数学分析课本(华师大三版)-习题及答案第二十一章

合集下载

数学分析课后习题答案(华东师范大学版)

数学分析课后习题答案(华东师范大学版)

P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ Cx dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56tdx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dxx x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺.于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dxcos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴Cx x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,CxC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,duu dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I. .。

华东师大 版九年级数学上册第二十一章全部课件

华东师大 版九年级数学上册第二十一章全部课件

(4 3 1) 2
2 9 2
别漏了“1”.
2
(2) 24 1 2 2 1 6 2 38
解:原式=2 6 1 2 2 6 1 2 6 234
(2 2 1) 6 ( 1 1 ) 2
3
24
5 63 2 34
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
a 2 a a 0 ;
a2 ( a a 0)
完 毕 感 谢
·
The user can perform the presentation on a projector or computer, and the powerpoint can be printed out and made into film.
D.a 为非负数
练习
例 2 当 x 取何值时,下列各式有意义?
(1) x-2;
(2) xx-+64;
(3) 31-x+ x-1.
【答案】解:(1)∵x-2≥0,∴x≥2.
(2)由题意,得
x+4≥0, x-6≠0,
∴x≥-4,且 x≠6.
(3)由题意,得
3-x>0, x-1≥0,

x<3, x≥1.
问题3 平方根的性质: 正数有两个平方根且互为相反数; 0有一个平方根就是0; 负数没有平方根. 问题4 所有实数都有算术平方根吗?
正数和0都有算术平方根;负数没有算术平方根.
二次根式的定义及有意义的条件
二次根式的定义
一般地,我们把形如 a (a≥0)的式子叫做二次根 式.“ ”称为二次根号,a 叫做被开方数.
解:4 27 4 12 12 3 8 3 (12 8) 3

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02

第二章 数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。

(1)对下列ε分别求出极限定义中相应的N : 1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对; (3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。

3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列: (1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31; (5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。

4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。

5、试用定义1'证明: (1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。

6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。

7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。

当且仅当a 为何值时反之也成立?8、按ε—N 定义证明: (1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。

§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。

数学分析第三版答案 (2)

数学分析第三版答案 (2)

数学分析第三版答案简介《数学分析第三版》是一本经典的数学教材,对于数学分析的基本概念、定理和方法进行了系统而全面的介绍。

本文档整理了《数学分析第三版》中的一部分习题答案,希望能够对读者巩固和检验所学知识提供帮助。

目录1.函数、极限与连续2.导数与微分3.一元函数的积分4.多元函数的积分5.级数与广义积分函数、极限与连续习题1.1-1证明下列函数的极限不存在:1.$f(x) = \\sin{\\left(\\frac{1}{x}\\right)}$2.$f(x) = \\frac{\\sin{x}}{x}$解答1.当x趋于0时,$\\frac{1}{x}$趋于无穷大。

由于正弦函数的周期是$2\\pi$,所以当x趋于无穷大时,$\\frac{1}{x}$趋于0。

因此,当x趋于0时,$f(x) =\\sin{\\left(\\frac{1}{x}\\right)}$不收敛。

2.当x趋于无穷大时,$\\sin{x}$在$[-\\pi, \\pi]$上做无限多次振荡。

而x也趋于无穷大,所以$\\frac{\\sin{x}}{x}$在无限多个点上振荡。

因此,当x趋于无穷大时,$f(x) = \\frac{\\sin{x}}{x}$不收敛。

习题1.1-2计算下列极限:1.$\\lim\\limits_{x \\to 0}{\\frac{\\sin{x}}{x}}$2.$\\lim\\limits_{x \\to \\infty}{\\frac{x^2 - 3x +2}{2x^2 + 5}}$3.$\\lim\\limits_{x \\to 1}{\\frac{x^2 - 1}{x - 1}}$解答1.根据拉’Hospital法则,$\\lim\\limits_{x \\to0}{\\frac{\\sin{x}}{x}} = \\lim\\limits_{x \\to0}{\\frac{\\cos{x}}{1}} = 1$。

数学分析课后习题答案(华东师范大学版)

数学分析课后习题答案(华东师范大学版)

152P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(153⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x)9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222154⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ155⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dx C x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2156C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin (157(23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =158Ct t t t t t dt t t t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212159⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:160⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-161所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311162⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(163C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x)12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dx164C x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有165⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12166⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12167⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=168⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222169⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。

华东师大数学分析答案完整版

华东师大数学分析答案完整版


是’





!
这 两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中
## 为充分小的正数!定义!$$在某些证明题中使用起来更方便些 !
*" 确界原理)设 ’ 是非空数集#若 ’ 有上界#则 ’ 必有上确界*若 ’ 有下界#则 ’ 必有下确界!
确界原理是实数系完备性的几个等价定理中的一个!
3" 单调性
设 -%,!$$#$#.#若 对 ,$! #$$ #.#$! %$$ #有
!!$,!$!$$,!$$$#则称 , 在. 上是递增函数! !$$,!$!$%,!$$$#则称 , 在. 上是严格递增函数!
类似可定义递减函数与严格递减函数!
4" 奇偶性
设 . 是对称于原点的数集#-%,!$$#$#.! !!$若,$#.#都有 ,!($$%,!$$#则称,!$$是偶函数! !$$若 ,$#.#都 有 ,!($$% (,!$$#则 称 ,!$$是 奇 函 数 !
分析 !本题主要考察函数 的 有 界 性#要 充 分 利 用 已 知 条 件 给 出 的 不 等 式 #积 极 构 造 出 类 似 的 不 等
%$ %
第一章!实数集与函数
式 #以 证 出 结 论 !
证 明 ! , (%#;’.:#,$# !%#;$#则 存 在’# !##!$#使 $%%&’!;(%$



点%!&;! $
#又




(%$
#;$’#使
,!$$在




#这

数学分析课本(华师大三版)-习题及答案Part-II

数学分析课本(华师大三版)-习题及答案Part-II

x = x(t ) x + y + 2t (1 − t ) = 1 is determined by . Find the y y = y (t ) te + 2 x − y = 2
equations of the tangent line and the normal line of the curve at t = 0 . 3. Suppose
Part II
Differentials with one-variable
x = 3t 2 + 2t + 3 . y e sin t − y + 1 = 0
1. Suppose the function y = y ( x ) is determined by the equation system Find the differentials dy |t = 0 and dy 2 |t = 0 . 2. Suppose that the curve
1 (1 + ) x − e x (2) lim ; x →0 x
1
sin x x2 (3) lim( ) . x →0 x
1
lim
x →0
x 2e 2 + 2 cos x − 2 . tgx − sin x
f ( x) x →0
x 6. Suppose that f (0) = 0 , and suppose f ' (0) exists. Find the limit lim +
d2y 1 y . ln( x 2 + y 2 ) = arc tg . Find the second differential 2 x dx 2

数值分析第三版课本习题及答案

数值分析第三版课本习题及答案

数值分析第三版课本习题及答案第⼀章绪论1.设x>0,x得相对误差为δ,求得误差、2.设x得相对误差为2%,求得相对误差、3.下列各数都就是经过四舍五⼊得到得近似数,即误差限不超过最后⼀位得半个单位,试指出它们就是⼏位有效数字:4.利⽤公式(3、3)求下列各近似值得误差限:其中均为第3题所给得数、5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少?6.设按递推公式( n=1,2,…)计算到、若取≈27、982(五位有效数字),试问计算将有多⼤误差?7.求⽅程得两个根,使它⾄少具有四位有效数字(≈27、982)、8.当N充分⼤时,怎样求?9.正⽅形得边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝?10.设假定g就是准确得,⽽对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增加,⽽相对误差却减⼩、11.序列满⾜递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多⼤?这个计算过程稳定吗?12.计算,取,利⽤下列等式计算,哪⼀个得到得结果最好?13.,求f(30)得值、若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式计算,求对数时误差有多⼤?14.试⽤消元法解⽅程组假定只⽤三位数计算,问结果就是否可靠?15.已知三⾓形⾯积其中c为弧度,,且测量a ,b ,c得误差分别为证明⾯积得误差满⾜第⼆章插值法1.根据(2、2)定义得范德蒙⾏列式,令证明就是n次多项式,它得根就是,且、2.当x= 1 , 1 , 2 时, f(x)= 0 , 3 , 4 ,求f(x)得⼆次插值多项式、3.给出f(x)=ln x得数值表⽤线性插值及⼆次插值计算ln 0、54 得近似值、4.,研究⽤线性插值求cos x 近似值时得总误差界、5.设,k=0,1,2,3,求、6.设为互异节点(j=0,1,…,n),求证:i)ii)7.设且,求证8.在上给出得等距节点函数表,若⽤⼆次插值求得近似值,要使截断误差不超过,问使⽤函数表得步长应取多少?9.若,求及、10.如果就是次多项式,记,证明得阶差分就是次多项式,并且为正整数)、11.证明、12.证明13.证明14.若有个不同实根,证明15.证明阶均差有下列性质:i)若,则;ii)若,则、16.,求及、17.证明两点三次埃尔⽶特插值余项就是并由此求出分段三次埃尔⽶特插值得误差限、18.求⼀个次数不⾼于4次得多项式,使它满⾜并由此求出分段三次埃尔⽶特插值得误差限、19.试求出⼀个最⾼次数不⾼于4次得函数多项式,以便使它能够满⾜以下边界条件,,、20.设,把分为等分,试构造⼀个台阶形得零次分段插值函数并证明当时,在上⼀致收敛到、21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处得与得值,并估计误差、22.求在上得分段线性插值函数,并估计误差、23.求在上得分段埃尔⽶特插值,并估计误差、24.给定数据表如下:i)ii)25.若,就是三次样条函数,证明i)[][][][] 222()()()()2()()()b b b ba a a af x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-";ii) 若,式中为插值节点,且,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?、26. 编出计算三次样条函数系数及其在插值节点中点得值得程序框图(可⽤(8、7)式得表达式)、第三章函数逼近与计算1. (a)利⽤区间变换推出区间为得伯恩斯坦多项式、(b)对在上求1次与三次伯恩斯坦多项式并画出图形,并与相应得马克劳林级数部分与误差做⽐较、 2. 求证:(a)当时,、 (b)当时,、3. 在次数不超过6得多项式中,求在得最佳⼀致逼近多项式、4. 假设在上连续,求得零次最佳⼀致逼近多项式、5. 选取常数,使达到极⼩,⼜问这个解就是否唯⼀?6. 求在上得最佳⼀次逼近多项式,并估计误差、7. 求在上得最佳⼀次逼近多项式、8. 如何选取,使在上与零偏差最⼩?就是否唯⼀? 9. 设,在上求三次最佳逼近多项式、 10. 令,求、11. 试证就是在上带权得正交多项式、12. 在上利⽤插值极⼩化求1得三次近似最佳逼近多项式、13. 设在上得插值极⼩化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14. 设在上,试将降低到3次多项式并估计误差、15. 在上利⽤幂级数项数求得3次逼近多项式,使误差不超过0、005、16. 就是上得连续奇(偶)函数,证明不管就是奇数或偶数,得最佳逼近多项式也就是奇(偶)函数、 17. 求、使为最⼩、并与1题及6题得⼀次逼近多项式误差作⽐较、 18. 、,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们就是否构成内积?19. ⽤许⽡兹不等式(4、5)估计得上界,并⽤积分中值定理估计同⼀积分得上下界,并⽐较其结果、 20. 选择,使下列积分取得最⼩值:、21. 设空间,分别在、上求出⼀个元素,使得其为得最佳平⽅逼近,并⽐较其结果、 22. 在上,求在上得最佳平⽅逼近、23. 就是第⼆类切⽐雪夫多项式,证明它有递推关系、24. 将在上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差、25.把在上展成切⽐雪夫级数、26.⽤最⼩⼆乘法求⼀个形如得经验公式,使它与下列数据拟合,并求均⽅误差、27.28.在某化学反应⾥,根据实验所得分解物得浓度与时间关系如下:29.编出⽤正交多项式做最⼩⼆乘拟合得程序框图、30.编出改进FFT算法得程序框图、31.现给出⼀张记录,试⽤改进FFT算法求出序列得离散频谱第四章数值积分与数值微分1.确定下列求积公式中得待定参数,使其代数精度尽量⾼,并指明所构造出得求积公式所具有得代数精度:(1);(2);(3);(4)、2.分别⽤梯形公式与⾟普森公式计算下列积分:(1); (2);(3); (4)、3.直接验证柯特斯公式(2、4)具有5次代数精度、4.⽤⾟普森公式求积分并计算误差、5.推导下列三种矩形求积公式:(1);(2);(3)、6.证明梯形公式(2、9)与⾟普森公式(2、11)当时收敛到积分、7.⽤复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍⼊误差)?8.⽤龙贝格⽅法计算积分,要求误差不超过、9.卫星轨道就是⼀个椭圆,椭圆周长得计算公式就是,这⾥就是椭圆得半长轴,就是地球中⼼与轨道中⼼(椭圆中⼼)得距离,记为近地点距离,为远地点距离,公⾥为地球半径,则、我国第⼀颗⼈造卫星近地点距离公⾥,远地点距离公⾥,试求卫星轨道得周长、10.证明等式试依据得值,⽤外推算法求得近似值、11.⽤下列⽅法计算积分并⽐较结果、(1)龙贝格⽅法;(2)三点及五点⾼斯公式;(3)将积分区间分为四等分,⽤复化两点⾼斯公式、12.⽤三点公式与五点公式分别求在1、0,1、1与1、2处得导数值,并估计误差、得值由下表给出:第五章常微分⽅程数值解法1、就初值问题分别导出尤拉⽅法与改进得尤拉⽅法得近似解得表达式,并与准确解相⽐较。

数学分析课本(华师大三版)-习题及答案第二十一章

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

数学分析华东师大版上21

数学分析华东师大版上21
§1 数列极限的概念
数列极限是整个数学分析最重要的基础
之一, 它不仅与函数极限密切相关,而且
为今后学习级数理论提供了极为丰富的准 备知识.
一、数列的定义
二、一个经典的例子
三、收敛数列的定义
四、按定义验证极限
五、再论 “ - N ”说
法六、一些例子
前页 后页 返回
一、数列的定义
若函数 f 的定义域为全体正整数的集合 N+ , 则称 f : N+ R 或 f (n), n N+
{ an } 不以 a 为极限的定义也可陈述为:存在 0 0, 使得在 (a 0,a 0 ) 之外含有 { an } 中的无限多
项. 注 { an }无极限(即发散)的等价定义为: { an } 不以任何实数 a 为极限.
前页 后页 返回
4.无穷小数列和无穷大数列
定义2

lim
n
an
0,则称 {an} 为无穷小数列.
五、再论 “ - N ”说法
从定义及上面的例题我们可以看出:
1. 的任意性: 定义中的 用来刻画数列 {an} 的通 项与定数 a 的接近程度. 显然正数 愈小,表示 a n 与 a 接近的程度愈高; 是任意的, 这就表示 an 与 a 可以任意接近.要注意, 一旦给出,在接下
来计算 N 的过程中,它暂时看作是确定不变的.
例4 用定义验证 lim n a 1, 其中 a 0. n
证 这里只验证 a 1的情形(0 a 1 时自证).

n
1
an
1
.
因为
a
1 n n
1 nn ,
所以
0
n
n
a
1

华师大版2020-2021学年九年级数学上册第21章《二次根式》测试卷(附答案)

华师大版2020-2021学年九年级数学上册第21章《二次根式》测试卷(附答案)

第二十一章测试卷(时间:120分钟分数:120分)得分:______________一、选择题(每小题3分,共30分)1.若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1 C.x>1且x≠2D.x<1 2.下列二次根式是最简二次根式的是()A.12B.127C.8 D. 33.下列运算正确的是()A.(-2)2=-2 B.(2 3 )2=6 C. 2 + 3 = 5 D. 2 × 3 =64.计算(10 +3)2×(10 -3)的值是()A.10 -3 B.3 C.-3 D.10 +35.估计54 ×16+24 的运算结果应在()A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间6.若x=2- 3 ,则代数式x2-4x+7的值是()A.7 B.6 C.-6 D.-77.化简9x2-6x+1 -(3x-5 )2,结果是()A.6x-6 B.-6x+6 C.-4 D.48.若k,m,n都是整数,且135 =k15 ,450 =15m ,180 =6n ,则下列关于k,m,n的大小关系,正确的是()A.k<m=n B.m=n>k C.m<n<k D.m<k<n9.下列选项错误的是()A. 3 - 2 的倒数是 3 + 2 B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和 3 ,若A点关于B点的对称点为C,则点C所对应的实数为()A .2 3 -1B .1+ 3C .2+ 3D .2 3 +1 二、填空题(每小题3分,共24分)11.如果两个最简二次根式3a -1 与2a +3 能合并,那么a =________.12.若x ,y 为实数,且满足|x -6|+y +6 =0,则(x y )2018的值是________.13.计算:(1)27 -613=________; (2)32-82=________. 14.已知50n 是整数,则正整数n 的最小值为________.15.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2 -b 2=________.(第15题图)(第17题图)16.若y =x -4+4-x 2-2,则(x +y)y=________.17.有一个密码系统,其原理如图所示,输出的值为 3 时,则输入的x =________.18.已知a ,b ,c 为△ABC 的三边长,则(a -b +c )2 +(a -b -c )2=________. 三、解答题(共66分) 19.(12分)计算:(1)96 ÷ 6 -92×10 +20 ;(2)(318 +16 72 -418)÷4 2 ;(3)(2- 3 )98(2+ 3 )99-2×|-32|-( 3 )0.20.(5分)解方程:( 3 +3)( 3 -3)x =72 -18 .21.(8分)已知x =5-12 ,y =5+12 ,求y x +xy和(x -1)(y -1)的值.22.(7分)先化简,再求值:2a -a 2-4a +4 ,其中a = 3 .小刚的解法如下:2a -a 2-4a +4 =2a -(a -2)2=2a -(a -2)=2a -a +2=a +2,当a = 3 时,2a -a 2-4a +4 = 3 +2.小刚的解法对吗?若不对,请改正.23.(12分)先化简,再求值:(1) (3m +2 +m -2)÷m 2-2m +1m +2 ,其中m = 2 +1;(2)a 2-1a -1 -a 2+2a +1a 2+a -1a ,其中a =-1- 3 .24.(10分)已知长方形的长a =12 32 ,宽b =1318 .(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.25.(12分)观察下列等式及验证过程:12-13 =12 23 ;12(13-14) =13 38; 13(14-15) =14 415 . 验证:12-13=222×3 =1223; 12(13-14) =12×3×4 =32×32×4 =13 38 ; 13(14-15) =13×4×5=43×42×5 =14415. (1)请按照上述等式及验证过程的基本思想,猜想14(15-16) 的变形结果及验证过程;(2)针对上述各式反映的规律,写出用n表示的等式,并验证.(n为正整数)参考答案一、选择题(每小题3分,共30分)1.若式子x-1x-2在实数范围内有意义,则x的取值范围是(A)A.x≥1且x≠2B.x≤1 C.x>1且x≠2D.x<1 2.下列二次根式是最简二次根式的是(D)A.12B.127C.8 D. 33.下列运算正确的是(D)A.(-2)2=-2 B.(2 3 )2=6 C. 2 + 3 = 5 D. 2 × 3 =64.计算(10 +3)2×(10 -3)的值是(D)A.10 -3 B.3 C.-3 D.10 +35.估计54 ×16+24 的运算结果应在(B)A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间6.若x=2- 3 ,则代数式x2-4x+7的值是(B)A.7 B.6 C.-6 D.-77.化简9x2-6x+1 -(3x-5 )2,结果是(D)A.6x-6 B.-6x+6 C.-4 D.48.若k,m,n都是整数,且135 =k15 ,450 =15m ,180 =6n ,则下列关于k,m,n的大小关系,正确的是(D)A.k<m=n B.m=n>k C.m<n<k D.m<k<n9.下列选项错误的是(C)A. 3 - 2 的倒数是 3 + 2 B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和 3 ,若A点关于B点的对称点为C,则点C所对应的实数为(A)A.2 3 -1 B.1+ 3 C.2+ 3 D.2 3 +1三、解答题(共66分)19.(12分)计算:(1)96 ÷ 6 -92×10 +20 ;解:原式=4-5;(2)(318 +16 72 -418)÷4 2 ; 解:原式=94;(3)(2- 3 )98(2+ 3 )99-2×|-32|-( 3 )0. 解:原式=1.20.(5分)解方程:( 3 +3)( 3 -3)x =72 -18 .解:x =-22.21.(8分)已知x =5-12 ,y =5+12 ,求y x +xy和(x -1)(y -1)的值.解:∵x +y =252 =5 ,xy =5-14 =1,∴y x +x y =y 2+x 2xy =(x +y )2-2xyxy =(5)2-2×11 =3,(x -1)(y -1)=xy -(x +y )+1=1-5 +1=2-5 .22.(7分)先化简,再求值:2a -a 2-4a +4 ,其中a = 3 .小刚的解法如下:2a -a 2-4a +4 =2a -(a -2)2=2a -(a -2)=2a -a +2=a +2,当a = 3 时,2a -a 2-4a +4 = 3 +2.小刚的解法对吗?若不对,请改正.解:不对.2a -a 2-4a +4 =2a -(a -2)2=2a -|a -2|, 当a =3 时,a -2=3 -2<0, ∴原式=2a +a -2=3a -2=33 -2.23.(12分)先化简,再求值:(1) (3m +2 +m -2)÷m 2-2m +1m +2 ,其中m = 2 +1;(2)a 2-1a -1 -a 2+2a +1a 2+a -1a,其中a =-1- 3 . 解:∵a +1=-3 <0,∴原式=a +1+a +1a (a +1) -1a=a +1=-3 .24.(10分)已知长方形的长a =12 32 ,宽b =1318 .(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)2(a +b )=2×(12 32 +13 18 )=62 ,∴长方形的周长为62 ; (2)4×ab =4×1232×1318 =4×22×2 =8,∵62 >8,∴长方形的周长大.25.(12分)观察下列等式及验证过程:12-13 =12 23 ;12(13-14) =1338; 13(14-15) =14 415 . 验证:12-13=222×3 =1223; 12(13-14) =12×3×4 =32×32×4 =13 38 ; 13(14-15) =13×4×5=43×42×5 =14415. (1)请按照上述等式及验证过程的基本思想,猜想14(15-16) 的变形结果及验证过程;(2)针对上述各式反映的规律,写出用n 表示的等式,并验证.(n 为正整数)解:(1)14(15-16) =15 524 ,验证:14(15-16) =14×5×6=54×52×6 =15 524; (2)1n(1n +1-1n +2) =1n +1 n +1n (n +2),验证:1n (1n +1-1n +2) =1n (n +1)(n +2)=n +1n (n +1)2(n +2)=1n +1n +1n (n +2).1、人不可有傲气,但不可无傲骨。

数学分析课本(华师大三版)-习题及答案Part-I

数学分析课本(华师大三版)-习题及答案Part-I

a1 = b1 = 1 > 0, an + bn 2 = (an −1 + bn −1 2) 2 . Find the limit lim
n →∞
an . b pn . n →∞ q n
28. Assume p1 > 0, q1 > 0, pn +1 = pn + 3qn , qn +1 = pn + qn . Find the limit lim 29. Assume x1 = a, x2 = b, xn +1 =
41. Prove that (1) (2)
f ( x) = 3 x is uniformly continuous on [0, +∞) ; g ( x) = e x cos 1 is not uniformly continuous on [0,1] . x
42. Suppose that f
is defined on [ a, +∞) . And | f ( x ) − f ( y ) |≤ k | x − y | (k > 0) holds
an =a; n →∞ n
an 1 1 ∈ [a − , a + ] (n = 1, 2L) . n n n
f ∈ C (−∞, +∞) and that | f ( x) − f ( y ) |≤ k | x − y | (0 < k < 1) holds for any
x, y ∈ (−∞, +∞) . Prove that f has the unique fixed point on (−∞, +∞) .
34. Let f ∈ C[ a, b] . And for arbitrary x ∈ [ a, b] , there exists y ∈ [ a, b] such that

华东师大九年级数学上册 版第21章《二次根式》章节测试题(含解析答案)

华东师大九年级数学上册 版第21章《二次根式》章节测试题(含解析答案)

华东师大版九年级上册第22章《二次根式》章节测试题本试卷三个大题共22个小题,全卷满分120分,考试时间100分钟。

一、选择题(本大题共12个小题,每小题4分,共48分。

) 1、下列各式中,是二次根式的是( )A 、1B 、4-C 、38D 、π-3 2、若式子2-x 在实数范围内有意义,则x 的取值范围是( ) A 、2 xB 、2 xC 、2≥xD 、2≤x3、下列计算正确的是( )A 、2312=÷B 、652535=⋅C 、523=+D 、228=- 4、下列属于最简二次根式的是( ) A 、8 B 、5C 、12D 、315、下列二次根式中,与3能合并的是( )A 、6B 、24C 、32D 、43 6、实数a ,b 在数轴上的对应点如图所示,则2a b a --的结果为( ) A 、bB 、b a -2C 、b -D 、a b 2-7、已知()21233-⨯⎪⎪⎭⎫ ⎝⎛-=m ,则( ) A 、56-- m B 、65 m C 、67-- m D 、76 m 8、若xx x x -+=-+3333成立,则x 的取值范围是( ) A 、33 x ≤- B 、3 x C 、3- x D 、33≤-x 9、若最简二次根式b a +7与36+-b b a 是同类二次根式,则b a +的值为( ) A 、2 B 、2- C 、1- D 、1 10、如果0 ab ,0 b a +,那么下列各式:①ba ba=,②1=⋅a b b a ,③b ba ab -=÷,其中正确的是( )学校: 考号: 姓名: 班级:※※※※※※※※※※※密※※※※※※※※※※※※※※※※※封※※※※※※※※※※※※※※※※※※※※※※ 线※※※※※※※※※※※※※A 、①②B 、②③C 、①③D 、①②③11、如果()3322b a +=+,a ,b 为有理数,那么=-b a ( ) A 、3B 、34-C 、2D 、2-12、把()aa --212根号外的因式移入根号内,结果( ) A 、a -2 B 、a --2 C 、2-a D 、2--a二、填空题(本大题共4小题,每小题4分,共16分) 13、如果144+-+-=x x y ,则y x +2的值是_______; 14、已知32+=a ,32-=b ,则_________22=+ab b a ; 15、若12-=x ,则2019323+-+x x x 的值为 ; 16、化简:()()________252520182019=+-.三、解答题:(本大题共6个小题,共56分。

数学分析课本(华师大三版)

数学分析课本(华师大三版)

数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)

数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)

第十一章重积分§ 1二重积分的概念1•把重积分. .xydxdy作为积分和的极限,计算这个积分值,其中D=l0,1】0,1】,并用直线D「i j网x= ,y= (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为n n其界点•2•证明:若函数f在矩形式域上D可积,则f在D上有界•3•证明定理(20.3):若f在矩形区域D上连续,则f在D上可积•4•设D为矩形区域,试证明二重积分性质2、4和7.性质2若f、g都在D上可积,则f+g在D上也可积,且° f g = f °g •性质4若f、g在D上可积,且f _ g ,则岂D g ,性质7(中值定理)若f为闭域D上连续函数,则存在, D,使得D f =f , D5. 设D o、D1和D2均为矩形区域,且D o = D1 D 2, intD j int D j = •一,试证二重积分性质 3.性质3(区域可加性)若D o =D1 D2且int D1int D j —一,则f在D o上可积的充要条件是f在D2上都可积,且6. 设f在可求面积的区域D上连续,证明:(1) 若在D 上f x,y - 0,f x,y - 0则D f 0 ;(2) 若在D内任一子区域D D上都有D f 二0,则在D 上f x,y . = 0。

7・证明:若f在可求面积的有界闭域D上连续,,g在D上可积且不变号,则存在一点, D,使得f x,yg x,y dxdy=f , gx,y dxdy.D D8.应用中值定理估计积分r r dxdy2 2-凶砒o1OO cos x cos y的值§ 2二重积分的计算1.计算下列二重积分:⑴y -2x dxdy,其中D= 3,5】1,2】;D⑵xy2dxdy,其中(i )D= 0,2〕0,3 1( ii )D= 0,3】0,2】;D2.设f(x,y)= f l x f2 y为定义在D= a i, bj ^2, bj上的函数若f l在la i,b」上可积,f2在a2,b21上可积,则f在D上可积,且3. 设f在区域D上连续试将二重积分 f x,y dxdy化为不同顺序的累次积分D(1)D由不等式y-x,y-a,x-b 0-a-b所确的区域⑶!! cosx y dxdy,其中D=D⑷..Dx1 xydxdy,其中D= 0,1 0,11.2 2 2⑵D 由不等式x y _a 与x y <a (a>0)所确定的区域(3)D=如,y )x + y4. 在下列积分中改变累次积分的顺序5. 计算下列二重积分2(1) i ixy dxdy ,其中D 由抛物线y=2px 与直线D⑵ 11 ix 2 y 2 dxdy ,其中 D= :x,y 0 _ x _1, . x 乞 y 乞 2 一 x [D卄 dxdy(3) .. ------------- (a>0),其中D 为图(20— 7)中的阴影部分;D2a -x⑷ I l -xdxdy ,其中 D='x,y x 2 y 2 乞 x jD(5) Il xydxdy ,其中为圆域 x 2 ya 2.D6.写出积分11 f x,y dxdy 在极坐标变换后不同顺序的累次积分d2 2(1)D 由不等式x y 乞1,y^x ,y-0所确定的区域x(1) 0 dx x f (x,y dy ;11 ^x 2⑵ j d ^_1^2fx,y dy ;⑶ 0dy 0 f x,y dy + dxX 专(p >0)所围的区域;3dy .⑵D由不等式a2 _x2• y2 _b2所确定的区域(3)D= :x,y x2y2zy,x _0「7•用极坐标计算二重积分:⑴Il si n x2y2dxdy,其中D= ' x, y 二2乞x2y2<4~2';D(2) x y dxdy,其中D^ x,y x2y2_x y』;曽F rD(3) II「X2• y2dxdy,其中D为圆域x2R2.D8•在下列符号分中引入新变量后,试将它化为累次积分:2 2丄(1) 0 dx f (x, y )dy ,其中u=x+y,v=x-y;(2) i if x,y dxdy ,其中D=,x,y . x y 乞.a , x _ 0 , y _ 0』,若x= U cos4 v ,D4y 二U sin v .(3) i if x,y dxdy,其中D=,x,y x y — a ,x — 0, y — Of,若x+y=u,y=uv.9•求由下列曲面所围立体V的体积:(1) v由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;2 2 | 一 ,(2) v由z= x * y 和z=x+y围的立体;2 2 2 22 x v x v(3) v由曲面Z 和2Z= 所围的立体•4 9 4 911. 试作适当变换,计算下列积分:(1) 11 [x y sin x - y dxdy ,D= :x.y 0 _ x y _ 二0 _ x - y _ T;Dy(2)I ie x y dxdy ,D= x,y x y 岂1, x _ 0,y _ 0D12. 设f:[a,b] T R为连续函数,应用二重积分性质证明-b I2j b|[f(xdx I 兰(b—a)[f (xdx,其中等号仅在f为常量函数时成立。

(完整word版)数学分析 上册 第三版 华东师范大学数学系 编(word文档良心出品)

(完整word版)数学分析 上册  第三版 华东师范大学数学系 编(word文档良心出品)

数学分析 上册 第三版 华东师范大学数学系 编部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明:(1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。

证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。

这与题设“x 为无理数”矛盾,故a + x 是无理数。

(2)假设ax 是有理数,于是aaxx =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。

3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。

证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。

另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。

这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。

5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x(2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x 6.设+∈R c b a ,,证明||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA 的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -。

因为三角形两边的差 大于第三边,所以有||||2222c b c a b a -≤+-+7.设 b a b x ≠>>,0,0,证明x b x a ++介于1与ba之间。

21.3 格林公式·曲线积分与路线的无关性 数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件

21.3 格林公式·曲线积分与路线的无关性  数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件

*点击以上标题可直接前往对应内容格林公式设区域D组成.规定为:时, 区域D如图21-12 所示为负方向,记为定理20.1若函数(,),(,)P x y Q x y 在闭区域D 上有连续的一阶偏导数, 则有∂∂-=+∂∂⎛⎫⎪⎝⎭⎰⎰⎰d d d ,LD Q P P x Q y x y σ (1)这里L 为区域D 的边界曲线, 并取正方向.公式(1)称为格林公式.证根据区域D 的不同形状, 这里对以下三种情形(i)若D 既是x 型又是y 型区域(图21-13),作出证明:12()(),,x y x a x b ϕϕ≤≤≤≤又可表为12()(),.y x y y ψψαβ≤≤≤≤1()y x ϕ=2()y x ϕ=这里和分 CAE 分别是曲线和 CBE 的方程.ACBAEB 别为曲线和的方程,O x1()x ϕβαAb EaBC2()x ϕyD图21-13则D 可表为1()x y ψ=2()x y ψ=和则而d DQx σ∂∂⎰⎰21((),)d ((),)d Q y y y Q y y yββααψψ=-⎰⎰ (,)d (,)d CBECAEQ x y y Q x y y=-⎰⎰ (,)d (,)d CBEEACQ x y y Q x y y=+⎰⎰(,)d .LQ x y y =⎰于是,21()()d d y y Q y x x βψαψ∂=∂⎰⎰d (,)d .L DP P x y x y σ∂-=∂⎰⎰⎰ 将上述两个结果相加即得d d d .L D Q P P x Q y x y σ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ (ii)若区域D 是由一条按段光滑的闭曲线围成,且可用几段光滑曲线将D 分成有限个既是x 型同理又可证得又是y 型的子区域, 格林公式, 然后相加即可.则可逐块按(i) 得到它们的如图21-14 所示的区域是y 型的区域1D d Q P σ⎛⎫∂∂- ⎪⎰⎰123d D D D Q P x y ⎛⎫∂∂=- ⎪∂∂⎝⎭⎰⎰于是可将它分成三个既是123d d d d d d L L L P x Q y P x Q y P x Q y =+++++⎰⎰⎰d d .LP x Q y =+⎰后, D 的边界则由 23,,,,,,AB L BA AFC CE L ECCE 及构成. 由(ii)知CGAd D Q P x y σ⎛⎫∂∂- ⎪∂∂⎝⎭⎰⎰ {}23(d d )ABL BAAFCCEL ECCGAP x Q y =++++++++⎰⎰⎰⎰⎰⎰⎰⎰()231(d d )L L L P x Q y =+++⎰⎰⎰ d d .LP x Q y =+⎰注1 并非任何单连通区域都可分解为有限多个既是x y 型又是型区域的并集, 31sin ,(0,1];1;0;1y x x y x x x=∈=-==所围成的区域便是如此.例如由注2为便于记忆, 格林公式(1) 也可写成下述形式:d d d .LDx y PQP x Q y σ∂∂∂∂=+⎰⎰⎰注3 应用格林公式可以简化某些曲线积分的计算.请看以下二例:第一象限部分(图21-16).解对半径为r 的四分之一圆域D, 应用格林公式:d d LDx y σ--=⎰⎰⎰d d d .OAABBOx y x y x y =++⎰⎰⎰由于d 0,d 0,OA BO x y x y ==⎰⎰ d d AB Dx y σ=-⎰⎰⎰例1 计算d ,ABx y ⎰其中曲线是半径为r 的圆在AB Ox2116-图BL-AD y因此21π.4r =-例2 计算22d d ,L x y y xI x y -=+⎰ 其中L 为任一不包含原点的闭区域D 的边界线.解因为2222222,()x y x x x y x y ⎛⎫∂-= ⎪∂++⎝⎭2222222,()y y xy x y x y ⎛⎫∂--= ⎪∂++⎝⎭于是,由格林公式2222=d 0,D x y x x y y x y σ⎡⎤⎛⎫⎛⎫∂∂--=⎢⎥ ⎪ ⎪∂+∂+⎝⎭⎝⎭⎣⎦⎰⎰22d d L x y y x x y -+⎰在格林公式中, 令,,P y Q x =-=则得到一个计算平面区域D 的面积S D 的公式:1d d d .2D L DS x y y x σ==-⎰⎰⎰ (2)例3 计算抛物线2()(0)x y ax a +=>与x 轴所围图形的面积(图21-17).解曲线 AMO 由函数,[0,]y ax x x a =-∈表示, O NA 0,y =为直线于是1d d 2D S x y y x =-⎰ x2117-图O(,0)A a NMy 11d d d d 22ONA AMOx y y x x y y x =-+-⎰⎰1d d 2AMOx y y x =-⎰011)d 22a a x ax x x ax ⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎣⎦⎰020111d d .2246a a a ax x x x a ⎛⎫=-== ⎪⎝⎭⎰⎰在第二十章§2 中计算第二型曲线积分的开始两个例子中, B 为终点的曲线积分, 若所沿的路线不同, 则其积分值也不同, 点有关, 与路线的选取无关. 什么条件下, 它的值与所沿路线的选取无关.首先介绍单连通区域的概念. 若对于平面区域D 内任一封闭曲线, 皆可不经过D曲线积分与路线的无关性读者可能已经注意到, 在例1中, 以A 为起点但在例2 中的曲线积分值只与起点和终本段将讨论曲线积分在一封闭曲线所围成的区域只含有D 中的点.定理21.12更通俗地说, 单连通区域就是没有“洞”的区域, 复连通区域则是有“洞”的区域.设D 是单连通闭区域. 若函数(,),P x y (,)Q x y 在D 内连续, 且具有一阶连续偏导数, 下四个条件等价:(i)沿D 内任一按段光滑封闭曲线L ,有d d 0;LP x Q y +=⎰(ii)对D 中任一按段光滑曲线L ,曲线积分d d LP x Q y +⎰则以与路线无关, 只与L 的起点及终点有关;定理21.12d d P x Q y +(,)u x y (iii) 是D 内某一函数的全微分, 即在D 内有d d d ;u P x Q y =+(iv)在D 内处处成立.P Q y x∂∂=∂∂d d d d ARBBSAP x Q y P x Q y=+++⎰⎰ d d 0,ARBSAP x Q y =+=⎰所以d d d d .ARBASBP x Q y P x Q y +=+⎰⎰ d d d d ARBASBP x Q y P x Q y+-+⎰⎰2119-图BRS(i) 沿D 内任一按段光滑封闭曲线L , 有d d 0;LP x Q y +=⎰(ii)对D 中任一按段光滑曲线L ,曲线积分d d L P x Q y +⎰与路线无关, 只与L 的起点及终点有关;⇒ ARB ASB 证(i)(ii) 如图21-19, 设与为联结点A ,B 的任意两条按段光滑曲线, 由(i) 可推得D 内任意一点. dABP x ⎰故当(,)B x y 在积分值是(,B x y (,)d d .ABu x y P x Q y =+⎰取x ∆充分小, 使(,),C x x y D +∆∈则函数(,)u x y 对于x 的偏增量(图21-20)⇒(A (ii)(iii) 设(,x u u x x ∆=+∆ d ACP x Q =+⎰因为在D d ACP x Q ∴+⎰因直线段BC d d ABP x Q =+⎰(ii)对D 中任一按段光滑曲线L ,曲线积分d d L P x Q y +⎰与路线无关, 只与L 的起点及终点有关;d d P x Q y +(,)u x y (iii) 是D 内某一函数的全微分, 即在D 内有d d d ;u P x Q y =+00lim lim (,)(,).x x x u uP x x y P x y x x θ∆→∆→∆∂==+∆=∂∆同理可证(,).uQ x y y∂=∂所以证得d d d .u P x Q y =+d d x BC u P x Q y∆=+⎰(,)d (,),x xxP t y t P x x y x θ+∆==+∆∆⎰0 1.θ≤≤其中(,)P x y 根据在D 上连续, 于是有(ii)对D 中任一按段光滑曲线L ,曲线积分d d L P x Q y +⎰与路线无关, 只与L 的起点及终点有关;d d P x Q y +(,)u x y (iii) 是D 内某一函数的全微分, 即在D 内有d d d ;u P x Q y =+⇒(,),u x y (iii)(iv) 设存在函数使得d d d ,u P x Q y =+因此(,)(,),(,)(,).x y P x y u x y Q x y u x y ==于是由(,),(,),x y yx P Q u x y u x y y x∂∂==∂∂以及P , Q 具有一阶连续偏导数, 便可知道在D 内每一点处都有(,)(,),x y yx u x y u x y =d d P x Q y +(,)u x y (iii) 是D 内某一函数的全微分, 即在D 内有d d d ;u P x Q y =+(iv)在D 内处处成立.P Qy x∂∂=∂∂.P Qy x∂∂=∂∂即(iv)⇒(i) 设L 为D 内任一按段光滑封闭曲线, σ所围的区域为. 含在D 内. 的条件, 就得到由于D 为单连通区域, 所以区域σd d d 0.L Q P P x Q y xy σσ⎛⎫∂∂+=-= ⎪∂∂⎝⎭⎰⎰⎰ 上面我们将四个条件循环推导了一遍, 这就证明了它们是相互等价的.记L P Q y x∂∂=∂∂应用格林公式及在D 内恒有(i) 沿D 内任一按段光滑封闭曲线L , 有d d 0;LP x Q y +=⎰(iv)在D 内处处成立.P Qy x∂∂=∂∂应用定理21.12 中的条件(iv)考察第二十章§2 中的在例1中(,),(,).P x y xy Q x y y x ==-由于,1,,P Q P Qx y x y x∂∂∂∂==-≠∂∂∂∂故积分与路线有关.在例2 中(,),(,),P x y y Q x y x ==由于例1 与例2. 1,P Qy x∂∂==∂∂所以积分与路线无关.例4 计算22(0.5)d (0.5)d ,(0.5)L x y x x y yx y--+-+-+⎰其中到点D (0,1) 的路径(见图21-21). 分析如果第二型曲线积分路径无关的条件,L 为沿着右半圆周221(0)x y x +=≥由点A (0, -1)图21-21xyO(0,1)A -(1,1)B -(1,1)C (0,1)D1L 2L LE在某单连通区域内满足与积分路径, 使易于计算.则可改变记220.5(,),(0.5)x yP x y x y--=-+22222(0.5)2(0.5).[(0.5)]Q P x y y x x y x y ∂∂--++-==∂∂-+220.5(,).(0.5)x yQ x y x y-+=-+易知除去点E (0.5, 0) 外,处处满足1L (0,1)A -(1,1),B -(1,1),C 设为由点到点再到点最图21-21xyO(0,1)A -(1,1)B -(1,1)C (0,1)D1L 2L LE解(0,1)D 的折线段. 后到点1L L 因为与可被包含在某一不含奇点E 的单连通区域内, 所以有22(0.5)d (0.5)d (0.5)Lx y x x y yx y--+-+-+⎰1(,)d (,)d L P x y x Q x y y=+⎰()(,)d (,)d ABBCCDP x y x Q x y y=+++⎰⎰⎰1102220110.50.5 1.5d d d (0.5)10.25(0.5)1x y x x y x x y x -++-=++-++-+⎰⎰⎰4arctan0.52arctan2.=+注1 定理21.12中对“单连通区域”的要求是重要的.何不包含原点的单连通区域, 已证得在这个区域内的任何封闭曲线L 上, 皆有22d d 0.L x y y xx y -=+⎰(3)如本例若取沿y 轴由点A 到点D 的路径, 虽2L 然算起来很简单, 但却不可用. 的单连通区域必定含有奇点E . 又如本节例2, 对任2L L 与因为任何包含2222(,),(,)y x P x y Q x y x y x y-==++只在剔除原点外的任何区域D 上有定义, 含在某个复连通区域内. 的条件, 因而就不能保证(3)式成立. 为绕原点一周的圆:cos ,sin (02π),L x a y a θθθ==≤≤则有倘若L 为绕原点一周的封闭曲线, 则函数这时它不满足定理21.1222d d L x y y x x y -+⎰所以L 必事实上, 若取L 2222220cos sin d a a aπθθθ+=⎰==⎰20d 2.θππ注2 若(,),(,)P x y Q x y 满足定理21.12 的条件, 则由上述证明可看到二元函数(,)(,)d (,)d ABu x y P x y x Q x y y =+⎰00(,)(,)(,)d (,)d B x y A x y P x y x Q x y y=+⎰具有性质d (,)(,)d (,)d .u x y P x y x Q x y y =+我们也称(,)u x y 为d d P x Q y +的一个原函数.例5试应用曲线积分求(2sin )d (cos )d x y x x y y ++的原函数.解这里(,)2sin ,(,)cos ,P x y x y Q x y x y =+=在整个平面上成立cos .P Q y y x ∂∂==∂∂由定理21.12,曲线积分(2sin )d (cos )d ABx y x x y y ++⎰为此, 取(0,0),(,),O B x y 取路线为图21-22中的折只与起点A 和终点B 有关, 而与路线的选择无关.x 2122-图(,0)C x (,)B x y Oy ∙∙∙线段 .OCB00(,)2d cos d x yu x y t t x s s =+⎰⎰2sin .x x y C =++注由例4 可见, 若00[,][,],x x y y D ⨯⊂则求全微分的原函数可用公式于是有或000(,)(,)d (,)d .x y x y u x y P t y t Q x s s =+⎰⎰下例介绍用“凑微分”法求全微分的原函数. 00(,)(,)d (,)d x y x y u x y P t y t Q x s s =+⎰⎰例6 求全微分221sin d sin d x I x y xy x y x xy y y y ⎛⎫⎛⎫=+-+-- ⎪ ⎪⎝⎭⎝⎭的原函数(,).u x y 221sin sin x x y xy y x xy y y x y ⎛⎫⎛⎫∂∂+-=-- ⎪ ⎪∂∂⎝⎭⎝⎭21sin cos ,xy xy xy y=---因此I 是某个函数的全微分. (,)u x y 解由于由221sin d sin d x x y xy x y x xy y y y ⎛⎫⎛⎫+-+-- ⎪ ⎪⎝⎭⎝⎭()()221d d d d sin d sin d x x x y y x y y xy x x xy y y y ⎛⎫=++-+-- ⎪⎝⎭()2311d d d cos 23x x y xy y ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭2311d cos ,23x x y xy y ⎛⎫=+++ ⎪⎝⎭可见2311(,)cos ,23x u x y x y xy C y=++++其中C 为任意常数.复习思考题验证格林公式的另一形式:d d [cos(,)cos(,)]d ,D D P Q x y P n x Q n y s x y ∂⎛⎫∂∂+=+ ⎪∂∂⎝⎭⎰⎰⎰ n D D ∂其中是的边界上任一点处的外法线向量.。

数学分析课本(华师大三版)-习题及答案第三学期试题

数学分析课本(华师大三版)-习题及答案第三学期试题

(三十二)数学分析试题(二年级第一学期)一 叙述题(每小题10分,共30分)1 叙述含参变量反常积分⎰+∞adx y x f ),(一致收敛的Cauchy 收敛原理。

2 叙述Green 公式的内容及意义。

3 叙述n 重积分的概念。

二 计算题(每小题10分,共50分)1.计算积分⎰+-=C yx ydx xdy I 2243,其中C 为椭圆13222=+y x ,沿逆时针方向。

2.已知 ),,(y z xz f z -= 其中),(v u f 存在着关于两个变元的二阶连续偏导数,求z 关于y x ,的二阶偏导数。

3.求椭球体1222222=++cz b y a x 的体积。

4.若l 为右半单位圆周,求⎰lds y ||。

5.计算含参变量积分⎰+-=π2)cos 21ln( )(dx a x a a I (1<a )的值。

三 讨论题(每小题10分,共20分)1 若积分在参数的已知值的某邻域内一致收敛,则称此积分对参数的已知值一致收敛。

试讨论积分⎰∞++=0221xa adxI 在每一个固定的a 处的一致收敛性。

2 讨论函数dx yx x yf y F ⎰+=122)()(的连续性,其中)(x f 在]1,0[上是正的连续函数。

数学分析试题(二年级第一学期)答案1一 叙述题(每小题10分,共30分)1 含参变量反常积分⎰+∞adx y x f ),(关于y 在],[d c 上一致收敛的充要条件为:对于任意给定的0>ε, 存在与y 无关的正数0A , 使得对于任意的0,A A A >',],[ ,),(d c y dx y x f A A∈<⎰'ε成立。

2 Green 公式:设D 为平面上由光滑或分段光滑的简单闭曲线所围的单连通区域。

如果函数),(),,(y x Q y x P 在D 上具有连续偏导数,那么⎰⎰∂∂∂-∂∂=+DDdxdy xPx Q Qdy Pdx )(,其中D ∂取正向,即诱导正向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D Y =,∅=11D int D int I , 试证二重积分性质3.性质3(区域可加性) 若210D D D Y =且11D int D int I ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D 2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯;(3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f .3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰D dxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰Ddxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域; (2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D 22dxdy y x sin,其中D=(){222y x y ,x +≤π }24π≤;(2)()⎰⎰+D dxdy y x ,其中D=(){}y x y xy ,x 22+≤+;(3)()⎰⎰+'D 22dxdy y xf ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D ⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4,v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体;(3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0; (2)⎰⎰+D y x y dxdy e ,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

13.设f 为连续函数,且f(x,y)=f(y,x)证明:()⎰⎰100,x dy y x f dx =()⎰⎰--xdy y x f dx 0101,1. 14.求由下列曲线所围成的平面图形面积:(1) x+y=a; x+y=b; y=αx; y=βx, (a>b,α>β) (2)22222b y a x ⎪⎪⎭⎫ ⎝⎛+=22y x +15.设f(x,y)=sfn(x-y),试讨论函数F(y)=()⎰10dx y ,x f 在()∞∞-,上的连续性并作出F(y)的图像.()()()⎩⎨⎧∈∈b a, x,0b a, x ,x f 2 §3 三重积分1.计算下列积分(1)()⎰⎰⎰+v2dxdydz z xy ,其中v=[][][]1,03,35,2⨯-⨯-; (2)⎰⎰⎰v zdxdydz cos y cos x ,其中v=[]⨯⎥⎦⎤⎢⎣⎡π⨯2,01,0 ⎥⎦⎤⎢⎣⎡π2,0; (3)()⎰⎰⎰+++v 3z y x 1dx dydz ,其中V 是由x+y+z=1与三个坐标面所围成的区域;(4)()⎰⎰⎰+v dxdydz z x cos y ,其中V 是由y=x ,y=0,z=0及x+z=2π所围成的区域. 2.试改变下列累次积分的顺序:(1)()⎰⎰⎰π-+1010y x 0dz z ,y ,x f dy dx ; (2)()⎰⎰⎰+1010y x 022dz z ,y ,x f dy dx . ()⎰⎰⎰+-+10x 1x 1x z 222dy z ,y ,x f dz dx3.计算三重积分:(1)⎰⎰⎰v dxdydz Z 2,其中V 由2222r z y x ≤++和+2x rz z y 222≤+所确定; (2)⎰⎰⎰---+10102222222x y x y x dz z dy dx .4.利用适当的坐标变换,计算下列各曲面所围成的体积:(1) Z=22y x +,z=2()22y x +,y=x,y=x 2; (2)2b y a x ⎪⎭⎫ ⎝⎛++2c z ⎪⎭⎫ ⎝⎛=1,(0x ≥,0y ≥,0z ≥,a>0,b>0,c>0) 5.设f (x ,y ,z )在长方体V=[][][]f ,e d ,c b ,a ⨯⨯上可积,若对任何()D z ,y ∈=[][]f ,e d ,c ⨯定积分F(y,z)=()⎰ba dx z ,y ,x f存在,证明F(y,z)在D 上可积,且()⎰⎰D dydz z ,y F =()⎰⎰⎰vdxdydz z ,y ,x f .6.设V=()}⎩⎨⎧≤++1c z b y a x z ,y ,x 222222计算下列积分: (1)⎰⎰⎰---v 222222dxdydz cz b y a x 1; (2)⎰⎰⎰++v c z b y a x dx dydz e 222222..§4 重积分的应用1.求曲面az=xy 包含在圆柱222a y x =+内那部分的面积.2.求锥面Z=22y x +被柱面Z 2=2x 所截部分的曲面面积.3.求下列均匀密度的平面薄板重心: (1)半椭圆 12222≤+by a x ,0≥y ; (2)高为h,底分别为a 和b 的等腰梯形.4.求下列均匀密度物体重心:(1) 221Y X z --≤,0≥z ;(2) 由坐标面及平面x+2y-z=1所围四面体.5.求下列均匀密度的平面薄板转动惯量:(1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b,且夹角为ϕ的平行四边形关于底边b 的转动惯量.6.设球体x 2z y x 222≤++上各点的密度等于该点到坐标原点的距离,求这个球体的质量.7.计算下列引力: (1)均匀薄片222R y x ≤+ z=0 对于轴上一点(0,0,c)(c>0)处的单位质量的引力; (2)均匀柱体222a y x ≤+,h z 0≤≤ 对于P(0,0,c)(c>h)处单位质量的引力.8.求曲面 ()()⎪⎩⎪⎨⎧φ=π≤φ≤ϕφ+=π≤ϕ≤ϕφ+=sin a z 20 cos acos b y 20 sin cos a b x的面积,其中a,b 常数,且b a 0≤≤.9.求螺旋面⎪⎩⎪⎨⎧θ=π≤θ≤θ=≤≤θ=b z 0rsin y a r 0 cos r x 的面积10.求边长为I 的正方形的薄板的质量,该薄板上每一点的密度与该点距正方形某顶点的距离成正比,且在正方形中点处密度为0ρ.11.求边长为a 密度均匀的正方体,关于其任一棱边的转动惯量.总 练 习 题1.设()y x f ,=⎩⎨⎧为有理数为无理数 x 2y, x,1()D y ,x ∈=[][]1,01,0⨯(1)证明f 在D 上不可积;(2)说明()⎰⎰1010dy y ,x f dx 存在,并求它的值; (3)说明f 在D 上先x 后y 的累次积分不存在.2.设平面上区域D 在x 轴和y 轴上的投影长度分别为L x ,L y , D 的面积为D ∆,(α,β)为D 内任一点.证明:(1)()()D L L dxdy y x y x D ∆≤β-α-⎰⎰(2)()()2y 2x D L L 41dxdy y x ≤β-α-⎰⎰. 3.试作适当变换,把下列重积分化为单重积分: (1)()⎰⎰≤++1y x 2222dx dy y xf ; (2)()⎰⎰+D 22dxdy y x f,其中D=(){x y y ,x ≤,}1x ≤;(3)()⎰⎰≤++1y x dxdy y x f ;(4)()⎰⎰Ddxdy xy f ,其中D=(){x 4y x y ,x ≤≤,}2x y 1≤≤.4.计算下列积分:(1)[]⎰⎰≤≤+2y ,x 0dxdy y x ;(2) ()⎰⎰≤++-4y x 2222dxdy 2y x sgn . 5.求下列函数在所指定区域D 内的平均值:(1) f(x,y)=y cos x sin 22,D=(){π≤≤x 0y ,x ,}π≤≤y 0; (2)()z ,y ,x f =222z y x ++, D=(){222z y x z ,y ,x ++}z y x ++≤. 6.设∆=0c b a c b a c b a 333222111≠求平面1111h z c y b x a ±=++2222h z c y b x a ±=++3333h z c y b x a ±=++所界平行六面体体积..7.研究函数()y F =()dx y x x yf 1022⎰+ 的连续性,其中f 为[0,1]上正连续函数.10.设f: R R 3→是连续可微函数,证明函数H(x)=()⎰⎰3322b a b a dy z ,y ,x f dz 是可微函数,且()x H '=()⎰⎰∂∂3322b a b a dy x z ,y ,x f dz11.设F(x,y)=()()⎰-xyy xdz z f yz x ,其中f 为可微函数,求()y ,x F xy .12.设f 为可微函数,求下列函数F 的导数:(1) F(t)=()⎰⎰⎰≤++++2222t z y x 222dxdydz z y x f ; (2) F(t)=()⎰⎰⎰vdxdydz xyz f ,其中 v=(){x 0z ,y ,x ≤,}t z ,y ≤.。

相关文档
最新文档