最新初三数学第一轮复习教案

合集下载

初三数学第一轮复习教案以及习题

初三数学第一轮复习教案以及习题

初三数学第一轮复习教案以及习题1、第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

我要求学生用课前5---15分钟的时间来完成这个要求,有些内容我还重点串讲。

(2)过基本方法第一关。

例如,未定系数法求函数解析式,过基本排序第一关:例如方程、不等式、代数式的化简,建议人人能够娴熟的精确的展开运算,这部分就是绝不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮备考的步骤、方法(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义(2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.(3)基本训练反反复复展开:自学数学,必须搞一定数量的题,把基本功练习娴熟皱,但我们不主张”题海”战术,而是倡导细密,即为反反复复搞一些典型的题,努力做到一题多求解,一题多样.必须训练抽象思维能力,对些基本定理的证明,基本公式的推论,以及一些基本练习题,要作到不必书写,就中国象棋手下”盲棋”一样,只需用脑子冥想,即为能够获得恰当答案.这就是我们在常言中提及的,在20分钟内顺利完成10道客观题.其中有些就是不必动笔,一眼就能够做出答案的题,这样才叫做训练有素,”熟能生巧”,基本功坚实的人,碰到难题办法也多,难于被难倒.恰好相反,并作练时,眼高手低,总打听难题并作,结果,上了考场,碰到与自己曾经Sartilly的相似的题目都有可能不能;不少学生把会作的题记错了,归入粗心大意,的确,人会存有贪玩的,但基本功坚实的人,出来了错立即可以辨认出,很少可以”贪玩”地失效3、数学:过来人谈中考复习数学巧用“两段”法第一个阶段,就是第一轮备考。

九年级数学第一轮复习教案(全)

九年级数学第一轮复习教案(全)

九年级数学第一轮复习教案(全)
教学目标
1. 温数学基础知识和技能,为进一步研究打下坚实基础。

2. 了解数学基本概念和方法,提高数学思维,培养解决实际问题的能力。

教学内容
1. 数学基本概念(如整数、有理数、无理数等)的复
2. 一元二次方程及其应用
3. 平面向量及其坐标表示
4. 三角函数及其应用
5. 统计与概率基础
教学方法
1. 讲、练相结合
2. 合作探究,小组讨论
3. 游戏化教学,提高学生兴趣
教学流程
1. 复整数、有理数、无理数,引入实数的概念
2. 研究一元二次方程,讲解标准式、一般式和求解方法
3. 研究平面向量,引入向量的概念和坐标表示
4. 研究三角函数,重点讲解正弦、余弦、正切函数的概念、性质和应用
5. 研究统计与概率,了解基本概念和应用方法
6. 总结、评价、作业布置
教学评价
1. 学生能够熟练掌握数学基本概念和技能,特别是一元二次方程、平面向量、三角函数等。

2. 学生能够运用所学知识解决实际问题,并能够合作探究,提高解决问题的能力。

3. 学生兴趣得到激发,获得数学的快乐和成就感。

作业安排
1. 完成课堂练和小组探究任务。

2. 课下巩固和扩展所学知识,完成书面练习。

九年级中考数学一轮复习教案:反比例函数复习精选全文

九年级中考数学一轮复习教案:反比例函数复习精选全文

精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

初三数学第一轮复习教案3

初三数学第一轮复习教案3

初三数学第一轮复习教案代数部分第三章:方程和方程组教学目的:1、了解等式、方程和方程组的有关概念;2、熟练掌握一元一次、一元二次方程的解法,会灵活运用各种解法求方程的根;3、熟练掌握分式方程一般解法及换元法,并掌握分式方程验根的方法;4、能灵活运用代入法和加减法解二元一次方程组及解简单的三元一次方程组;5、会用代入法解由一个二元二次方程和一个二元一次方程组成的二元二次方程组;6、理解一元二次方程根的判别式,会根据根的判别式判定数字系数的一元二次方程根的情况,会运用它解决一些简单问题;7、掌握一元二次方程根与系数的关系,会用它由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程有关两个根的对称式的值等。

基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程.2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程.4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b(其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1.(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法.(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ〈 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 (6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程.(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容本节课为初三第一轮数学复习,主要涉及教材第十四章《圆》的内容。

详细内容包括圆的基本概念、圆的性质、圆的方程、圆与直线的关系、圆与圆的位置关系等。

二、教学目标1. 理解并掌握圆的基本概念和性质,能熟练运用圆的方程解决问题。

2. 掌握圆与直线、圆与圆的位置关系,并能运用这些关系解决实际问题。

3. 培养学生的空间想象能力和逻辑推理能力,提高解决问题的策略和方法。

三、教学难点与重点重点:圆的基本概念、性质,圆的方程,圆与直线、圆与圆的位置关系。

难点:圆与圆的位置关系判断,解决实际问题中的圆相关计算。

四、教具与学具准备教具:圆规、直尺、三角板、多媒体课件。

学具:圆规、直尺、三角板、练习本。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中的圆形物体,引导学生发现圆的特点,激发学习兴趣。

2. 复习回顾(15分钟)(2)学生展示圆的方程的推导过程,教师点评并强调注意事项。

3. 例题讲解(20分钟)例题1:已知圆的半径为5,求该圆的面积。

例题2:已知圆的直径为10,求该圆的周长。

例题3:判断点P(3,4)是否在圆O(x2)²+(y3)²=16内。

4. 随堂练习(10分钟)练习1:已知圆的周长为31.4,求该圆的半径。

练习2:已知圆的面积为50.24,求该圆的直径。

5. 知识拓展(10分钟)讲解圆与直线、圆与圆的位置关系,引导学生运用这些关系解决实际问题。

六、板书设计1. 圆的基本概念和性质2. 圆的方程3. 圆与直线、圆与圆的位置关系七、作业设计1. 作业题目:(1)求半径为6的圆的面积和周长。

(2)判断点A(1,2)是否在圆B(x3)²+(y4)²=9内。

(3)已知两圆的半径分别为5和8,求它们的圆心距离。

2. 答案:(1)面积:113.1,周长:37.7(2)不在(3)圆心距离:3或13八、课后反思及拓展延伸1. 反思:本节课学生对圆的基本概念和性质掌握较好,但在解决实际问题中还需加强训练。

初三数学第一轮复习教案

初三数学第一轮复习教案

初三数学第一轮复习教案代数部分第七章:统计初步教学目的:1、了解总体、个体、样本、样本容量等概念。

2、理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式,理解加权平均数的概念,掌握它的计算公式,会用样本平均数估计总体平均数。

3、理解众数、中位数的意义,掌握它们的求法4、了解样本方差。

总体方差。

样本标准差的意义,会计算样本方差和标准差,会利用方差或标准差比较两组样本数据的波动情况。

5、理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。

知识点:一、总体和样本:在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。

从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。

二、反映数据集中趋势的特征数1、平均数(1)n x x x x ,,,,321 的平均数,)(121n x x x nx +++= (2)加权平均数:如果n 个数据中,1x 出现1f 次,2x 出现2f 次,……,k x 出现k f 次(这里n f f f k =+++ 21),则)(12211k k f x f x f x n x +++=(3)平均数的简化计算:当一组数据n x x x x ,,,,321 中各数据的数值较大,并且都与常数a 接近时,设a x a x a x a x n ----,,,,321 的平均数为'x 则:a x x +='。

2、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。

3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

一组数据的众数可能不止一个。

三、反映数据波动大小的特征数:1、方差:(l )n x x x x ,,,,321 的方差, n x x x x x x S n 222212)()()(-++-+-= (2)简化计算公式:2222212x n x x x S n -+++= (n x x x x ,,,,321 为较小的整数时用这个公式要比较方便)(3)记n x x x x ,,,,321 的方差为2S ,设a 为常数,a x a x a x a x n ----,,,,321 的方差为2`S ,则2S =2`S 。

中考数学第一轮复习教案

中考数学第一轮复习教案

一、实数与整式【课标要求】1、有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小. (2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值. (3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的实际问题.(6)能对含有较大数字的信息作出合理的解释和推断.2、实数(1)了解无理数和实数的概念,知道实数与数轴上的点一一对应.(2)能用有理数估计一个无理数的大致范围.(3)了解近似数与有效数字的概念;在解决实际问题中,知道计算器进行实数计算的一般步骤,能按问题的要求对结果取近似值.3、代数式(1)在现实情境中进一步理解用字母表示数的意义.(2)能分析简单问题的数量关系,并用代数式表示.(3)能解释一些简单代数式的实际背景或几何意义.(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4、整式(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数.(2)了解整式的概念,会进行简单的整式加、减、乘、除运算.(3)会推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,能用图形的面积解释乘法公式,并会用乘法公式进行简单计算;了解乘法公式(a+b)( a2-ab+b2)=a3+b3;(a-b)( a2+ab+b2)=a3-b3.第1课时有理数一、知识点1.有理数的意义:数轴,相反数,倒数,绝对值,近似数与有效数字。

2.有理数的运算:加减乘除,乘方,有理数的大小比较,科学记数法.二、中考课标要求1、有理数的有关概念要准确把握有理数的概念,特别是负数和绝对值的概念是难点,要深刻理解,并结合数轴理解这两个概念,用数形结合的思想,使抽象的概念具体化,再就是近似数的有效数字的概念也是非常重要的,要理解透彻。

最新中考数学一轮复习教案全套

最新中考数学一轮复习教案全套

第一篇 数与式专题一 实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值. 二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题. 三、考点扫描 1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a+b=0,1-=ab (a 、b ≠0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()mmmmnnm nm n m ba ab a aaa a ⋅===⋅+,, (a ≠0)负整指数幂的性质:pp pa a a⎪⎭⎫ ⎝⎛==-11零整指数幂的性质:10=a(a ≠0)8、实数的开方运算:()aa a a a =≥=22;0)(9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)带根号的数是(3)两个无理数的和、差、积、商也还是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位置,我们可以用几何作图的方法在数轴上把它找出来,其他的无理数也是如此. *11、实数的大小比较: (1).数形结合法(2).作差法比较 (3).作商法比较(4).倒数法: 如6756--与 (5).平方法 四、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( )A .0个B .1个C .2个D .3个 2那么x 取值范围是() A 、x ≤2 B. x <2 C. x ≥2 D. x >23、-8) A .2 B .0 C .2或一4 D .0或-4 4、若2m -4与3m -1是同一个数的平方根,则m 为( )A .-3B .1C .-3或1D .-15、若实数a 和 b 满足 b=a+5+-a-5 ,则ab 的值等于_______6、在3-2的相反数是________,绝对值是______.7、81的平方根是()A.9 B.9 C.±9 D.±38、若实数满足|x|+x=0, 则x是()A.零或负数B.非负数C.非零实数D.负数五、例题剖析1、设a=3- 2 ,b=2-3,c=5-1,则a、b、c的大小关系是()A.a>b>c B、a>c>bC.c>b>a D.b>c>a2、若化简|1-x|2x-5,则x的取值范围是()A.X为任意实数B.1≤X≤4C.x≥1 D.x<43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:a=9时”,得出了不同的答案,小明的解答:原式=1-a)=1,小芳的解答:原式= a+(a -1)=2a-1=2×9-1=17⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:200120025、我国1990年的人口出生数为23784659人。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆二、教学目标1. 熟练掌握实数、代数式、方程、不等式、函数、图形等基本概念及其性质。

2. 提高学生的运算能力,培养学生的逻辑思维能力和解决问题的能力。

3. 帮助学生建立知识体系,提高综合运用所学知识解决实际问题的能力。

三、教学难点与重点重点:实数与数轴、代数式的简化与运算、方程与不等式、函数及其图像、三角形与四边形、圆的基本概念及其性质。

难点:函数的性质及其图像、不等式的解法、几何图形的综合应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、练习本、草稿纸、直尺、圆规。

五、教学过程1. 导入:通过实际生活中的例子,引入实数、方程、函数等概念,激发学生的兴趣。

2. 复习实数与数轴:讲解实数的分类、数轴上的点与实数的对应关系,举例说明实数在生活中的应用。

3. 复习代数式的简化与运算:讲解代数式的性质、运算法则,通过例题讲解,让学生掌握代数式的简化与运算。

4. 复习方程与不等式:讲解方程、不等式的解法,结合实际例子,让学生学会解决实际问题。

5. 复习函数及其图像:讲解函数的定义、性质,通过绘制图像,让学生直观地理解函数的变化规律。

6. 复习三角形与四边形:讲解三角形、四边形的性质,结合实例,让学生掌握几何图形的应用。

7. 复习圆:讲解圆的性质、圆与直线的关系,通过实例,让学生了解圆在实际生活中的应用。

8. 随堂练习:针对每个知识点,设计练习题,让学生及时巩固所学知识。

六、板书设计1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆七、作业设计1. 作业题目:(1)计算:2^3 5 × (4 ÷ 2) + 7(2)解方程:2x 5 = 3(x + 1)(3)解不等式:3(x 1) > 2(x + 2)(4)绘制函数y = 2x + 1的图像(5)证明:等腰三角形的底角相等。

中考数学一轮复习教案(完整版)

中考数学一轮复习教案(完整版)

3.零是(

(A) 最小的有理数(B)绝对值最小的实数
(C)最小的自然数 (D)最小的整数 4.如果 a 是实数,下列四种说法:(1)a2 和|a|都是正数,
(2)|a|=-a,那么a一定是负数,(3)a的倒数是1a ,(4)a和-a的两个分别在
原点的两侧,其中正确的是( )
(A)0 (B)1 (C)2
2.考查实数的运算;
3.计算器的使用。
实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法
a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
2.考查实数的运算;
3.计算器的使用。
实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法
a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
效数字、计算器功能鍵及应用。
大纲要求:
1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、
运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵
活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3 / 122

最新中考数学总复习的教案5篇

最新中考数学总复习的教案5篇

最新中考数学总复习的教案5篇时间就如同白驹过隙般的流逝,又将开始安排今后的教学工作了,该写为自己下阶段的教学工作做一个教学计划了,相信写教学计划是一个让许多人都头痛的事情,这里给大家分享一些关于中考数学总复习的教案,方便大家学习。

最新中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。

教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。

下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。

中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

完整)初三数学第一轮复习教案1

完整)初三数学第一轮复习教案1

完整)初三数学第一轮复习教案1九一班数学第一轮复教案代数部分第一章:实数教学目的:1.理解数的概念及分类,正确运用数学概念。

2.熟练掌握数轴、相反数、绝对值、倒数等概念,灵活运用这些知识解决实际问题。

3.能够进行实数的大小比较。

4.理解近似数与有效数字、指数、科学记数法等概念。

5.能够熟练灵活正确地进行有理数的运算。

6.了解平方根、算术平方根、立方根的概念,能够使用平方运算求某些非负数的平方根和算术平方根。

基础知识点:一、实数的分类:正整数、零、负整数、有理数、实数、正分数、分数、负分数、正无理数、无理数、负无理数。

1.有理数是任何一个可以写成p/q的形式的数,其中p、q是互质的整数,这是有理数的重要特征。

2.初中遇到的无理数有三种:开不尽的方根,如2、3√4;特定结构的不限环无限小数,如1.xxxxxxxxxxxxxxx……;特定意义的数,如π、sin45°等。

3.判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才能下结论。

二、实数中的几个概念1.相反数:只有符号不同的两个数叫做互为相反数。

1)实数a的相反数是-a;(2)a和b互为相反数当且仅当a+b=0.2.倒数:1)实数a(a≠0)的倒数是1/a;(2)a和b互为倒数当且仅当ab=1;(3)注意没有倒数的数a。

3.绝对值:1)一个数a的绝对值有以下三种情况:a,a≥0a,a<02)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4.n次方根1)平方根、算术平方根:设a≥0,称±√a叫a的平方根,a叫a的算术平方根。

2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

3)立方根:∛a叫实数a的立方根。

4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

初三数学第一轮复习教案

初三数学第一轮复习教案

初三数学第一轮复习教案代数部分第二章:代数式教学目的:1、了解代数式的概念,会列代数式,会求代数式的值。

2、了解整式、单项式、多项式概念,会把一个多项式按某个字母的升幂或降幂排列。

3、掌握合并同类项方法,去(添)括号法则,熟练掌握数与整式相乘的运算及整式的加减运算。

4、理解整式的乘除运算性质,并能熟练地进行整式的乘除运算。

5、理解乘法公式的意义,掌握五个乘法公式的结构特征,灵活运用五个乘法公式进行运算。

6、会进行整式的混合运算,灵活运用运算律与乘法公式使运算简便。

7、掌握因式分解的四种基本方法,并能用这些方法进行多项式因式分解。

8、掌握分式的基本性质,会熟练地进行约分和通分,掌握分式的加、减、乘、除、乘方的运算法则。

9、了解二次根式及分母有理化概念,掌握二次根式的性质,并能灵活应用它化简二次根式,掌握二次根式乘、除法则,会用它们进行运算,会将分母中含有一个或两个二次根式的式子进行分母有理化;了解最简二次根式,同类二次根式的概念,掌握二次根式的加、减、乘、除的运算法则,会用它们进行二次根式的混合运算。

基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

初三第一轮数学复习教案

初三第一轮数学复习教案
(2)重点解析
锐角三角函数的定义及其应用是教学的重点。定义是所有数学概念的基础,理解定义有助于学生准确把握函数的本质。应用则是检验学生知识掌握程度的试金石,通过实际问题的解决,可以加深学生对函数价值的认识。
二、例题讲解的深度和广度
例题讲解应注重深度和广度。深度上,教师需要引导学生深入分析问题,理清解题思路,强调关键步骤,讲解解题方法。广度上,应涵盖不同类型的题目,如基础计算题、综合应用题等,让学生见识到锐角三角函数在不同场景下的应用。
五、作业设计的针对性与答案的详尽性
(1)针对性解析
作业设计应针对课堂所学内容,突出重点,分散难点。例如,可以设计一些涉及到性质应用的题目,让学生在完成作业的过程中,进一步巩固课堂所学。
(2)答案详尽性解析
作业答案应详尽、清晰,不仅给出最终答案,还要展示解题过程,注明关键步骤。这样,学生可以对照答案,检查自己的解题思路和方法,发现并改正错误。
3.提高学生的逻辑思维能力和团队合作能力。
三、教学难点与重点
1.教学难点:锐角三角函数的性质及其图像变换。
2.教学重点:锐角三角函数的定义及其应用。
四、教具与学具准备
1.教具:三角板、多媒体课件、黑板。
2.学具:直尺、圆规、量角器。
五、教学过程
1.实践情景引入(5分钟)
利用三角板展示实际生活中与锐角三角函数相关的实例,引导学生思考如何运用锐角三角函数解决问题。
七、作业设计
1.作业题目:
1)计算题:给定一个锐角,求其正弦、余弦、正切值。
2)应用题:利用锐角三角函数解决实际问题。
2.答案:见课后附解答。
八、课后反思及拓展延伸
1.课后反思:针对本节课的教学效果,反思教学方法、手段及学生的掌握程度,为下一节课做好准备。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容本节课我们将复习人教版初中数学九年级上册第十五章《图形的相似》,具体内容包括:相似图形的定义、性质、判定方法及其在实际问题中的应用。

二、教学目标1. 理解并掌握相似图形的基本概念和性质,能够运用判定方法识别相似图形。

2. 学会运用相似图形的相关知识解决实际问题,提高解决问题的能力。

3. 培养学生的观察能力、逻辑思维能力和空间想象力。

三、教学难点与重点重点:相似图形的定义、性质、判定方法。

难点:相似图形在实际问题中的应用。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 导入:通过展示实际生活中的相似图形,引导学生发现相似图形的美,激发学生学习兴趣。

实践情景引入:展示一组相似图形(如建筑、家具等),让学生观察并说出它们之间的相似关系。

例题讲解:讲解一组相似图形的例题,让学生通过观察、分析,找出相似图形的关键特征。

3. 判定方法学习:讲解相似图形的判定方法,通过例题让学生学会运用判定方法识别相似图形。

随堂练习:让学生完成一组相似图形的判定练习,巩固所学知识。

4. 实际应用:展示相似图形在实际问题中的应用,引导学生运用所学知识解决问题。

例题讲解:讲解相似图形在实际问题中的应用,如建筑设计、图形放大与缩小等。

六、板书设计1. 相似图形的定义与性质2. 相似图形的判定方法3. 相似图形在实际问题中的应用4. 例题与解答5. 课后作业七、作业设计1. 作业题目:(1)已知两个相似三角形的边长比是3:5,求它们的面积比。

(2)一个正方形与一个矩形相似,正方形的边长是8cm,矩形的边长分别是12cm和18cm,求矩形的面积。

2. 答案:(1)面积比为9:25。

(2)矩形的面积为216cm²。

八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对相似图形的概念、性质和判定方法有了更深入的理解,能够运用所学知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学第一轮复习教案代数部分第二章:代数式教学目的:1、了解代数式的概念,会列代数式,会求代数式的值。

2、了解整式、单项式、多项式概念,会把一个多项式按某个字母的升幂或降幂排列。

3、掌握合并同类项方法,去(添)括号法则,熟练掌握数与整式相乘的运算及整式的加减运算。

4、理解整式的乘除运算性质,并能熟练地进行整式的乘除运算。

5、理解乘法公式的意义,掌握五个乘法公式的结构特征,灵活运用五个乘法公式进行运算。

6、会进行整式的混合运算,灵活运用运算律与乘法公式使运算简便。

7、掌握因式分解的四种基本方法,并能用这些方法进行多项式因式分解。

8、掌握分式的基本性质,会熟练地进行约分和通分,掌握分式的加、减、乘、除、乘方的运算法则。

9、了解二次根式及分母有理化概念,掌握二次根式的性质,并能灵活应用它化简二次根式,掌握二次根式乘、除法则,会用它们进行运算,会将分母中含有一个或两个二次根式的式子进行分母有理化;了解最简二次根式,同类二次根式的概念,掌握二次根式的加、减、乘、除的运算法则,会用它们进行二次根式的混合运算。

基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。

单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有: ))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式1、分式定义:形如BA 的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:(1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a a a aa a ;(3)ba ab ⋅=(a ≥0,b ≥0);(4))0,0(≥≥=b a ba b a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。

(3)二次根式的除法:)0,0(≥≥=b a ba b a二次根式运算的最终结果如果是根式,要化成最简二次根式。

例题:一、因式分解:1、提公因式法:例1、)(6)(2422x y b y x a -+-分析:先提公因式,后用平方差公式解:略[规律总结]因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。

2、十字相乘法:例2、(1)36524--x x ;(2)12)(4)(2-+-+y x y x 分析:可看成是2x 和(x+y)的二次三项式,先用十字相乘法,初步分解。

解:略[规律总结]应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式,有时还需要连续用十字相乘法。

3、分组分解法:例3、2223--+x x x分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。

解:略[规律总结]对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。

4、求根公式法:例4、552++x x解:略二、式的运算巧用公式例5、计算:22)11()11(ba b a -+--- 分析:运用平方差公式因式分解,使分式运算简单化。

解:略[规律总结]抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种变形,公式的逆用,掌握运用公式的技巧,使运算简便准确。

2、化简求值:例6、先化简,再求值:)74()53(52222xy y x x x +++-,其中x= – 1 y =21-解:略[规律总结]一定要先化到最简再代入求值,注意去括号的法则。

3、分式的计算:例7、化简)3316(625---÷--a a a a 分析:–3-a 可看成392---a a 解:略[规律总结]分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号4、根式计算例8、已知最简二次根式12+b 和b -7是同类二次根式,求b 的值。

分析:根据同类二次根式定义可得:2b+1=7–b 。

解:略[规律总结]二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。

相关文档
最新文档