GOLD码产生与特性分析实验

合集下载

Gold码特性研究

Gold码特性研究

Gold 序列是 m 序列的复合码序列,它是由两个码长相等、码时钟速率相同
的 m 序列优选对的模 2 和序列构成。每改变两个 m 序列相对位移就可得到一个 新的 Gold 序列。 当相对位移 1, 2, , 2 r 1 个比特时, 就可以得到一族 2r 1 个 Gold 序列,加上原来的两个 m 序列,共有 2r 1 个 Gold 序列,即
2r 1 。Gold 码族同族内互相关函数取值已有理论结果,且具有三值互相关函数
的特性。但是不同 Gold 码族之间的互相关函数取值已不是三值而是多值,而且 互相关值已大大超过了同族内部的互相关值。
2.3.4 平衡 Gold 序列
Gold 序列就其平衡性来讲,可以分为平衡码序列和非平衡码序列。在一个
Rab ( ) max
1 1 r2 2 r 2 2 2 1
r为奇数 r为偶数且不是4的倍数
(5)
则 F1 ( x ) 与 F2 ( x) 所产生的 m 序列 ai 与 bi 构成 m 序列优选对。
2.3.2 m 序列优选对的寻找
本试验在求取相关函数的过程中, 我们利用的是 2 个序列循环移位相加的形 式得到结果的,并且自相关函数是归一化的,而互相关函数则未进行归一化。 本项实验利用前面抽取获得的 m 序列,依次检查两项之间的互相关函数是
r 1
1 (例如当 r 5 时,平衡 Gold 序列中应该有 17 个 1 元素,16 个 0
元素,相加的结果就为 17) ,则为平衡 Gold 序列,否则为不平衡 Gold 序列。记 录下族内平衡和非平衡 Gold 序列个数再与理论值对比。
2.4 Kasami 序列
Kasami 序列分为 Kasami 小集序列和 Kasami 大集序列。 下面侧重介绍 Kasami

Gold系列码性能分析

Gold系列码性能分析

在扩频 系统 中 , 号频 谱 的扩 展通 过 扩 频码 实 信 现. 扩频系统 的性 能同扩频 码 的性 能有很 大关 系. 在 实 际工程 中 , 用伪 随机 或伪 噪声 ( N) P 序列 作 为扩频 码. 由于 m序列 , o G l 在 扩频 码 中有 着 特 别重 要 d码
的地位 , 以下主要对其 产生 和性质 进行 讨论 .
Ab t a t Th s qu n e a l e e c r h s l l s d c d si p e d s cr m o sr c : e m—e e c nd Go d s qu n e ae t e mo twidy u e o e n s r a pe tu c mmunc — ia to y tms n t e t e i ,t e re fg n r t g t m n te h r c e r t d e .An h n i h n io — in s se .I h h ss h o i s o e e ai he a d o rc a a tr a e su i d n h d t e n te e vr n me to y tm e ,we ty t i l t he p o e s o e e a ig Go d s qu n e a d a ay e is c a a tro h n fS se Viw r o smu ae t r c s fg n r t l e e c n n l s t h r c e ft e n a t —o r lt n.T e c mp rs n hoo g l b t e e God o e a h m e u n e r d . Th e u t u o c re ai o h o a io t r u h y ewe n t l c d s nd t e h s q e c a e ma e e rsl s e a l e e c o e sftfrCDMA o t st tG d s qu n e c d si o at h o i c mmu ia in s se sa d e sc de ,be a s e c a a tro n c to y tmsa d r s o s c u e t h r ce f h

基于VHDL的GOLD序列发生器的设计与实现

基于VHDL的GOLD序列发生器的设计与实现
[ 8]
1
1 . 1
m 序列优选对的产生
m 序列优选对 设 A 是对应于 n 级本原多项式 f (X ) 所产生的
* 收稿日期 :
产生 GOLD 序列的必要条件 是 m 序 列优选 对 , 在到 m 序列优选对的基础上按一定的方法得 到 GOLD 序列.
2008203226 作者简介 : 冀勇钢 ( 1981- ), 男 , 助教 , 硕士 , 主要从事扩频通信及其应用的研究 E2m a i:l jyg10@ 126. com.
冀勇钢 , 车仁信 , 李冲
*
1
2
2
(1. 大连交通大学信息工程学院 工学部 , 辽 宁 大 连 116052; 2. 大连交 通大学 电 气信息 学院 , 辽宁 大 连 116028 ) 摘 要 : 在分析 m 序列优选对的基础上 , 利用有限域法寻找一 对优选对 序列 , 采用 VHDL 语言实 现一平
[1]XI E S HOUL I E, RAHARDJA S . P erfor m ance evalua tion for quaterna ry DS2SS MA co mmun ica tions with comp lex2 signa ture sequences over R ayle igh2fading channe ls[ J]. I EEE transactions on w ireless co mmun ica tions , 2005, 4 ( 1): 2662277. [ 2] MAJUMDER S P , AZHAR I AFREEN, ABB OU F M. I mpact of F iber Chroma tic D ispersion on the BER Pe r 2

GOLD 序列码产生及特性分析实验

GOLD 序列码产生及特性分析实验

实验二 GOLD 序列码产生及特性分析实验一、实验目的1. 了解Gold 码的性质和特点;2. 熟悉Gold 码的产生方法;二、实验内容1. 熟悉Gold 码的的产生方法;2. 测试Gold 码的的波形;三、实验原理m 序列虽然性能优良,但同样长度的m 序列个数不多,且m 序列之间的互相关函数值并不理想(为多值函数)。

1967年,R .Gold 提出和讨论了一种新的序列,即Gold 码序列。

这种序列有较为优良的自相关和互相关特性,构造简单,产生的序列数多,因而得到广泛的应用。

a) m 序列优选对m 序列优选对是指在m 序列集中,其互相关函数最大值的绝对值满足下式的两条n 阶m 序列:表2-1给出了部分m 序列优选对。

表2-1 部分优选对码表 级数 基准本原多项式 配对本原多项式 7 211 217,235,277,325,203,357,301,323 9 1021 1131,133310 2415 2011,3515,317711 4445 4005,5205,5337,52632.Gold 码的产生方法Gold 码是m 序列的组合码,由同步时钟控制的两个码字不同的m 序列优选对逐位模2加得到,其原理如图2-1所示。

这两个码发生器的周期相同,速率也相同,因而两者保持一整除为偶数,但不能被位奇数41212)(2/)2(2/)1(n n R n n xy ⎩⎨⎧++≤++τ定的相位关系,这样产生的组合码与这两个子码序列的周期也相同。

当改变两个m 序列的相对位移时,会得到一个新的Gold 码。

Gold 码虽然是m 序列模2加得到的,但它已不再是m 序列,不过仍具有与m 序列近似的优良特性,各个码组之间的互相关特性与原来两个m 序列之间的互相关特性一样,最大的互相关值不会超过原来两个m 序列间最大互相关值。

Gold 码最大的优点是具有比m 序列多得多的独立码组。

图2-1 Gold 码序列发生器Gold 码序列具有以下性质:(1)两个m 序列优选对经不同移位相加产生的新序列都是Gold 序列,两个n 级移位寄存器可以产生2n +1个Gold 序列,周期均为2n -1。

gold序列的生成与相关特性仿真

gold序列的生成与相关特性仿真

gold序列的⽣成与相关特性仿真Gold序列⽣成与相关性仿真1.1 references[1] 基于Matlab的Gold码序列的仿真与实现.[2] Code Selection for CDMA Systems.1.2 m序列的⽣成原理1.2.1⽣成本原多项式利⽤Matlab编程环境求解本原多项式,其运⾏结果如表1所⽰.选择n=7,采⽤7级移位寄存器,产⽣的序列周期是127,其程序如下所⽰.N=7; %以7级寄存器为例,并组其中的⼀组优选对:211,,217connections=gfprimfd(N,'all');表(1)n=7 本原多项式上⾯的多项式中,仅有9个是独⽴的.因为第⼀⾏和第⼗⾏,第⼆⾏和四⾏,第三⾏和第⼗六⾏,第五⾏和第⼋⾏,第六⾏和第⼗四⾏,第七⾏和第⼗三⾏,第九⾏和第⼗⼋⾏,第⼗⼀⾏和第⼗⼆⾏,第⼗五⾏和第⼗七⾏是两两对称的.⽤⼋进制数表⽰时,所选择的本原多项式为211、217、235、367、277、325、203、313和345共9条.在这9条本原多项式中,选择⼀个基准本原多项式,再按要求选择另⼀本原多项式与之配对,构成m序列优选对,对7级m序列优选对如下表:表(2)n=7 m序列所以优选对1.2.2构成移位寄存器根据产⽣Gold码序列的⽅法,从上述本原多项式中选择⼀对m序列优选对,以211作为基准本原多项式,217作为配对本原多项式,通过并联结构形式来产⽣Gold序列,⽣成gold 序列的结构如图(6)所⽰:图(6)Gold序列⽣成结构1.3 ⾃相关函数仿真参数及初始值设定如下:N=7; %以7级寄存器为例,并组其中的⼀组优选对:211,,217connections=gfprimfd(N,'all');f1=connections(4,:); %取⼀组本原多项式序列,211f2=connections(16,:); %取另⼀组本原多项式序列,217registers1=[1 0 0 0 0 0 0];%给定寄存器的初始状态registers2=[1 0 0 0 0 0 0];%取相同的初始状态⽣成的gold 序列⾃相关函数如图(7)、(8)所⽰图(7) Gold 序列周期⾃相关函数结论:⾃相关函数取值集合{127,15,-1,-17}图(8)Gold 序列⾮周期⾃相关函数020406080100120140gold 序列周期⾃相关函数020406080100120140-40-2020406080100120140gold 序列⾮周期⾃相关函数1.4 互相关函数仿真时改变m序列寄存器初始状态,从⽽⽣成两个gold序列,求得互相关函数如图(9)(10)所⽰。

Gold码

Gold码

通信08-1 艾盼盼0850283101设计Gold序列发生器姓名:艾盼盼学号:0850283101 班级:通信08-1摘要:m序列,尤其是m序列优选对,是特性很好的伪随机序列。

但是,它们能彼此构成优选对的数目很少,不便于在码分多址系统中应用。

R.Gold于1967年提出了一种基于m 序列优选对的码序列,称为Gold序列。

它是m序列的组合码,由优选对的两个m序列逐位模2加得到,当改变其中一个m序列的相位(向后移位)时,可得到一新的Gold序列。

Gold 序列虽然是由m序列模2加得到的,但它已不是m序列,不过它具有与m序列优选对类似的自相关和互相关特性,而且构造简单,产生的序列数多,因而获得广泛的应用。

【关键词】:m序列优选对,Gold序列,模2加,自相关1. Gold码的概述1.1 gold码定义R.Gold于1967年提出了一种基于m序列优选对的码序列,称为Gold序列。

它是m序列的组合码,由优选对的两个m序列逐位模2加得到,当改变其中一个m序列的相位(向后移位)时,可得到一新的Gold序列。

Gold序列虽然是由m序列模2加得到的,但它已不是m 序列,不过它具有与m序列优选对类似的自相关和互相关特性,而且构造简单,产生的序列数多,因而获得广泛的应用。

1.2 gold码基本功能单元Gold码发生器的基本功能单元为线性反馈移位寄存器LFSR(Linear Fdddback Bhift Register)。

2.Gold序列的设计2.1 m序列优选对寻找方法产生gold序列的必要条件是m序列优选对,设A是对应于n级本原多项式f(x)所产生的m序列,B是对应于n级本原多项式g(x)所产生的m序列,当它们的互相关函数|Ra.b(k)|满足:则f(x)和g(x)所产生的m序列A和B构成一对优选对。

寻找m序列优选对的方法还有硬件计算法,分圆陪集法,逐步移位模2加法,三值判别法。

2.2gold序列设计的理论证明证明,若F1(x),F2(x)为两个不同的本原多项式,令F1(x)产生的序列为G(F1),F2(x)产生的序列为G(F2),F1(x). F2(x)所产生的序列为G(F1,F2),则有上式表明两本原多项式乘积所产生的序列等于两个本原多项式分别产生的模2和序列。

m序列和Gold序列特性研究要点

m序列和Gold序列特性研究要点

扩频通信实验报告Harbin Institute of Technology扩频通信实验报告课程名称:扩频通信实验题目:Gold码特性研究院系:电信学院班级:通信一班姓名:学号:指导教师:迟永钢时间: 2012年5月8日哈尔滨工业大学- I-第1章实验要求1.以r=5 1 45E为基础,抽取出其他的m序列,请详细说明抽取过程;2.画出r=5的全部m序列移位寄存器结构,并明确哪些序列彼此是互反多项式;3.在生成的m序列集中,寻找出m序列优选对,请确定优选对的数量,并画出它们的自相关和互相关函数图形;4.依据所选取的m序列优选对生成所有Gold序列族,确定产生Gold序列族的数量,标出每个Gold序列族中的所有序列,并实例验证族内序列彼此的自相关和互相关特性;5.在生成的每个Gold序列族内,明确标出平衡序列和非平衡序列,并验证其分布关系。

6.完整的作业提交包括:纸质打印版和电子版两部分,要求两部分内容统一,且在作业后面附上源程序,并加必要注释。

7.要求统一采用Matlab软件中的M文件实现。

第2章 实验原理2.1 m 序列二元m 序列是一种伪随机序列,有优良的自相关函数,是狭义伪随机序列。

m 序列易于产生于复制,在扩频技术中得到了广泛应用。

2.1.1 m 序列的定义r 级非退化的移位寄存器的组成如图1所示,移位时钟源的频率为c R 。

r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示2012() {0,1}r r i f x c c x c x c x c =++++∈ (1)图 2-1 r 级线性移位寄存器式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。

因此成为线性移位寄存器。

否则称为,非线性移位寄存器。

对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示112233 {0,1}i i i i r i r i a c a c a c a c a c ----=++++∈ (2) 特征多项式(1)与递归多项式(2)是r 级线性移位寄存器反馈逻辑的两种不同种表示法,因其应用的场合不同而采用不同的表示方法。

m序列和Gold序列特性研究要点上课讲义

m序列和Gold序列特性研究要点上课讲义

m序列和G o l d序列特性研究要点Harbin Institute of Technology扩频通信实验报告课程名称:扩频通信实验题目:Gold码特性研究院系:电信学院班级:通信一班姓名:学号:指导教师:迟永钢时间: 2012年5月8日哈尔滨工业大学第1章实验要求1.以r=5 1 45E为基础,抽取出其他的m序列,请详细说明抽取过程;2.画出r=5的全部m序列移位寄存器结构,并明确哪些序列彼此是互反多项式;3.在生成的m序列集中,寻找出m序列优选对,请确定优选对的数量,并画出它们的自相关和互相关函数图形;4.依据所选取的m序列优选对生成所有Gold序列族,确定产生Gold序列族的数量,标出每个Gold序列族中的所有序列,并实例验证族内序列彼此的自相关和互相关特性;5.在生成的每个Gold序列族内,明确标出平衡序列和非平衡序列,并验证其分布关系。

6.完整的作业提交包括:纸质打印版和电子版两部分,要求两部分内容统一,且在作业后面附上源程序,并加必要注释。

7.要求统一采用Matlab软件中的M文件实现。

第2章 实验原理2.1 m 序列二元m 序列是一种伪随机序列,有优良的自相关函数,是狭义伪随机序列。

m 序列易于产生于复制,在扩频技术中得到了广泛应用。

2.1.1 m 序列的定义r 级非退化的移位寄存器的组成如图1所示,移位时钟源的频率为c R 。

r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示2012() {0,1}r r i f x c c x c x c x c =++++∈L (1)图 2-1 r 级线性移位寄存器式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。

因此成为线性移位寄存器。

否则称为,非线性移位寄存器。

对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示112233 {0,1}i i i i r i r i a c a c a c a c a c ----=++++∈L (2) 特征多项式(1)与递归多项式(2)是r 级线性移位寄存器反馈逻辑的两种不同种表示法,因其应用的场合不同而采用不同的表示方法。

实验三 移动通信信息码与扩频码的产生实验(M、Gold序列)

实验三   移动通信信息码与扩频码的产生实验(M、Gold序列)

实验三移动通信信息码与扩频码的产生实验(M、Gold序列)(一)M序列产生实验一、实验目的1.了解M序列的性质和特点2.熟悉M序列的产生方法3.了解M序列的CPLD实现方法二、实验仪器设备HD8670型移动通信实验箱、示波器等三、实验内容1.熟悉M序列的产生方法2.测试M序列的波形四、实验原理M序列是最长线性反馈移存器序列的简称。

它是由带线性反馈的移存器产生的周期最长的一种序列。

M序列在一定的周期内具有自相关特性。

它的自相关特性和白噪声的自相关特性相似。

虽然它是预先可知的,但性质上和那些随机序列具有相同的性质。

比如:具有相同数目的0和1码,系列的不同部分具有很小的相关性,任何两串序列具有很小的相关性等。

1、M序列的产生M序列是由带线性反馈的移存器产生的。

现在,我们先给出一个M序列的例子。

在图3-1中示出一个4级反馈移存器。

若其初始状态为(a3,a2 ,a1 ,a0 )=(1,0,0,0),则在移位一次时,由a3和a0模2相加产生新的输入a4=01 =1新的状态变为(a4,a3,a2 ,a1 )=(1,1,0,0)这样移位15次后又回到初始状态(1,0,0,0),不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍为全“0”状态。

这就意味着在这种反馈移存器中应避免出现全“0”状态。

不然移存器的状态将不会改变。

因为4级移存器共有24=16种可能的不同状态。

除全“0”状态外,只剩15种状态可用。

即由任何4级反馈移存器产生的序列的周期最长为15。

我们常常希望用尽可能小的级数产生尽可能长的序列。

由上例可见,一般说来,一个n级反馈移存器可能产生的最长周期等于(2n –1)。

我们将这种最长的序列称为最长线性反馈移存器序列,简称M序列。

图3-1 M序列的产生2、M序列的CPLD实现在图3-2中示出一个一般的线性反馈移存器的组成。

图中一级移存器的状态用a i表示,a i=0或1,i=整数。

反馈线的连接状态用Ci 表示,Ci=1表示此线接通(参加反馈),Ci=0表示此线断开。

m序列对及平衡Gold序列的产生与搜索

m序列对及平衡Gold序列的产生与搜索

平衡Gold序列的产生与搜索方法
平衡Gold序列是一类具有优良伪随机性和自相关性的二元序列。产生平衡 Gold序列的方法主要有两种:一是通过平衡Gold多项式产生平衡Gold序列; 二是通过选择适当的m序列和反馈函数产生平衡Gold序列。搜索方法主要有基 于差分编码的搜索算法和基于自相关函数的搜索算法。
3、信息隐藏:平衡Gold序列可以用于信息隐藏中的隐写术,以隐藏敏感信息 在公开信息中。由于平衡Gold序列具有优良的自相关性,它可以用于构造高效 的隐写算法,提高信息隐藏的安全性和鲁棒性。
未来展望
随着技术的发展,平衡Gold序列的研究将面临新的挑战和机遇。以下是一些未 来可能的研究方向:
1、高效产生方法:目前平衡Gold序列的产生方法还比较耗时,因此研究更高 效的产生方法以提高搜索速度和降低计算成本是未来的一个研究方向。
1、反馈函数设计:反馈函数是m序列发生器的核心部分,其设计的好坏直接影 响到m序列的性能。一个好的反馈函数应该具有较低的误码率、较高的线性复 杂度、易于实现等优点。常用的反馈函数包括异或、同或、与等运算。
2、LFSR级数和反馈位数选择:m序列发生器的性能与LFSR的级数和反馈位数 密切相关。一般来说,增加LFSR的级数和反馈位数可以提高m序列的性能,但 同时也会增加硬件实现的复杂度和功耗。因此,在设计中需要根据实际需求选 择合适的LFSR级数和反馈位数。
在软件实现中,可以使用各种编程语言如C、C++、Python等编写m序列发生器。 软件实现具有灵活度高、易于调试和修改等优点,但也存在运行速度较慢和需 要运行额外的处理器等缺点。
m序列发生器的应用
m序列发生器在信号处理、通信技术等领域具有广泛的应用。以下是m序列发生 器的一些典型应用:

实验一 GOLD序列特性实验

实验一 GOLD序列特性实验

实验 GOLD 序列特性实验一、实验目的1、掌握GOLD 序列的特点。

2、了解GOLD 序列在直接扩频通信中所起的作用二、实验器材1、移动通信原理实验箱一台 2、20M 双踪示波器一台 3、频谱分析仪或带FFT 功能的数字示波器(选配) 一台三、实验内容1、观察GOLD 序列的波形(频谱)。

2、观察GOLD 序列的自相关和互相关特性。

四、实验原理1、伪随机序列工程上常用二元{0,1}序列来产生伪噪声码。

它具有如下特点:(1) 每一周期内“0”和“1”出现的次数近似相等。

(2) 每一周期内,长度为n 比特的游程出现的次数比长度为n+1比特的游程出现的次数多一倍。

(游程是指相同码元的码元串)(3) 序列具有双值自相关函数,即:⎪⎩⎪⎨⎧-≤≤=11k 01)(p p R τττ当-=当(4.1-1)在(4.1-1)式中,p 为二元序列周期,又称码长,k 为小于p 的整数,τ为码元延时。

2、m 序列二元m 序列是一种基本的伪随机序列,有优良的自相关函数,易于产生和复制,在扩频技术中得到了广泛的应用。

长度为2n -1位的m 序列可以用n 级线性移位寄存器来产生。

如图4.1-1所示:图4.1-1 线性移位寄存器m 序列的特性如下(1) 在每一周期p= 2n -1内,“0”出现2n -1-1次,“1”出现2n -1次,“1”比“0”多出现一次。

(2) 在每一周期内共有2n -1个元属游程,其中“0”的游程和“1”的游程数目各占模二加法器一半。

并且,对n>2,当1≤k ≤n-1时,长为k 的游程占游程总数的1/ 2 k ,其中“0”的游程和“1”的游程各占一半。

长为n –1的游程只有一个,为“0”的游程;长为n 的游程也只有一个,为“1”的游程。

(3) m 序列(a k )与其位移序列(τ-k a )的模二和仍然是m 序列的另一位移序列(τ'-k a ),即:{}{}{}ττ'--=+k k k a a a(4) m 序列的自相关函数为:⎪⎩⎪⎨⎧≠-=p p p R mod 01mod 01)(τττ当=当 (4.1-2)3、Gold 序列虽然m 序列有优良的自相关特性,但是使用m 序列作CDMA (码分多址)通信的地址码时,其主要问题是由m 序列组成的互相关特性好的互为优选的序列集很少,对于多址应用来说,可用的地址数太少了。

三种常用扩频码序列产生及其特性仿真实验报告

三种常用扩频码序列产生及其特性仿真实验报告

三种常用扩频码序列产生及其特性仿真实验报告一、三种扩频码序列简介M序列(即De Bruijn序列)又叫做伪随机序列、伪噪声(PN)码或伪随机码。

可以预先确定并且可以重复实现的序列称为确定序列;既不能预先确定又不能重复实现的序列称随机序列;不能预先确定但可以重复产生的序列称伪随机序列。

对于一个n级反馈移位寄存器来说,最多可以有2^n 个状态,对于一个线性反馈移位寄存器来说,全“0”状态不会转入其他状态,所以线性移位寄存器的序列的最长周期为2^n-1。

当n级线性移位寄存器产生的序列{ai}的周期为T= 2^n-1时,称{ai}为n级m序列。

当反馈函数f(a1,a2,a3,…an)为非线性函数时,便构成非线性移位寄存器,其输出序列为非线性序列。

输出序列的周期最大可达2^n ,并称周期达到最大值的非线性移位寄存器序列为M序列。

1.2 Gold序列Gold序列是1967年R.Gold在m序列基础上提出并分析的一种特性较好的伪随机序列,它是由两个码长相等、码时钟速率相同的m 序列优选对通过模2相加而构成的。

其产生的电路示意图如下图所示,通过设置m序列发生器B的不同初始状态,可以得到不同的Gold序列,由于总共有m-1个不同的相对移位(Q为m序列的级数),加上原有的两个m序列,可以产生共m+1个Gold序列。

1.3OVSF序列对于TD-SCDMA来说,选择的扩频码称为正交可变扩频因子(Orthogonal Variable Spreading Factor,简称OVSF)。

又叫正交可变扩频因子,系统根据扩频因子的大小给用户分配资源,数值越大,提供的带宽越小,是一个实现码分多址(CDMA)信号传输的代码,它由Walsh函数生成,OVSF码互相关为零,相互完全正交。

OVSF序列的特点1、序列之间完全正交2、极适合用于同步码分多址系统3、序列长度可变,不影响正交性,是可变速率码分系统的首选多址扩频码4、自相关性很差,需与伪随机扰码组合使用二、三种扩频码序列产生仿真2.1 m序列n级线性移位寄存器的如图1所示:M序列具体实现的产生代码:X1=1;X2=0;X3=1;X4=0;X5=1;X6=1;X7=1;X8=0 %移位寄存器输入Xi初T态(01110101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y8=X8;Y7=X7;Y6=X6;Y5=X5;Y4=X4; Y3=X3; Y2=X2; Y1=X1;X8=Y7;X7=Y6;X6=Y5;X5=Y4;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y7,Y8); %异或运算if Y8==0U(i)=-1;elseU(i)=Y8;endendM=U%绘图i1=ik=1:1:i1;plot(k,U,k,U,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')实验产生的结果:用阶梯图产生表示:X1=1;X2=0;X3=1;X4=0; X5=1;X6=1;X7=1;X8=0 %移位寄存器输入Xi初T态(01110101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y8=X8;Y7=X7;Y6=X6;Y5=X5;Y4=X4; Y3=X3; Y2=X2; Y1=X1; X8=Y7;X7=Y6;X6=Y5;X5=Y4;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y7,Y8); %异或运算if Y8==0U(i)=-1;elseU(i)=Y8;endendm=60; %置M序列总长度for i=1:m %1#Y8=X8;Y7=X7;Y6=X6;Y5=X5;Y4=X4; Y3=X3; Y2=X2; Y1=X1; X8=Y7;X7=Y6;X6=Y5;X5=Y4;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y7,Y8); %异或运算if Y8==0U(i)=-1;elseU(i)=Y8;endendM=U%绘图stairs(M);得出图形为:二、GOLD序列的产生:自相关性:首先将第一个m序列变成双极性的序列,在与本身进行移位相乘进行积分运算,代码如下:out1=2*out1-1; %变为双极性序列for j=0:N-1rho(j+1)=sum(out1.*[out1(1+j:N),out1(1:j)])/N;endj=-N+1:N-1;rho=[fliplr(rho(2:N)),rho];figure(3)plot(j,rho);axis([-10 10 -0.1 1.2]);title('第一个m序列的自相关函数')互相关性:第一个m序列的函数与第二个m序列函数的移位相乘进行积分运算。

Gold序列产生仿真课程设计报告

Gold序列产生仿真课程设计报告

目录一.基本原理 (1)1.1伪随机序列 (1)1.11伪随机序列的相关概念 (1)1.12伪随机序列的数学 (1)1.13伪随机序列的相关特性 (2)1.2m序列 (3)1.3Gold序列 (5)1.31Gold序列的产生原理 (5)1.32Gold序列的基本性质 (6)二.设计过程 (6)2.1 MATLAB编程简介 (6)2.2 设计思路与流程图 (7)2.3 仿真程序 (8)三.仿真结果 (9)四.结果分析 (9)4.1相关性的理论分析 (9)4.2自相关 (11)4.3互相关 (13)五.总结 (17)一:基本原理Gold序列是R·Gold提出的一种基于m序列的码序列,这种序列有较优良的自相关和互相关特性,构造简单,产生的序列数多,因而获得了广泛的应用。

1.1伪随机序列1.1.1伪随机序列相关概念伪随机序列作为扩频通信系统中的一部分是十分关键的,它关系到扩频系统的性能。

四十年代末,信息论的奠基人香农(C.E.Shannon)提出的编码定理指出:只要信息速率Rb小于信道容量C,则总可以找到某种编码方法,在码周期相当长的条件下,能够几乎无差错的从收到高斯噪声干扰的信号中复制出原发信息。

这里有两个条件,一是Rb<=C,二是编码的码周期足够长。

同时香农在证明编码定理的时候,提出用具有白噪声统计特性的信号来编码。

白噪声是一种随机过程,它的瞬时值服从正态分布,功率谱在很宽频带内都是均匀的。

但是至今无法实现对白噪声放大、调制、检测、同步及控制等,而只能用具有类似于限带白噪声统计特性的伪随机序列信号来逼近它,并作为扩频系统的扩频码。

六十年代末,一些易于产生、加工和复制且具有白噪声性质的“伪噪声编码技术”日趋成熟,因此高效抗干扰编码通信变得蓬勃发展起来。

同时用各种不同波形的正交码来实现波形分割的码分多址通信也相继出现,实现了无线用户的随意呼叫通信。

这种技术在地面多址通信和卫星通信中都可采用。

毕业论文--Gold序列的仿真研究(可编辑)

毕业论文--Gold序列的仿真研究(可编辑)

Gold序列的仿真研究摘要: Gold序列是R?Gold提出的一种基于m序列的码序列,这种序列有较优良的自相关和互相关特性,构造简单,产生的序列数多,因而获得了广泛的应用。

本文对Gold序列进行仿真研究,首先介绍了扩频通信中常用的m序列和Gold 序列码产生的方法原理和性质,运用Matlab对Gold码的生成和性能进行了仿真分析。

关键词:伪随机序列;Gold序列;m序列;Matlab仿真SIMULATION OF GOLD SEQUENCESAbstract: Gold sequences is proposed by RGold which is based on m sequences. Gold sequences has good properties, such as good autocorrelation and cross-correlation, easy to construct and more sequences, etc, therefore it has wide applications.This paper investigates the Gold sequences. The principle and performance of m sequences and Gold sequences in spread spectrum communication are first introduced in the paper. Simulation by Matlab is also provided in the paper to analyze the nature of Gold sequences.Key words: Pseudo-random sequence;Gold sequence;m sequence;Matlab simulation目录1 引言11.1研究的背景及意义 11.2 CDMA通信技术简介 11.2.1 扩频的理论基础11.2.2 扩频通信的分类21.2.3 CDMA扩频通信系统的构成 21.2.4 伪随机序列在CDMA通信系统中的应用 22 m序列 32.1 伪随机序列相关概念 32.1.1 伪随机序列的数学定义 32.1.2 随机序列的相关特性 42.2 m序列的产生原理 53 Gold序列 63.1 Gold序列的产生原理 63.2 Gold序列的基本性质74 Matlab仿真实现84.1 产生m序列84.2 产生Gold序列94.3 相关性仿真104.3.1 相关性的理论分析104.3.2 Matlab仿真115 结束语14致谢16参考文献171 引言1.1研究的背景及意义移动通信由于具有时实性、机动性、具有不受时空限制等特点,己经成为一种深受人们欢迎的通信方式,并融入了现代生活当中。

GOLD序列特性实验

GOLD序列特性实验

实验一GOLD序列特性实验②用示波器观察测试点“GOLD1”处的波形。

改变拨位开关“扩频码速率”的设置,按“发射机复位”键,再观察“GOLD1”处的波形。

“GOLD1置位”设置为10000000时100kbit/s的GOLD1波形“GOLD1置位”设置为10000000时200kbit/s的GOLD1波形观察Gold序列的自相关和互相关特性用示波器测“TX3”处波形,该波形即为Gold序列的GOLD序列的自相关特性用示波器测“TX3”处波形,该波形即为Gold序列的互相关特性。

GOLD序列的互相关特性1、顺时针将“跟踪”电位器旋到底,用示波器测“VCO-C”处波形,该波形即为延迟锁相环的鉴相特性曲线。

2、用示波器双踪分别观察“G1-BS”和“G3-BS”处的波形,调节“跟踪”旋钮,直到二个波形完全一致,没有相差为止。

此时表明接收机的Gold序列和发射机的Gold序列在相位与码速率上都一致。

3、用示波器双踪分别观察“GOLD1”和“GD-TX”处的波形,二者的波形应完全一致。

说明:由于本系统的Gold序列频率较高,且周期很长,模拟双踪示波器应在“断续(CHOP)”模式下比较“GOLD1”和“GD-TX”处的波形,如果在“交替(ALT)”模式下即使两者输出波形一致,观察结果也可能不一致。

数字示波器则不存在该问题。

实验三扩频与解扩实验①将“SIGN1置位”设置成不为全0或全1的码字,设置“GOLD1置位”。

用示波器分别观察“SIGN1”和“S1-KP”的波形,并做对比。

信码速率为1kbit/s、扩频码速率为100kbit/s时“SIGN1”和“S1-KP”处波形②(选做)用带FFT功能的数字示波器分别观察“SIGN1”和“S1-KP”的频谱,并做对比。

③分别改变发射机的信码速率和扩频码速率,重复上一步骤。

5、(选做)观察扩频前后PSK调制频谱的实验①码字设置不变,将“扩频”开关拨下,用频谱仪观察“PSK1”的频谱。

Gold系列码性能分析

Gold系列码性能分析
3) 游程特性. m 序列中长度为 1 的游程约占游 程总数的 1 /2, 长度为 2 的游程约占游程总数的 1 / 22 ,长度为 3的游程约占游程总数的 1 /23 …
4) 线形叠加性. 某个 m 序列与相移为任意值 的同一 m 序列的模 2和是另一相移的 m 序列. 只是 相移不同而已. 用公式表示为
i =0
寄存器不参加反馈 , ai = 1 则表示参加反馈. 将各级 系数 ai 的取值用一个二进制数组 C 表示 ,顺序从高 级 (末级 )到低级 (第一级 ).
改变线性反馈移位寄存器的反馈逻辑可以得
到不同的码序列 , 且不同码序列的周期不完全相 同. 对 n级网络 ,其可产生的码序列周期最大长度 为 2n - 1, 称这样的序列为最大长度序列. 同一个 线性反馈移位寄存器网络的输出序列还与各寄存
关键词 :扩频通信 ; Gold序列码 ; 仿真 中图分类号 : TN914. 42 文献标识码 : A 文章编号 : 1007- 2683 (2007) 04- 0029- 04
Re sea rch on Cha rac te r of Go ld Sequence Code s
HUAN G Cheng2ca i, WAN G M u2kun
a bT i的不同序列共有 2n - 1 个 , 再加上 a 和 b两
个序列 ,则共有 2n + 1 个序列 , 构成一个 Gold序列
族 ,记作 G ( a, b) = { a, b, a b, a bT, …, a bT
2n - 2 } ,表 1 为同极的 m 序列和 Gold 序列个数. 可
见 ,对于同一个 n 来说 , Gold 序列族中序列的个数
在一个 Gold码家族中 , Gold码序列的自相关旁 瓣及任两个码序列之间的互相关值都不超过该家族 中的两个 m 序列的互相关值 ,见表 2. 进行归一化后 发现 , 最大互相关值相等的序列 , n 值大的性能要 好. 如 n = 7和 n = 6的序列最大互相关值都相为 17,归一化后前者为 17 /127,后者为 17 /63,显然 n = 7的互相关特性要好很多 , 同理 , n = 11 比 n = 10 的 性能要好.

GOLD 序列码产生及特性分析实验

GOLD 序列码产生及特性分析实验

实验二 GOLD 序列码产生及特性分析实验一、实验目的1. 了解Gold 码的性质和特点;2. 熟悉Gold 码的产生方法;二、实验内容1. 熟悉Gold 码的的产生方法;2. 测试Gold 码的的波形;三、实验原理m 序列虽然性能优良,但同样长度的m 序列个数不多,且m 序列之间的互相关函数值并不理想(为多值函数)。

1967年,R .Gold 提出和讨论了一种新的序列,即Gold 码序列。

这种序列有较为优良的自相关和互相关特性,构造简单,产生的序列数多,因而得到广泛的应用。

a) m 序列优选对m 序列优选对是指在m 序列集中,其互相关函数最大值的绝对值满足下式的两条n 阶m 序列:表2-1给出了部分m 序列优选对。

表2-1 部分优选对码表 级数 基准本原多项式 配对本原多项式 7 211 217,235,277,325,203,357,301,323 9 1021 1131,133310 2415 2011,3515,317711 4445 4005,5205,5337,52632.Gold 码的产生方法Gold 码是m 序列的组合码,由同步时钟控制的两个码字不同的m 序列优选对逐位模2加得到,其原理如图2-1所示。

这两个码发生器的周期相同,速率也相同,因而两者保持一整除为偶数,但不能被位奇数41212)(2/)2(2/)1(n n R n n xy ⎩⎨⎧++≤++τ定的相位关系,这样产生的组合码与这两个子码序列的周期也相同。

当改变两个m 序列的相对位移时,会得到一个新的Gold 码。

Gold 码虽然是m 序列模2加得到的,但它已不再是m 序列,不过仍具有与m 序列近似的优良特性,各个码组之间的互相关特性与原来两个m 序列之间的互相关特性一样,最大的互相关值不会超过原来两个m 序列间最大互相关值。

Gold 码最大的优点是具有比m 序列多得多的独立码组。

图2-1 Gold 码序列发生器Gold 码序列具有以下性质:(1)两个m 序列优选对经不同移位相加产生的新序列都是Gold 序列,两个n 级移位寄存器可以产生2n +1个Gold 序列,周期均为2n -1。

移动通信实验调制与解调实验

移动通信实验调制与解调实验

实验一:调制与解调实验一、实验目的1、了解QPSK 调制解调的原理及特性。

二、实验器材1、 主控&信号源模块、10号、11号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图QPSK 调制10# 软件无线电调制模块QPSK 调制框图QPSK/OQPSK 解调框图2、实验框图说明QPSK 调制实验框图中,基带信号经过串并变换处理,输出NRZ -I 和NRZ -Q 两路信号;然后分别经过码型变换(将单极性码变成双极性码)处理,形成I -OUT 和Q -out 输出;再分别与10.7M 正交载波相乘后叠加,最后输出QPSK 调制信号。

QPSKQPSK/OQPSK 解调11# 软件无线电解调模块调制可以看作是两路BPSK信号的叠加。

两路BPSK的基带信号分别是原基带信号的奇数位和偶数位,两路BPSK信号的载波频率相同,相位相差90度。

OQPSK与QPSK 相比,是两路BPSK调制基带信号的相位上的区别,QPSK两路基带信号是完全对齐的,OQPSK两路基带信号相差半个时钟周期。

QPSK解调实验框图中,接收信号分别与正交载波进行相乘,再经过低通滤波处理,然后将两路信号进行并串变换和码元判决恢复出原始的基带信号。

其中,解调所用载波是由科斯塔斯环同步电路提取并处理的相干载波。

3、实验原理说明四相相移调制是利用载波的不同相位差来表征输入的数字信息,是四进制相移键控。

QPSK是在M=4时的调相技术,它规定了四种载波相位,分别是A方式的0˚、90˚、180˚、270˚和B方式的45˚、135˚、215˚、315˚,下文中我们主要以B 方式为例进行介绍。

B方式星座图调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八GOLD码特性实验
一、实验目的
1、掌握GOLD码的编解码原理。

2、掌握GOLD码的软件仿真方法。

3、掌握GOLD码的硬件仿真方法。

4、掌握GOLD码的硬件设计方法。

二、预习要求
1、掌握GOLD码的编解码原理和方法。

2、熟悉matlab的应用和仿真方法。

3、熟悉Quatus的应用和FPGA的开发方法。

三、实验原理
1、GOLD序列简介
GOLD序列是由m序列的“优选对”构成的。

所谓优选对是指m序列中互相关值为[-1,-t(n),t(n)-2]的一对序列。

其中
下表为部分m序列的部分优选对
表1 部分m序列的部分优选对
n基序序列配对序列
31315
54575,67,76
6103147,133
7211217,235,277,203,301
910211131,1461,1423,1167,1333,1365,1533 1020112415,2157,3515,3471
1140054445,4215,6015,4143,4053,7335,5747,
5575,4161
上表中的m序列采用8进制(可参见PN码实验)。

2、GOLD序列由m序列中的优选对{xi}和{yi}本身加上它们的相对移位模二相加构成的2n-1个序列组成,序列总数为2n+1。

任一队序列之间的互相关函数都是三值的,即
即,GOLD序列的最大互相关值为
下表为GOLD序列的t(n)值及其与自相关峰值Rs(0)的比值,同时给出GOLD序列族中的序列数。

表为部分GOLD序列的t(n)值、Rs(0)、序列数表
级数n356791011
序列长7316312751110232047
序列数9336512951310252049
t(n)591717336565
t(n)/Rs(0)0.710.290.270.130.060.060.03
四、GOLD的产生及特性分析
1、建立GOLD的仿真文件(GOLD.MDL)
GOLD1…GOLD7的Sample Time均设置为SampleTime;Preferred polynomial(1)设置为[1 0 1 1];Initial states(1)设置为[0 0 1]; Preferred polynomial(2)设置为[1 1 0 1];Initial states(2)设置为[0 0
1]。

GOLD1…GOLD7的Sequence index分别设置为0到6。

2、建立主程序文件
SampleTime=1/8;
Index=0;
sim('goldsim');
len=length(gold1);
N=7;
N_sample=64;
gt=ones(1,N_sample); %每码元对应的载波信号
gold1=gold1' %输出GOLD码1
goldtemp1=sigexpand(gold1,N_sample); %码元扩展
goldx1=conv(goldtemp1,gt); %码元成形
gold2=gold2' %输出GOLD码2
goldtemp2=sigexpand(gold2,N_sample); %码元扩展
goldx2=conv(goldtemp2,gt); %码元成形
gold3=gold3' %输出GOLD码3
goldtemp3=sigexpand(gold3,N_sample); %码元扩展goldx3=conv(goldtemp3,gt); %码元成形
gold4=gold4' %输出GOLD码4 goldtemp4=sigexpand(gold4,N_sample); %码元扩展goldx4=conv(goldtemp4,gt); %码元成形
gold5=gold5' %输出GOLD码5 goldtemp5=sigexpand(gold5,N_sample); %码元扩展goldx5=conv(goldtemp5,gt); %码元成形
gold6=gold6' %输出GOLD码6 goldtemp6=sigexpand(gold6,N_sample); %码元扩展goldx6=conv(goldtemp6,gt); %码元成形
gold7=gold7' %输出GOLD码7 goldtemp7=sigexpand(gold7,N_sample); %码元扩展goldx7=conv(goldtemp7,gt); %码元成形sgold1=conv(1-2*gold1,1-2*gold1(N:-1:1))/N;
sgold2=conv(1-2*gold2,1-2*gold2(N:-1:1))/N;
dgold=conv(1-2*gold1,1-2*gold2(N:-1:1))/N;
t=0:1/N_sample:len-1/N_sample;
figure(1)
subplot(5,2,1);
plot(t,goldx1(1:length(t)));
axis([0 61 -0.5 1.5]);
title('GOLD1波形');
……
subplot(5,2,10);
stem(1:61,dgold(15:75));
axis([0 61 -1.5 1.5]);
title('GOLD1和GOLD2互相关波形');
3、仿真输出结果
五、GOLD码输出的硬件设计
1、设计思想
下图是用并联方式产生Gold序列的一个特例,其中用了两个n=3的m 序列产生器,反馈系数分别为13和15,转换成二进制数值并与移位寄存器的级数相对应,得
C3 C2 C1 C0
13 1 0 1 1
15 1 1 0 1
由此可以决定两个m序列产生器的反馈连接如下图所示。

为了得到m序列1和m序列2的相对位移,我们用一个状态置位器实现。

图 产生Gold 序列的并联结构
2、GOLD
的生成设计
其中G_clk 为全局时钟;En 为使能信号,“1“置位,”0“工作。

Goldout1…Goldout7输出gold
码。

六、实验操作说明
开关置ON 表明输入0,OFF 表明输入1;LED 亮表明输出1,暗表明输出0。

1、编码方式选择
SW201-5,SW201-4, SW201-
3,SW201-2,SW201-1
J205的输出波形00000
PN1301000PN15
00010GOLD1
01010GOLD2
10010GOLD3
11010GOLD4
00011GOLD5
01011GOLD6
10011GOLD7
00100WALSH0
01100WALSH1
10100WALSH2
11100WALSH3
00101WALSH4
01101WALSH5
10101WALSH6
11101WALSH7
2、SW201-7为使能信号,需要先置”1”对扩频和多址码的产生初始化,然后置”0”输出pn序列。

七、实验内容
1、用matalab中的simulink对生成多项式为13和15的GOLD码进行软件仿真,绘制它们的波形图、自相关特性图和互相关特性图;
2、分别对WCDMA系统中使用的GOLD码进行软件仿真,绘制它们的波形图、自相关特性图和互相关特性图;
3、在Quatus中分别对生成多项式为13和15的GOLD码进行仿真,分析GOLD码的特性;
4、SW201-7为使能信号,需要先置”1”对扩频和多址码的产生初始化,然后置”0”输出gold序列;
5、SW201-5, SW201-4,SW201-3, SW201-2, SW201-1分别设置为00010,01010,10010,11010,00011,01011,10011测量并记录TP205的gold码输出;
6、观察、记录输出gold序列的波形,观察并记录这组gold序列的均衡性和相关特性。

八、实验仪表
1、电脑一台(装有matlab和quatus软件);
2、ByteblasterII下载设备;
3、移动通信原理实验系统;
4、60M双踪示波器。

5、数字万用表。

九、思考题
设计WCDMA系统中使用的GOLD码,并且自己通过实验箱的JTAG 模式下载调试验证。

并分析它们的相关特性、游程特性及均衡特性。

十、实验报告要求
1、整理数据,画出实验内容中要求的各种波形;
2、实验报告中完成思考题。

相关文档
最新文档