2019年LINGO在多目标规划和最大最小化模型中的应用
LINGO在数学建模中的应用
一、LINGO简介LINGO[1]是美国LINDO系统公司开发的求解数学规划系列软件中你的一个,它的主要功能是求解大型线性、非线性和整数规划问题,LINGO的不同版本对模型的变量总数、非线性变量数目、整型变量数目和约束条件的数量做出不同的限制.LINGO的主要功能特色为:(1)既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强.(4)内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;(6)能方便地与EXCEL、数据库等其他软件交换数据.LINGO像其他软件一样,对他的语法有规定,LINGO的语法规定如下:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2) 每个语句必须以字母开头,由字母、数字和下划线所组成,昌都不超过32个字符,不区分大小写;(3)每个语句必须以分号“;”结束,每行可以有多个语句,语句可以跨行;(4)如果对变量的取值范围没有特殊说明,则默认所有决策变量都非负;(5)LINGO模型以语句“MODEL”开头,以语句“END”结束,对于比较简单的模型,这这两个语句可以省略.LINGO提供了五十几个内部函数,使用这些函数可以大大减少编程工作量,这些函数都是以字符@开头,下面简单介绍其中的集合操作函数和变量定界函数及用法.集合是LINGO建模语言中最重要的概念,使用集合操作函数能够实现强大的功能,LINGO提供的常用集合操作函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等.@FOR(s:e)常用在约束条件中,表示对集合s中的每个成员都生成一个约束条件表达式,表达式的具体形式由参数e描述;@SUM(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值的和;@MAX(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值中的最大值;@MIN(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值中的最小值.LINGO默认变量的取值可以从零到正无穷大,变量定界函数可以改变默认状态,如对整数规划,限定变量取整数,对0-1规划,限定变量取0 1或.LINGO提供的变量定界函数有:@BIN(X)、@BND(L,X,U)、@GIN(X)、@FREE(X).@BIN(X)限定X为0或1,在0-1规划中特别有用;@GIN(X)限定X为整数,在整数规划中特别有用;@BND(L,X,U)限定L<X<U,可用作约束条件;@FREE(X)取消对X的限定,即X可以取任意实数.二、LINGO 在线性规划中的应用具有下列三个特征的问题称为线性规划问题(Linear program)[2]简称LP 问题,其数学模型称为线性规划(LP)模型.线性规划问题数学模型的一般形式为:求一组变量(1,2,,)j x j n =的值,使其满足1122max(min),n n z c x c x c x =+++2111122111211222221122***.0,1,2,,,,..n j n n n n nn nn n n x j na x a x a xb a x a x a x b s t a x a x a x b ⎧⎪⎪⎪⎨⎪⎪≥=⎪⎩+++++++++ 式中“*”代表“≥”、“ ≥”或“=”.上述模型可简写为1max(min),nj j j z c x ==∑1*0,1,2,,,1,2,,..nij j j ji a x x j n b i ms t =⎧⎪⎨⎪≥=⎩=∑其中,变量j x 称为决策变量,函数1nj jj z c x==∑称为目标函数,条件1*nj jij c x b =∑称为约束条件,0j x ≥ 称为非负约束.在经济问题中,又称j c 为价值系数,i b 为资源限量. 线性规划在科学决策与经营管理中实效明显[3],但是对于规模较大的线性模型,其求解过程非常繁琐,不易得出结果.而 LINGO 中的内部集合函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等,可以用这些集合函数使程序编程简单可行,下面举例说明.例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩ 编写LINGO 程序如下: MODEL : SETS :SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA :A=1,2 ; B=100,120; C=200,300; ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00 Total solver iterations: 0 Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price 1 29000.00 1.000000 2 0.000000 50.00000 3 90.00000 0.000000 4 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.三、LINGO 在整数规划和0-1规划中的应用1 求解整数规划整数规划[4]分为整数规划和混合整数规划,要求全部变量都为非负整数的数学规划称为纯整数规划,只要求部分变量为非负整数的数学规划称为混合整数规划.下面只讨论约束条件和目标函数均为线性的整数规划问题,即整数线性规划问题(以下简称整数规划,记为ILP),其数学模型的一般形式是()1max min nj j j z c x ==∑,()()11,2,,..01,2,,ni j j i j j j a x b i n s t x j n x =⎧≤=⎪⎪⎪≥=⎨⎪⎪⎪⎩∑全为整数或部分为整数。
LINGO在多目标规划及最大最小化模型中的应用
LINGO 在多目标规划和最大最小化模型中的应用在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。
一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==p i a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(i i f x f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
LINGO软件在优化模型中的应用
LINGO软件 ——在优化模型中的应用
腾讯微博:羊羽
LINGO软件在优化模型中的应用
LINGO软件在优化模型中的应用
解:设每天用x1 桶牛奶在甲车间生产,用x2 桶牛 奶在乙车间生产,可获利z 元。
则该问题的数学模型为: max z=72x1+64x2 s.t x1+x2≤50 12x1+8x2≤480 3x1≤100 x1,x2≥0
LINGO软件在优化模型中的应用
结果:
这个线性规划的最优解为x1=20,x2=30,最优值 为z=3360,即用20 桶牛奶在甲车间生产,30 桶 牛奶在乙车间生产,可获最大利润3360 元。
优点
3)强大的求解器 LINGO拥有一整套快速的,内建的求 解器用来求解线性、非线性、二次约束和 整数优化问题。
LINGO软件在优化模型中的应用
优点
4)交互式模型 在LINGO内可以直接创建和求解模型, 也可以从自己编写的应用程序中直接调用 LINGO。对于开发交互式模型,LINGO提 供了一整套建模环境,用来求解和分析构 建的模型。
从该问题的求解我们可以看到用LINGO 软件求 解线性规划是非常方便、快捷的,比单纯形法人 工计算效率高很多。
LINGO软ห้องสมุดไป่ตู้在优化模型中的应用
附加问题:
1) 若用35元可以买到1桶牛奶,应否作这项投资? 若投资,每天最多购买多少桶牛奶? 2) 若可以聘用临时工人以增加劳动时间,付给临 时工人的工资最多是每小时几元? 3) 由于市场需求变化,甲车间奶制品的获利增加 到30元,应否改变生产计划?
Lingo软件在运筹学中的应用
Lingo软件在运筹学中的应用Lingo软件在运筹学中的应用随着信息技术的不断发展,计算机软件在各个领域中的应用越来越广泛,尤其是在运筹学领域。
运筹学是研究在复杂决策环境下,如何高效地进行决策的学科。
Lingo软件作为一款运筹学建模和求解工具,为运筹学的研究和应用带来了很大的便利和效率。
本文将介绍Lingo软件在运筹学中的应用,并通过实例来说明其实际效果。
首先,Lingo软件在线性规划问题中的应用非常广泛。
线性规划是一种数学优化技术,用于在给定的约束条件下最大化或最小化线性目标函数。
Lingo软件提供了直观的图形用户界面,使得用户可以轻松地建立线性规划模型,并通过内置的求解器进行求解。
用户只需输入决策变量、约束条件和目标函数,Lingo就能自动找到最优解。
这对于一些复杂的决策问题,如生产规划、资源调度和供应链优化等,提供了很大的帮助。
其次,Lingo软件在整数规划和混合整数规划问题中也有着广泛的应用。
整数规划是在线性规划的基础上,将决策变量限制为整数解的优化问题。
混合整数规划在整数规划的基础上,允许部分决策变量取非整数解。
这种类型的决策问题在实际中很常见,如生产工作安排、旅行路线规划和仓储优化等。
Lingo软件提供了强大的分支定界算法和割平面算法,能够有效地求解整数规划和混合整数规划问题。
用户只需调整问题的参数,Lingo就能快速找到最优解,大大减少了优化问题的求解时间。
此外,Lingo软件还可以用于非线性规划问题的建模和求解。
非线性规划是在线性规划的基础上,将决策变量限制为非线性函数的优化问题。
非线性规划在许多实际问题中都有着广泛的应用,如投资组合优化、工程设计和市场定价等。
Lingo软件提供了多种求解算法,如牛顿法、拟牛顿法和遗传算法等,能够有效地求解非线性规划问题。
用户只需选择合适的算法和调整参数,Lingo就能找到最优解或是近似最优解。
最后,Lingo软件还具有灵活的扩展性和集成性。
它可以与其他优化软件和模拟软件进行集成,提供更强大的求解能力和模型分析能力。
运筹学lingo实验报告(一)
运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。
目标规划实验报告lingo
目标规划实验报告lingo实验目的本次实验运用目标规划(Goal Programming)方法解决一个复杂的决策问题。
通过实践应用目标规划模型,可以深入了解该方法的原理和应用场景,并掌握运用LINGO软件求解目标规划模型的技巧。
实验背景目标规划是一种多目标优化方法,通过为每个目标设置上下界限来考虑多个目标之间的权衡和优先级。
该方法在实际决策问题中被广泛应用,如生产调度、资源分配等。
在本次实验中,我们将尝试运用目标规划方法解决一个供应链优化问题。
实验步骤1. 定义决策变量与目标函数首先,我们定义了一组决策变量,包括供应商的订单量、转运中心的运输量以及销售网点的销售量。
然后,我们针对不同的供应链环节和目标,建立了几个目标函数,如最小化总成本、最大化客户满意度等。
2. 设置目标上下界限根据供应链管理的实际情况,我们为每个目标函数设置了上下界限。
例如,总成本的上界可以是一个预算限制,客户满意度的下界可以是一个最低满意度指标。
3. 构建目标规划模型根据定义的决策变量和目标函数,我们构建了一个目标规划模型。
该模型包括了决策变量的约束条件、目标函数的上下界限制等。
4. 利用LINGO软件求解模型使用LINGO软件,我们输入了目标规划模型,并设置了初始数值。
然后运行LINGO软件,对目标规划模型进行求解。
5. 分析与调整模型根据LINGO软件的求解结果,我们对模型的结果进行了分析。
如果目标无法完全实现或者有其他问题,我们需要调整模型的上下界限、决策变量的限制条件等。
6. 进行灵敏度分析为了进一步了解目标规划模型的稳定性和可靠性,我们进行了灵敏度分析。
通过逐步调整目标函数的上下界限,我们观察模型结果的变化,并判断模型的鲁棒性和可操作性。
实验结果与讨论通过LINGO软件的求解,我们得到了供应链优化问题的最优解。
根据模型的目标函数和约束条件,我们可以评估供应链在不同目标下的表现,从而为决策者提供多个可选方案。
在实验的过程中,我们发现目标规划方法对于多目标问题的处理非常有效。
lingo在运筹学中的运用
lingo在运筹学中的运用
Lingo在运筹学中是一类特别有用的工具,它是一种针对非线性优
化问题的建模语言。
它提供了一种实现复杂求解过程的有效方法,可
以帮助企业创建可衡量的、可控的模型,本质上提高解决难题的能力。
Lingo在运筹学中的应用如下:
一、数据建模
Lingo可以帮助企业更好地利用数据分析,通过数据可视化,实时监测,以及建立超级等式和复合对象,更好地实现数据建模。
这样可以提高
数据管理能力,让企业能够更好地组织、管理、分析及设计数据模型。
二、决策模型
Lingo可以帮助企业构建复杂的决策模型,允许运筹学家在多变量制约
条件下建立决策模型。
Lingo可以在多种应用场景中使用,从传统的精
确方程求解到组合优化多目标问题,从分布式系统的模拟到深度学习
的应用模型,Lingo都有着重要的用途。
三、数学优化
Lingo可以帮助企业有效地实现数学优化目标,在模型本身的表述上,Lingo具有更快的执行速度,并且可以处理大量的数量和变量,可以表
示复杂的最优化目标函数,从而提供最佳的运行数值。
四、机器学习
Lingo在运筹学中也可以应用于机器学习领域,可以用来构建收敛性更
强的机器学习模型,比如基于复杂决策树的模型,或者用Lingo设计的模型来处理视觉捕获和多机实时分析的问题。
总结:Lingo在运筹学中具有重要的作用,它可以帮助企业更加有效地实现数据建模、决策模型、数学优化和机器学习等方面的目标,进而提高企业的解决问题的能力。
lingo-多目标规划模型
用LINGO求解,得最优解 d1 d1 =0 , d 2 6,最优值为6。 具体LINGO程序及输出信息如下:LINGO程序为(参见图4):
model: min=d2_; 10*x1+15*x2+d1_-d1=40; x1+x2+d2_-d2=10; d1=0; END
图4
LINGO运算后输出为(参见图5):
x4 。
非劣性可以用下图说明。
在图1中,max(f1, f2) .就
方案①和②来说,①的
f2 目标值比②大,但其目 标值 f1 比②小,因此无
法确定这两个方案的优
与劣。 在各个方案之间, 显然:④比①好,⑤比
图 多目标规划的劣解与非劣解
④好, ⑥比②好, ⑦比
③好……。
第二部分 多目标决策的数学模型及其非劣解
多目标决策方法
李小飞
多目标决策的基本概念 多目标决策的数学模型及其非劣解 多目标决策建模的应用实例
用LINGO软件求解目标规划问题
1. 求解方法概述
• LINGO(或LINDO)不能直接求解目标规 划问题,但可以通过逐级求解线性规划的 方法,求得目标规划问题的满意解。
2. 示例
• 例1 用LINGO求解目标规划问题
例
试分析下表所示四个方案的非劣性。
目标函数 方案 X1 X2 X3 X4 F1(x) 10 14 12 8 F2(x) 21 18 16 20 非劣 非劣 劣 劣 方案的性质
解:因 F1 ( x1) 10 8 F1 ( x 4) F ( x1) 21 20 F ( x4) 2 2 故 x1 x 4 。 同理,x2 x3, x1 x2, x1 x3, x2 因此四个方案的优劣性见表。
Lingo在飞行管理中的应用
Lingo在飞行管理中的应用概述随着航空业的日益发展,航空企业的管理需求也在不断增加。
其中,飞行管理是航空企业中重要的一环。
飞行管理主要包括航班计划安排、机组人员排班、飞机维护计划等。
而这些工作都需要高效的管理系统来支撑。
近年来,航空企业普遍采用了飞行管理软件来实现飞行管理的自动化。
Lingo是一种广泛应用于数学建模的工具。
它可以帮助人们建立数学模型、进行分析和求解,常被应用于生产调度、物流管理、供应链优化等方面。
而在飞行管理中,Lingo同样有着广泛的应用,可以帮助航空企业解决飞行计划、机组排班等问题,提高管理效率。
本文将详细介绍Lingo在飞行管理中的应用。
飞行计划优化飞行计划是飞行管理中最基础的工作之一。
飞行计划涉及航班的起降时间、航线、停靠机场、飞行时长等信息。
而对于航空企业来说,合理的飞行计划可以提高飞行效率、降低飞行成本。
因此,如何优化飞行计划是航空企业中重要的问题。
在传统的飞行计划优化中,往往需要考虑到多种因素,包括航班的数量、起降时间、机组人员等。
由于这些因素之间相互影响,因此很难快速得到一个最优解。
而使用Lingo进行飞行计划优化,可以大大降低这个问题的复杂度,提高优化效率。
Lingo通过建立数学模型来描述飞行计划优化问题。
例如,可以将优化目标设置为最小化航班总飞行时间,同时满足每个航班的飞行约束条件(如最晚到达时间、最早出发时间等)。
通过运行Lingo模型,可以得到一个最优的飞行计划方案,使得目标函数最小。
机组排班问题与飞行计划一样,机组排班也是飞行管理非常重要的一项工作。
机组排班涉及机组人员的任务安排、机组人员的休息时间、机组人员的交替等。
在传统的机组排班中,人工安排的方式容易出现安排不当,导致机组人员出现疲劳情况,从而影响航班安全。
因此,建立一个合理的机组排班系统对于保证航班安全至关重要。
Lingo同样可以用于机组排班问题的求解。
它可以把机组排班问题转化为一个数学优化模型,使得机组人员可以在最短的时间内完成任务,并且保障机组人员的休息时间。
LINGO的使用方法说明大全
LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的内部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;endsetsdata:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.例3.6sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%范围内,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).data:interest_rate,inflation_rate = .09 ?;enddata在每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值.在WINDOWS操作系统下,将会看到一个如下面的对话框:直接输入一个值再点击OK按钮,LINGO就会把输入的值指定赋给inflation_rate,然后继续求解模型.除了参数之外,也可以实时输入集的属性值,但不允许实时输入集元素名.(4) 指定属性为一个值可以在数据定义的右边输入一个值来把所有的元素的该属性指定为一个值.如下面的例子.例3.9sets:days /MO,TU,WE,TH,FR,SA,SU/:needs;endsetsdata:needs = 40;enddataLINGO将用40指定days集的所有元素的needs属性.对于多个属性的情形如下:sets:days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;endsetsdata:needs cost = 40 90;enddata(5) 数据部分的未知数值表示法有时候只需为一个集的部分元素的某个属性指定数值,而让其余元素的该属性是未知的,以便让LINGO 去求出它们的最优值.在数据定义中输入两个相连的逗号表示该位置对应元素的属性值未知,两个逗号间可以有空格.例3.10sets:years/1..6/: capacity;endsetsdata:capacity = ,24,40,,,;属性capacity的第2个和第3个值分别为24和40,其余的未知.3.3.2初始部分初始部分是LINGO提供的另一个可选内容.在初始部分中,与数据部分中的数据定义相同,可以输入初始定义(initialization statement).在对实际问题的建模时,初始部分并不起到描述模型的作用,初始部分输入的值仅被LINGO求解器当作初始值来使用,并且仅仅对非线性模型有用.这与数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化变量的数值.一个初始部分以关键字“init:”开始,以关键字“endinit”结束.初始部分的初始定义规则和数据部分的数据定义规则相同.也就是说,可以在定义的左边同时初始化多个集属性,即可以把集属性初始化为一个数值,也可以用问号定义为实时数据,还可以用逗号指定为未知数值.例3.11init:X,Y = 1,0;endinitY=@log(X);X^2+Y^2<=1;3.4 LINGO函数3.4.1运算符及其优先级LINGO 中的运算符可以分为三类:算数运算符、逻辑运算符和关系运算符.(1) 算数运算符算数运算符分为5种: (加法), (减法), (乘法), (除法), (求幂).(2) 逻辑运算符逻辑运算符分为两类:#AND#(与),#OR#(或),#NOT#(非):这3个运算符是参与逻辑值之间的运算,其结果还是逻辑值.运算符#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)是用于“数与数之间”的比较,其结果是实逻辑值.(3) 关系运算符LINGO中有3种关系运算符:<(小于等于),>(大于等于),=(等于).注意LINGO中优化模型的约束一般没有严格大于、严格小于,要和逻辑运算符区分开.运算符的优先等级如附表3-2所示.附表3-2 运算符的优先级3.4.2 LINGO数学函数(1) 基本数学函数LINGO中有相当丰富的数学函数,这些函数的用法简单.下面列表对各个函数的用法做简单的介绍,具体情况如附表3-3所示.(2) 集合循环函数集合循环是指对集合上的元素(下标)进行循环操作的函数,它的一般用法如下:@function(setname[(set_index_list)[|condition]]:expression_list);其中function是集合函数名,是FOR,MAX,MIN,PROD,SUM五种之一.setname是集合名;set_index_list 是集合索引列表(可以省略);condition是实用逻辑表达式描述的过滤条件(通常含有索引,可以省略);expression_list是一个表达式(对@FOR可以是一组表达式).下面对具体的集合函数作如下解释:@FOR(集合元素的循环函数):对集合setname的每个元素独立生成表达式,表达式由expression_list 描述.@MAX(集合属性的最大值):返回集合setname上的表达式的最大值.@MIN(集合属性的最小值) :返回集合setname上的表达式的最小值.@PROD(集合元素的乘积函数):返回集合setname上的表达式的积.@SUM(集合元素的求和函数) :返回集合setname上的表达式的和.(3) 集合操作函数集合操作函数是对集合进行操作的函数,主要有4种,下面分别介绍它们的一般用法.1)@INDEX([set_name,]primitive_set_element)这个函数给出元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略编号set_name,LINGO按模型中定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.通过下面例子解释函数的使用方法.例如,假设定义一个女孩的姓名集合和一个男孩的姓名集合:SETS:GIRLS/DEBBLE,SUE,ALICE/;BOYS/BOB,JOE,SUE,FRED/;ENDSETS注意到女孩集和男孩集中都有一个为SUE的元素,如果要调用此函数@INDEX(SUE),则得到返回索引值是2.因为集合GIRLS在集合BOYS之前,则索引函数只对集合GIRLS检索.如果想查找男孩集中的SUE,则应该使用@INDEX(BOYS,SUE),则此时得到的索引值是3.2)@IN(set_name,primitive_index_1[,primitive_index_2 …])这个函数用于判断一个集合中是否含有某个索引值.它的返回值是1(逻辑值“真”),或是0(逻辑值“假”).例3.12全集为I,B是I的一个子集,C是B的补集.sets:I/x1..x4/;B(I)/x2/;C(I)|#not#@in(B,&1):;endsets3)@wrap(index,limit)该函数返回j=index-k*limit,其中k是一个整数,取适当值保证j落在区间[1,limit]内.该函数相当于index模limit再加1.该函数在循环、多阶段计划编制中特别有用.4)@size(set_name)该函数返回集set_name的元素个数.在LINGO模型中,如果没有明确给出集的大小,则使用该函数能够使模型中的数据变化和集的大小改变更加方便.(4) 变量定界函数变量界定函数能够实现对变量取值范围的附加限制,共4种:1)@bin(x)表示限制就是x为0或1;2)@bnd(L,x,U)表示限制变量x满足;3)@free(x)表示取消对变量x的默认下界为0的限制,即x可以取任意实数;4)@gin(x)表示限制变量x为整数.在默认情况下,LINGO规定变量是非负的,即下界值为0,上界为+∞.@free取消了默认的下界为0的限制,使变量也可以取负值.@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束.(5) 概率论中相关函数1)@pbn(p,n,x)二项分布的分布函数,当n和(或)x不是整数时,用线性插值法进行计算.2)@pcx(n,x)自由度为n的χ2分布的分布函数在x点的取值.3)@peb(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,且系统容量无限时的Erlang繁忙概率,多用于解决排队问题.4)@pel(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,系统容量为有限时的Erlang繁忙概率,多用于解决排队问题.5)@pfd(n,d,x)自由度为n和d的F分布的分布函数在x点的取值.6)@pfs(load,x,c)当负荷上限为load,顾客数为c,平行服务台数量为x时,顾客源有限的Poisson服务系统的等待或有返回顾客数的期望值.load是顾客数乘以平均服务时间,再除以平均返回时间.当c和(或)x不是整数时,采用线性插值进行计算.7)@phg(pop,g,n,x)超几何(Hypergeometric)分布的分布函数.pop表示产品总数,g是正品数.从所有产品中任意取出n(n≤pop)件.pop,g,n和x都可以是非整数,这时采用线性插值进行计算.8)@ppl(a,x)Poisson分布的线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从均值为a的Poisson 分布.9)@pps(a,x)均值为a的Poisson分布的分布函数在x点的取值.当x不是整数时,采用线性插值进行计算.10)@psl(x)单位正态线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从标准正态分布.11)@psn(x)标准正态分布的分布函数在x点的取值.12)@ptd(n,x)自由度为n的t分布的分布函数在x点的取值.13)@qrand(seed)产生(0,1)区间的拟随机数.@qrand只允许在模型的数据部分使用,它将用拟随机数填满集属性.通常定义一个m×n的二维表,m表示运行实验的次数,n表示每次实验所需的随机数的个数.在行内,随机数是独立分布的;在行间,随机数是非均匀的.这些随机数是用“分层取样”的方法产生的.(6) 金融函数目前LINGO提供了两个金融函数.1)@fpa(I,n)返回如下情形的净现值:单位时段利率为I,连续n个时段支付,每个时段支付单位费用.若每个时段支付x单位的费用,则净现值可用x乘以@fpa(I,n)得到.@fpa的计算公式为.净现值就是在一定时期内为了获得一定收益,在该时期初所支付的实际费用.2)@fpl(I,n)返回如下情形的净现值:单位时段利率为I,第n个时段支付单位费用.@fpl(I,n)的计算公式为.这两个函数间的关系:.(7)输入和输出函数输入和输出函数可以把模型与外部数据(如文本文件、数据库和电子表格等)连接起来.1)@file函数该函数用于从外部数据文件中输入数据,它可以放在模型中任何地方.该函数的语法格式为@file(’’).这里是文件名,可以采用相对路径和绝对路径两种表示方式.记录结束标记(~)之间的数据文件部分称为记录.如果数据文件中没有记录结束标记,那么整个文件被看作单个记录.除了记录结束标记外,从模型外部调用的文本和数据同在模型里是一样的.下面介绍一下在数据文件中的记录结束标记连同模型中@file函数调用是如何工作的.当在模型中第一次调用@file函数时,LINGO打开数据文件,然后读取第一个记录;第二次调用@file 函数时,LINGO读取第二个记录等等.文件的最后一条记录可以没有记录结束标记,当遇到文件结束标记时,LINGO会读取最后一条记录,然后关闭文件.如果最后一条记录也有记录结束标记,那么直到LINGO 求解完成模型后关闭该文件.注意,如果有多个文件同时保持打开状态,可能就会导致一些问题,LINGO允许同时打开文件的上限数是16.在LINGO中不允许嵌套调用@file函数.2)@text函数该函数被用在数据部分,用来把求解结果输出至文本文件中.它可以输出集元素和集属性值.其语法为@text([’’])这里是文件名,可以采用相对路径和绝对路径两种表示方式.如果忽略,那么数据就被输出到标准输出设备(大多数情形都是屏幕).@text函数仅能出现在模型数据部分的一条语句的左边,右边是集名(用来输出该集的所有元素名)或集属性名(用来输出该集属性的值).用接口函数产生输出的数据定义称为输出操作.输出操作仅当求解器求解完模型后才执行,执行次序取决于其在模型中出现的先后.3)@ole函数@OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术.OLE传输直接在内存中传输数据,并不借助于中间文件.当使用@OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges.为了使用@OLE函数,必须有EXCEL5及其以上版本.@OLE函数可在数据部分和初始部分引入数据.@OLE可以同时读集元素和集属性,集元素最好使用文本格式,集属性最好使用数值格式.原始集每个集元素需要一个单元(cell),而对于n元的派生集每个集元素需要n个单元,这里第一行的n个单元对应派生集的第一个集元素,第二行的n个单元对应派生集的第二个集元素,依此类推.4)@ranged(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量.5)@rangeu(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量.6)@status()返回LINGO求解模型后的结束状态:0 --- Global Optimum(全局最优);1 --- Infeasible(不可行);2 --- Unbounded(无界);3 --- Undetermined(不确定);4 --- Feasible(可行);5 --- Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界)6 --- Local Optimum(局部最优);7 --- Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个);8 --- Cutoff(目标函数的截断值被达到);9 --- Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止).通常,如果返回值不是0,4或6时,那么解将不可信,几乎不能用.该函数仅被用在模型的数据部分来输出数据.7)@dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices).(8) 辅助函数1)@if(logical_condition,true_result,false_result)@if函数将评价一个逻辑表达式logical_condition是否为真,如果为真,返回true_ result,否则返回false_result.2)@warn(’text’,logical_condition)如果逻辑条件logical_condition为真,则产生一个内容为’text’的信息框.3)@user(user_determined_arguments)该函数允许用户自己编写函数,可以用c语言等编写,返回值为用户函数计算的结果.3.5 LINGO程序出错信息在LINGO模型求解时,系统会对程序进行编译、求解或是执行于程序相关的命令,这都有可能出现一些语法或运行的错误.当出现时,系统会弹出一个出错报告框,显示错误代码,并且大致指出错误的所在位置.这些错误信息报告对于用户发现及改正程序中的错误有很大帮助.如附表3-4就出错提示信息,进行说明(没有说明的错误编号目前还没有使用).。
数学建模必备LINGO在多目标规划和最大最小化模型中的应用
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
lingo数学模型
lingo数学模型
"lingo"是一种用于数学建模和优化的软件工具。
它提供了一个
直观的界面,用于建立和求解复杂的数学模型,包括线性规划、整
数规划、非线性规划、多目标规划等。
lingo的使用可以帮助分析
师和决策者在面临复杂的决策问题时进行优化决策。
在数学建模方面,lingo可以用来建立数学模型,包括定义决
策变量、约束条件和目标函数。
用户可以通过lingo的界面直观地
输入模型的各个部分,而无需深入了解数学建模的具体语法和规则。
这使得非专业的用户也能够快速地建立数学模型。
在优化方面,lingo提供了强大的求解算法,可以对各种类型
的数学模型进行求解,以找到最优的决策方案。
lingo支持对模型
进行灵敏度分析,帮助用户了解参数变化对最优解的影响,从而更
好地进行决策。
除了数学建模和优化外,lingo还具有数据可视化功能,可以
直观地展示模型的结果和决策方案。
这有助于用户向决策者传达模
型分析的结果,从而更好地支持决策过程。
总的来说,lingo作为数学建模和优化工具,为用户提供了一
个方便、强大的平台,帮助他们解决复杂的决策问题。
通过lingo,用户可以更好地理解问题、制定决策,并得到最优的解决方案。
LINGO在数学建模中的应用
LINGO的菜单
1.File(文件菜单) • Export file(输出特殊格式文件) • Database User Info(用户基本信息) 2.Edit Menu(编辑菜单) • Paste Special(选择性粘贴) • Go to Line(光标移到某一行) • Match Parenthesis(匹配括号) • Insert New Object(插入新对象)
3.关系运算符 = 表达式左右相等 <= 表达式左边小于或等于右边 >= 表达式左边大于或等于右边 注:Lingo没有单独的<和>
A<B A B, 是一个小的正数
Lingo函数
• Lingo提供了五十几个内部函数,所有函数都 以字符@开头
• 数学函数 @ABS(x),@SIN(X),@COS(x),@TAN(X), @LOG(X),@EXP(X),@SIGN(X), @SMAX(X1,…,Xn),@SMIN(X1,…,Xn) @FLOOR(X),@LGM(X)
LINGO的菜单
3.LINGO • Debug(调试) • Model Statistics(模型资料统计) • Look(查看)
LINGO的菜单
4.Window • Command Window(命令行窗口) • Status Window(状态窗口) 5.Help • Help Topics(帮助主题) • Register(在线注册) • Auto Update(自动更新) • About Lingo(关于Lingo)
41,52,现有8个客户各要一批货,数量分别为35,37,22,32, 41,32,43,38,各供货栈到8个客户的单位运价如表1. 如何确定各供货栈到8个客户的货物调运量,使总的运费最小?
利用LINGO软件解决数学建模问题
表
380000 262200 408100 130100
表2
飞机汽油 1 2 辛烷数 >=91 >=91 >=100 >=100 蒸汽压力(g/cm^2) 蒸汽压力(g/cm^2) <=9 96*10^(<=9.96*10^(-2) ^( <=9 96*10^(<=9.96*10^(-2) ^( 产量需求(L) 产量需求(L) 越多越好 >=250000 >=250000
表1
标准汽油 1 2 3 4 辛烷数 1 0 7 .5 9 3 .0 8 7 .0 1 0 8 .0 蒸 汽
(1 g/cm^2=98Pa)
压 力 库存量 g/cm^2) ( g/cm^2 ) 7.11*10^(- 2) 7.11*10^( 11.38*10^(11.38*10^( - 2) 5.69*10^(5.69*10^( - 2) 28.45*10^(- 2) 28.45*10^( -
LINGO 7.0 运行结果如下: 运行结果如下:
Global optimal solution found at step: Objective value:
Variable X1 X2 X3 X4 X5 X6 X7 X8 Value 264937.9 135702.1 408100.0 124660.0 115062.1 129497.9 0.0000000 5440.011
一、 Introduction(软件简介 ) 软件简介
• LINGO通常用来解决大型的线性规划,非线性 LINGO通常用来解决大型的线性规划, 通常用来解决大型的线性规划 规划和整数规划等优化模型, 规划和整数规划等优化模型,它为用户提供了 一种更容易和更有效率的一个包罗万象的工具 LINDO公司生产的LINDO、 公司生产的LINDO API、 包。与LINDO公司生产的LINDO、LINDO API、 What’s Best!相比较 LINGO的功能最为强大 相比较, 的功能最为强大。 What s Best!相比较,LINGO的功能最为强大。
lingo软件在规划模型中的应用1
例1 货机装 运
三个货舱最大载重(吨),最大容积(米3)
前仓: 10;6800 飞机平衡
中仓: 16;8700
后仓: 8;5300
三个货舱中实际载重必须与其最大载重成比例
重量(吨) 空间( 米3/ 吨) 18 480 货物1 货物2 货物3 货物4 15 23 12 650 580 390 利润(元/ 吨) 3100 3800 3500 2850
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
x1 x5 100
原料 供应
劳动 时间
x3 0.8x5
2 x5 2 x6 480
非负约束
x4 0.75x6 x1 , x6 0
例3 自来水输送
目标 Max Z 290x11 320x12 230x13 280x14 函数 310x21 320x22 260x23 300x24 260x31 250x32 220x33
x11 x12 x13 x14 100 供应 A : x11 x12 x13 x14 50 限制 需求约束可以不变 B, C 类似处理
约束 条件
货舱 重量 x12 x22 x32 x42 16 x13 x23 x33 x43 8
货舱 容积
x11 x21 x31 x41 10
10; 6800
16; 8700
8; 5300
480x11 650x21 580x31 390x41 6800
0.8千克B1
获利44元/千克
至多100公斤A1
制订生产计划,使每天净利润最大
LINGO在多目标规划设计最大最小化模型中应用
LINGO 在多目标规划和最大最小化模型中的应用在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。
一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==p i a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(i i f x f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
LINGO使用大全
目录第一章引言······························································ 1.1 优化模型的基本概念·······································1.1.1 优化模型的一般形式··································1.1.2 可行解与最优解······································1.1.3 优化模型的基本类型···································1.2 优化问题的建模实例·········································1.2.1 线性规划模型··········································1.2.2 二次规划模型··········································1.2.3 非线性规划模型·········································1.2.4 整数规划模型···········································1.2.5 其他优化模型···········································1.3 LINDO/LINGO软件简介········································1.3.1 LINDO/LINGO软件的基本功能···························1.3.2 LINDO/LINGO软件的求解过程···························1.3.3 建立LINDO/LINGO优化模型需要注意的几个基本问题·······习题1··························································第二章 LINDO软件的基本使用方法··································2.1LINDO入门··················································2.1.1LINDO软件的安装过程··································2.1.2编写一个简单的LINDO程序······························2.1.3一些注意事项···········································2.2敏感性分析··················································2.3整数线性规划的求解··········································*2.4 二次规划的求解··············································*2.5 LINDO的主要菜单命令········································2.5.1 文件主菜单·············································2.5.2 编辑主菜单·············································2.5.3 求解主菜单·············································2.5.4 报告主菜单············································*2.6 LINDO命令窗口··············································2.6.1 INFORMATION(信息类命令)·····························2.6.2 INPUT(输入类命令)····································2.6.3 DISPLAY(显示类命令)··································2.6.4 OUTPUT(输出类命令)···································2.6.5 SOLUTION(求解类命令)·································2.6.6 PROBLEM EDITING(编辑类命令)·······················2.6.7 QUIT(退出类命令)······································2.6.8 INTEGER,QUADRATIC,AND PARAMETRIC PROGRAMS(整数,二次与参数规划命令)····························2.6.9CONVERSATIONAL PARAMETERS(对话类命令)··········2.6.10 USER SUPPLIED ROUTINES(用户过程类命令)·········2.6.11 MISCELLANEOUS(其他命令)···························*2.7 LINGO命令脚本文件·······································附录 MPS格式数据文件········································习题2·························································第三章 LINGO软件的基本使用方法··································3.1LINGO入门···············································3.1.1LINGO软件的安装过程和主要特色··················3.1.2在LINGO中使用LINGO模型·······················3.1.3编写一个简单的LINGO程序························3.2在LINGO中使用集合······································3.2.1集合的基本用法和LINGO模型的基本要素············3.2.2基本集合与派生集合·······························3.2.3稠密集合与稀疏集合·······························3.2.4集合的使用小结···································3.3运算符和函数·············································3.3.1运算符及优先级···································3.3.2基本的数学函数···································3.3.3集合循环函数·····································3.3.4集合操作函数·····································3.3.5变量定界函数·····································3.3.6财务会计函数·····································3.3.7概率论中的相关函数·······························3.3.8文件输入输出函数·································3.3.9结果报告函数·····································3.3.10其他函数·········································3.4LINGO的主要菜单命令·····································3.4.1文件主菜单·······································3.4.2编辑主菜单·······································3.4.3LINGO系统(LINGO)主菜单·······················3.5LINGO命令窗口···········································习题3························································第四章 LINGO软件与外部文件的接口································4.1 通过WINDOWS剪贴板传递数据···························4.1.1粘贴命令的用法·······························4.1.2特殊粘贴命令的用法······························4.2通过文本文件传递数据···································4.2.1通过文本文件输入数据····························4.2.2通过文本文件输出数据····························4.3通过电子表格文件传递数据·································4.3.1在LINGO中使用电子表格文件的数据················4.3.2将LINGO模型嵌入、链接到电子表格文件中···········4.4LINGO命令脚本文件·······································附录 LINGO出错信息··········································习题4························································第五章生产与服务运作管理中的优化问题·······························5.1 生产与销售计划问题·······································5.1.1 问题实例·········································5.1.2 建立模型·········································5.1.3 求解模型·········································5.2 有瓶颈设备的多级生产计划问题·····························5.2.1 问题实例·········································5.2.2 建立模型·········································5.2.3 求解模型·········································5.3 下料问题················································5.3.1 钢管下料问题·····································5.3.2 易拉罐下料问题···································5.4 面试顺序与消防车调度问题································5.4.1 面试顺序问题·····································5.4.2 消防车调度问题···································5.5 飞机定位和飞行计划问题··································5.5.1 飞机的精度定位问题·······························5.5.2 飞机计划问题·····································习题5························································第六章经济与金融中的优化问题·····························.6.1经济均衡问题及应用······································6.1.1单一生产商、单一消费者的情形······················6.1.2两个生产商、两个消费者的情形······················6.1.3拍卖与投标问题···································6.1.4交通流均衡问题···································6.2投资组合问题············································6.2.1基本的投资组合模型·······························6.2.2存在无风险资产时的投资组合模型···················6.2.3考虑交易成本的投资组合模型·······················6.2.4利用股票指数简化投资组合模型·····················6.2.5其他目标下的投资组合模型·························6.3市场营销问题············································6.3.1新产品的市场预测·································6.3.2产品属性的效用函数·······························6.3.3机票的销售策略···································习题6························································第七章图论与网络模型······································7.1运输问题与转运问题······································7.1.1运输问题········································7.1.2指派问题·········································7.1.3转运问题········································7.2最短路问题和最大流问题··································7.2.1最短路问题·······································7.2.2最大流问题······································7.2.3最小费用最大流问题······························。
lingo求解多目标规划__例题
实验二:目标规划一、实验目的目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
熟悉目标规划模型的建立,求解过程及结果分析。
二、目标规划的一般模型设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国刚性约束,可能是等式约束,也可能是不等式约束。
设有l 个柔性目标约束,其目标规划约束的偏差是),...,2,1(,l i d d i i =-+。
设有q 个优先级别,分别为q p p p ,...,21。
在同一个优先级k p 中,有不同的权重,分别记为),...,2,1(,l j w w kj kj =-+。
因此目标规划模型的一般数学表达式为:min ∑∑=++--=+=l j j kj j kj q k k d w d w p z 11);(s.t. ,,...2,1,),(1m i b x an j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x c i i j i nj i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。
四、实验容及步骤1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。
目录和项目名推荐使用学生自己的学号。
2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。
例2.1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO 在多目标规划和最大最小化模型中的应用在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。
一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==p i a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(i i f x f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
模型的约束条件可以包含线性、非线性的等式和不等式约束。
这一模型的求解可视具体情况采用适当的方法。
三、用LINGO 求解多目标规划和最大最小化模型1.解多目标规划用LINGO 求解多目标规划的基本方法是先确定一个目标函数,求出它的最优解,然后把此最优值作为约束条件,求其他目标函数的最优解。
如果将所有目标函数都改成约束条件,则此时的优化问题退化为一个含等式和不等式的方程组。
LINGO 能够求解像这样没有目标函数只有约束条件的混合组的可行解。
有些组合优化问题和网络优化问题,因为变量多,需要很长运算时间才能算出结果,如果设定一个期望的目标值,把目标函数改成约束条件,则几分钟就能得到一个可行解,多试几个目标值,很快就能找到最优解。
对于多目标规划,同样可以把多个目标中的一部分乃至全部改成约束条件,取适当的限制值,然后用LINGO 求解,从中找出理想的最优解,这样处理的最大优势是求解速度快,节省时间。
2.解最大最小化问题第一步,先把原来较复杂的目标函数式改写为一个简单的目标函数C min以及p 个约束条件:C X f C X f C X f p ≤≤≤)(,,)(,)(21其他原有的约束条件不变,改写后仍然是一个规划,只是增加了p 个约束条件,目标函数的形式较为简单。
如果能用LINGO 求出它的解,则问题已经解决,如果求解困难,可转入下一步。
第二步,取消目标函数,保留上一步由目标函数改成的p 个约束条件和所有原来的约束条件,预设C 值为某个常数,此时原规划模型不再是规划,它仅仅包含等式和不等式,没有目标函数,是许多约束条件的组合,可以称它为“混合组”。
求该混合组的解,其实质是求满足所有约束条件并且使目标函数等于给定值的一组决策变量的值,求出来的结果是可行解,它未必是最优解。
在存在可行解的前提下,使目标函数值小的可行解优于使目标函数值大的可行解,使目标函数值越小的可行解越接近最优解。
第三步,对具体问题作出分析,对目标函数可能达到的最小值(即C 的最小值)作适当估计,然后在此估计值的基础上由大到小改变C 的值进行试算,使可行解越来越接近最优解。
对于目标函数值离散的情况,不难找到最优解。
例:装配线平衡模型。
一条装配线含有一系列的工作站,在最终产品的加工过程中每个工作站执行一种或几种特定的任务。
装配线周期是指所有工作站完成分配给它们各自的任务所化费时间中的最大值。
平衡装配线的目标是为每个工作站分配加工任务,尽可能使每个工作站执行相同数量的任务,其最终标准是装配线周期最短。
不适当的平衡装配线将会产生瓶颈——有较少任务的工作站将被迫等待其前面分配了较多任务的工作站。
问题会因为众多任务间存在优先关系而变得更复杂,任务的分配必须服从这种优先关系。
这个模型的目标是最小化装配线周期。
有2类约束:① 要保证每件任务只能也必须分配至一个工作站来加工;(A) (B) (C)(F)(G)(K) (J)(I) (H)(E)(D) ② 要保证满足任务间的所有优先关系。
例 有11件任务(A —K )分配到4个工作站(1—4),任务的优先次序如下图。
每件任务所花费的时间如下表。
解:用变量ik x 表示任务),,,(K B A i i =分配给工作站)4,3,2,1(=k k 的情况,1=ik x 表示分配,0=ik x 表示不分配,i t 表示完成各项任务所需时间,则目标函数为∑=≤≤11141max min i ik i k x t 约束条件(1):每项任务只能且必须分配至一个工作站来做,可以表示为: 11,,2,1,141 ==∑=i xk ik ;约束条件(2):各项任务间如果有优先关系,则排在前面的任务i 对应的工作站(序号)应当小于(或等于)排在后面的任务j 所对应的工作站(序号),即对所有有顺序的任务j i <:0)(41≥-∑=k ik jk kx kx ;约束条件(3):10或=ik x 。
这是一个非线性规划(目标函数非线性),但可以化为线性规划,增加一个变量,再增加四个约束条件:4,3,2,1,111=≤∑=k Z x t i ik i ,目标函数变为Z min 。
LINGO 程序为:model :!装配线平衡模型;sets :!任务集合,有一个完成时间属性t;task/ A B C D E F G H I J K/:t;!任务之间的优先关系集合(A 必须完成才能开始B,等等);pred(task,task)/ A,B B,C C,F C,G F,J G,JJ,K D,E E,H E,I H,J I,J /;! 工作站集合;station/1..4/;tsx(task, station):x;! x是派生集合txs的一个属性。
如果x(i,k)=1,则表示第i个任务指派给第k个工作站完成;endsetsdata:!任务A B C D E F G H I J K的完成时间估计如下;T = 45 11 9 50 15 12 12 12 12 8 9;enddata! 当任务超过15个时,模型的求解将变得很慢;!每一个作业必须指派到一个工作站,即满足约束①;@for(task(i): @sum(station(k):x(i,k)) = 1);!对于每一个存在优先关系的作业对来说,前者对应的工作站i必须小于后者对应的工作站j,即满足约束②;@for(pred(i,j): @sum(station(k):k*x(j,k)-k*x(i,k))>= 0);!对于每一个工作站来说,其花费时间必须不大于装配线周期;@for(station(k):@sum(txs(i,k):t(i)*x(i,k))<=cyctime);!目标函数是最小化转配线周期;min= cyctime;!指定x(i,j) 为0/1变量;@for(txs:@bin(x));end计算的部分结果为Global optimal solution found at iteration: 1255Objective value:Variable Value Reduced CostCYCTIMEX( A, 1)X( A, 2)X( A, 3)X( A, 4)X( B, 1)X( B, 2)X( B, 3)X( B, 4)X( C, 1)X( C, 2)X( C, 3)X( C, 4)X( D, 1)X( D, 2)X( D, 3)X( D, 4)X( E, 1)X( E, 2)X( E, 3)X( E, 4)X( F, 1)X( F, 2)X( F, 3)X( F, 4)X( G, 1)X( G, 2)X( G, 3)X( G, 4)X( H, 1)X( H, 2)X( H, 3)X( H, 4)X( I, 1)X( I, 2)X( I, 3)X( I, 4)X( J, 1)X( J, 2)X( J, 3)X( J, 4)X( K, 1)X( K, 2)X( K, 3)X( K, 4)例:工件的安装与排序问题。
某设备由24个工件组成,安装时需要按工艺要求重新排序。
I.设备的24个工件均匀分布在等分成六个扇形区域的一圆盘的边缘上,放在每个扇形区域的4个工件总重量与相邻区域的4个工件总重量之差不允许超过一定值。
II.工件的排序不仅要对重量差有一定的要求,还要满足体积的要求,即两相邻工件的体积差应尽量大,使得相邻工件体积差不小于一定值。
问题1:按重量排序算法;问题2:按重量和体积排序算法;请按下表中的工件数据(重量单位:g,体积单位:cm3)进行实时计算。
解:对问题1和2分别求解。
(1) 对问题1,仅考虑重量进行排序。
用24,,2,1 =i 表示24个工件,i W 表示各工件的重量,6,,2,1 =j 表示圆盘上的6个扇区,j D 表示各扇区上4个工件的总重量,ij X 是0-1型决策变量,表示工件i 是否放在扇区j 上,1=ij X 表示放,0=ij X 表示不放。
每个工件必须且只能放到一个位置上,每个位置放一个且仅放一个工件,每个扇区放4个工件,重量之和为j D 。
目标函数是:相邻扇区上的j D 之差的(绝对值)最大值达到最小,建立0-1规划模型如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧========-∑∑∑===+≤≤10,6,,2,1,24,,2,1,16,,2,1,4|}{|max min 1724161241161或iji ij i j j ij i ij k k k X D D j X W D i X j X D D 模型中的7D 是虚拟的,17D D =使得1-6-1扇区构成圆盘,引入7D 的目的只是使目标函数的表达式简洁。