(新课程)高中数学《1.2.1排列》教案1 新人教A版选修23

合集下载

1.2.排列-人教A版选修2-3教案

1.2.排列-人教A版选修2-3教案

1.2. 排列-人教A版选修2-3教案一、教学目标1.了解排列的基本概念和表示方法。

2.掌握计算排列数的方法。

3.了解排列在实际问题中的应用。

二、教学重难点1.排列的计算方法。

2.排列在实际问题中的应用。

三、教学过程1. 导入新知识通过一道小学奥数题引出排列的定义:“从1、2、3、4、5中任选三个数字,使它们按从小到大排列,一共有几种不同的排列方法。

”引导学生思考:如何计算不同的排列方法?引出排列的定义和计算方法。

2. 讲解排列的定义和表示方法1.定义指从给定的n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的排列。

2.表示方法n个不同元素的排列数用P(n,m)表示。

3. 计算排列的方法1.直接法P(n, m) = n × (n-1) × (n-2) × … × (n-m+1)2.递推法P(n, m) = P(n-1, m-1) × n4. 讲解排列在实际问题中的应用以“某地A、B、C、D四地之间的交通状况如下,从A到D依次有几种不同的行车路线?”为例,引导学生理解排列在实际问题中的应用。

5. 练习1.有10个小球,从中任选3个小球排成一排,一共有几种不同的排列方法?2.有7人参加比赛,其中前三名获奖。

一共有多少种不同的获奖方式?3.12个棋子排成一排,其中两个棋子不能相邻在一起,一共有几种不同的排列方法?6. 实践应用1.学生们可以编写一个程序,来模拟计算排列的过程。

2.学生们可以思考一些实际问题,并用排列来解决问题。

四、教学评价1.教师根据学生在讲解、练习和实践应用中的表现,进行教学评价,给予肯定和鼓励。

2.学生们可以用自己编写的程序来计算不同的排列数,并与答案进行比对,进行自我评价。

(新课程)高中数学《1.2.1排列》教案设计-新人教A版选修2-3

(新课程)高中数学《1.2.1排列》教案设计-新人教A版选修2-3

1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

高中数学121排列教案新人教A版选修23

高中数学121排列教案新人教A版选修23

四川省射洪县射洪中学高中数学 121 排列 教案 新人教A 版选修2-3教学目标:理解排列、排列数的概念,了解排列数公式的推导教学重点:理解排列、排列数的概念,了解排列数公式的推导教学进程:一、温习引入:1.分类计数原理:(1)加法原理:若是完成一件工作有k 种途径,由第1种途径有n 1种方式可以完成,由第2种途径有n 2种方式可以完成,……由第k 种途径有n k 种方式可以完成。

那么,完成这件工作共有n 1+n 2+……+n k 种不同的方式。

2,乘法原理:若是完成一件工作可分为K 个步骤,完成第1步有n 1种不同的方式,完成第2步有n 2种不同的方式,……,完成第K 步有nK 种不同的方式。

那么,完成这件工作共有n 1×n 2×……×n k 种不同方式二、讲解新课:1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)依照必然..的顺序...排成一列,叫做从n 个不同元素中掏出m 个元素的一个排列....说明:(1)排列的概念包括两个方面:①掏出元素,②按必然的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的概念:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中掏出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素依照必然的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导: 求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+,排列数公式:(1)(2)(1)m n A n n n n m =---+=!()!n n m -(,,m n N m n *∈≤) 说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全数掏出的一个排列全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘)4、典例分析例1.计算:(1)316A ; (2)66A ; (3)46A .解:(1)316A =161514⨯⨯=3360 ;(2)66A =6!=720 ;(3)46A =6543⨯⨯⨯=360例2.(1)若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----用排列数符号表示 . 解:(1)n = 17 ,m = 14 .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----= 1569n A -.例3.(1)从2,3,5,7,11这五个数字中,任取2个数字组成份数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场别离比课堂练习:(1)解方程:A 42x +1=140A 3x ;(2)解不等式:A x 9>6A x -26.解 (1)按照原方程,x (x ∈N *)应知足⎩⎪⎨⎪⎧ 2x +1≥4,x ≥3,解得x ≥3.按照排列数公式,原方程化为(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2), 因为x ≥3,两边同除以4x (x -1), 得(2x +1)(2x -1)=35(x -2),即4x 2-35x +69=0,解得x =3或x =234(x ∈N *,应舍去). 所以原方程的解为x =3.(2)按照原不等式,x (x ∈N *)应知足⎩⎪⎨⎪⎧ x ≤9,x -2≤6,x >0,x -2>0,故2<x ≤8.又由A x 9>6A x -26,得9!9-x !>6×6!8-x !,所以849-x >1, 所以-75<x <9.故2<x ≤8,所以x ∈{3,4,5,6,7,8}.。

高中数学 1.2.1 排列学案 新人教A版选修2-3(教师版)

高中数学 1.2.1  排列学案 新人教A版选修2-3(教师版)

1.2.1 排列学习目标:1、通过实例理解排列的概念,能用计数原理推导数列数公式;2、会用排列数公式解决简单的实际问题。

一、主要知识:1、排列的定义: 。

2、排列数: ; 排列数公式: 。

3、全排列: ;n 的阶乘: 。

二、典例分析:〖例1〗:计算:(1)325454A A +;(2)12344444A A A A +++;(3)66248108!A A A +-;(4)11(1)!()!n m m A m n ----。

〖变式训练1〗:(1)若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = 。

(2)若n N ∈,则(55)(56)(68)(69)n n n n ----用排列数符号表示 。

〖例2〗:(1)解方程:3322126x x x A A A +=+;(2)解不等式:2996x x A A ->。

(3)化简:①12312!3!4!!n n -++++;②11!22!33!!n n ⨯+⨯+⨯++⨯。

〖例3〗:(1)从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?〖例4〗:(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?(6)7位同学站成一排,四名男生站在一起,三名女生站在一起,共有多少种不同的排法?(7)7位同学站成一排,甲、乙、丙不相邻的排法共有多少种?三、课后作业:1、18171698⨯⨯⨯⨯⨯=( )A 、818AB 、918AC 、1018AD 、1118A2、已知从n 个不同的元素中取出4个元素的排列数恰好等于232n n -⋅,则n 的可能值为( )A 、2B 、3C 、5D 、63、若12320091232009M A A A A =++++,则M 的个位数字是( ) A 、33 B 、0 C 、8 D 、54、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A 、8B 、24C 、48D 、1205、要排一个有5个独唱节目和3个舞蹈节目的节目单,要求舞蹈节目不在排头,并且任何两个舞蹈节目不连排,则不同的排法数为( )A 、3588A AB 、5353A AC 、5355A AD 、5358A A6、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选择出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A 、24种B 、18种C 、12种D 、6种7、(1)方程3121263x x x A A A +-=的解是 ;(2)不等式2886x x A A -<的解集为 。

(新课程)高中数学1.2.1排列教案5 新人教A版选修2-3

(新课程)高中数学1.2.1排列教案5 新人教A版选修2-3

高中新课程数学(新课标人教A 版)选修2-3《1.2.1排列》教案5例7. 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有62621440A A ⋅=种(2)甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有55A 33A =720种 (3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以,丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有14A 55A 22A =960种方法. (4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:342342288A A A =(种)说明:对于相邻问题,常用“捆绑法”(先捆后松).例8.7位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)3600226677=⋅-A A A ;解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655 A A 种方法.(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种. 说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).。

(完整版)《排列》教学设计

(完整版)《排列》教学设计

1.2.1排列(第1课时)【教材】人教版数学选修2-3第一章 1.2排列第1课时【教学对象】新丰一中高二(1)学生(临界班学生)一、内容和内容分析本节课是人教版A版《数学选修2-3》第一章第二节的第一节课,排列是一类特殊而重要的计数问题,教科书从简化运算的角度提出了排列的学习任务,通过具体实例概括而得出排列的概念,应用分步计数原理得出排列数公式,对于排列,有两个想法贯穿始终,一是根据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样,而是注意应用两个计数原理思考和解决问题。

本节课具有承上启下的地位,理解排列的概念是应用分步计数原理推导排列数公式的前提,对具体的排列问题的分析又为排列数公式提供了基础。

排列数公式的推导过程是分步计数原理的一个重要应用,同时,排列数公式又是推导组合数公式的主要依据。

基于学生的认知规律,本节课只是对排列和排列数公式的初步认识,在后面知识的学习过程中,逐步加深理解和灵活运用。

本节课的教学重点是排列的概念、排列数公式,教学难点是排列的概念,排列的概念有一定的抽象性,本节课结合教科书的编排,采取了由特殊到一般的归纳思想来建构概念的理解过程,通过引导学生分析三个典型事例,从中归纳出共同特征,再进一步概括出本质特征,得出排列的定义,再跟进10个具体的事例多角度加深对概念的理解,并多次强调一个排列的特点,n个不同的元素,取出m个元素,元素的顺序,奠定学生对排列定义的理解基础,为后面组合概念的提出埋下伏笔。

同时通过有规律的展示分步计数原理得到的一长串排列数,为后面水到渠成得到排列数公式做好铺垫,排列数公式的简单应用体现了排列简化步骤的优点,让学生直观感受学习排列的必要。

二、教学目标:1.理解并能熟练掌握求排列的一般方法,对不同题型寻求到一种恰当的解答方式。

2.进一步培养学生分析问题、解决问题的能力,体验数学思想方法的发现和运用带来的解题便利,体会数学的实用价值和魅力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,共有 3×2=6 种.问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法显然,从 4 个数字中,每次取出 3 个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示.由此可写出所有的三位数:123,124, 132, 134, 142, 143, 213,214, 231, 234, 241, 243,312,314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432 。

同样,问题 2 可以归结为:从4个不同的元素a, b, c ,d 中任取 3 个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc,cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb.共有4×3×2=24种.树形图如下a b c db c d a c d a b d a b c2.排列的概念:从n 个不同元素中,任取m (m n )个元素(这里的被取元素各不相同)按照一定..的顺序...排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同3.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号mn A 只表示排列数,而不表示具体的排列4.排列数公式及其推导:由2n A 的意义:假定有排好顺序的2个空位,从n 个元素12,,n a a a 中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数2n A .由分步计数原理完成上述填空共有(1)n n -种填法,∴2n A =(1)n n - 由此,求3n A 可以按依次填3个空位来考虑,∴3n A =(1)(2)n n n --,求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+,排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤)说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列 全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘)另外,我们规定 0! =1 .例1.用计算器计算: (1)410A ; (2)518A ; (3)18131813A A ÷.解:用计算器可得:由( 2 ) ( 3 )我们看到,51813181813A A A =÷.那么,这个结果有没有一般性呢?即!()!nmn n n m n m A n A A n m --==-.排列数的另一个计算公式:(1)(2)(1)mn A n n n n m =---+(1)(2)(1)()321()(1)321n n n n m n m n m n m ---+-⋅⋅=---⋅⋅=!()!n n m -=nnn m n mA A --.即 m n A =!()!n n m -例2.解方程:3322126x x x A A A +=+.解:由排列数公式得:3(1)(2)2(1)6(1)x x x x x x x --=++-,∵3x ≥,∴ 3(1)(2)2(1)6(1)x x x x --=++-,即2317100x x -+=, 解得 5x =或23x =,∵3x ≥,且x N *∈,∴原方程的解为5x =.例3.解不等式:2996x x A A ->.解:原不等式即9!9!6(9)!(11)!x x >⋅--,也就是16(9)!(11)(10)(9)!x x x x >--⋅-⋅-,化简得:2211040x x -+>,解得8x <或13x >,又∵29x ≤≤,且x N *∈,所以,原不等式的解集为{}2,3,4,5,6,7.例4.求证:(1)n m n mn n n m A A A --=⋅;(2)(2)!135(21)2!n n n n =⋅⋅-⋅.证明:(1)!()!!()!m n mn n m n A A n m n n m --⋅=-=-nn A =,∴原式成立(2)(2)!2(21)(22)43212!2!n n n n n n n n ⋅-⋅-⋅⋅⋅=⋅⋅2(1)21(21)(23)312!n n n n n n n ⋅-⋅⋅--⋅=⋅!13(23)(21)!n n n n ⋅⋅--==135(21)n ⋅⋅-=右边∴原式成立说明:(1)解含排列数的方程和不等式时要注意排列数m n A 中,,m n N *∈且m n ≤这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式(1)(2)(1)m n A n n n n m =---+常用来求值,特别是,m n 均为已知时,公式m n A =!()!n n m -,常用来证明或化简例5.化简:⑴12312!3!4!!nn -++++;⑵11!22!33!!n n ⨯+⨯+⨯++⨯⑴解:原式11111111!2!2!3!3!4!(1)!!n n =-+-+-++-=-11!n -⑵提示:由()()1!1!!!n n n n n n +=+=⨯+,得()!1!!n n n n ⨯=+-, 原式()1!1n =+-说明:111!(1)!!n n n n -=--.。

相关文档
最新文档