三位半数字电压表

合集下载

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim
【设计背景及意义】
随着科技的不断发展,数字电压表在各个领域的应用越来越广泛。

三位半数字电压表作为一种常见的测量仪器,具有高精度、高稳定性、易于操作等优点。

本文将介绍如何使用Multisim软件设计一款三位半数字直流电压表,以满足实际应用需求。

【设计原理】
三位半数字直流电压表的设计主要依据以下原理:
1.采用分压式电路实现电压测量;
2.利用模数转换器将模拟信号转换为数字信号;
3.通过数字显示电路将数字信号转换为直观的电压值。

【设计步骤】
1.打开Multisim软件,新建一个项目;
2.添加所需元器件,包括电阻、电容、二极管、晶体管、运算放大器等;
3.连接电路,构建分压式电压测量电路、模数转换电路和数字显示电路;
4.设置元器件参数,如电阻值、电容值等;
5.添加电源和信号源,设置电压值;
6.配置仿真参数,进行仿真实验;
7.分析仿真结果,优化电路设计。

【仿真结果及分析】
经过多次仿真实验,得到以下结果:
1.电压测量范围:0~100V;
2.电压测量精度:0.5%;
3.数字显示:三位半液晶显示屏;
4.响应速度:≤1秒。

通过分析仿真结果,可以看出设计的三位半数字直流电压表具备较高的精度和响应速度,能够满足大部分实际应用场景的需求。

【总结与展望】
本文通过Multisim软件设计了一款三位半数字直流电压表,详细介绍了设计原理、步骤及仿真结果。

在今后的工作中,可以进一步优化电路设计,提高电压表的性能,如降低功耗、扩大测量范围等。

三位半数字电压表课程设计报告

三位半数字电压表课程设计报告
当然,由于具体结构的不同,功能的强弱不同,每种表还有其各自复杂程度不同的特殊附加电路。根据小组讨论,制定了三种方案并选出最优,方案如下。
四、总体方案选择
方案一:采用MC14433,它是一个三位半A/D转换器且能进行实时数字显示;该系统可采用MC14433—三位半A/D转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。其原理框图如下图4.1
Q3表示千位,Q3=‘0’代表千位数的数字显示为1,Q3=‘1’代表千位数的数字显示为0即最高位消隐,可以认为是最高位因出现无效零而自动消隐;
Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即VX>0,Q2的电平为0,表示极性为负,即VX<0。显示数的负号由MC1413中的一只晶体管控制,符号位的‘—’阴极与千位数阴极接在一起,通过限流电阻RM使显示器的‘—’(即g段)点亮;当输入VX为正电压时,Q2输出为‘1’,符号控制位使达林顿驱动器导通,电阻RM接地,使‘—’旁路而熄灭。
MC14433基准电压UREF由外电路提供,即由RP电位器提供200mv或2v的基准电压。
MC1413用四个NPN管代替,它有两个作用:一是将位选输出的正方波反相变为负方波以便选入到LED的共阴极;二是增加驱动能力。
MC1403为一能隙基准电压源,通过RP可调节基准电压的大小。
整个电路的基本工作过程如下:
3:要求电路能进行交直流测量。
4:将设计方案进行比较与总体设计。
5:选出最优方案进行详细设计。
6:根据设计过程写出详细的课程设计报告。
7:总结心得体会完成课程设计任务。
8:按时交上课程设计报告。
三、数字电压表基本原理

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim三位半数字直流电压表是一种常用的测试仪器,用于测量直流电路中的电压值。

它具有简单易用、精度高、测量范围广等特点,被广泛应用于电子工程、电力工程、通信工程等领域。

在设计multisim 电路仿真软件时,三位半数字直流电压表也是必不可少的组成部分。

我们需要了解三位半数字直流电压表的原理。

它采用了数字显示技术,将测量到的电压值以数字形式显示在屏幕上。

一般情况下,三位半数字直流电压表的显示范围为0-1999,即可以显示0.000V-1.999V之间的电压值。

它通过测量电路中的电压,将模拟信号转换为数字信号,并通过显示器显示出来。

在multisim中设计三位半数字直流电压表,首先需要选择合适的元件进行连接。

常见的元件有电阻、电容、二极管等。

在连接电路时,需要注意保证电路的稳定性和准确性。

电路的稳定性可以通过合理选择元件值来实现,而准确性则需要根据实际需求来确定。

在连接电路之后,我们需要设置multisim的参数。

首先是设置电源电压,这是为了模拟实际电路中的电源情况,保证电路能够正常工作。

其次是设置测量范围,根据需要选择合适的范围。

最后是设置显示方式,可以选择数码管显示或液晶显示等方式。

完成电路的连接和参数设置后,我们可以进行仿真实验。

在multisim中,可以设置不同的输入电压值,观察三位半数字直流电压表的显示结果。

通过对比实际测量值和显示值,可以评估电路的准确性和稳定性。

除了基本的测量功能,三位半数字直流电压表还可以具备其他功能,如自动量程切换、峰值保持等。

这些功能可以通过添加适当的电路元件和控制电路来实现。

在multisim中,可以根据需要进行扩展和改进,使三位半数字直流电压表具备更多的功能和应用。

设计multisim电路仿真软件时,三位半数字直流电压表是一个不可或缺的元件。

它能够对直流电路中的电压进行准确测量,并以数字形式显示出来。

通过合理连接电路和设置参数,我们可以在multisim中模拟实际的测量过程,并评估电路的性能。

数字电路3位半直流数字电压表

数字电路3位半直流数字电压表

一、课题名称:3½直流数字电压表二、内容摘要:数字电压表是常用的测量仪表之一,与同级别的指针式电压表相比较,使用方便,测量更准确,因此广泛使用。

它由模拟电路和数字电路两部分组成,模拟部分包括转换式输入放大器、基准电压源和A/D转换电路。

数字部分包括计数器、译码驱动显示及逻辑控制。

3½直流数字电压表具有以下7大特点:(1)显示清晰直观,读数准确(2)显示位数本设计中显示的位数为3位(3)高准确度(4)分辨率高(5)测量速率快(6)输入阻抗高(7)集成度高微功耗新型数字电压表采用CMOS 集成电路,整机功耗很低。

三、设计内容及设计要求:1. 了解双积分式A / D转换器的工作原理2. 熟悉位A / D转换器MC14433的性能及其引脚功能3. 掌握用MC14433构成直流数字电压表的方法4. 设计一个具有三位的十进制数字显示电压表四、试验器件清单:1.MC1403基准电源(1个)2.MC14433A/D转换器(1个)3.CD4511译码驱动(1个)4.LED共阴极数码管(4个)5.MC1413(ULN2003)(1个)6.电阻:10K(3个)1K(2个)47K(2个)3K(1个)470K(2个)100Ω(10个)10K的滑动变阻器(2个)7.电容:0.01µF(1个)0.1µF(3个)8.排针若干 9.覆铜板(2个) 10.导线若干 11.电池盒(2个)五、设计的系统方案:根据数字电路课程设计要求,在指定时间内系统的完成电路的设计、组装以及调试。

一、选题,根据数字电路技术基础课本大纲的要求,在网上搜集课题,筛选出能够体现和运用数字电路基本知识点的选题,确定设计方向。

二、根据选题进行思考,找出选题涉及的知识点,根据工作原理和相关专业知识,做到理解透彻,理清设计思路。

三、系统的对选题进行有层次的设计,画出初始电路图,再进一步的改进。

四、根据电路图连线、调试,使电路完成预期的设计要求和功能,并使电路达到最好的运行状态。

三位半LED数码显示电压表的原理分析

三位半LED数码显示电压表的原理分析

流过时&通有电流的偏转线圈在磁场中受力并带动指 考电压)独立模拟开关)逻辑控制)显示驱动)自动调零
针而发生偏转&当与弹簧反作用力矩平衡时&便获得读 功能等为一体的集成电路&其各脚功能如图 ! 所示*
数* 因此传统的磁电式表头在发射机的使用中&读数
-/*发光数码管采用共阳型管&在每个显示电路
受静电和外界电磁场的影响较大以及灵敏度较低)误 中&选用了 2 块分离的 8 段同型号 -/*发光数码管进
指标*
技术发展的必然趋势*
随着广播电视技术的发展& 数字技术逐步进入广 =:工作原理
播电视领域&在发射机上越来越多地应用 -/*数码显
三位半 -/*数码显示电压表是由一块 '%-6#"6
示表头显示其运行指标&取代了传统的磁电式表头作 集成电路和 2 块 -/*数码管以及少量外围元件组成&
发射机的指标显示*
! 中国有线电视"!"###"$下$ %&'()*'+',)-%).-/,0
中图分类号,(1283Y55文献标识码.55文章编号#""6 76"!!#!"##$"$ 下 7"2#8 7"!
%经验点滴%
三位半 (+"数码显示 电压表的原理分析
!廖光源罗正明
贵州省广播电影电视局七九四台贵州 六枝特区 YY$2""贵州省广播电影电视局七六一台贵州 贵阳 YY"""!
地板之间铺设隔离垫*
#6$ 使用过程中要特别防止活动地板的防静电喷

三位半真有效值数字式面板表

三位半真有效值数字式面板表

三位半真有效值数字式面板表MB3000TMS 数字型面板表是MB3000型系列中的一个品种,用以测量交直流电压、电流的真有效值。

仪表采用了先进的大规模集成电路(LSI ),线路设计非常精密,准确度高。

其外型采用德国(DIN )标准,特制滤色片,全封闭外壳,精彩典雅。

本仪表非常适用于做科学研究,精确测量,各种精密数字式仪器显示之用。

技术规格:1、 测量量程:AC 19.99mA2、 测量准确度:0.5%±3 字3、 亮度:高亮度15mm(LED)绿色、兰色或红色4、 测量频度覆盖范围:50Hz ~10KHz5、 转换速率:2.5次/秒6、 超量程指示:最左位数字显示(1)7、 工作温度范围:0℃~40℃,相对湿度:RH45%~75% 8、 波形:适应各种波形 9、 供电电源:AC220V,30mA10、外型尺寸:宽96mm ×高48mm ×深77mm安装开孔尺寸11、供电输入接线图使用注意事项A .应避免强大的电磁场干扰,测量导线应使用屏蔽线或绞线。

B .防止剧烈的震动和冲击。

C .使用中定期检定,检定时如要降低面板表的基本误差,只要将电压表的面盖卸下,用小镙丝刀缓慢转动电位器,使表头的读数符合标准值即可。

D .必须先加电源后加信号和先断开信号后断电源的顺序进行操作。

简单故障检查A .数字管不发光,则应检查:电源端口电压是否正常。

B .数字不稳定则应检查:Ⅰ.附近有没有强大的电磁干扰信号。

Ⅱ.供电电源是否稳定。

C .显示数字只有千位的1,其他位的数字不亮.Ⅰ.表示输入信号超过满量程。

Ⅱ.输入信号是否开路。

注 .本仪表校准周期为一年,校准方法,打开前面板,输入本仪表满度信号,调整数码管左边电位器,使表的显示值为1999即可。

AC220V 供电电源(陕制)01000188号陕西协力光电仪器有限公司地址:西安市东开发区新科路2号网址:邮编:710043 TEL:(029)84023639,84023638,82623950 FAX:(029)82623951MB3000TMS系列数字式面板表说明书DIGITAL PANEL METERS通过ISO9001认证XIELI enterpriseXIAN CHINA®。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim(最新版)目录1.引言2.三位半数字直流电压表的原理3.multisim 软件的使用4.设计过程5.测试结果6.结论正文1.引言数字电压表是一种常用的电子测量仪器,可以测量直流电压、交流电压、脉冲电压等。

随着科技的发展,数字电压表的设计和制造技术也在不断提高,使得数字电压表的性能和精度得到了极大的提升。

在本文中,我们将介绍一种三位半数字直流电压表的设计方法,该方法使用了multisim 软件进行仿真和设计。

2.三位半数字直流电压表的原理数字电压表的原理是基于模拟电压表和模数转换器的。

模拟电压表可以测量连续变化的模拟电压信号,而模数转换器则可以将模拟电压信号转换为数字电压信号。

数字电压表通常由一个模数转换器和一个数字显示器组成,模数转换器将模拟电压信号转换为数字电压信号,数字显示器则将数字电压信号显示出来。

三位半数字直流电压表是一种精度较高的数字电压表,它可以测量最大电压为±1.5V 的直流电压信号。

它的设计原理是基于三个半电池的电路,通过调整三个半电池的电压来实现对直流电压信号的测量。

3.multisim 软件的使用multisim 软件是一种电子电路仿真软件,它可以用来设计和仿真各种电子电路,包括放大器、滤波器、振荡器等。

在本文中,我们将使用multisim 软件来设计和仿真三位半数字直流电压表。

首先,我们需要在 multisim 软件中创建一个新的项目,然后添加所需的元器件,包括电源、电阻、电容、二极管、三极管等。

接下来,我们需要绘制电路图,并进行电路仿真。

在仿真过程中,我们可以通过观察电路的波形和参数来调整电路的性能和精度。

4.设计过程在设计三位半数字直流电压表时,我们需要考虑以下几个方面:首先,我们需要选择合适的元器件,包括模数转换器、电源、电阻、电容等。

这些元器件的选取应根据电路的性能要求和成本考虑。

其次,我们需要设计电路的拓扑结构,包括放大器、滤波器、模数转换器等。

三位半数字万用表

三位半数字万用表

第一章系统概述1.1 课程设计的目的与要求课程设计的主要目的,是通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、完成的工作内容和具体的设计方法。

通过设计也有助于复习、巩固以往的学习模电、数电内容,达到灵活应用的目的。

在设计完成后,还要将设计的电路进行安装、调试以加强学生的动手能力。

在此过程中培养从事设计工作的整体观念。

课程设计应强调以能力培养为主,在独立完成设计任务同时注意多方面能力的培养与提高,主要包括以下方面:1、独立工作能力和创造力。

2、综合运用专业及基础知识,解决实际工程技术问题的能力。

3、查阅图书资料、产品手册和各种工具书的能力。

4、熟悉常用电子仪器操作使用和测试方法。

5、工程绘图能力。

6、写技术报告和编制技术资料的能力。

题目:设计3 1/2数字万用表具体要求:(一)根据题目,利用所学知识,通过上网或到图书馆查阅资料,设计实现数字万用表的方案,须采用中小规模集成电路、MC14433A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数。

(二)技术指标:1、测量直流电压1999-0001V;199.9-0.1V;19.99-0.01V;1.999-0.001V;测量交流电压1999-199V。

2、交、直流电流;3、电阻、电容;4、三位半数字显示。

1.2 方案设计与论证方案一:根据系统功能实现要求,决定控制系统采用AVR单片机,A/D转换采用其内置的10位AD、四个共阴极LED数码管。

系统除能确保实现要求的功能外,还可以方便地进行数据通讯上传,存储等扩展功能。

图1.1单片机原理图方案二:采用双积分A/D转换器MC14433,七段译码驱动器CD4511,基准电源MC1403。

图1.2MC14433原理框图方案三:由ICL7106构成的3 1/2为数字万用表原理:该系统采用ICL7106、四个共阴极LED数码管,ICL7106内部包括模拟电路(即双积分A/D转换器)、数字电路两大部分。

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表使用说明书CJ5135系列数显直流电压电流表具有精度高,稳定性好,抗干扰性能优越,显示清晰,工艺精良。

产品外观大方,小巧精致美观,品质优良。

产品特点:产品应用:CJ5135系列数显直流电压电流表,可广泛应用于各种仪器仪表,教学设备,电力电子,工业自动化控制设备,医疗器械,交直流稳压电源,教学设备等作为直流电参数显示部件,提升产品档次,为各类指针式仪表的首选更新换代品。

主要技术参数:(执行标准GB/14913-2002)1. 工作电源:DC 5V±5%单电源 或DC:9V 12V 24V,AC220V可定做2. 工作电流:≤50mA3. 基本量程:±199.9mV或±1.999V4. 输入阻抗:≥1MΩ5. 准确度:±(0.2%读数+2个字)6. 过量程显示:第一位显示"1"或"-1",后三位全不显示7. 工作温度:0-50℃8. 工作湿度:≤85%RH9. 显示字高:LED 0.56"10.外型尺寸:79×42×25(40)(mm)11.开孔尺寸:75×39(mm)12.其他性能:自动归零,自动极性转换.产品连接线说明:仪表接线及开孔尺寸如图所示:CJ5135系列接线图外形及安装尺寸以上接线图仅供参考,请以仪表壳体上的接线图为准温馨提示:本公司其它产品有:液晶显示的温度计,电压/电流面板表,数字调节仪,温控表,智能计数器,时间继电器,频率转速表,JD194系列电量变送器,CD194系列电力仪表,多功能电量测量仪表,DCDC电源模块,公司可根据客户要求定制非标产品.注意事项:1.仪表输入方式根据用户电路不同可分为两种,a:信号地、电源地、模拟地,如三地全部连接在一起就是“共地”,此种情况适用于采用独立工作电源的设备,稳定性好,抗干扰能力强;b:信号地独立,电源地和模拟地相连接,我们称为“浮地”,此情况适用于独立电源、差动放大信号输入设备;用户应根据实际用情况选择合适的输入方式。

最新三位半数字电压表

最新三位半数字电压表

三位半数字电压表四、设计原理及电路图(1)数字电压表原理框图如下:方案1的原理框图如图a所示;方案2的原理框图如图b所示;方案3的原理框图如图c所示。

图a图b图c鉴于选用方案一,由数字电压表原理框图可知,数字电压表由五个模块构成,分别是基准电压模块, 3 1/2位A/D电路模块,字形译码驱动电路模块,显示电路模块,字位驱动电路模块.各个模块设计如下:量程转换模块采用多量程选择的分压电阻网络,可设计四个分压电阻大小分别为900K Ω,90KΩ,9KΩ和1KΩ。

用无触点模拟开关实现量程的切换。

基准电压模块这个模块由MC1403和电位器构成, 提供精密电压,供A/D 转换器作参考电压.3 1/2位A/D电路模块Output直流数字电压表的核心器件是一个间接型A / D转换器,这个模块由MC14433和积分元件构成,将输入的模拟信号转换成数字信号。

字形译码驱动电路模块这个模块由MC4511构成 ,将二—十进制(BCD)码转换成七段信号。

显示电路模块这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

(2)实验芯片简介:数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。

该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。

本系统是三位半数字电压表,三位半是指十进制数0000~1999。

所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。

各部分的功能如下:三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。

译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

三位半数字直流电压表的设计

三位半数字直流电压表的设计

三位半数字直流电压表的设计(总14页)-本页仅作为预览文档封面,使用时请删除本页-钦州学院数字电子技术课程设计报告三位半数字直流电压表的设计院系物理学院专业过程控制自动化学生班级 2010级1班姓名 xxxx学号 xxxx指导教师单位 xxxxx指导教师姓名 xxxx指导教师职称 xxxx2013年7月三位半数字直流电压表过程控制自动化专业2010级 xxx指导教师 xxx摘要:根据设计的指标和要求,结合平时所学的理论知识,设计出一个功能较齐全的数字直流电压表。

关键词:电压表、电路、设计、A/D转换器目录前言 (1)1设计技术指标与要求 (1)设计技术指标 (1)设计要求 (1)2 方案的设计及元器件清单 (1)3 电路的工作原理 (2)4 各部分的功能 (3)三位半位双积分A / D 转换器CC14433 的性能特点 (3)基准电源(CC1403) (3)译码器(MC4511) (4)显示电路模块 (5)驱动器 (5)显示器 (5)5系统电路总图及原理 (5)电路组成 (5)电路的工作原理及过程 (6)三位半A/D转换器MC14433 (7)七段锁存-译码-驱动器CD4511 (8)高精度低漂移能隙基准电源MC1403 (9)6电路连接测试 (9)7经验体会 (10)参考文献 (10)前言数字电压表(Digital Voltmeter),简称DVM,是采用数字化测量技术,把连续的模拟信号转换成不连续、离散的数字形式并加以显示的仪表。

数字电压表的类型很多,其输入电路、设计电路和显示电路基本相似,只是电压—数字转换方法不同。

因此,我们此次设计电压表就是为了了解电压表的原理,从而学会制作电压表。

而且通过电压表的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。

1 设计技术指标与要求设计技术指标1. 量程:一档:+~0~-二档: +~0~-2. 用七段LED数码管显示读数,做到显示稳定、不跳变;3. 保持/测量开关:能保持某一时刻的读数;4. 指示值与标准电压表示值误差最低位在5之内。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim【实用版】目录1.引言2.三位半数字直流电压表的原理3.Multisim 软件的使用4.电路设计与仿真5.结论正文1.引言在现代电子技术中,数字电压表已经成为了实验室和工程领域中必不可少的测量工具。

数字电压表相较于传统的模拟电压表,具有更高的精度、更小的体积和更方便的操作方式。

本文将介绍如何使用 Multisim 软件设计一款三位半数字直流电压表。

2.三位半数字直流电压表的原理数字电压表的原理是将连续的模拟电压量转换成不连续、离散的数字量并加以显示。

数字电压表的精度主要取决于 A/D 转换器的位数,位数越多,精度越高。

三位半数字电压表指的是电压表可以显示到小数点后三位半的精度。

3.Multisim 软件的使用Multisim 是一款电子设计自动化(EDA)软件,可以用于电路仿真、单片机控制等。

在本文中,我们将使用 Multisim 软件进行电路设计和仿真。

4.电路设计与仿真在 Multisim 软件中,我们首先需要绘制电路图,然后进行元器件封装和连接。

对于三位半数字直流电压表,我们需要设计一个 A/D 转换器、一个数字显示器和一些控制电路。

在设计过程中,我们需要选择合适的元器件和电路拓扑,以满足电压表的精度和稳定性要求。

接下来,我们需要对电路进行仿真。

在 Multisim 软件中,我们可以添加虚拟仪器,如电压源、电流源、示波器等,来模拟实际电路中的信号波形和电压值。

通过观察仿真结果,我们可以检验电路设计的正确性和有效性。

5.结论通过使用 Multisim 软件,我们可以方便地设计并仿真三位半数字直流电压表。

在设计过程中,我们需要注意选择合适的元器件和电路拓扑,以满足电压表的精度和稳定性要求。

LU-DP3三位半数字电压、电流、欧姆表

LU-DP3三位半数字电压、电流、欧姆表

量程
200mA 2A 20A 50A 100A 500A 1000A
分辨力
0.1mA 1mA 10mA 100mA 100mA 1A 1A
互感器变比
直接输入 直接输入 20A/5A 50A/5A 100A/5A 500A/5A 1000A/5A
3.直流数字电压表(直接输入)
型号
DP3DV-□0.2V DP3DV-□2V DP3DV-□20V DP3DV-□200V DP3DV-□500V
量程
200mV 2V 20V 200V 500V
-1-
分辨力
0.1mV 1mV 10mV 100mV 1V
4.直流数字电流表
型号
DP3DA-□0.0002A DP3DA-□0.02A DP3DA-□0.2A DP3DA-□2A DP3DA-□20A DP3DA-□50A DP3DA-□100A DP3DA-□200A DP3DA-□500A DP3DA-□1000A
注:5、6 端子及 7、8 端子表内已短接。 六、仪表对应跳块 S1-1、S1-2、S1-3、S1-4 (输入为交流电压时同时选择对应跳块 S2-1、S2-2、S2-3、S2-4)
短接时,已调量程有: 200A 150A 100A 50A
-3-
-2-
W4 为最小量程,仪表的所有电位器在出厂前均已调试完毕,无需再调。
从附图一可看到二组跳线 S1 及 S2,作用是切换量程,S1-1、S2-1 为最大量程,S1-4、S2-4 为最小量
程 ;输入为交流电流时,只需选择 S1;输入为交流电压时,S1 及 S2 要同时选择。举例如下:
例一:LU-DP3AA:150A、100A、50A、30A 四量程切换;
5.欧姆表

DP3说明书V1.1版

DP3说明书V1.1版

5.欧姆表
型号
DP3R-□0.02KΩ DP3R-□0.2 KΩ DP3R-□2 KΩ DP3R-□20 KΩ DP3R-□50 KΩ DP3R-□100 KΩ DP3R-□1000 KΩ
量程
20Ω 200Ω 2KΩ 20KΩ 50KΩ 100KΩ 1000KΩ
分辨力
0.01Ω 0.1Ω 1Ω 10Ω 10Ω 100Ω 1KΩ
量程
200mA 2A 20A 50A 100A 500A 1000A
分辨力
0.1mA 1mA 10mA 100mA 100mA 1A 1A
互感器变比 直接输入 直接输入 20A/5A 50A/5A 100A/5A 500A/5A 1000A/5A
3.直流数字电压表(直接输入)
型号
DP3DV-□0.2V DP3DV-□2V DP3DV-□20V DP3DV-□200V DP3DV-□500V
三、LU-DP3 仪表量程切换说明
1、LU-DP3 系列多量程仪表其量程最多四个,普通 DP3AA 其四个量程为 200A、150A、100A、50A;DP3AV、 DP3DV、DP3R 及 DP3DA 只有单一量程,如有特殊量程需要请注明。
附图一 DP3 主板实物图 2、LU-DP3 主板的实物图如附图一所示,其中电位器 W6 用来调节芯片的基准电压,调节该电位器将影响到 所有量程的测量,在使用中禁止调节该电位器。W1、W2、W3、W4 分别用来调节四个量程,W1 为最大量程,
测量参数
AV:交流电压(无量程切换) AA:交流电流 DV:直流电压(无量程切换) DA:直流电流(无量程切换) R: 欧姆 (无量程切换) 外形尺寸代号(宽×高)
C:96×48 F:72×72 G:48×48 量程代号:(单位分别为 V、A、KΩ)

三位半直流数字电压电流表

三位半直流数字电压电流表

安徽机电职业技术学院课题设计三位半直流数字电压电流表系别电气工程系专业应用电子班级电子3102姓名孙保成学号13011030552012~ 2013学年第一学期指导教师评语等级签名日期摘要随着科学技术的发展,数字电压、电流表的种类越来越多,功能越来越丰富,当然应用的领域也越来越广泛,给人们的工作和生活带来许多方便。

本文主要介绍的是基于ICL7107数字电压、电流表的设计的设计,ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器位驱动器于一体的大规模集成电路,ICL7107是目前广泛应用于数字测量系统的一种31/2位A/D转换器,能够直接驱动共阳极数字显示器,够成数字电压表,外接电阻即可构成数字电流表,此电路简洁完整,稍加改造就可以够成其他电路,如数字电子秤、数字温度计的等专门传感器的测量工具。

ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器、位驱动器于一体的大规模集成电路,主要用于对不同电压的测量和许多工程上的应用,调频接口电路,它采用的是双积分原理完成A/D 转换,全部转换电路用CMOS大规模集成电路设计。

应用了ICL7107芯片数码管显示器等,芯片第一脚是供电,正确电压时DC5V,连接好电源把所需要测量的物品连接在表的两个端口,从而可以在显示器上看到所需要的结果。

在软件设计上,主要编写了实现计数频率的调节和单片机功能的相关程序,最后把软件设计和硬件设计结合到一起,然后进行调试。

本文阐述了硬件设计中具体的硬件结构和功能和软件设计中具体写入的程序还有相应的调试过程。

关键词:ICL7107芯片、数字电压表、数字电流表、小数点的自动切换目录摘要 (3)第一章三位半数字电压表的设计方案 (7)1.1 题目及设计目的 (7)1.2 设计要求 (7)1.3 方案设计 (7)1.4 三位半数字电压表的设计思想 (7)1.5 三位半数字电压表的总原理图及其特点 (8)1.5.1 三位半数字电压表的特点 (8)1.6 ICL7107的介绍 (9)1.6.1 引脚的介绍 (9)1.6.2 ICL7107的性能特点 (11)1.7 电路的基本结构及系统图 (12)1.7.1 基本结构 (12)1.7.2 电路的系统图 (13)第二章数字电压电流表中小数点的自动切换 (14)2.1切换原理 (14)2.2.电压表原理 (16)2.3.电流表原理 (17)第三章 PCB板的设计 (19)3.1 Protel99 SE软件介绍 (19)3.2 绘制原理图并进行分析 (20)3.3 PCB板的设计 (21)第四章电路板的焊接及电路调试过程 (22)4.1 焊接的注意事项 (22)4.2 焊接的过程 (22)4.3调试前准备工作及电路总体调试 (23)4.3.1调试仪器 (23)4.3.2调试方法 (23)4.3.3 测试结果分析 (23)4.3.4 元器件清单 (23)第五章总结 (26)参考文献 (26)绪论随着社会的发展,电子市场越来越多,电子产品也越来越普遍,一些高科技的产品以代替了一些旧的产品。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim
三位半数字直流电压表是一种常用的电子测量仪器,用于测量直流电路中的电压。

在multisim软件中设计这样一款电压表,可以帮助工程师和电子爱好者更方便地进行电路仿真和测试。

在使用multisim软件进行电路设计时,首先需要选择合适的元件进行搭建电路。

对于三位半数字直流电压表来说,主要包括电压测量部分和显示部分。

电压测量部分需要使用电压分压器来将待测电压转换为适合测量的范围,同时还需要精准的运算放大器来放大信号。

显示部分则需要使用数模转换器将模拟电压转换为数字信号,并通过数码管或LCD显示屏来显示测量结果。

在设计过程中,需要考虑电路的稳定性、精度和抗干扰能力。

通过合理选择元件参数和设计电路结构,可以有效提高电压表的测量精度和稳定性,同时减小干扰对测量结果的影响。

在multisim软件中还可以进行仿真分析,验证设计的电路是否符合预期要求。

通过仿真可以检测电路中的潜在问题,并及时进行调整和优化,以确保电路的正常工作和准确测量。

总的来说,利用multisim软件设计三位半数字直流电压表可以帮助我们更好地理解电路原理,提高电路设计的效率和准确性。

希望通过不断学习和实践,能够更深入地掌握电子技术,为实际工程应用提供更好的支持和服务。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim多位半数字直流电压表是一种能够测量电路中直流电压的仪器。

它一般由数码显示部分和模拟-数字转换部分组成。

在Multisim中,我们可以通过建立电路模型来设计并模拟一个三位半数字直流电压表。

我们需要选择合适的元件来构建电路模型。

在三位半数字直流电压表中,最重要的元件是模数转换器(ADC)和显示部分。

在Multisim 中可以通过搜索栏找到这些元件并将它们添加到工作区。

在电路模型中,我们需要引入一个待测电路的输入信号,并连接到ADC的输入引脚上。

可以选择一种直流电源作为输入信号,并使用电阻来限制电流大小,以防止ADC被烧坏。

同时,需要为ADC提供一个参考电压,该电压与输入电压的量程相关。

ADC会将模拟信号转换为数字信号,并输出给显示部分。

在显示部分,我们可以选择七段数码管来显示数字。

在Multisim中,可以找到七段数码管的元件,并将其添加到工作区。

将ADC的输出和数码管的输入进行连接。

在Multisim中,可以使用导线工具将两者连接起来。

此外,为了显示多个数字,可以选择多个数码管,并通过逻辑电路将它们连接在一起。

在设计电路模型时,需要注意以下几点:1.选择合适的ADC和七段数码管。

ADC的位数决定了电压的精确度,而七段数码管的个数决定了显示的范围。

2.为ADC提供合适的参考电压。

参考电压的选取需要根据待测电路的电压范围来确定。

3.使用合适的电阻来限制输入电流,以保护ADC不受损坏。

4.在连接元件时,要确保正确地连接输入和输出引脚,以便电路正常工作。

完成电路模型的设计后,可以进行仿真。

在Multisim中,可以通过点击“仿真”按钮启动仿真过程。

仿真过程将模拟电路中的信号变化,并将结果显示在数码管上。

通过以上步骤,我们可以在Multisim中设计一个三位半数字直流电压表。

设计完成后,可以通过仿真来测试其在不同电压下的显示情况,以验证电路的正确性和稳定性。

总结起来,使用Multisim来设计一个三位半数字直流电压表需要选择合适的元件,构建电路模型,并进行仿真。

三位半数字电压表

三位半数字电压表

三位半数字电压表
三位半数字电压表是一种电子测量仪器,它能够以数字形式显示电压值。

这种电压表的特点是其显示部分由三位完整显示位和一位半显示位组成,其中最高位(千位)只能是0或1,因此称为半位。

这种设计允许电压表显示从0.0001 V到1999V的电压范围。

在电子和电气工程中,三位半数字电压表是一种常用的工具,用于测量直流电压和交流电压。

它们通常具有较高的精确度和稳定性,而且操作简单,读数方便。

这些电压表通常由模拟电路和数字电路两部分组成:模拟部分负责放大和滤波输入的电压信号,数字部分则负责将模拟信号转换为数字信号,并进行显示。

三位半数字电压表的设计和制造需要考虑到诸如精度、分辨率、响应时间、温度漂移等因素。

为了确保测量结果的准确性,这些电压表通常会采用高质量的电子元件,并且会通过严格的生产和测试流程。

在实际应用中,三位半数字电压表可以用于各种场合,包括实验室研究、工业生产、故障诊断以及教学演示等。

用户可以根据需要选择不同量程的电压表,以满足不同的测量需求。

随着技术的发展,四位半甚至更多位数的数字电压表已
经问世,它们能够提供更高的精度和更宽的测量范围,满足更专业的测量需求。

不过,三位半数字电压表由于其平衡的性能和合理的价格,依然在许多场合保持着其应用价值。

三位半的数字电压表的最大计数容量

三位半的数字电压表的最大计数容量

三位半的数字电压表是一种常见的电子测量仪器,用于测量电路中的电压值。

它的最大计数容量是指它能够显示的最大数字值,通常用数字位数来表示,比如"1999"表示最大计数容量为1999。

在实际测量中,我们经常会碰到一些问题和疑惑,比如它的最大计数容量对测量结果有什么影响?如何选择合适的最大计数容量?本文将围绕这些问题展开讨论。

一、最大计数容量的概念三位半的数字电压表是一种典型的"0.5+3位"的表,它的最大计数容量通常为1999。

这意味着它可以显示的最大数字为1999,即在直流电压测量范围内,最大可以显示的电压为1999V。

当测量值超出了最大计数容量时,电压表通常会显示"1"或"OL",表示超出了测量范围。

最大计数容量是数字电压表的重要参数之一,关系到它的测量范围和精度。

二、最大计数容量对测量结果的影响最大计数容量的大小直接影响到数字电压表的测量范围和分辨率。

通常情况下,最大计数容量越大,测量范围越广,但分辨率越低;最大计数容量越小,测量范围越窄,但分辨率越高。

在实际测量中,我们需要根据被测电压的范围和精度要求来选择合适的最大计数容量。

以测量直流电压为例,如果被测电压范围在0-10V之间,选择最大计数容量为1999的数字电压表就可以满足测量要求;如果被测电压范围在0-100V之间,就需要选择最大计数容量更大的数字电压表,比如6000或xxx。

这是因为如果选择了最大计数容量过小的电压表,就无法正常测量超出范围的电压值,影响测量的准确性和可靠性。

三、如何选择合适的最大计数容量在选择数字电压表时,要根据具体的测量需求和预算来合理选择最大计数容量。

一般来说,选择最大计数容量时需要考虑以下几个因素:1. 测量范围:根据被测电压的范围来选择合适的最大计数容量。

若测量范围超出了最大计数容量,则会导致溢出,无法正常测量。

2. 分辨率:最大计数容量越大,分辨率越低,反之亦然。

3位半数字电压表

3位半数字电压表

目录第一章三位半数字电压表的设计方案题目及设计目的 (2)设计要求 (2)方案设计 (2)三位半数字电压表的设计思想 (4)第二章三位半数字电压表设计过程三位半数字电压表特点 (4)TC7107的介绍 (5)TC7107的性能特点 (6)TC7017的功能 (6)第三章电路仿真电路仿真 (7)第四章实验总结实验总结 (8)一:三位半数字电压表的设计案题目及设计目的1、题目:三位半位数字电压表2、设计目的:通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法,同时复习、巩固以往的模电、数电内容。

设计要求采用课程或实验内容中所使用的元器件,设计一个三位半数字电压表,三位半是指个位、十位、百位的范围为0-9,而千位只有0和1两个状态,称为半位。

所以数字电压表测量范围为0001-1999。

数字电压表主要部分是A/D转换器,显示方法通常采用动态扫描(工作时四个数码管轮流点亮,利用人眼的视觉残留特性能够得到整体效果,当扫描频率过低时显示的数码会有闪烁感)方式,但需要字形译码驱动电路和字位驱动电路。

1.任务要求:2.基本要求:3.直流电压测量范围(0~200V)测量误差小于1%4.附加5.交流电压测量范围(0~200V)测量误差小于1%6.自动量程转换7.通过查阅资料,实现设计要求,写出实现原理,画出原理框图,描述其功能,并给出数字电压表电路原理图。

方案设计利用成熟芯片Tc7107实现电压的测量,用四位数码管显示出最后的转换电压结果。

优点:可直接驱动LED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。

数字电压表原理框图如下:三位半数字电压表的设计思想数字电压表的位数是指完整显示位,即能够显示0-9十个数字的位。

所谓三位半数字电压表,即只有3位完整显示位,而其最高位只能显示0或1,故称为半位。

数字电压表一般由模拟电路与数字电路两大部分组成,模拟部分包括输入放大器、A/D转换器和基准电压源;数字部分包括计数器、译码器、逻辑控制器、振荡器和显示器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、 设计原理及电路图(1)数字电压表原理框图如下: 方案的原理框图如图b 所示;图b鉴于选用方案一,由数字电压表原理框图可知,数字电压表由五个模块构成,分别是基准电压模块, 3 1/2位A/D 电路模块,字形译码驱动电路模块,显示电路模块,字位驱动电路模块.各个模块设计如下: 量程转换模块采用多量程选择的分压电阻网络,可设计四个分压电阻大小分别为900K Ω,90K Ω,9K Ω和1K Ω。

用无触点模拟开关实现量程的切换。

基准电压模块直 流 稳 压电压转化芯片INC7107显 示 电 路Output这个模块由MC1403和电位器构成, 提供精密电压,供A/D 转换器作参考电压.3 1/2位A/D电路模块直流数字电压表的核心器件是一个间接型A / D转换器,这个模块由MC14433和积分元件构成,将输入的模拟信号转换成数字信号。

字形译码驱动电路模块这个模块由MC4511构成 ,将二—十进制(BCD)码转换成七段信号。

显示电路模块这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。

(2)实验芯片简介:数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。

该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。

本系统是三位半数字电压表,三位半是指十进制数0000~1999。

所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。

各部分的功能如下:三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。

译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。

显示器:将译码器输出的七段信号进行数字显示,读出A/D转换结果。

工作过程如下:三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。

DS1~DS4输出多路调制选通脉冲信号。

DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。

每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。

DS和EOC的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。

以下依次为DS2,DS3和DS4。

其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。

在对应DS2,DS3和DS4选通期间,Q0~Q3输出BCD全位数据,即以8421码方式输出对应的数字0~9.在DS1选通期间,Q0~Q3输出千位的半位数0或l及过量程、欠量程和极性标志信号。

在位选信号DS1选通期间Q0~Q3的输出内容如下:Q3表示千位数,Q3=0代表千位数的数宇显示为1,Q3=1代表千位数的数字显示为0。

Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即U X>0;Q2的电平为0,表示极性为负,即U X<0。

显示数的负号(负电压)由MC1413中的一只晶体管控制,符号位的“-’阴极与千位数阴极接在一起,当输入信号U X为负电压时,Q2端输出置“0”, Q2负号控制位使得驱动器不工作,通过限流电阻R M使显示器的“-”(即g 段)点亮;当输入信号U X为正电压时,Q2端输出置“1”,负号控制位使达林顿驱动器导通,电阻R M接地,使“-”旁路而熄灭。

小数点显示是由正电源通过限流电阻R DP供电燃亮小数点。

若量程不同则选通对应的小数点。

过量程是当输入电压U X超过量程范围时,输出过量程标志信号OR----。

当Q3=0,Q0=1时,表示Ux处于过量程状态;当Q3=1,Q0=1时,表示Ux处于欠量程状态。

当OR---- = 0 时,|U X|>1999,则溢出。

|U X|>U R则OR----输出低电平。

当OR---- = 1时,表示|U X|<U R。

平时OR输出为高电平,表示被测量在量程内。

MC14433的OR----端与MC4511的消隐端BI____直接相连,当U X超出量程范围时,OR____输出低电平,即OR---= 0 →BI---- = 0 ,MC4511译码器输出全0,使发光数码管显示数字熄灭,而负号和小数点依然发亮。

1.三位半A/D转换器MC14433在数字仪表中,MC14433电路是一个低功耗三位半双积分式A/D转换器。

和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。

如果必要设计应用者可参考相关参考书。

使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻R I)和两个电容(分别是积分电容C I和自动调零补偿电容C0)就能执行三位半的A/D转换。

MC14433内部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00MΩ以上;(2)和外接的R I、C I 构成一个积分放大器,完成V/T 转换即电压—时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。

比较器的输出用作内部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。

除“模拟电路”以外,MC14433 内部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。

借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。

MC14433内部的控制逻辑是A/D 转换的指挥中心,它统一控制各部分电路的工作。

根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。

在对基准电压VREF 进行积分时,控制逻辑令4位计数器开始计数,完成A/D 转换。

MC14433内部具有时钟发生器,它通过外接电阻构成的反馈,井利用内部电容形成振荡,产生节拍时钟脉冲,使电路统一动作,这是一种施密特触发式正反馈RC 多谐振荡器,一般外接电阻为360kΩ时,振荡频率为100kHz;当外接电阻为470kΩ时,振荡频率则为66kHz,当外接电阻为750kΩ时,振荡频率为50kHz。

若采用外时钟频率。

则不要外接电阻,时钟频率信号从CPI(10脚)端输入,时钟脉冲CP 信号可从CPO(原文资料为CLKO)(11脚)处获得。

MC14433内部可实现极性检测,用于显示输入电压U X的正负极性;而它的过载指示(溢出)的功能是当输入电压Vx 超出量程范围时,输出过量程标志OR(低有效)。

MC14433是双斜率双积分A/D 转换器,采用电压—时间间隔(V/T)方式,通过先后对被测模拟量电压U X和基准电压V REF的两次积分,将输入的被测电压转换成与其平均值成正比的时间间隔,用计数器测出这个时间间隔对应的脉冲数目,即可得到被测电压的数字值。

双积分过程可以做如下概要理解:首先对被测电压U X进行固定时间T1、固定斜率的积分,其中T1=4000Tcp。

显然,不同的输入电压积分的结果不同(不妨理解为输出曲线的高度不同)。

然后再以固定电压V REF以及由R I,C I所决定的积分常数按照固定斜率反向积分直至积分器输出归零,显然对于上述一次积分过程形成的不同电压而言,这一次的积分时间必然不同。

于是对第二次积分过程历经的时间用时钟脉冲计数,则该数N就是被测电压对应的数字量。

由此实现了A/D转换。

积分电阻电容的选择应根据实际条件而定。

若时钟频率为66kHz,C I一般取0.1μF。

R I的选取与量程有关,量程为2V时,取RI为470kΩ;量程为200mV时,取R I为27kΩ。

选取R I和C I的计算公式如下:式中,ΔUC为积分电容上充电电压幅度,ΔU C = V DD - U X(max) - ΔU,ΔU = 0.5V,例如,假定C I=0.1μF,V DD=5V,f CLK=66kHz。

当U X(max)=2V 时,代入上式可得R I=480kΩ,取R I=470kΩ。

MC14433设计了自动调零线路,足以保证精确的转换结果。

MC14433A/D转换周期约需16000个时钟脉冲数,若时钟频率为48kHz,则每秒可转换3次,若时钟频率为86kHz,则每秒可转换4次。

MC14433 采用24引线双列直插式封装,外引线排列,参考图1的引脚标注,各主要引脚功能说明如下:(1) 端:V AG,模拟地,是高阻输入端,作为输入被测电压U X和基准电压V REF的参考点地。

(2) 端:R REF,外接基准电压输入端。

(3) 端:U X,是被测电压输入端。

(4) 端:R I,外接积分电阻端。

(5) 端:R I/C I,外接积分元件电阻和电容的公共接点。

(6) 端,C1,外接积分电容端,积分波形由该端输出。

(7) 和 (8) 端:C01和C02,外接失调补偿电容端。

推荐外接失调补偿电容C0取0.1μF。

(9) 端:DU,实时输出控制端,主要控制转换结果的输出,若在双积分放电周期即阶段5开始前,在DU端输入一正脉冲,则该周期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。

若该端通过一电阻和EOC 短接,则每次转换的结果都将被输出。

(10) 端:CPI (CLKI),时钟信号输入端。

(11) 端:CPO (CLKO),时钟信号输出端。

(12) 端:V EE,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为0.8mA,所有输出驱动电路的电流不流过该端,而是流向V SS端。

(13) 端:V SS负电源端.(14) 端:EOC,转换周期结束标志输出端,每一A/D转换周期结束,EOC端输出一正脉冲,其脉冲宽度为时钟信号周期的1/2。

(15) 端:OR ,过量程标志输出端,当|UX|>V REF时,OR输出低电平,正常量程OR为高电平。

(16)~(19) 端:对应为DS4~DS1,分别是多路调制选通脉冲信号个位、十位、百位和千位输出端,当DS端输出高电平时,表示此刻Q。

相关文档
最新文档