高中数学《平面》课件

合集下载

新人教版高中数学必修2课件:8.4.1 平面

新人教版高中数学必修2课件:8.4.1 平面

分析(1)根据条件,先适当确定其中的某一个平面,再根据点、线、面的位 置关系,将其附着于固定平面上,注意图形的立体感,要将被遮挡部分用虚 线表示.(2)用文字语言、符号语言表示一个图形时,应仔细观察图形有几 个平面、几条直线且相互之间的位置关系如何.
解 (1)①符号语言:α∩β∩γ=P,α∩β=PA,α∩γ=PB,β∩γ=PC;图形表示如图①所 示. ②符号语言:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC;图形表示 如图②所示.
思维脉络
课前篇 自主预习
激趣诱思
在数学语言的研究中,通常按数学语言所使用的主要词汇,将数学语言分为 三种:文字语言、符号语言、图形语言.例如“点A在直线l上”是利用文字来 描述,以语言的形式表达出来的,因而称其为该定理的文字语言;“A∈l”是用 符号的形式将定理表达出来,因而称其为符号语言;如果我们以图例或实物 来表示定理的条件和结论,则称其为该定理的图形语言.通过文字语言表达 数学问题,言简意赅,寓意深刻;通过符号语言表达数学问题,简明扼要,国际 通行;通过图形语言表达数学问题,形象生动,记忆深刻.几种语言各有特点, 在学习立体几何时,应充分发挥不同语言的教育功能.
依据;(2)判定 点在直线上
2.三个推论
推论 内容
图形
推论1
经过一条直线和这条直线外一点, 有且只有一个平面
推论2
经过两条相交直线,有且只有一个 平面
推论3
经过两条平行直线,有且只有一个 平面
微思考 (1)如何理解基本事实1中的“有且只有一个”? 提示这里的“有”是说平面存在,“只有一个”是说平面唯一,本公理强调的是 存在性和唯一性两个方面,因此“有且只有一个”,必须完整地使用,不能仅 用“只有一个”来代替“有且只有一个”,否则就没有表达存在性.确定一个平 面中的“确定”是“有且只有一个”的同义词,也就是存在性和唯一性这两个 方面的,这个术语今后学习中会经常出现.

新教材高中数学第八章立体几何初步8.4.1平面课件新人教A版必修第二册ppt

新教材高中数学第八章立体几何初步8.4.1平面课件新人教A版必修第二册ppt


×
如三棱锥的四个顶点相连的四边形不能确定
一个平面


平面是空间中点的集合,是无限集
答案:④
4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则
直线AB∩β=
.
解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.
答案:C
∴由基本事实3可知,点P在平面ABC与平面α的交线上,同理可
证Q,R也在平面ABC与平面α的交线上.
∴P,Q,R三点共线.
本例换为:如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C
与平面ABC1D1交于点Q,如何说明B,Q,D1三点共线?
证明:如图所示,连接A1B,CD1.
显然B∈平面A1BCD1,D1∈平面A1BCD1.
④两条平行线确定一个平面
A.①②
B.②③
C.②④
D.③④
(2)两个平面若有三个公共点,则这两个平面(
A.相交
B.重合
C.相交或重合
D.以上都不对
)
解析:(1)不在同一条直线上的三点确定一个平面.圆上三个点
不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.
当四点在一条直线上时不能确定一个平面,③不正确.根据平
且 P∈l
3.做一做:如图所示,在空间四边形各边AD,AB,BC,CD上分别
取E,F,G,H四点,如果EF,GH交于一点P,求证:点P在直线BD
上.
证明:∵EF∩GH=P,
∴P∈EF,且P∈GH.
又EF⊂平面ABD,GH⊂平面CBD,
∴P∈平面ABD,且P∈平面CBD,
即P∈平面ABD∩平面CBD,平面ABD∩平面CBD=BD,

人教版高中数学必修2《平面与平面垂直的性质》PPT课件

人教版高中数学必修2《平面与平面垂直的性质》PPT课件

3,∴h=
3 2.
在△BCD 中,BF=BD·cos 60°=2×12=1,DF=BD·sin 60°= 3,∴DC=2 3,
故 S△BCD=12BF·DC=12×1×2 3= 3.
∴VD-BCG=VG-BCD=13S△BCD·h=13× 3× 23=12.
[方法技巧] (1)在有关垂直问题的证明过程中要注意线线垂直、线面垂直、面面垂直的 相互转化.因此,判定定理与性质定理的合理应用是证明垂直问题的关键. (2)空间问题转化成平面问题是解决立体几何问题的一个基本原则.解题时, 要通过几何图形自身的特点,如等腰(等边)三角形的“三线合一”、中位线定理、 菱形的对角线互相垂直等,得出一些题目所需要的条件.对于一些较复杂的问 题,注意应用转化思想解决问题.
【对点练清】 如图,在四棱锥 P-ABCD 中,平面 PAB⊥平面 ABCD,BC∥平 面 PAD,∠ABC=90°,PA=PB= 22AB.求证: (1)AD∥平面 PBC; (2)平面 PBC⊥平面 PAD. 证明:(1)∵BC∥平面 PAD,BC⊂平面 ABCD,平面 ABCD∩平面 PAD=AD, ∴BC∥AD. ∵AD⊄平面 PBC,BC⊂平面 PBC,∴AD∥平面 PBC.
若①m⊥n,③n⊥β,④m⊥α 成立,则②α⊥β 一定成立; 若②α⊥β,③n⊥β,④m⊥α 成立,则①m⊥n 一定成立. ∴①③④⇒②(或②③④⇒①). 答案:①③④⇒②(或②③④⇒①)
• 题型二 垂直关系的综合应用
• [探究发现]
• 试总结线线垂直、线面垂直、面面垂直之间的转化关 系.
提示:在线线垂直、线面垂直、面面垂直的相互转化中.每一种垂直的
判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:

新教材高中数学第2章平面解析几何2-1坐标法课件新人教B版选择性必修第一册

新教材高中数学第2章平面解析几何2-1坐标法课件新人教B版选择性必修第一册

x1+x2
y1+y2
(2)x= 02 _____2____,y= 03 ______2______.
知识点三 坐标法
通过建立平面直角坐标系,将几何问题转化为代数问题,然后通过代
数运算等解决问题.这种解决问题的方法称为坐标法.
1.对两点间距离公式的几点说明 (1)公式中,点 A,B 的位置没有先后之分,即距离公式还可以写为|AB| = x1-x22+y1-y22. (2)坐标平面内的两点间的距离公式是数轴上两点间的距离公式的推 广. (3)若 B 点为原点,则|AB|=|OA|= x21+y21.
x1+x2 _____|x_2_-__x_1_| ____;x= 02 ______2______.
知识点二 平面直角坐标系中的基本公式
已知 A(x1,y1),B(x2,y2)是平面直角坐标系中的两点,M(x,y)是线段 AB 的中点.
(1)|AB|=|A→B|= 01 ___x_2_-__x1__2+___y_2_-__y_1_2;
例 1 已知数轴上三点 A(-1),B(5),C(x). (1)当|AB|+|BC|=8 时,求 x; (2)若 B 是 AC 的中点,求 x. [解] (1)由 A(-1),B(5),C(x),可知|AB|=|5-(-1)|=6,|BC|=|x-5|. 当|AB|+|BC|=8 时,有 6+|x-5|=8,解得 x=3 或 x=7.
(4)若 A,B 两点在 x 轴上,或在与 x 轴平行的直线上,此时|AB|=|x2- x1|.
(5)若 A,B 两点在 y 轴上,或在与 y 轴平行的直线上,此时|AB|=|y2- y1|.
注意:(4)(5)在应用时,可根据实际情况去掉绝对值号,解题更容易. (6)在数轴上,点 A(x1),B(x2),用绝对值定义两点间的距离,表示为 d(A, B)=|x1-x2|.若 A,B,C 是数轴上任意三点,则 d(A,B)≤d(A,C)+d(B, C). 2.中点公式的两个应用 (1)知二求一.从公式上看,只要知道公式等号两边的任意两个量,可 求第三个量. (2)从图像上看,只要知道图像上任意的两点,可求第三个点.

高中数学 2.1.1 平面 课件 新人教A版必修2

高中数学 2.1.1 平面 课件 新人教A版必修2
第三十页,共55页。
变式训练3:如图,已知平面α、β相交于l,设梯形ABCD中,AD∥BC,
且AB
α,CD β.
求证:AB、CD、l相交于一点.
第三十一页,共55页。
证明:∵梯形ABCD中,AD∥BC,AB、DC是梯形ABCD的两腰,∴AB
、DC必相交于一点,设AB∩DC=M,又∵AB α,CD
第十页,共55页。
3.准确理解公理的含义 公理1是判定直线在平面内的依据.证明一条直线在某一平面内,只
需证明这条直线上有两个不同的点在该平面内.“直线在平 面内”是指“直线上的所有点都在平面内”. 公理2的作用是确定平面,是把空间问题化归成平面问题的重要 依据.并可用来证“两个平面重合”.特别要注意公理2中“不在 一条直线上的三个点”这一条件.
∴P在平面ABC与平面α的交线上. 同理可证Q和R均在这条交线上. ∴P\,Q\,R三点共线.
第二十九页,共55页。
规律技巧:解决点共线或线共点的问题是平面性质的应用.解决点共
线一般地先确定一条直线,再用平面的基本性质,证明其他的点 也在该直线上.直线共点问题的步骤:一先说明直线相交,二让交 点也在其他直线上.
第十七页,共55页。
变式训练1:判断下列说法是否正确?并说明理由.
(1)平面的形状是平行四边形;
(2)任何一个平面图形都是一个平面;
(3)圆和平面多边形都可以表示平面;
(4)因为
ABCD的面积大于
ABCD大于平面A′B′C′D′;
A′B′C′D的面积,所以平面
(5)用平行四边形表示平面,以平行四边形的四条边作为平面的边 界线.
第四十四页,共55页。
7.三条直线相交于一点,可确定的平面有________个. 答案:1或3

新教材高中数学第二章平面解析几何1坐标法课件新人教B版选择性必修第一册

新教材高中数学第二章平面解析几何1坐标法课件新人教B版选择性必修第一册
如果点对应的①___________为(,
有序实数
)(即的坐标为(, 1 ),记作
(1 , 1 ),其中1 为的横坐标,1 为的纵坐标),且(2 , 2 ),则向量
(2 − 1 , 2 − 1 )
=②__________________,从而可以得到平面直角坐标系内两点之间的
ห้องสมุดไป่ตู้. 已知(, 6),(−2, ),(2,3),若点平分线段,则 + 等于
(
)A
A. 6
B. 1
C. 2
D. -2
2. 已知(1,2),(, 6),且|| = 5,则的值为( )
D
A. 4
D. -2或4
B. -4或2
C. -2
3. 已知△ 的顶点(2,3),(−1,0),(2,0),则△ 的周长是(
2. 已知点(−3,4), (2, 3),在轴上找一点,使|| = ||,求||的值.
[答案] 设点(, 0),则有|| =
|| =
(−3 − )2 + (4 − 0)2 = 2 + 6 + 25,
(2 − )2 + ( 3 − 0)2 = 2 − 4 + 7.
C. 以点为直角顶点的直角三角形
D. 以点为直角顶点的直角三角形
D. 10
)C
6. 光线从点(−3,5)射到轴上,经x轴反射后经过点(2,10),则光线从到
的距离为( )
C
A. 5 2
B. 2 5
C. 5 10
D. 10 5
[解析] 点(−3,5)关于x轴的对称点为′ (−3, −5),则光线从到的距离即
|| =
[5 − (−1)]2 + [3 − (−1)]2 = 62 + 42 = 52 = 2 13,

新版高中数学必修2课件:8.4.1平面

新版高中数学必修2课件:8.4.1平面

平面个数是 1 或 3,如果交于不共线的三点,可以确定的平面个数 是 1,所以空间两两相交的三条直线,可以确定的平面个数是 1 或
3. 答案:B
2.如图所示的两个相交平面,其中画法正确的是( )
解析:对于①,图中没有画出平面 α 与平面 β 的交线,另外图 中的实线、虚线也没有按照画法原则去画,因此①的画法不正确.同 样的道理,可知②③的画法不正确,④中画法正确.
方法归纳 证明三点共线,可以证明三点都在两平面的交线上或第三点在 两点所确定的直线上.
微点 2 线共点问题 例 3 在四面体 ABCD 中,E,G 分别是 BC,AB 的中点,点 F 在 CD 上,点 H 在 AD 上,且 DF:FC=DH:HA=2:3.求证:EF,GH, BD 交于一点.
证明:如图,连接 GE、HF 因为 E,G 分别是 BC,AB 的中点,所以 GE∥AC,GE=12AC. 又 DF:FC=DH:HA=2:3, 所以 FH∥AC,FH=25AC,所以 FH∥GE,FH≠GE, 所以 E,F,H,G 四点共面,且四边形 EFHG 是一个梯形. 延长 GH 和 EF 交于一点 O, 因为 GH⊂平面 ABD,EF⊂平面 BCD, 所以 O∈平面 ABD,O∈平面 BCD, 所以点 O 在这两个平面的交线上, 而这两个平面的交线是 BD,且交线只有这一条,所以点 O 在 直线 BD 上. 所以 EF,GH,BD 交于一点.
(3)根据已知符号语言或文字语言画相应的图形时,要注意实线 和虚线的区别.
跟踪训练 1 根据如图所示,在横线上填入相应的符号或字母: A___∈_____平面 ABC,A____∉____平面 BCD,BD___⊄_____平面 ABC,平面 ABC∩平面 ACD=___A__C___.

新人教A版高中数学第二册(必修2)课件:8.4.1 平面

新人教A版高中数学第二册(必修2)课件:8.4.1   平面

答案 B
[微思考] 1.几何里的“平面”有边界吗?用什么图形表示平面?
提示 没有.平行四边形. 2.一个平面把空间分成了几部分?
提示 两部分. 3.基本事实1有什么作用?
提示 ①确定平面的依据;②判定点线共面. 4.基本事实2有什么作用?
提示 ①确定直线在平面内的依据;②判定点在平面内. 5.基本事实3有什么作用?
点,有且只有一个平面
经过两条相交直线,有且只有 推论2
一个平面 经过两条平行直线,有且只有 推论3 一个平面
图形
作用 定平面的依据
[微判断]
拓展深化
1.一个平面的面积是16 cm2.( × ) 2.直线l与平面α有且只有两个公共点.( × ) 3.四条线段首尾相连一定构成一个平面四边形.( × ) 4.8个平面重叠起来要比6个平面重叠起来厚.( × ) 5.空间不同三点确定一个平面.( × )
证明 如图所示.由已知a∥b,
所以过a,b有且只有一个平面α. 设a∩l=A,b∩l=B, ∴A∈α,B∈α,且A∈l,B∈l, ∴l⊂α,即过a,b,l有且只有一个平面.
规律方法 在证明多线共面时,可用下面的两种方法来证明: (1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内. (2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内, 然后证明这两个平面重合,即证得所有元素在同一个平面内.
2.如图表示两个相交平面,其中画法正确的是( ) 答案 D
3.已知点A,直线a,平面α.
①若A∈a,a⊄α,则A∉α;
②若A∈α,a⊂α,则A∈a;
③若A∉a,a⊂α,则A∉α;
④若A∈a,a⊂α,则A∈α.
以上说法中,表达正确的个数是( )

人教版高中数学课件 2.1空间点-直线-平面之间的位置关系--平面 课件

人教版高中数学课件 2.1空间点-直线-平面之间的位置关系--平面 课件

公理2 经过不在同一条直线上的三点,有且只有 一个平面。 B C A
A, B, C不共线 A, B, C确定一平面
公理2的三条推论:
王新敞
奎屯 新疆
1.经过一条直线和这条直线外一点,有且只有一个平 面 2.经过两条相交直线,有且只有一个平面
3.经过两条平行直线,有且只有一个平面
平面公理
把三角板的一个角立在课桌面上,三角板所在平面 与桌面所在平面是否只相交于一点B?为什么?
(2)集合关系:
图形 符号语言
A a, A , a ,
文字语言(读法)
A
A
a
a
A a A a
点在直线上
点不在直线上
点在平面内 点不在平面内 直线a、b交于点A
A

A
A
b a
A A
a b A
图形
符号语言


a
a
a
a //
文字语言(读法)

a
A
a A
c ,
说明:画图的顺序:先画大件(平面),再画 小件(点、线)
平面公理 观察长方体,你能发现长方体的两个相交平 面有没有公共直线吗?
D
A
C
B
D
A B
C
这条公共直线B’C’叫做这 两个平面A’B’C’D’和平面 BB’C’C的交线. 另一方面,相邻两个平面有一 个公共点,如平面A’B’C’D’ 和平面BB’C’C有一个公共点 B’,经过点B有且只有一条过该 点的公共直线B’C’.
典型例题
例1 如图,用符号表示下列图形中点、直线、平面 之间的位置关系.

a

A l

学年新教材高中数学第2章平面解析几何2.1坐标法课件新人教B版选择性必修第一册

学年新教材高中数学第2章平面解析几何2.1坐标法课件新人教B版选择性必修第一册
[解] 由题意知|PA|=|PB|=2, 即||xx+-13||==22,, 解得 x=1. 此时点 P 的坐标为 1,显然此时点 P 为线段 AB 的中点.
第二十七页,编辑于星期五:二十三点 四十分。
2.本例中在线段 AB 上是否存在点 P(x),使得点 P 到点 A 和点 B 的距离都是 3?若存在,求出点 P 的坐标 x;若不存在,请说明理 由.
第十页,编辑于星期五:二十三点 四十分。
[提示] (1)× 与有序实数对一一对应. (2)× 终点不一定相同. (3)× x 与 2x 的大小无法确定. (4)× 方向不一定相同.
第十一页,编辑于星期五:二十三点 四十分。
2.(1)已知 A(1,2),B(2,6),则 AB 的中点坐标为____. (2)已知 A(2,4),B(-1,3),则 A,B 两点间的距离为_____. (1)32,4 (2) 10 [(1)设 AB 的中点为 M(x,y),则 x=1+2 2=32, y=2+2 6=4,∴中点坐标为32,4. (2)|AB|= 2+12+4-32= 10.]
知识点 1 平面直角坐标系中的基本公式 (1)数轴上两点间的距离公式 如果数轴上点 A 对应的数为 x1(即 A 的坐标为 x1,记作_A_(_x_1)_), 且 B(x2),则向量A→B的坐标为__x_2-__x_1_,数轴上两点之间的距离公式|AB| =|A→B|=__|x_2_-__x_1_| _.如果x1+Mx(2x)是线段 AB 的中点,则A→M=M→B.数轴 上的中点坐标公式 x=___2____.
[解] (1)由题意可知,点 M(-2)位于点 N(3)的左侧,且点 P(x) 位于点 M(-2),N(3)之间,所以-2<x<3.
(2)确定两点的位置关系,需要讨论实数 a,b 的大小关系:当 a>b 时,点 A(a)位于点 B(b)的右侧;当 a<b 时,点 A(a)位于点 B(b)的左 侧;当 a=b 时,点 A(a)与点 B(b)重合.

新课标人教A高中数学必修点直线平面之间的位置关系PPT课件

新课标人教A高中数学必修点直线平面之间的位置关系PPT课件
脚?为什么用三角架支撑照相机?
B A
C
第17页/共30页
2、过空间一点可以做几条直线?两点呢? 过空间中一点可以做几个平面?两点呢?
不共线的三点呢?
第18页/共30页
公理2
存在性
文字语言 过不在一条直线上的三点,有且只有
一个平面. 图形语言
唯一性
B
A
C
不在一条直线上的三个点A、B、C所确定的 平面,可以记成“平面ABC”.
• 平面的三个特征:平面是平的;平面无厚薄之分;平面是无限延展的.
第4页/共30页
随堂练习
一、判断下列各题的说法正确与否:
1、一个平面长 4 米,宽 2 米; ( )
2、平面有边界;
()
3、一个平面的面积是 25 cm 2; ( )
4、菱形的面积是 4 cm 2;
()
5、一个平面可以把空间分成R SITE HERE
小结
1,平面的概念,画法及表示
2,点、直线、平面间的基本关系
3,三条平面公理
新疆 王新敞
奎屯
公理1
A B
AB
公理2 A, B,C不共线 A, B,C确定一平面
公理3 P , P , l P l
第28页/共30页
YOUR SITE HERE
第5页/共30页
YOUR SITE HERE
2、平面的画法
平面通常画成一个平行四边形,锐角通常 画成45°,且横边等于其邻边长的2倍 .
D
C
3、记法
A
B
①平面α 、平面β 、平面γ (标记在锐角上)
②平面ABCD
③平面AC 或平面BD
第6页/共30页
4、相交平面画法:

人教A版高一数学必修2人教版精品课件第2章 2.1 2.1.1《平面》

人教A版高一数学必修2人教版精品课件第2章 2.1 2.1.1《平面》

高中数学人教版必修2课件
2.下列命题正确的是( C ) A.因为直线向两方无限延伸,所以直线不可能在平面内 B.如果线段的中点在平面内,那么线段在平面内 C.如果线段上有一个点不在平面内,那么线段不在平面内 D.当平面经过直线时,直线上可以有不在平面内的点 3.下列说法中正确的是( C ) A.两个平面相交有两条交线 B.两个平面可以有且只有一个公共点 C.如果一个点在两个平面内,那么这个点在两个平面的交 线上 D.两个平面一定有公共点
高中数学人教版必修2课件
例 4:如图 5,在正方体 ABCD-A′B′C′D′中,E、F 分别是 AA′、AB 上一点,且 EF∥CD′,求证:平面 EFCD′、 平面 AC 与平面 AD′两两相交的交线 ED′、FC、AD 交于一点.
图5
高中数学人教版必修2课件
错因剖析:遇到此类证明多线共点问题,找不到解决问题 的突破口.
高中数学人教版必修2课件
正确地用图形和符号表示点、直线、平面以 及它们之间的关系.点看成是元素,线、面看成是点的集合, 所以点与线、面的关系用“∈、∉”表示,线与线、线与面及面 与面的关系用“⊂、⊄”表示.
1-1.试用集合符号表示下列各语句,并画出图形: (1)点 A 在平面α内,但不在平面β内; (2)直线 l 经过平面α外一点 P,且与平面α相交于点 M; (3)平面α与平面β相交于直线 l,且 l 经过点 P.
高中数学人教版必修2课件
高中数学课件
(金戈铁骑 整理制作)
高中数学人教版必修2课件
第二章 点、直线、平面之间的位置关系
2.1 空间点、直线、平面之间的位置关系
2.1.1 平面
高中数学人教版必修2课件
1.下列命题正确的是( C ) A.画一个平面,使它的长为 14 cm,宽为 5 cm B.一个平面的面积可以是 16 m2 C.平面内的一条直线把这个平面分成两部分,一个平面把 空间分成两部分 D.10 个平面重叠起来,要比 2 个平面重叠起来厚

人教版高中数学新教材必修第二册8.4.1《平面》教学课件

人教版高中数学新教材必修第二册8.4.1《平面》教学课件
⑴点A在平面α内,点B在平面α外;
⑵直线L在平面α内,直线m不在平面α内;
⑶平面α和β相交于直线L; ⑷直线L经过平面α外一点P和平面α内一点Q .
⑸直线L是平面α和β的交线,直线m在平面 α内,L和m相交于点P 。
巩固
下列四个命题中,正确的是( CD )
A、四边形一定是平面图形 B、空间的三个点确定一个平面 C、梯形一定是平面图形 D、三角形一定是平面图形
文字语言
基本事实3:如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线.
β
图形语言
P ·
l
α
符号语言
p
p
l
l
作用 可用于判别两平面是否相交。
基本事实3告诉我们,如果两个平面有一个公共点,那么这两个平 面一定相交于过这个公共点的一条直线.两个平面相交成一条直线 的事实,使我们进一步认识了平面的“平”和“无限延展”.
如果直线 l 与平面α有一个公共点,直线 是l 否在 平面α内?如果直线 与l 平面α有两个公共点呢?
文字语言
基本事实2:如果一条直线上的两点在一个平面内, 那么这条直线在此平面内.
由点、线、面的关系有
直线 l 在平面α内表示为 l
直线m不在平面α内表示为 l
图形语言
m
. . A
l
·
·B
·
(3)在画图时,如果图形的一部分被另一 部分遮住,可以把遮住部分画成虚线,也 可以不画。
两相交平面的画法:
⑴先画两平面基本线 ⑵画两平面的交线 ⑶分别画三条线的平 行线
⑷把被遮部分的线段画 成虚线或不画。其它为 实线。
β α
上述三个关于平面的基本事实是人们经过长期观察与实践 总结出来的,是几何推理的基本依据,也是我们进一步研究立 体图形的基础.

高中数学人必修二课件平面与平面垂直的性质

高中数学人必修二课件平面与平面垂直的性质

THANK YOU
汇报人:
垂直的性质:两个 平面垂直,那么它 们的交线垂直于这 两个平面。
垂直的判定:如果 两个平面的法向量 互相垂直,那么这 两个平面互相垂直 。
垂直的应用:垂直 的概念在几何学、 物理学和工程学中 都有广泛的应用。
平面与平面垂直的判定定理
如果两个平面的法向量平行, 那么这两个平面垂直。
如果两个平面的法向量垂直, 那么这两个平面平行。
应用:在几何学、物理学和工程学 等领域,垂直的性质定理有着广泛 的应用,如确定物体的位置、方向
和运动状态等。
证明两个平面垂直的性质定理的推论
如果两个平面垂直,那么它 们之间的夹角为90度
如果两个平面垂直,那么它 们之间的最短距离为0
如果两个平面垂直,那么它 们的法向量是平行的
如果两个平面垂直,那么它 们之间的最长距离为无穷大
垂直
如果两个平面垂 直,那么它们之 间的面积关系为0
添加标题
添加标题
添加标题
添加标题
04
平面与平面垂直的性质 定理的证明
证明两个平面垂直的性质定理
性质定理:如果两个平面垂直, 那么它们的法线互相垂直。
证明方法:通过已知条件,利用 向量和矩阵的方法,推导出两个
平面的法线互相垂直的结论。
两个平面垂直的定义:如果两个平 面相交,且交线与两个平面的法线 都垂直,则称这两个平面垂直。
两个平面垂直的性质定理的应用
判断两个平面 是否垂直
计算两个平面 的夹角
确定两个平面 的相对位置关 系
解决立体几何 中的问题,如 求线面角、二 面角等
01
02
03
04
两个平面垂直的性质定理的推论
如果两个平面垂 直,那么它们的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.在处理点线共面、三点共线及三线共点问题时要体 会三个公理的作用,体会先部分再整体的思想.
8
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
1.(教材改编,P43,T3)判一判(正确的打“√”,错误 的打“×”)
(1)平行四边形是一个平面.( × ) (2)若 A∈a,a⊂α,则 A∈α.( √ ) (3)两个平面的交线可能是一条线段.( × ) (4) 空 间 图 形 中 先 画 的 线 是 实 线 , 后 画 的 线 是 虚 线.( × )
数学 ·必修2
第二章 点、直线、平面之间的位置关系
2.1 空间点、直线、平面之间的位置关 系
2.1.1 平面
1
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课前自主预习
2
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点一 平面的概念
平面的概念及表示
(1)概念:几何里所说的“平面”是从生活中的物体中
□1 抽象出来的
,是
□2 无限延展的.
(2)平面的画法:①水平放置的平面通常画成
□3 一个平行四边形 ,□4 它的锐角通常画成 45°, 且 □5 横边长等于其邻边长的 2 倍. 如图 a.
3
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
②如果一个平面被另一个平面遮挡住,
□6 为了增强它的立体感,把被遮挡部分用虚线画出来.
11
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
3.根据下图,填入相应的符号:A___∈_____平面 ABC, A____∉____平面 BCD,BD____⊄____平面 ABC,平面 ABC∩ 平面 ACD=__A__C____.
12
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
16
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 1】 下列四种说法正确的是___②_____. ①平面的形状是平行四边形; ②任何一个平面图形都可以表示平面; ③平面 ABCD 的面积为 100 cm2; ④空间图形中,后作的辅助线都是虚线. 解析 ①错,通常用平行四边形表示平面,但平面的形 状不一定是平行四边形;③错,平面不能度量;④错,看不 到的线画成虚线.
15
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升 平面概念的理解及特点
(1)平面是一个只描述而不定义的原始概念,它是由平 时生活中常见的平面抽象出来的,是理想的,是无限延展的, 是无厚薄、大小的.
(2)要注意平面具有如下特点: ①平面是平的;②平面是没有厚度的;③平面是无限延 展而没有边界的;④平面是由空间的点、线组成的无限集合; ⑤平面图形是空间图形的重要组成部分.
10
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
(2)若平面 α 与平面 β 相交于直线 l,点 A∈α,A∈β,则 点 A___∈_____l;其理由是 _同__时__在__两__个__不__重__合__平__面__上__的__点__一__定__在__两__个__平__面__的__交__线__上___.
9
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
2.(教材改编,P43,T4)做一做(请把正确的答案写在横 线上)
(1)如图所示,用符号语言表示以下各概念:
①点 A,B 在直线 a 上:_A_∈___a_,__B_∈__a___; ②直线 a 在平面 α 内:___a_⊂__α__; ③点 D 在直线 b 上,点 C 在平面 α 内:_D__∈__b_,__C_∈__α___.
14
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
解析 (1)由平面的概念,知它是平滑、无厚度、可无 限延展的,可以判断命题④正确,其余的命题都不符合平面 的概念,所以命题①、②、③都不正确.
(2)对于①,图中没有画出平面 α 与平面 β 的交线,另 外图中的实、虚也没有按照画法原则去画,因此①的画法不 正确.同样的道理,也可知②、③图形的画法不正确,④中 图形的画法正确.
数学 ·必修2
课堂互动探究
13
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
探究 1 平面概念的理解 例 1 (1)下列命题:①书桌面是平面;②8 个平面重叠 起来要比 6 个平面重叠起来厚;③有一个平面的长是 50 m, 宽为 20 m;④平面是绝对平的、无厚度、可以无限延展的 抽象的数学概念.其中正确命题的个数为____1____. (2) 下 图 中 的 两 个 相 交 平 面 , 其 中 画 法 正 确 的 是 ____④____.
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点二 点、线、面之间的关系 点、直线、平面之间的基本位置关系及语言表达
6
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点三 平面的基本性质
7
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
1.解决立体几何问题首先应过好三大语言关,即实现 这三种语言的相互转换,正确理解集合符号所表示的几何图 形的实际意义,恰当地用符号语言描述图形语言,将图形语 言用文字语言描述出来,再转换为符号语言.文字语言和符 号语言在转换的时候,要注意符号语言所代表的含义,作直 观图时,要注意线的实虚.
17
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
探究 2 文字语言、图形语言、符号语言的相互转化 例 2 根据图形用符号表示下列点、直线、平面之间的 关系.
18
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
(1)点 P 与直线 AB; (2)点 C 与直线 AB; (3)点 M 与平面 AC; (4)点 A1 与平面 AC; (5)直线 AB 与直线 BC; (6)直线 AB 与平面 AC; (7)平面 A1B 与平面 AC.
如图 b.
4
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
□ (3)表示法:可以用 7 希腊字母 α,β,γ 等来表
示;用 □8 两个大写的英文字母
(表示平面的平行
□ 四边形的相对的顶点)来表示;用 9 四个大写的英文字母
□ (表示平面的平行四边形的 10 四个顶点 )来表示.
5
课前自主预习
相关文档
最新文档