问题与题目一个或者几个条件变换后,再去求解问题的结果;也可能是给出问题的部分条件,让学生去补充另外一些条件;也可能是对数学问题的拓展,增加问题的难度或背景来训练学生的发散思维能力。
采用“多变”的方式进行教学,主要是对数学例题或习题进行多种变换,让学生从不同方面、不同情形、不同层次下对该数学问题进行重新求解或认识。
它是教学反思的一种方式,它要求学习者从出题人的视角去看问题,并对原来的数学问题有一个深刻的理解,才能做到“多变”。
“多变”解题能培养学生观察问题、归纳类比、概括抽象、运算能力、空间想象、构建与反思等多种数学思维能力。
二、“一题多解与一题多变”在培养数学思维能力上的应用1.培养开放性思维方式数学教学离不开数学解题,搞“题海战术”仅能得到“一对一”的解题方法和思路,不是科学的解题方法。
数学解题之一题多解与多题一解完整版
数学解题之一题多解与多题一解浅谈一题多解培养学生发散思维摘要本文意在明确一题多解中学生思维能力的发展,从而使教师在数学解题教学过程屮更加重视解题方法对学生思维和发散思维的培养。
本文通过两道典型例题对一题多解型的讲解,通过不同的例题可以达到对学生思维能力的训练培养的目的。
通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;对一题多解灵活运用,对培养学生发散思维,启发学生独立思考具有较好的指导意义。
关键词:一题多解发散思维思维能力一题多解对学生思维能力的培养同一数学问题用不同的数学方法可以达到异曲同工之效,我们称之为“一题多解”。
其特点就是对同一个问题从不同的角度、不同的结构形式、不同的思维方式去解答同一个问题。
一题多解能快速整合所学知识,重要的是培养学生细致的观察力、丰富的联想力和独立思考、解决问题的能力。
(-)提高分析、解决问题的能力•题多解,能够使学生开阔思维,把学过的知识和方法融合在•起,提高学生分析问题和解决问题的能力,培养学生独立思考的能力。
例1.甲乙两地相距450千米。
客车和货车同时从两地相向而行,客车行完全程需10小时,货车行完全程需15小时,相遇时两车各行多少千米?解法一:用路程问题的解法。
根据速度二路程÷时间可以求出客车的速度为450÷10二45(千米/小时),货车的速度为450÷15二30 (千米/小时)。
(1)几小时后两车相遇:450÷(45+30)二6 (小时)(2)相遇时客车行了多少千米:45X6二270(千米)(3)相遇时货车行了多少千米:30X6二180(千米)解法二:用比例分配的方法。
两车所需的时间之比是:10:15,根据距离一定,速度与时间成反比例关系进行解答。
(1)两车所需的时间之比是:10:15=2:3所以两车速度之比是:3:2(2)两车运行时间相同,所以路程与速度成正比例,即两车行驶路程之比是:3:23(3)相遇时客车行了多少千米:450×(- )=270(千米)52(4)相遇时货车行了多少千米:450×(- )=180(千米)^ 5答:相遇时客车行了270千米,货车行了180千米。
高考数学典型题一题多解系列一
第1题 真数相同的对数式比较大小的3种解法比较大小: 15log 3 12log 3解法一(图象法):利用两个函数12log y x =和15log y x =图象如右图,得12log 315log 3<.解法二: (单调性法)利用一个函数log 3x y =的单调性考虑函数31log 3log x y x==, 因为函数3log y x =在(0,1)上是增函数, 所以log 3x y =在(0,1)上是减函数, 又1125>,所以12log 315log 3<. 解法三:(作差法) 利用函数lg y x =的单调性,直接作差表达更简单因为 12log 31255lg 3lg 3lg 3(lg 2lg 5)log 3lg 3lg 30lg 5lg 2lg 5--=-+=-=<, 所以12log 315log 3<.第2题 真数底数都不同的对数式比较大小的2种解法 比较24log25与25log 26的大小解法一:(作差法)22425lg 25lg 26lg 25lg 24lg 26log 25log 26lg 24lg 25lg 24lg 25--=-=∵2lg 24lg 26lg(2426)lg[(251)(251)]lg 25lg 24lg 26lg 252222+⨯-⨯+<==<=,∴2lg 25lg 24lg 26>,∴2425log 25log 26>. 解法二: (分离常数法,利用换底公式)242425log 251+log 24=,252526log 261+log 25=, ∵252612425>> ∴242525252526log log log 242425>>,∴2425log 25log 26>. 第3题 一对特殊关系的指数方程与对数方程的两根和的3种解法设方程340xx的根为1x ,方程log 403xx 的根为2x ,求12x x .解法一:(观察法+证明法)因为13140,所以1x 方程340x x 的一个根,又()34xf x x在R 上为增函数,所以()34xf x x在R 上最多只有一个零点,所以11.x因为3log 3340,所以3x方程3log 40xx的一个根,3()log 4f x xx 在(0,)上为增函数,所以3()log 4f x xx在(0,)上最多只有 一个零点,所以23.x 所以124.x x解法二: (化归为同种函数法)显然上面提供的代数解法仅仅局限于能够用观察法求出方程根的情况,对于含有指数式、对数式及整式的方程,一般无法用初等方法求出方程的根,因此可以考虑从整体上求出12x x .此题的特殊性决定了题目的确具有更有一般性的代数方法,但是要用到指数与对数的互化,很难想到,下面提供给同学们仅供参考:11340xx ①322log 40x x ②①式可以变形为1134xx ,即为311log (4)x x ,若设14x t ,则14x t,于是3log 4tt ,②式变为322log 4x x ,t与2x 都是方程3log 4xx 的根,而这个方程即3log 40xx, 又函数3()log 4f x xx在(0,)上为增函数,最多只有一个实数根,因此必有214xx ,所以124.x x解法三: (利用一对反函数图象) 将方程340xx 变形为34xx ,将方程log 403xx变形为log 43xx,在同一坐标系内分别作出函数3x y,log 3yx , 4yx 的图像, 因为3x y与3log yx 互为反函数,图像关于直线yx对称,而4y x 与y x 垂直,设垂足为C , 则直线4yx与3x y,3log yx 的图像的交点A ,B 关于点C 对称,易求得C 点坐标为(2,2),又A 点坐标为11(,)x y ,B 点坐标为22(,)x y , 由中点坐标公式得124.x x第4题 一道含有绝对值函数的零点问题的2种解法已知函数||()2x f x x =+,方程2()f x kx =有四个不同的实数解,求实数k 的取值范围.x解法一:(去掉绝对值号,化为二次函数问题) 原方程即2||2x kx x =+. 0x =恒为方程的一个解,因此问题转化为方程1||2k x x =+有三个不同的实数解. ⑴当0x >时,方程化为:12kx x =+,即2210kx kx +-=,①0k =时 ,方程无解;②当0k ≠时,2444(1).k k k k ∆=+=+, ⅰ)当10k -<<时,0∆<,方程无实数解. ⅱ)0k >时,显然0∆>,122x x +=-,1210x x k=-<,结合0x >知原方程有一个正根.ⅲ)1k ≤-时,2440k k ∆=+≥,而此时122x x +=-,1210x x k=->,结合0x >知方程无解. ⑵当0x <时,方程化为:12kx x =-+,即 2210kx kx ++=,①0k =时 ,方程无实数解;②当0k ≠时,2444(1).k k k k ∆=-=- ⅰ)当01k <<时,0∆<,方程无实数解. ⅱ)0k <时,显然0∆>,122x x +=-,1210x x k=<,结合0x <知原方程有一个负根.ⅲ)1k =时,方程显然有两个相等的负根.ⅳ)1k >时,2440k k ∆=->,而此时122x x +=-,1210x x k=>,结合0x <知方程有两个不等的负根.综上可得,当1k >时,方程2()f x kx =有四个不同的实数解.解法二:(利用两个函数图象法,利用斜率几何意义法)原方程即2||2x kx x =+. 0x =恒为方程的一个解,因此问题转化为方程1||2k x x =+(*) 有三个不同的实数解.显然0k ≠,在同一个坐标系中作出函数1()2g x x =+和函数()||h x k x =(0k ≠)的图像:由图像可知,当0k <时,两个函数图像仅有一个交点;当0k >时,若()||h x k x =的图像在第二象限的部分与双曲线相交,则在第二象限内有两个交点,而在第一象限内显然总有一个交点,因此我们只要利用判别式求出相切时k 的值0k ,那么本题的答案就是0k k >. 当0k >,0x <方程即2210kx kx ++=,由2444(1)0k k k k ∆=-=-=得: 1.k = 因此k 的取值范围1k >.第5题 一道自主招生函数零点问题的2种解法函数2()(0)f x ax bx c a =++≠,且()f x x =没有实数根,问:(())f f x x =是否有实数根?证明你的结论. 解法一:(没有实根问题转化为证明不等式恒成立)(())f f x x =是没有实数根.证明:因为()f x x =没有实数根,所以()f x x >,或()f x x <, 当()f x x >时,再以()f x 代x 有(())()f f x f x >,所以(())f f x x >, 当()f x x <时,再以()f x 代x 有(())()f f x f x <,所以(())f f x x <,所以(())f f x x =是没有实数根. 解法二:(用反证法)(())f f x x =是没有实数根.证明:若存在0x x =使得00(())f f x x =,令0()f x t =,则0()f t x =,即有0(,)x t 和0(,)t x 是y f x =()的点,显然这两点关于y x =对称, 所以()y f x =与y x =必有公共点,从而()f x x =有实数解,与已知矛盾. 所以(())f f x x =是没有实数根. 规律总结:替换法是一个重要的方法。
一题多解与一题多变在高中数学教学中的运用
一题多解与一题多变在高中数学教学中的运用一题多解和一题多变是高中数学教学中常常运用的教学策略。
它们旨在培养学生的创新思维能力和解决问题的能力,并激发学生的兴趣,提高学习效果。
接下来,我将探讨这两种教学策略的具体运用和重要性。
一题多解是指在一个数学问题中,可以有多种方法或角度来解决问题。
这样的设计可以激发学生的创造力和解决问题的能力。
通过多样的解法,学生能够体验到数学的多样性,培养他们的思维灵活性和创新思维能力。
例如,对于一个简单的方程题,学生可以选择代入法、消元法或配方法等多种解法来解决,而不仅仅依赖于固定的解题顺序。
这样,学生在解题中会产生一种自主思考和探索的意识,从而提高他们的创造力和解决问题的能力。
一题多变是指通过改变题目中的条件或参数,从而使得问题具有不同的情境和挑战性。
这样的设计可以提高学生的应变能力和灵活思维。
通过处理不同版本的问题,学生能够培养他们的思维逻辑,培养他们从不同角度思考和解决问题的能力。
例如,在一个几何问题中,通过改变图形的形状、增加限制条件或改变性质,可以设计出多个相关的问题,从而激发学生不同层次的思考和解决问题的能力。
在高中数学教学中,一题多解和一题多变的运用是十分重要的。
首先,它们可以激发学生的自主学习兴趣和主动学习探索的能力。
通过多种不同的解法和问题情境,学生可以展开自主思考和探索,从而培养他们的学习兴趣和学习动力。
其次,它们能够提高学生的解决问题的能力和思维能力。
通过面对多样的解法和不同版本的问题,学生需要灵活运用知识和技巧,培养他们的应变能力和解决问题的能力。
同时,这种培养的能力也是他们今后在现实生活中解决问题的重要能力之一要充分运用一题多解和一题多变的教学策略,教师需要合理设置问题,鼓励和引导学生思考。
教师可以设计一些具有挑战性的问题,引导学生尝试不同的解法和思路。
此外,教师还可以通过提供不同版本的问题,或者给定一些开放式的问题,鼓励学生从不同的角度思考和解决问题。
浅谈一题多解与一题多变
周刊浅谈一题多解与一题多变许国能(浙江省天台平桥二中,浙江台州317203)摘要:数学是一门必修学科,它具有整体性、逻辑性和复杂性的特点,会使学生在学习过程中觉得有点吃力。
但是,高中 数学是高考中的一个重要组成部分,其分值也比较大,对学生的升学产生直接的影响。
所以,必须在高中数学教学中提升教学的有效性。
高中数学教师要根据学生的实际情况,及时地改变数学的教学方法,不断地探索新的、更加有效的教学模式,例如一题多解和一题多变的教学,这种教学方法不但可以巩固学生的基础知识,还能培养学生的思維和创新精神,提升学生的解题技能。
本篇文章主要从现阶段高中数学的教学情况开始分析,提出在高中数学学习中运用一题多解和一题多变的教学方法的建议和措施。
关键词:一题多解;一题多变;高中数学;教学方法一、 高中数学教学现状虽然新课改已经实行了许多年,但是高中数学教学受到传统教育理念和教学模式的影响还比较严重,使得学生在学习过程中依然要面对作业繁重的问题,需要承受高考所带来的压力。
究其原因,一方面由于受应试教育模式的影响,使 得学生必须参加高考,使得教师在高中数学的教学过程中为了提高学生的学习成绩,使其能在高考中取得高分,往往采用习题教学,让学生通过做大量的习题来巩固所学的知识,但是同样存在着巨大的弊端。
单调繁重的习题练习,会使得学生在这样的学习中造成思维的固化,还会对数学学习产生疲劳感,使得对数学的学习停留在表面,缺少深入的钻研。
另一方面,由于社会竞争的越来越激烈,使得教师和家长在无形中将这种压力传给孩子,使得学生在学习中往往更加在意分数的高低和排名的前后,而不是在每次的学习和考试中总结自己的学习情况:解题思路是否更加简答、快捷?知识的掌握是否全面和深入。
这些原因使得高中数学的教学更加机械化和表面化,为了追求分数,而忽略了对数学知识的整体把握,也忽视了对学生数学思维和学习能力的培养。
二、 高中数学学习中运用一题多解与一题多变的必要性(一) 激发学生的创新意识如果一题多解、一题多变在高中数学学习中能够得到灵活地运用,那么数学的教学就会更加地全面和深入。
[资料]例谈高中数学一题多解和一题多变的意义
[资料]例谈高中数学一题多解和一题多变的意义例谈高中数学一题多解和一题多变的意义杨水长摘要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化~融会贯通~而且可以开阔思路~培养学生的发散思维和创新思维能力~从而达到提高学生的学习兴趣~学好数学的效果。
关键词:一题多变一题多解创新思维数学效果很大部分的高中生对数学的印象就是枯燥、乏味、不4好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬5cosα= 着头皮学.如何才能学好数学,俗话说“熟能生巧”,很多人认为要学好数学就是要多做.固然,多做题目可以32使学生提高成绩,但长期如此,恐怕也会使学生觉得1,,cos5sinα== 数学越来越枯燥。
而在第三象限时: 我觉得要使学生学好数学,首先要提高学生的学4习兴趣和数学思维能力。
根据高考数学“源于课本,高于课本”的命题原则,教师在教学或复习过程中可5cosa=- 以利用书本上的例题和习题,进行对比、联想,采取3一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。
下面举例说5sina=- 明: 分析:利用比例的性质和同角三角函数关系式,3解此题更妙:,3sin4例题: 已知tanα= ,求sinα,cosα的值 4cos,分析:因为题中有sinα、cosα、tanα,考虑他们法三tanα= = 之间的关系,最容易想到的是用同角三角函数关系式sin,,cos和方程解此题:43,3sin?=sin,,cos4cos,法一根据同角三角函数关系式tanα= = ,43且sina2α +cos2α =1。
?= = ?16422,,,sincos525两式联立,得出:cos2α=,cosα= 或者22,4333434555cosα= - ;而sinα=或者sinα=- 。
55分析:上面解方程组较难且繁琐,充分利用用同?sinα=,cosα= 角三角函数关系式“1”的代换,不解方程组,直接34求解就简洁些:55或sinα=-,cosα=-3 分析: 上面从代数法角度解此题,如果单独考4法二tanα=:α在第一、三象限虑sinα、cosα、tanα,可用定义来解此题。
在习题教学中注意一题多解、一题多变、一题多问
在习题教学中注意一题多解、一题多变、一题多问第一篇:在习题教学中注意一题多解、一题多变、一题多问在习题教学中注意一题多解、一题多变、一题多问“ 一题多解” 是指通过不同的思维途径,采用多种解题方法解决同一个实际问题的教学方法。
它有利于培养学生辨证思维能力,加深对概念、规律的理解和应用,提高学生的应变能力,启迪学生的发散性思维。
在物理解题过程中,我们可以通过“ 一题多解” 训练拓宽自己的思路,在遇到新的问题时能顺利挖掘出物理量间的相互关系和物理规律间的内在联系,培养求异思维,使自己的思维具有流畅性。
注意一题多变诱导学生思路在习题课中的“ 一题多变” 是指从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多变导向,使知识进一步精化的教学方法.思维的变通性是指摆脱定势的消极影响,不局限于问题的某一方面,能够随机应变,举一反三,触类旁通。
在二轮复习的解题过程中主动出击,运用变式,通过“ 一题多变” 演绎问题的产生过程,能够摆脱由生活习惯中原有思维方式和平时解题所带来的思维定势,使思维具有变通性。
“ 一题多问” 培养思维的严密性思维的严密性,主要表现在通过细致缜密的分析,从错综复杂的联系与关系中认识事物的本质。
在题目解完后再通过“ 一题多问” 自己考虑问题更全面细致,让自己的思维具有严密性。
这种“ 多题归一” 的方法还可以培养思维的概括性。
思维的概括性是指思维能够反映一类事物的共同的本质的特征,以及事物之间的本质联系和规律。
许多物理习题具有物理过程、规律和性质类似的问题,它们间只有不同程度的量的差异而无质的区别,在复习过程中做过一定量的习题后进行反思,通过“ 多题归一”,进行有的放矢的精解和拓宽,可以使思维具有概括性。
第二篇:变式教学:一题多问、一题多解、一题多变教学模式变式教学:一题多问、一题多解、一题多变教学模式——“利用导数研究函数单调性的解题课”教学设计【课例解析】教材的地位与作用本节课是人教版《数学(选修2-2)》第一章导数及其应用,§1.3.1函数的单调性与导数的第二课时解题课.导数是微积分的核心内容之一,它有极其丰富的实际背景和广泛应用,导数更是研究函数性质的强有力的工具,在解决函数单调性、最大值和最小值等问题时,不但避开了初等函数变形的难点,证明的繁杂,而且使解法程序化,变“巧法”为“通法”,优化解题策略、简化运算,具有较强的工具性作用.在应用导数研究函数单调性教学的过程中,体会导数的思想及其内涵. 2 学情分析在本节之前学生已经学习了导数的实际背景和基本概念.学生能理解导数的数学意义、物理意义及几何意义.掌握了常函数、幂函数、正余弦函数、指数函数、对数函数的导数.掌握了导数的运算法则.已经初步了解了导数与函数单调性的关系,并能利用导数解决简单的函数单调性问题.本节课此基础上进一步运用导数解决和函数单调性有关的问题,对大多数学生来说,有足够的能力掌握本节知识.学生已经初步具有对数学问题自主探究的意识和能力,当然也存在较大的个体差异.需要在教学过程中加以个别指导.【方法阐释】采用心智数学教育方式中变式教学模式进行教学:主要分“创设情景、引入新课,自主探究、成果展示,变式训练、巩固落实,归纳总结、提升拓展”四个教学环节.对探究性问题,教师要启发引导学生按照“弄清题意—拟订计划—执行计划—反思回顾”四个解题环节独立完成.指导学生通过小组交流、成果展示等形式检查自己的思维方式和对解题步骤格式.通过问题变式,使学生经历数学问题及解决方法的推广和运用.学生已经了解和掌握了导数与函数单调性的关系,并能利用导数的知识解决简单的函数单调性问题的方法,但是对含有参数的函数的单调性问题(确定单调区间问题或已知函数的单调性确定参数范围问题等),由于教材中没有涉及,因此是一个盲点,本节课教学设计旨在搭设台阶,降低坡度,通过对问题的不断变化,进行不断探索和比较,引导学生从基础入手,通过分析、对比辨析、归纳、推理、变式教学反例分析来探究解题方法,进行问题解决,使学生形成正确的解题方法,在学习中让学生学会探究、分析,并学会合作学习.【目标定位】1知识与技能目标理解函数的单调性与其导数的关系,能利用求导的方法探求函数的单调性和单调区间. 2过程与方法目标经历使用导数解决求函数单调区间和已知单调区间求参数范围问题的求解过程.通过分析、归纳、推理、对比辨析、变式教学来探究解题方法,并能通过各类问题的解法对比,感受和掌握导数在函数单调性问题解决过程中的应用. 3 情感、态度与价值观目标感受导数为解决单调性问题提供的新思路、方法和途径,激发学生探究知识的兴趣和欲望. 2 教学的重点与难点本节课的重点是理解函数单调性与其导数的关系,利用导数解决求函数单调区间和已知单调区间求参数范围问题.难点是解决含参数的函数单调性问题中参数范围的确定及分类讨论等数学思想方法的运用.【课堂设计】一、创设情景、引入新课教师:我们已经学习了函数导数的计算方法和运算法则,并且知道利用导数可以求出函数的单调区间,请同学们自己动手以下探究性问题.探究性问题:求下列函数的单调区间.1.函数f(x)=x-3x+1的单调递减区间. 2.函数f(x)=x e的单调区间.3.(05年北京)已知函数f(x)=-x+3x+9x+a,求f(x)的单调减区间.322x3二、自主探究、成果展示学生独立解决后,小组内学生交流,相互纠正解题中出现的问题.教师:利用导数求函数的单调区间有哪几个步骤?学生1:第一步,求函数导数;第二步,建立导函数不等式,使f(x)>0的区间为原函数的增区间,使f(x)<0的区间为函数的减区间;第三步,回答单调区间.教师利用实物投影展示在巡视的过程中发现的格式步骤不全、格式步骤规范、格式步骤较多但混乱无序等学生解题过程,规范学生解题思维和书写格式.教师:第3题中的参数a对函数的增减性会不会产生影响?为什么?学生2:对函数增减性不会产生影响.从函数图像变换看,常数项a 的影响就是图像形状不改变,只进行上下平移;从函数的导函数看,参数a是常数,其导数为0.不会对其导函数产生任何影响.我的思考:设计探究性问题,主要目的是使学生进一步熟练导数研究单调性的方法,规范解题格式步骤;其次,三个导函数题都与二次函数有关,且用到指数函数的性质,进一步强化二次不等式的解法和指数函数性质,让学生体会导数问题的综合性.再次,第3题中设置了参数a,在此不需单独讨论,但在老师的追问下,有些学生已经意识到有时要对a进行讨论,为下面针对参数的分类讨论埋下伏笔.三、变式训练、巩固落实适当改变探究性问题的形式,提出新的问题,进行变式训练我的思考:学生在解决这类问题时往往容易忽视函数的定义域以及使导数为零的点的处理,因此针对以上可能出现的问题,设计几个变式习题,让学生首先独立思考,出现问题,然后通过生生和师生的交流,共同分析正确的解题方法,完善对问题的全面和完整解决.2变式1:求函数f(x)=0.5x-ln x的单调区间.这是针对容易忽视定义域而设计的问题,很多学生没有考虑到定义域出现错误答案:单调增区间为(-1,0),(1,+∞),单调减区间为(-∞,-1),(0,1);还有同学得出单调增区间为(-1,0)∪(1,+∞).师生剖析错因:(1)解决函数的解析式、值域、单调性、奇偶性、周期性、对称性等问题时,必须首先求出函数的定义域,函数的解析式和定义域是函数的两大要素.(2)函数的单调区间必须是单个的区间不能使区间的并集,也不能写成集合的形式{x|x<-1}.正确解法:原函数的定义域为(0,+∞),单调增区间为(1,+∞),单调减区间为(0,1).2ax 变式2:将前面第2题改编为:求函数f(x)=x e的单调区间.学生在独立解决问题时,容易忽视讨论或讨论不全,或不会进行讨论,让学生分组合作交流,各组选出代表在黑板上展示,教师可结合学生板演情况进行又针对性地讲解.正确的解答过程应为:函数的定义域为R.ax2axax2对函数求导f’(x)=2xe+axe=e(ax+2x),当a=0时,函数的单调增区间为(0,+∞),函数的单调减区间为(-∞,0);当a>0时,函数的单调增区间为(-∞,-2/a)和(0,+∞),函数的单调减区间为(-2/a,0);当a<0时,函数的单调增区间为(0,-2/a),函数的单调减区间为(-∞,0)和(-2/a,+∞).我的思考:含有参数的数学问题既是重点又是难点,也是学生的薄弱环节,通过解决这类问题,锻炼学生的运算能力和分类讨论思想的运用能力,教学中从简单到复杂,循序渐进,学生能通过类比和对比,更容易理解和掌握.另外,a>0和a<0两种情况下,0与-2/a的大小变化学生容易忽视,教师点评时也要特别强调.变式3:求函数f(x)=√x-ln(x+1)的单调增区间.针对学生易错点:忽视使导数为零的点的讨论而造成解题不完整而设计的.还是首先让学生自己解决,交流解题方法.很多学生会出现错误答案:单调增区间为(0,1)和(1,+∞)为了说明问题,把问题特殊化.提出新的问题:我们通过函数图像或利用函数单调性的定义已3经证实了函数y=x在R上为单调增函数,请同学们利用导数再探求该函数的单调区间,看有什么发现.部分同学得到单调增区间是(-∞,0),(0,+∞),这与以前学习的结论出现矛盾,怎样解决呢?再思考问题:我们已证明了反比例函数y=1/x的单调性,请同学们利用导数再探求该函数的单调区间,看有什么发现.所得的单调减区间是(-∞,0),(0,+∞),与以前学习的结论相同.我的思考:遇到难以解决的问题时,往往要把问题特殊化,与我们已掌握的熟悉问题进行对比分析.比较以上两个问题,请各小组讨论,对比、总结一下规律.师生共同分析得到:当使导数等于零的解存在时,需对导数等于零的点进行如下处理:若在该点两侧的导数值符号相同,且函数在该点处连续,则将两个增减性相同的区间合并;若在该点两侧的导数值符号相同,而函数在该点处函数不连续,则不能将将两个区间合并.此题中函数在x=1处是连续的,且在x=1两侧导数的符号相同,因此,该函数的递增区间为(0,+∞).我的思考:这一组变式训练主要是通过对基础题组的解题方法、步骤的变式设置的.通过以上这组变式问题,学生注意到易错的忽视定义域、在导数为0点左右符号相同时的处理方式等方面,并能对含参数的函数进行合理的分类讨论,增加解题的正确率,锻炼学生的分析能力和解题能力.教师:我们再对问题进一步深化,采用逆向思维方式,交换题目的条件和结论,来看根据已知函数的单调性来确定参数范围.322变式4:已知函数f(x)=(1/3)x-(4a-1)x+(15a-2a-7)x+2在R上是增函数,求实数a的取值范围.我的思考:解决这类问题易错点是忽视参数端点的取舍,为此设计变式4,使学生在在出错体验后进行问题解决,加深对知识的掌握.在问题给出后,鼓励学生独立思考后将各自的解题思路进行交流,再在全班进行交流.教师巡视后发现学生的解题思路有以下几种:思路一:求f(x)=x-2(4a-1)x+(15a-2a-7),解不等式f(x)>0 ⇔x-2(4a-1)x+(15a-2a-7)>0由于该不等式不会解,从而受阻.思路二:函数f(x)=22'22'13x-(4a-1)x2+(15a2-2a-7)x+2在R上是增函数⇔f'(x)>0在R上恒3成立⇔∆<0恒成立,解得实数a的取值范围为(2,4).通过投影对比展示学生两种解答后,大部分学生能看到解法一不正确,解法二思路是正确的.教师:反思一下我们的解法二,发现当a < 2或 a > 4时,∆>0,问题不成立.但a = 2或a = 4时∆= 0,情况又会怎样?学生进一步计算后发现:a = 2或a = 4时∆= 0,导函数除在一点为0外,其余各区间均大于0.同以上变式3可知,这时函数单调区间可以连续起来.解:若函数f(x)=13x-(4a-1)x2+(15a2-2a-7)x+2在R上是增函数,3则f'(x)大于或等于零在R上恒成立⇔∆≤0恒成立,解得实数a的取值范围为[2,4].针对变式4中学生出现的两种思路,教师再提出问题:请同学们思考下面这个问题:变式5、(1)若函数f(x)=x3-3ax+2的单调递减区间为(0,2)求实数a的取值范围.(2)若函数f(x)=x-3ax+2的在区间(0,2)上单调递减,求实数a的取值范围.我的思考:“单调递减区间为(0,2)”与“在区间(0,2)上单调递减”是两个截然不同的问题情境.设计这个变式题组,一是让学生辨析这两种不同叙述的含义,二是对变式4两种思路的进一步明晰.学生独立思考,然后进行生生交流,最后统一答案.'(1)解:令导数f(x)<0,即3x-3a<0⇔x<a,再讨论a的符号,223当a>0时,解得-a<x<a,所以函数f(x)的单调减区间为(-a,a),函数f(x)=x-3ax+2的减区间为(0,2),则(0,2)=(-a,a),所以a=2,即a=4;当a=0时,函数的导数f(x)>0恒成立.所以a = 0时函数f(x)=x-3ax+2不存在单调减区间;'当a<0时,函数的导数f(x)>0总成立.3所以a<0时函数f(x)=x-3ax+2不存在单调减区间,3综上所述,若函数f(x)=x-3ax+2的单调递减区间为(0,2)则a=4.33'3(2)函数f(x)=x-3ax+2的在区间(0,2)上单调递减函数⇔f'(x)≤0在区间(0,2)内恒成立⇔3x2-3a≤0在区间(0,2)内恒成立⇔3x2≤3a在区间(0,2)内恒成立,⇔3x2在区间(0,2)内的最大值小于等于3a,即12≤3a 所以a≥4.该题是前面变式问题的综合展现.所以学生能很快完成问题的求解.对个别仍存在模糊认识的同学,在教师引导下,学生会很快发现问题进行纠正.我的思考:此题旨在锻炼学生的审题能力和对数学语言精确性和严密性的考查.“函数在某区间内单调”和“函数的单调区间是某区间”,前者说明所给区间是该函数单调区间的子集,后者说明所给区间恰好是函数的单调区间.因此在解题中一定要养成认真审题的好习惯.四、归纳总结、提升拓展最后,反思解题方法,归纳总结解题规律:1.如何确定函数的单调区间?在运算过程中,注意哪几个注意事项?2.函数单调的充要条件是什么?3.已知单调区间或在某个区间上单调时如何计算参数的值或范围?让学生自己通过对所解问题进行总结归纳,反思自己的问题.课外思考作业: 教师设计相应的习题,进一步巩固本节课所学知识和方法.1、(05.湖南)若函数f(x)=lnx-2、若函数f(x)=12ax-2x,(a≠0)存在单调减区间,求实数a的取值范围.21312x-ax+(a-1)x+1在区间(1,4)内为减函数,在区间(4,+∞)上为增函321312x-ax+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)32数,求实数a的值.3、(04年全国)若函数f(x)=上为增函数,求实数a的取值范围.4、(1)求函数f(x)=x-ax+2的单调区间.(2)(06年山东)求函数f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的单调区间.3【教学链接】微分学的中心问题是求曲线的切线和运动物体的瞬时速度.两者殊途同归,都导致了微分学的产生.费马是较早研究曲线切线的数学家,早在1629年他已有初步设想.1637年在手稿《最大值和最小值的方法》中具体给出了求切线的方法.费马应用它的方法,解决了许多难题.虽然其方法缺乏严密性,但它具有微分学的现代标准方法形式.费马的研究给后来牛顿发明系统的微积分理论奠定了基础.牛顿曾说:“我从费马的切线作法中得到这个方法的启示,我推广了它,把它直接地并且反过来应用于抽象的方程.”牛顿于1665年11月发明正流数术(微分法),1666年5月建立反流数术(积分法).1666年10月写成一篇总结性论文,在朋友与同事中传阅,现以《1666年10月流数简论》著称.这是历史上第一篇系统的微积分文献.将正反微分运算用于16类问题,展示了牛顿算法的普遍性与系统性.1687年,牛顿的名著《自然哲学及数学原理》出版,首次公开表述了他的微积分方法.此时距他创造微积分已过去22年.莱布尼兹与牛顿有许多相似之处,都是留名青史的哲学家,都是对多种学科有重大科学贡献的学者.其中最相似的贡献就是几乎同时各自独立发明了微积分.1666年莱布尼兹写成《论组合术》,讨论平方序列的性质.1675年发明了不定积分符号,同时注意到微分与积分必定是相反的过程,断定作为求和过程的积分是微分的逆.这一结果的得出虽稍晚于牛顿的同类结果,但是独立得到的.二者使用的方法也不同,故后人将此称为牛顿—莱布尼兹公式.随着17世纪末悬链问题(1690年),最速降线问题(1696年)以及等周问题的提出与解决.令数学界耳目一新.很快显示出微积分作为一种数学方法的强大功效.[资料来源] 梁宗巨、王青建、孙宏安.世界数学通史(下册·二).沈阳:辽宁教育出版社.2005,1.【教有所思】(1)结合学生的实际情况,设计问题从基础入手,逐步加深难度,针对在利用导数求函数的单调性问题中常见的几类问题和解题中常见的错误设计一系列问题,环环连接,使学生始终处于积极思考和探索讨论中,形成良好的课堂氛围,为良好的课堂效果打下基础.(2)本节课中,教师始终针对学生的问题进行变换和引导,总是让学生考虑,学生讨论,锻炼学生独立解决问题的能力和合作学习的能力,形成自己的数学思想方法,更触发了学生积极思考、勤奋探索的动力,开发学生的智慧源泉,实现了举一反三的效果,同时也符合新教材课堂理念,以培养学生能力为主,学生是课堂的主体;突出数学课的特点——教会学生如何解题.(3)对问题情景的设计和对学生出现的问题进行分析研究时所采用的方式方法,仍然是教师应该进一步改善和探索研究的主题.6第三篇:一题多变心得一题多变在教学中的运用心得体会在数学教学中,在课后给学生布置除书上练习题和习题以外的大量习题。
一题多解和一题多变
2024年1月上半月㊀解法探究㊀㊀㊀㊀一题多解和一题多变:一道有关抛物线焦半径问题的探究∗◉江苏省新沂市第一中学㊀吴玉章㊀苗庆硕㊀㊀抛物线的焦半径问题是抛物线综合问题中的一类特殊类型,其可以联系起抛物线的定义(问题的本质)㊁几何性质( 数 的属性)与几何特征( 形 的特征)㊁焦半径公式(三角形式)等, 串联 起平面解析几何㊁平面几何㊁函数与方程㊁三角函数等众多相关知识,为问题的切入与解决提供较多的思维视角,给问题的解决提供更多的方案与技巧方法,是有效发散数学思维,考查学生 四基 ㊁数学能力以及数学思想方法等方面比较有效的一个重要载体,备受各方关注.1问题呈现问题㊀已知抛物线y2=8x的焦点为F,准线与x 轴的交点为C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|A F|=.此题以抛物线为问题场景,通过设置过准线与x 轴交点的直线l与抛物线交于两点,利用两个角相等来创设定交点问题,进而求解相应焦半径的长度.涉及抛物线的焦半径问题,可以从解析几何的实质入手,利用解析几何思维来合理进行数学运算与分析处理;也可以从平面几何的图形入手,利用平面几何思维进行逻辑推理与分析处理;还可以从焦半径的公式入手,利用三角函数思维来合理数学运算㊁逻辑推理与综合应用等.不同思维视角的切入,都给问题的解决提供了切实可行的技巧与方法,实现问题的巧妙解决.2问题破解2.1解析几何思维解法1:设线法.依题意可得p=4,则F(2,0),C(-2,0).根据已知可得直线l的斜率存在且不为0,利用图形的对称性,不失一般性,设点A,B位于x轴的上方,如图1所示.设直线l的方程为x=m y-2,其中m>0.设A(x1,y1),B(x2,y2),y1>y2>0.图1联立x=m y-2,y2=8x,{消去参数x并整理,可得y2-8m y+16=0.利用韦达定理,可得y1+y2=8m,y1y2=16,则|A B|=1+m2|y1-y2|=1+m2 64m2-64=8m4-1,|B C|=1+m2|y2|=1+m2 y2.由抛物线的定义,可得|A F|=x1+p2=m y1-2+2=m y1.由于øA F B=øC F B,则F B是øA F C的角平分线.由三角形内角平分线定理,得|C F||A F|=|B C||A B|,即4m y1=1+m2 y28m4-1.整理并化简,可得m y1y2=32m2-1,即16m=32m2-1,则m2=43,解得m=233.所以y1+y2=8m=1633,又y1y2=16,解得y1=43,则|A F|=m y1=233ˑ43=8.解后反思:设线法是借助解析几何思维处理问题的一种 通性通法 ,成为解决直线与圆锥曲线位置关系问题时首选的一种基本方法.2.2平面几何思维解法2:几何法.依题意可得,p=4.根据已知可得直线l的斜率存在且不为0,利用图形的对称性,不失一般性,设点A,B位于x轴的上方,如图2所示.过点A,B作抛物线准线的垂线,垂足分别为D,38∗课题信息:江苏省教育科学 十四五 规划普教重点课题 指向关键能力的高中数学主题单元式教学的实践研究 ,课题编号为B/2021/02/34;江苏省教研室第十一期立项课题 差异教学在课程基地中应用的实践研究 ,课题编号为2015J K11GL O42.解法探究2024年1月上半月㊀㊀㊀图2E,延长E B交A F于点G.由于E GʊC F,因此øG B F=øC F B,又øA F B=øC F B,所以øA F B=øG B F,可得|B G|=|F G|.由øA F B=øC F B,则F B是øA F C的角平分线,利用三角形内角平分线定理可得|A B||B C|=|A F||C F|.结合抛物线的定义有|A D|=|A F|,可得|A B||C F|=|B C| |A D|.由于E GʊC FʊD A,因此|B G||C F|=|A B||A C|,|B E||A D|=|B C||A C|.所以有|B G| |A C|=|B E| |A C|,可得|B G|=|B E|,又结合抛物线的定义有|B E|=|B F|,故|B G|=|F G|=|B F|,即әB F G是正三角形,从而øB F G=60ʎ,可得øA F x=60ʎ.利用抛物线的焦半径公式,可得|A F|=p1-c o sθ=41-c o s60ʎ=8.解后反思:平面解析几何侧重 数 与 形 的结合与转化,借助代数思维中的数学运算来处理几何图形中的逻辑推理问题等,实现问题的突破与应用.2.3三角函数思维解法3:性质法.依题意可得,p=4.图3根据已知可得直线l的斜率存在且不为0,利用图形的对称性,不失一般性,设点A,B位于x轴的上方,如图3所示,过点A,B作抛物线的准线的垂线,垂足分别为D,E.设øA F x=θ,其中θ为锐角.结合øA F B=øC F B,利用抛物线的焦半径公式可得|A F|=p1-c o sθ=p2s i n2θ2,|B F|=p1-c o s(θ+π-θ2)=p1+s i nθ2.由øA F B=øC F B知,F B是øA F C的角平分线,则利用三角形内角平分线定理可得|C F||A F|=|B C||A B|.结合比例性质,可得|C F||A F|+|C F|=|B C||A B|+|B C|=|B C||A C|.而由E BʊD A,可得|B E||A D|=|B C||A C|.结合抛物线的定义有|A D|=|A F|,|B E|=|B F|,即|B C||A C|=|B E||A D|=|B F||A F|,所以|C F||A F|+|C F|=|B F||A F|,即pp2s i n2θ2+p=p1+s i nθ2p2s i n2θ2,整理可得s i nθ2-2s i n2θ2=0.解得s i nθ2=12,或s i nθ2=0(舍去),结合θ为锐角,解得θ=60ʎ.所以|A F|=p1-c o sθ=41-c o s60ʎ=8.解后反思:抛物线的焦半径三角公式|A F|=p1-c o sθ(θ为直线A F的倾斜角),是解决与抛物线的焦半径相关问题常用的结论.借助三角函数思维,结合三角函数的相关知识来巧妙综合与应用.3变式拓展3.1同源变式变式1㊀己知抛物线y2=8x的焦点为F,准线与x轴的交点为C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|B F|=.在此基础上,可以对问题进行一般化的归纳与总结.结论:已知抛物线y2=2p x(p>0)的焦点为F,准线与x轴交于点C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|A F|=2p,|B F|=2p3.变式2㊀己知抛物线y2=8x的焦点为F,准线与x轴交于点C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|A B|=.3.2同阶变式变式3㊀已知抛物线y2=8x的焦点为F,准线与x轴交于点C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则直线A F的斜率为.变式1,2,3的参考答案分别为:83,873,ʃ3.4教学启示此类涉及抛物线的焦半径问题,往往是多知识点交汇与融合的产物,这样的创设契合高考数学命题精神,而多知识点交汇也为问题的切入提供了更多的思维视角,给各层面的学生提供了更多的机会,从而更加有效地体现数学试题的选拔性与区分性.在数学学习中,针对此类涉及圆锥曲线的焦半径问题,要深刻体会并加以系统学习,把握问题的实质与内涵,构建知识体系,理解技巧方法,形成解题习惯,培养数学品质.Z48。
浅析“一题多变”与“一题多解”在高中数学教学中的运用
浅析“一题多变”与“一题多解”在高中数学教学中的运用【摘要】在高中数学教学中,“一题多变”与“一题多解”是提高高中数学教学实效性的重要方多变”与“一题多解”的关系,论述"一题多变"与"一题多解"在高中数学教式,更是培养学生核心思维能力的有效途径。
本文将浅析高中数学教学中的“一题学中的重要意义,并探索“一题多变”与“一题多解”在高中数学教学中的实践策略.【关键词】“一题多变”与“一题多解”一、一题多变一题多变在数学教育研究中具有突出地位,变式题的宗旨在于通过"变中发现不变"来学习抽象化和"以不变应万变"来学习公理化。
使得方法理解得以深化和广化。
一题多变可以很好地培养学生的思维与解题能力,起到巩固、深化、拓宽、综合应用的作用。
但在数学习题教学中,一题多变也得循序渐进,步子要适宜,变得自然流畅,使学生的思维得到充分发散,而又不感到突然。
总之,在数学习题教学中,选用一些非加探索不能发现其内在联系的习题。
采用一题多变的形式进行教学,有助于启发学生分析思考,逐步把学生引入佳境,从而使学生开拓知识视野,增强获取知识的能力,发展创新思维,同时还可以帮助学生对知识系统性、特殊性、广泛性的深刻理解。
解决问题的过程实际上就是寻求认识问题的正确途径,找到解决问题的要害,这是培养学生提高学习能力的根本所在,下面我我们用一个例题来看一题多变力争达到抛砖引玉的效果。
【思路引导】(1)利用待定系数法得到新的数列递推关系:,然后利用等比数列相关性质求解.(2)利用待定系数法得到新的数列递推关系:,然后利用等比数列相关性质求解(3)利用待定系数法得到新的数列递推关系:,然后利用等比数列相关性质求解(4)等式两边分别除以得到新的数列的递推关系:,然后利用(1)的方法求解.1.等式两边同时取常用对数得到新的数列递推关系:,然后利用等比数列求解.2.等式两边取倒数得到新的数列递推关系:,然后利用(1)的方法求解.当然这个题还可以根据学生的实际情况进行更多的变式,本文不在赘述。
一题多解和一题多变是让学生跳出题海不可多得的法宝
一题多解和一题多变是让学生跳出题海不可多得的法宝
高中数学内容多,而数学题是永远做不完的,那么有没有一种行之有效的,高效的复习方法吗?尝试一下一题多解和一题多变吧。
可能会有人认为,如果追求一题多解和一题多变,会加重学生学习负担。
其实不然,因为一题多解是采用多种方法解决同一道问题,在解决问题的同时又能复习巩固多项数学基础知识,加深理解记忆多条数学规律,熟练多项解题技能,而且通过一个阶段的自我训练,掌握了一题多解的思路,又找到各种不同类型的题目的简便解法,那时候就不需要做那么多题目,实际上就是跳出了题海,必然减轻了课业负担。
除此之外,一题多解还有很多的好处。
例如,在化学网考试中,如果碰到了某道题,用一种方法没有解决,我们不会失去信心,还可以用另外的方法来试试;当用一种方法解决完问题后,可以用另一种方法来进行验算,有效地避免了错误的产生。
另外,高中数学教学的最高目标是通过少而精的习题教学,既使学生巩固所学知识,又使学生思维能力、逻辑推理能力、分析问题能力等多方面得到训练、培养与提高。
一题多变是实现这一目标,跳出题海的法宝。
一题多变是在一道题的基础上通过改变部分条件或数字从而行成一个新的数学问题,
通过一题多变可以使学生很好的掌握与本题相关或相似的一系列数学问题,能很好的以一道题为载体解决多个或多类数学问题,并且有利于学生发现各种类似问题的联系和差异,从而掌握和消化多个数学问题。
通过一题多变的练习不仅能使学生很好的掌握数学知识及其内在联系,而且可以让学生通过有限的训练达到掌握多个数学问题的目的。
因此,一题多解和一题多变是让学生跳出题海不可多得的法宝。
一题多问、一题多变、一题多解的运用与思考
一题多问、一题多变、一题多解的运用与思考引言在学习中,我们经常会遇到一些问题,这些问题有时候并不是只有一个答案或一个解决方法。
一题多问、一题多变、一题多解的思想,就是针对这种情况而提出的。
本文将介绍这种思想的具体含义,及其在学习中的运用和思考。
一题多问在学习过程中,我们在掌握问题的基本内容后,有时候会遇到一些疑点。
这时候我们可以通过反复询问问题、寻找答案来更深入地理解问题。
一题多问的思想,就是在问题的基础上反复提出问题,追究问题的本质和细节,获得更深入的理解。
例如,我们在学习物理学中的牛顿第一定律时,可以从以下几个方面去思考问题:•什么是牛顿第一定律?•牛顿第一定律的实验验证的是什么?•牛顿第一定律的本质是什么?•牛顿第一定律与运动无关,那么万有引力定律是否也是与运动相关?通过一题多问的思想,我们可以深入地理解一个问题的本质和意义,从而更好地掌握其知识。
一题多变一题多变指的是在学习中,同一个问题可以有不同的表述方法或角度,通过不同的表述方法或角度来理解问题。
这种思想能够帮助我们更好地理解问题,从而更好地掌握知识。
例如,在学习数学中的解方程时,我们可以从以下几种不同的角度来表述同一个问题:•消元法:将未知数移项并整理,得到最终的解;•因式分解法:将多项式转化为一元二次方程组的形式,然后通过因式分解法得到最终的解;•公式法:对于某些特定的方程,我们可以使用特定的公式来求解。
通过一题多变的思想,我们可以更全面地理解一个问题,并且可以寻找不同的解决方法,从而更好地掌握知识。
一题多解一题多解指的是一个问题可以有不同的解决方法或答案。
在学习中,我们常常会遇到一些问题,即使是同一个问题,也可能有多个解决方法或答案。
一题多解的思想,就是鼓励我们去尝试不同的解决方法或答案,从而更好地掌握知识。
例如,在学习编程时,解决一个问题可能有多种不同的方法,我们可以通过不同的方法比较优劣性质,例如:代码复杂度、效率等,找到最佳的解决方法。
“一题多解与一题多变”在培养学生发散思维能力中的应用-最新文档
“一题多解与一题多变”在培养学生发散思维能力中的应用引言:在数学教学中,常用一题多解、一题多变的方法开拓学生的思路,克服思维定势,培养发散性思维的创造性能力。
所谓“一题多解”,就是尽可能用多种例外方法去解决同一道题,更严重的是可以培养学生的思考能力和创造能力。
所谓“一题多变”就是指一个题目反复变换,有利于扩大学生的视野,从而提高解题能力,更能激发学生学习的兴趣,增强求知欲。
一、利用一题多解训练学生的思维能力发散思维是从同一来源材料中探求例外答案的思维过程,培养这种思维能力,有利于提高学生学习的主动性和创新性等。
通过一题多解,引导学生就例外的角度、例外的观点审视分析同一题中的数量关系,用例外解法求得相同结果,可以激发学生去发现和去创造的强烈欲望,训练学生对数学思想和数学方法的熟练运用,从而培养学生的思维品质,发展学生的创造性思维。
二、利用一题多变培养学生的广漠思维提高学生综合分析能力是帮助学生解答应用题的严重教学手段。
通过“一题多变”的练习可以达到这一目的。
在习题课教学过程中,通过一题多解的表现形式对于培养学生数学兴趣和培养发散性思维的创造能力等起着不可估量的作用。
即通过对习题的题设或结论进行变换,而对同一个问题从多个角度来研究。
这种训练可以增强学生解题的应变能力,培养思维的广漠性和深刻性,从而培养创新思维的品质。
三、在例题讲解中运用一题多解和一题多变(一)在例题讲解中运用一题多解一题多解,一道数学题,因思考的角度例外可得到多种例外的思路,广漠寻求多种解法,提高学生分析问题的能力。
一题多变,对一道数学题或联想,可以得到一系列新的题目,积极开展多种变式题的求解,有助于增强学生面对新问题敢于联想分析予以解决的意识。
下面仅举一例进行一题多解和一题多变来说明:例:已知x、y≥0且x+y=1,求x2+y2的取值范围。
解答此题的方法比较多,下面给出几种多见的思想方法,以作示例。
解法一:(函数思想)由x+y=1得y=1-x,则由于x∈[0,1],根据二次函数的图象与性质知当x=时,x2+y2取最小值;当x=0或1时,x2+y2取最大值1。
一题多解与一题多变在高中数学学习中的运用
教学研究一题多解与一题多变在高中数学学习中的运用李 阔(吉林省四平市第一高级中学3年20班,吉林 四平 136000)【摘要】科学技术的日新月异,新课程标准的颁布,推进素质教育的进程。
培养自己分析问题、解决问题的能力日益重要,而能力的提高必须有好的方式方法,笔者认为“一题多解与一题多变”有助于培养自己的解题能力。
一题多解是从不同的角度、不同的方位去审视分析问题,是一种发散思维,而一题多变则是创造性思维的体现,通过题设的变化、结论的变化、引申新问题加深对知识的理解,使之记忆更深刻,思维更敏捷。
【关键词】科学技术;新课程标准;一题多解;一题多变一、关于高中学生学习数学的认识就所有的高中生来说,学好数学学科不是一件容易的事。
绝大多数同学对数学的感觉就是枯燥、乏味。
因为高考“指挥棒”的震慑力,虽然不感兴趣,也不得不学。
“如何才能学好数学”已经成为高中生最头疼的问题。
怎样回答这一问题便成了教师们的课题,很多人便单纯地以为要学好数学多做题就是了,见的题多了,做的题多了,自然就熟练了,成绩就提高了。
铁杵磨成针,于是乎“题海战术”情不自禁走了出来,受到很多高中生的青睐。
熟话说:“熟能生巧”。
诚然,多做习题对高中生数学成绩的提高有着重要的影响,然而,长此以往,学习数学越来越枯燥无味,越来越厌烦,出现厌学、抄作业等现象也不足为奇了。
众所周知,数学题是做不完的,可以说无穷无尽。
笔者认为要学好数学,必须提高自身的数学思维、能力和学习数学的兴趣。
高考数学题“源于书本,又高于书本”,这是多年来高考试卷命题的原则,紧紧依靠书本上有限的例题和习题来提高自身的学习兴趣和能力。
在数学学习过程中,有效利用一切有用条件,进行对比、联想,采取一题多解与一题多变的形式进行解答,有助于培养自身思维的广阔性、深刻性、探索性、灵活性、独创性,这也是一条行之有效地途径。
同时,能力提高的过程,自身的成就感逐渐增强,在以后不断的变化和解决问题的不同经历中,学习兴趣油然而生。
数学一题多解
作为一名高中数学教师,一直在教学第一线践行课程改革。
如何打造激情活力的高效课堂?我尝试用“一题多解,一题多变”激活数学课堂教学,培养学生发散思维和解决问题能力。
所谓一题多解,我们可以理解为其一是同一个问题可以找寻到多个渠道、多个方法、多个途径来解决。
而其二就是同一个问题,可是答案却是不唯一的,是多元的,不同分析方法和思维方式得出的结论是不同的,却都是合理的。
这属于
步把学生引入胜境,从而使学生开拓知识视野,增强能力,发展创造思维,同时还可以帮助学生对知识系统性、特殊性、广泛性的深刻理解。
数学解题之一题多解与多题一解[1]
摘要本文意在明确一题多解和多题一解与学生思维能力发展之间的关系,从而使教师在数学解题教学过程中更加重视解题方法对学生思维能力的培养。
本文通过两种典型例题即一题多解型和多题一解型的讲解,阐述了通过不同的例题可以达到对学生思维能力的训练培养的目的。
通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;通过多题一解,能够加深学生的思维深度,分析事物时学会由表及里,抓住事物的本质,找出事物间内在的联系。
与此同时,对一题多解和多题一解的运用,要注意相互结合,灵活运用,不可只求一技,失之偏颇。
关键词:一题多解多题一解思维能力数学解题过程中一题多解与多题一解对学生思维能力的培养引言现代心理学认为,数学是人类思维的体操,在培养人的聪明才智方面起着巨大的作用。
所以,数学教学实质上是数学思维活动的教学。
也就是说,在数学教学中,除了要使学生掌握基础知识、基本技能外,还要注意培养学生的思维能力。
培养学生的思维能力是新课程改革的基本理念,也是数学教育的基本目标之一。
“学生在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概况、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。
这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴含的数学模式进行思考和做出判断。
” 数学思维能力对形成理性思维有着独特的作用。
因此,作为一名数学教师,应把培养学生的思维能力贯穿在教学的全过程。
惠州市惠州区广播电视大学舒芳教授在《在数学解题教学中培养学生的思维能力》中认为,不同的解题方法,可以培养学生不同的思维方式。
如,一题多解可以培养思维的广阔性;数形结合,可以培养思维的灵活性;巧妙构造,可以培养思维的独创性;逆向探求,可以培养思维的敏捷性;动静变换,可以培养思维的变通性等。
从心理学角度讲,发散性思维和集中性思维的有机结合,正是培养创造性思维的有效途径。
本文着重阐述一题多解与多题一解的灵活运用对培养学生思维能力的重要性。
浅析一题多解与一题多变在高中数学教学中的应用
2024年2月上半月㊀学习指导㊀㊀㊀㊀浅析一题多解与一题多变在高中数学教学中的应用◉江苏东海高级中学㊀冯月华㊀㊀在高中数学教学中,一题多解与一题多变教学是常用的方法,以期通过多角度分析达到夯实基础,培养学生创新能力和探究能力,提高学生发现㊁提出㊁分析和解决问题能力的目的[1].下面笔者以两道典型的三角函数题为例,谈谈对一题多解与一题多变教学的一些粗浅认识,供参考!1一题多解,培养思维的发散性例1㊀已知t a n(α2+π4)=-3,求1+s i nα的值.本题主要考查二倍角公式㊁和角的正切公式㊁ 1 的灵活转化等知识点,解题方法不唯一.根据预设可以看出,学生对 1 的转化比较熟悉,例如1+s i n x=s i n x2+c o s x2,1-s i n x=s i n x2-c o s x2.教师先让学生独立解题,然后与学生共同交流.师:谁来说一说,你是如何求解例1的?生1:因为t a n(α2+π4)=-3,根据两角和的正切公式,易求出t a nα2=2,所以α2的终边在第一或第三象限.由同角三角函数的基本关系式,进一步可求出s i nα2=255,c o sα2=55,或s i nα2=-255,c o sα2=-55,则都有1+s i nα=s i nα2+c o sα2=355,所以1+s i nα=355.师:很好!生1从已学习过的知识出发,利用1+s i nα=s i nα2+c o sα2解决了问题.我们知道三角函数形式是灵活多变的,还有没有其他的方法呢?生2:我在此基础上做了改进.由t a n(α2+π4)=-3,可以得到s i n(α2+π4)=ʃ31010,所以可得s i nα2+c o sα2=2s i n(α2+π4)=355,即1+s i nα=355.师:很好!生2从问题出发,灵活运用有关三角恒等变换公式,将已知和问题建立了联系,真正体现了知识的活学活用.学生给出预设的两种解法后,教师准备开始其他问题的探究,但生3又提出了新思路.生3:可从已知条件出发,因为t a n(α2+π4)=-3,利用二倍角公式得t a n(α+π2)=34,所以t a nα=-43,则s i nα=ʃ45,解得1+s i nα=355或55.我感觉自己的思路和过程没有问题,但是却和前面两位同学的结果不一致.生3给出的方法超出了教师的预设,教师一时不知如何回答.不过该方法是学生的真实想法,且具有一定的科学性和探究性,为此选择与学生共同探索,挖掘答案不一致的真正原因.师:生3的答案和之前两位同学的答案不一致,是前面两位同学的结果不够完善,还是生3的结果存在增根呢?这个确实是一个非常有价值的问题.问题到底出现在哪里呢?生4:我感觉生3的解题思路和计算过程没有问题,已知条件仅给出了t a n(α2+π4)=-3,没有给出α的范围,所以很难确定α的终边在哪一个象限.师:条件中确实没有给出α的范围,那么α的范围真的没有办法确定吗生5:可以将t a n(α2+π4)与特殊角的三角函数比较,逐步缩小角的范围.由t a n(α2+π4)=-3<-3,得kπ-π2<α2+π4<kπ-π3,所以2kπ-3π2<α<2kπ-7π6(kɪZ),由此可知,α在第二象限.师:分析得非常有道理!那么是什么原因使生3解题时出现了增根呢95学习指导2024年2月上半月㊀㊀㊀生6:问题应该出现在 由t a n(α2+π4)=-3,利用二倍角公式得t a n (α+π2)=34这一步的变换上,变换时扩大了α的范围,从而出现了增根.对于同一题,思考的角度不同,其解决方法也会有所不同,不过最终的结果是一致的.在日常教学中,教师应鼓励学生尝试从不同角度探索解决问题的方法,这样可以有效激活学生的原认知,提高分析和解决问题的能力.2一题多变,培养思维的灵活性例2㊀已知α是三角形的内角,且s i n α+c o s α=15,求t a n α的值.例2考查同角三角函数基本关系式及其应用,难度不大,教师先让学生独立求解,然后师生互动交流.师:对于例2,大家是怎么想的?生1:我是用方程的思想方法求解的,由s i n α+c o s α=15和s i n 2α+c o s 2α=1,解得s i n α=-35,c o s α=45,或s i n α=45,c o s α=-35.又α是三角形的内角,所以s i n α=45,c o s α=-35.所以t a n α=-43.师:非常好!根据同角三角函数的基本关系式,运用方程的思想方法顺利解决了问题.对于该题,大家还有其他解题思路吗生2:由(s i n α+c o s α)2=1+2s i n αc o s α=125,得2s i n αc o s α=-2425<0.又α是三角形的内角,所以α为钝角,则s i n α>0,c o s α<0.又(s i n α-c o s α)2=4925,所以s i n α-c o s α=75,将其与s i n α+c o s α=15联立,求得s i n α=45,c o s α=-35,所以t a n α=-43.师:很好!根据角的范围判断三角函数的符号往往是解三角函数问题的关键,解题时切勿忘记.学生顺利完成例2的解答后,教师给出如下变式问题:变式㊀若t a n θ=2,求s i n 2θ+s i n θc o s θ-2c o s 2θ.此变式同样考查 s i n 2θ+c o s 2θ=1的灵活运用,将原式变为s i n 2θ+s i n θc o s θ-2c o s 2θs i n 2θ+c o s 2θ,将此式的分子分母同时除以c o s 2θ,转化为关于t a n θ的式子,进而将已知条件代入即可求得答案.例2及变式求解后,教师引导学生对以上解题方法进行归纳总结,从而提高学生解决一类问题的能力.在此基础上,教师继续提出新问题:(1)变式的条件还可以做怎样的变形?如果将t a n θ=2变为t a nθ2=2或3s i n θ+c o s θ=0或s i n (3π+θ)=2s i n (3π2+θ),该如何求解?(2)变式的问题还可以做哪些变形?如果是2s i n θ-c o s θs i n θ+2c o s θ,1c o s 2θ+2s i n 2θ,s i n 2θ-c o s 2θ1+c o s 2θ,又该如何求解?通过以上变式,引导学生体会该类题型考查的核心内容是s i n 2θ+c o s 2θ=1,t a n θ=s i n θc o s θ与 1的灵活应用,题目虽然形式不同,但是所用的知识㊁思路与方法基本相同.这样通过一题多变既能加深对相关知识㊁方法的理解,又能增强学生解题信心,提高学生解决问题的能力.数学题目千变万化,更换一个条件或结论就会成为一道新题.为了帮助学生跳出 题海 ,教学中应注重对一些典型例题进行变式教学,这样既能加深相关知识的理解,又能激发学生的探究欲望,提高学生的思维能力和学习能力,从而让学生逐渐爱上数学学习[2].3结束语在实际教学中,教师要通过一题多解与一题多变为学生提供更多的自主探究空间,以此帮助学生加深对所学知识的理解,培养良好的学习习惯和独立的个性.学生是课堂的主体.教学过程中,教师要尊重学生㊁相信学生,提供时间和空间让学生主动参与课堂,切实提高教学有效性和学生数学能力.在实际教学中,教师既要进行充分的预设,又要及时捕捉精彩的课堂生成,以平等对话的态度了解学生的真实想法,共同研究解决问题的策略,激发学生参与课堂的积极性,促成深度学习.总之,在解题教学中,教师切勿越俎代庖,应该充分发挥学生的主体价值,通过一题多解㊁一题多变教学提炼解题规律和解题方法,培养学生的创新㊁探究能力,提升教学有效性.参考文献:[1]郭靖.基于核心素养的引导探究教学模式的探索与实践 高中新教材不等式性质的教学案例[J ].中文科技期刊数据库(全文版)教育科学,2021(6):168G170.[2]陈光建,郑日锋.一花一世界一题一天地 一节高考二轮复习的教学设计及反思[J ].中小学数学(高中版)2013(4):20G22.Z06。
2014高中数学 一题多变一题多解特训(七)
一题多解 一题多变(七)题型一:一题多解例题:设10=+a a lg ,1010=+bb ,求b a +的值。
解法一(构造函数)设x x x f lg )(+=,则)(lg )(b b b b f b a f 1010101010=+=+==,由于)(x f 在),(+∞0上是单调递增函数,所以b a 10=,故1010=+=+b b a b 。
解法二(图象法)因为a 是方程10=+x x lg 的一个根,也就是方程x x -lg 10=的一个根 b 是方程1010=+x x 的一个根,也就是方程x -1010=x 的一个根令x x g lg )(=,xx h 10=)(,x x -)(10=Φ,在同一坐标系中作出他们的图象,如图所示:a 是方程)()(x x g Φ=的根,即图中OA=ab 是方程)()(x x h Φ=的根,即图中OB=b易得OA+OB=10,所以10=+b a解法三:方程10=+x x lg ,1010=+x x 的根为a ,b 由1010=+x x ,得x x -1010=,∴x)-lg(10=x ,又10=+x x lg 10lgx x)-lg(=+∴10,1010x )-x (10=即,02=+101010x -x 即1021=+x x )(0<Δ虚根题型二:一题多变证明:222221212122121)()(≤)(,)()(;)()()(,)(xfxfxxfbaxxxfxfxfxxfbaxxf++++=+=++=则若则)若(变题1:如图所示,),,,)((4321=ixfi是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中的任意的21xx,,任意1212[0,1],[(1)]()(1)()f x x f x f xλλλλλ∈+-≤+-恒成立”的只有( A )A、)(),(31xfxf B、)(2xf C、)(),(32xfxf D、)(4xf变题2:定义在R上的函数)(xf满足:如果对于任意Rxx∈21,都有222121)()(≤)(xfxfxxf++则称函数)(xf是R上的凹函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学一题多解和一题多变
根据高考数学“源于课本,高于课本”的命题原则,教师在教学或复习过程中可以利用书本上的例题和习题,进行对比、联想,采取一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。
下面举例说明:
一题多解和一题多变(一)
类型一:一题多解
例题: 已知tanα=43
,求sinα,cosα的值
分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题:
法一 根据同角三角函数关系式tanα= 43= αα
cos sin ,且sina2α + cos2α =1。
两式联立,得出:cos2α=2516,cosα= 54
或者cosα= -54 ;而s inα=53或者sinα=-53 。
分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些:
法二 tanα=43
:α在第一、三象限
在第一象限时:
cos2α = ααcos sin cos 2
2
2
5+=αtan 2
11+=25
16
cosα=54 sinα=αcos 2
1-=53
而在第三象限时:
cosa=- 54
sina=- 53
分析:利用比例的性质和同角三角函数关系式,解此题更妙:
法三 tanα= 43= αα
cos sin ↔4cos α= 3sin α
↔4cos α= 3sin α
= ±
3
4cos sin
2
2
2
2
++α
α
∴sinα=53,cosα= 54
或sinα=-53,cosα=-54
分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。
初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之:
法四 当α为锐角时,由于tana=43
,在直角△ABC 中,设α=A,a=3x,b=4x,则勾股定理,得,
c=5x
sinA=AB BC = 53
,cosA=AB AC =54 ∴sinα= 53
,cosα=54 或sinα= -53
,cosα= -54
分析 :用初中三角函数定义解此题,更应该尝试用三角函数高中的定义解此题,因为适用范围更广:
法五 当α为锐角时,如下图所示,在单位圆中,设α=∠AOT , 因为tanα= 43
,则T 点坐
标是T(1, 43
),由勾股定理得:OT=
⎪⎭
⎫ ⎝⎛+432
1= 45
∵△OMP ∽△0AT ∴AT MP =OA OM =OT OP ,OM=54, MP =53
, p(54, 53),
∴sinα= 53
,cosα= 54 或sinα=-53,cosα= -54
分析: 圆和直线已经放入直角坐标系中,肯定可以尝试用解析几何法来解此题: 解法六,如上图,易求出直线OT 的方程和单位圆的方程
y=43
x ;x2+y2=1 两式联立,得出:
⎩⎨⎧==545
3x y , 或
⎩⎨⎧-=-=545
3x y .
T 点坐标是P(-54, -53
) P(54, 53 ) ∴sinα= 53
,cosα=54 或sinα= -53
,cosα= -54
分析: 先考虑sinα、cosα两者之间的关系,容易想到用三角函数辅助角公式来帮助解决此问题:
解法七,tanα= 43= αα
cos sin
4sina-3cosa=0
由三角函数辅助角公式得,
5sin (a+φ)= 0,其中,sinφ=53
, cosφ=54
∴a+φ=kπ ,k ∈Z sina=sin (k π -φ)=sinφ α在第一、三象限
∴容易求出sinα=53 ,cosα= 54
或sinα=-53,c osα= -54
分析: 仅仅从角度变换考虑,看一看,用二倍角公式是否能解决此问题:
解法八,由二倍角公式,得,tanα=
2
2tan
2
12tan
α
α
-= 43
3tan22α +8tan 2α
-3=0 ∴tan 2α= -3,或tan 2α=31
sinα=2sin 2αcos 2α=
22cos sin 2
cos
2sin 22
2
α
αα
α+=2
212
tan
2tan
2
α
α
+
∴sinα= 53,cosα=54
或sin α= -53,cosα= -54
判别式
此外,我们还可以尝试从向量的角度思考这个问题,这里就不再赘述。
下面展示本题的变式与推广:
类型二:一题多变 已知5
4
=
αsin 且α是第二象限角,求αtan 解:α是第二象限角,54=αsin 3
4
5312一一一一===αααtan ,sin cos ⇒
变1:54
=αsin ,求αtan
解:05
4
>=αsin ,所以α是第一或第二象限角
若是第一象限角,则34
53==ααtan ,cos
若是第二象限角,则3
4
54一一==ααtan ,cos
变2:已知)(sin 0>=m m α求αtan 解:由条件10≤<m ,所以
当 10<<m 时,α是第一或第二象限角 若是第一象限角时2
2
11m
m αm α一一=
=tan ,cos
若是第二象限角2
2
11m
m αm α一一
一一tan ,cos ==
当1=m 时αtan 不存在
变3:已知)(sin 1≤=m m α,求αtan 解:当11一,=m 时,αtan 不存在 当0=m 时, 0=αtan 当α时第一、第四象限角时,2
1m
m α一=
tan
当α是第二、第三象限角时,2
1m
m α一一=tan
练一小手:
变式1: 已知tanα=-3,求sin αcos α的值
变式2:已知tanα=m,求sinα,cosα的值
变式3 :已知sinα=m,求cosα,tanα的值
由上例可以看出,一题多解和一题多变可以使学生更积极参与到课堂中来,从而激发学生对数学学习的兴趣和信心。
一道数学题因思考的角度不同可得到多种不同的解法,这有助于拓宽解题思路,提高学生分析问题的能力;一道数学题通过联想、类比、推广,可以得到一系列新的题目,甚至得到更一般的结论,这有助于学生应变能力的提高和发散思维的形成,增强学生面对新问题敢于联想分析予以解决的意识。
一题多解和一题多变犹如一座金桥,,能把学生从已知的此岸渡到未知的彼岸。