线性代数第一章15
线性代数课件 第一章
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
线性代数第一章word版
第一章 矩阵§1.2 Gauss 消元法1. 基本概念一般的n 元线性方程组:)( b x a x a x a b x a x a x a b x a x a x a m n mn m m n n n n *⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ 22112222212********* 未知数:n x x x ,,,21系数:),,2,1,,2,1( n j m i a j i ==; 常数项:m b b b ,,,21一个解:n 元有序数组n c c c ,,,21 ,令, , , ,2211n n c x c x c x === 使(*)的所有方程变为恒等式。
解集合:(*)的全部解的集合。
不相容线性方程组:解集合为空集。
一般解(通解):解集合中全部元素的通项表达式。
具体解(特解):解集合中一个特定元素。
解的存在性:解集合是否为空集。
解的唯一性:非空的解集合是否只有一个元素。
线性方程组同解:解集合相同。
非齐次线性方程组:m b b b ,,,21 不全为零 齐次线性方程组:m b b b ,,,21 全为零一般的n 元齐次线性方程组:)( x a x a x a x a x a x a x a x a x a n mn m m nn n n **⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111零解:所有未知数均取零的解 非零解:未知数不全取零的解2. Gauss 消元法例 1 解线性方程组:⎪⎩⎪⎨⎧=--=--=-+524314422321321321x x x x x x x x x阶梯形方程组: 从上到下,方程中具有非零系数的第一个未知数的下标严格增大. 例如…. 注:(1) 它包含两个过程: 一是消元; 二是回代. (2) 将方程组化为阶梯形时所做的操作有如下三种: (i) 交换某两个方程, 如第i 个和第j 个,表示为j i R R ↔. (ii) 用非零常数k 乘某个方程, 如第i 个方程, 表示为 i kR . (iii) 将第i 个方程的l 倍加到第j 个方程, 表示为 i j lR R +. 这三种变换称为线性方程组的初等变换. 定理 1线性方程组的初等变换将方程组化为同解的方程组.解线性方程组的步骤:第一步 若第一个方程的1x 的系数为零,则选择一个1x 的系数不为零的方程, 如第i 个方程,交换它们的位置, 即 i R R ↔1.第二步 用变换1kR 将1x 的系数化为1.第三步 用变换1,1>+i lR R i , 将1x 从第一个方程以下的所有方程中消去。
线性代数第一章
第一章 行列式(determinant)
一、二阶、三阶行列式的定义
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
由四个数排成二行二列(横排称行、竖排称列) 的数表
a11 a12
a 21 a 22
表 达 式 a11a 22 a12 a 21称 为 数 表 所 确 定 的 二 阶 行列式,并记作 a11 a 21 a12 a 22
该式称为数表所确定的三阶行列式.
a13
三阶行列式的计算:
对角线法则 a11 a12
a21 a31 a22 a32 a13 a23 a33
a11a22a33 a12a23a31 a13a21a32 行标按照从小 a13a22a31 a12a21a33 a11a23a32 . 到大排列 注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号.
线性代数的第个问题是关于解线性方程组 的问题。 历史上线性方程组理论的发展促成了作为工 具的矩阵论和行列式理论的创立与发展,这些内 容已成为我们线性代数教材的主要部分。 行列式出现于线性方程组的求解,它最早是 一种速记的表达式,现在已经是数学中一种非常 有用的工具。行列式是由莱布尼茨和日本数学家 关孝和发明的。
逆序 0 1 0 3 1 于是排列 32514 的逆序数为 讨论其奇偶性
t
t 01 0 31 5 .
t
i 1
n
i
标准排列:无逆序的排列。如:1234是4级 标准排列
对换:在一个排列中,对调了两个数码, 其他数码不变,这种变换称为一个对换。 对23154 施以(1,4)对换得到23451。 两个结论: 1)对一个排列,经过一个对换,奇偶性 改变。
线性代数第十五讲
§6.3 惯性定理和二次型的规范形定理 任一秩为r 的二次形AX X x x x f Tn =),,,(21均可经过适当的可逆线性替换 CY X =化为2222211rr y b y b y b +++其中 r i b i ,,2,1 ,0 =≠,Tn x x x X ] [21 =, T n y y y Y ] [21 =。
推论 任一秩为r 的对称矩阵均合同于一个下列形式的对角矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001 rb b其中 r i b i ,,2,1 ,0 =≠。
设 AX X f T =是 n 元二次型,且 秩(A )=r :1.f 是复二次型存在可逆复线性替换 CY X =把 f 化为2222211rr y b y b y b +++其中 r i b i ,,2,1 ,0 =≠。
再令n n r r r rr z y z y z b y z b y ====++,,,1,,111111 ,则 f 被进一步变为22221r z z z +++。
称上式为复二次型的规范形。
定理 任意复二次型均可经过适当的可逆复线性替换化为规范形且规范形唯一。
推论 对任意一个秩为r 的n 阶复对称矩阵A ,必存在n 阶可逆复矩阵C ,使得⎥⎦⎤⎢⎣⎡=000rT I AC C例 设A 、B 均为n 阶复对称矩阵,则A 与B在复数域上合同的充分必要条件是 )()(B r A r =。
2.f 是实二次型存在可逆实线性替换 CY X =把 f 化为22112211rr p p p p y b y b y b y b ---++++其中 0,,1>r b b 。
再令n n r r r rr z y z y z b y z b y ====++,,,1,,111111 ,则 f 被进一步变为221221r p pz z z z ---+++ 。
称上式为实二次型的规范形。
定理(惯性定理) 任意实二次型均可经过适当的可逆实线性替换化为规范形且规范形唯一。
线性代数第一章行列式课件
a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设
线性代数第一章ppt
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
线代第一章
上一页 下一页
aa1211xx11
a12 x2 a22 x2
b1 , b2 .
D1
b1 b2
a12 , a22
aa1211xx11
a12 x2 a22 x2
b1 , b2 .
D2
a11 a21
b1 . b2
上一页 下一页
则二元线性方程组的解为
b1
x1
D1 D
b2 a11
a21
a12 a22 , a12 a22
如:2 4 3 1(逆序数为 4,偶排列) 2 1 3 4(逆序数为 1,奇排列)
上一页 下一页
定理 2 全部 n 级排列中,偶排列与奇排列各
占一半,都是 n!(n ≥ 2)个。 2
如果全部 n 级排列中奇排列有 p 个,偶 排列有 q 个,所有的排列都经过一次同样的 对换(对换相同的两个数),则奇排列变成 了偶排列(即 p ≥ q ),偶排列变成了奇排列 (即 q ≥ p ),所以 p = q。
a11 a21
a12 a22
a11a22 a12a21.
还有其他阶 的行列式吗
a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33
a11a23a32 a12a21a33 a13a22a31,
上一页 下一页
第二节 行列式的 一般规律是什么 构成 项数
t 23218
上一页 下一页
定义 4 把一个排列中的某两个元素位置对调, 而其它的元素不动,就得到了另一个排列,这 种变换就称为一个对换。
如:排列 3 5 4 2 1 中的 5 与 2 对换,就得 到新排列 3 2 4 5 1。 定理 1 任何一个排列经过一次对换,排列改 变奇偶性。即奇排列经过一次对换变成偶排列, 偶排列经过一次对换变成奇排列。
线代第一章讲义
线性代数与几何(A)主讲教师殷洪友E-mail: hyyin@第一章n 阶行列式1.1二阶和三阶行列式1.2排列1.3n阶行列式的概念1.4行列式的性质1.5行列式的展开定理1.6Cramer法则求解如下二元线性方程组)1.1(,,22221211212111⎩⎨⎧=+=+b x a x a b x a x a 1.1 二阶和三阶行列式其中a 11, a 12, a 21, a 22 称为方程组(1.1)的系数,b 1, b 2 称为常数项.方程组(1.1)的系数按所在的位置排成了一个两行两列的数表,称为(1.1)的系数矩阵.⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a;212221*********b a a b x a a a a −=−)(根据消元法,可得.211211*********a b b a x a a a a −=−)(时,当021122211≠−a a a a 方程组(1.1)有唯一解:,211222112122211a a a a b a a b x −−=.211222112112112a a a a a b b a x −−=由系数矩阵确定.⎟⎟⎠⎞⎜⎜⎝⎛22211211a aa a设是一个两行两列的数表,则表达式称为该数表所确定的二阶行列式,记作⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a 21122211a a a a −.2112221122211211a a a a a a a a −=其中称为行列式的元素,下标i j 表示该元素位于第i 行,第j 列.ij a11a 12a 22a 21a 主对角线副对角线2211a a =.2112a a −注意二阶行列式的计算满足对角线法则根据二阶行列式的定义,有.,211211221111212221222121a b b a b a b a b a a b a b a b −=−=若记,22211211a a a a D =对于二元线性方程组(1.1),,2221211a b a b D =.2211112b a b a D =则当系数行列式D ≠0时,方程组有唯一解:,2221121122212111a a a a a b a b D D x ==.2221121122111122a a a a b a b a D D x ==,333213232212312111⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛a a a a a a a a a 记,312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 则称其为该数表所确定的三阶行列式.类似地,设有9 个数排成的三行三列的数表333231232221131211a a a a a a a a a 332211a a a =.322311a a a −计算三阶行列式的对角线法则注意 1. 红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号;2. 对角线法则只适用于二阶与三阶行列式.322113a a a +312312a a a +312213a a a −332112a a a −如果三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111,,bx a x a x a b x a x a x a b x a x a x a 的系数行列式333231232221131211a a a a a a a a a D =,0≠利用三阶行列式求解三元线性方程组若记,3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =2-43-122-4-21D =计算三阶行列式例1.1则三元线性方程组有唯一解:,11DD x =,22DD x =.33DD x =.094321112=xx 求解方程例1.2例1.3 解线性方程组⎪⎩⎪⎨⎧=−+−=−+−=+−.0,132,22321321321x x x x x x x x x 解方程组的系数行列式111312121−−−−=D 5−=,0≠所以方程组有唯一解.因为113111221−−−−=D ,5−=113121212−−−−=D ,10−=0111122213−−−=D ,5−=故方程组的唯一解为:,111==DD x ,222==DD x .133==DD x思考题使得求一个二次多项式),(x f ()()().283,32,01=−==f f f定义1.1由自然数组成的一个有序数组称为一个n 阶排列.通常用表示n 阶排列.n ,,2,1"n j j j "21 定义1.2在一个排列中,如果一个较大数排在一个较小数之前,就称这两个数构成一个逆序.一个排列的逆序总个数称为这个排列的逆序数.排列具有自然顺序,即逆序数为0,称之为自然排列.n "3 2 1 1.2排列排列的逆序数记为).(21n j j j t " n j j j "21如果一个排列的逆序数为偶数,则称这个排列为偶排列,否则称为奇排列.计算排列的逆序数有两种方法:向前记数法和向后记数法.()2179863541()()()321212"−−n n n ()()()()()()kk k k k k 11322212123+−−−"例1.4计算下列排列的逆序数,并讨论它们的奇偶性.定理1.1对换改变排列的奇偶性.在一个排列中,把其中两个数的位置互换,而保持其余数的位置不动,这种变换称为一个对换.定理1.2在全部n 阶排列中,奇偶排列各占一半.()2≥n 定理1.3任意一个n 阶排列可经过一系列对换变成自然排列,并且所作对换次数的奇偶数与这个排列的奇偶性相同.1.3n 阶行列式的概念考察三阶行列式333231232221131211a a a a a a a a a D =332112322311312213aa a a a a a a a −−−(1)三阶行列式的展开式共有3!=6项;(2)每项都是位于不同行不同列的三个元素的乘积,并且每个这样的乘积都出现在展开式中;322113312312332211a a a a a a a a a ++=不难发现以下特征:.)1(321321321321)(333231232221131211∑−=j j j j j j j j j t a a a a a a a a a a a a (4)如果以表示对所有3阶排列求和,则有∑321j j j (3)每项的行指标按自然顺序排列,其正负号取决于列指标构成的排列的奇偶性;其中表示对所有n 阶排列求和.∑nj j j "21定义1.3由数表所确定的n 阶行列式定义为:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛nn n n n n a a a a a a a a a """""""212222111211()(),121212121212222111211n n nnj j j j j j t j j j nnn n n n a a a a a a a a a a a a """"""""""∑−=n 阶行列式的展开式主对角线副对角线几点说明:(1)行列式是一种特定的算式,它是为求解线性方程组而定义的;(2)n 阶行列式是项的代数和;!n (3)n 阶行列式的每项都是位于不同行不同列的n 个元素的乘积;(5)一阶行列式不要与绝对值记号相混淆;a a =(4)一般项前面所带符号为n nj j j a a a "2121();1)(21nj j j t "−(6)定义中的n 阶行列式可以简记为.n ij a D =例1.5证明上三角行列式nnnna a a a a a D """""""0022211211=.2211nn a a a "=同理可证下三角行列式和对角行列式nnn n a a a a a a """""""21222111000.2211nn a a a "=nna a a """""""0000002211=例1.6试证0000000052514241323125242322211514131211==a a a a a a a a a a a a a a a a D思考题已知()1211123111211xx x xx f −=.3的系数求x注意n 阶行列式的展开式也可表为:()()ni i i i i i t i i i nnn n n nn n n a a a a a a a a a a a a """"""""212122221112112121211∑−==′D ,nna a a %2211"#n n a a a 2112#""2121n n a a a 1.4行列式的性质行列式D'称为行列式D 的转置行列式.记#""n na a a 2112"#2121n n a a a =D nna a a %2211性质1.1行列式与它的转置行列式相等.注意性质1.1表明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.性质1.2互换行列式的两行(列)的位置,行列式反号,即推论1.1如果行列式有两行(列)完全相同,则此行列式等于0..111111111111nnn pn p qn q n nn n qn q pn p n a a a a a a a a a a a a a a a a "##"##"##""##"##"##"−=性质1.3用数k 乘行列式的某一行(列),等于用数k 乘此行列式,即nnn n pn p p na a a ka ka ka a a a """""""""""""""""212111211推论1.2如果行列式的某一行(列)元素全为0,则此行列式等于0..212111211nnn n pn p p na a a a a a a a a k """""""""""""""""=推论1.3如果行列式中有两行(列)元素成比例,则此行列式等于0.性质1.4若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n pnpn p p p p na a a a a a a a a a a a """""""""""21221111211′+′+′+.212111211212111211nnn n pn p p nnnn n pn p p na a a a a a a a a a a a a a a a a a """"""""""""""""""""""′′′+=nn n qn q pn p n a a a a a a a a "##"##"##"111111.1111111nnn qnq qnpn q p n a a a a ka a ka a a a "##"##"##"++=×k 性质1.5 把行列式的某一行(列)的倍数加到另一行(列)上去,行列式的值不变,即例1.7计算四阶行列式2421164214112111−−−−−=D 例1.8试证3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++例1.9计算n 阶行列式abbbba b b bbabb b b a D """""""""=具有如下形式的行列式称为反对称行列式,0000321323132231211312"""""""""nnnn n n a a a a a a a a a a a a D −−−−−−=证明:奇数阶反对称行列式等于0.例1.101.5行列式的展开定理312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 注意到三阶行列式可以改写为:()3223332211a a a a a −=()3123332112a a a a a −−()3122322113a a a a a −+323122211333312321123332232211a a a a a a a a a a a a a a a +−=()ij ji ij M A +−=1叫做元素a ij 的代数余子式.例如44434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +−=.23M −=行第j 列,由余下的元素按原来的排法构成的n -1 阶行列式叫做元素的余子式,记作ij a .M ij 定义1.4在n 阶行列式中,划去元素所在的第i ij a,44434241343332312423222114131211a a a a a a a a a a a a a a a a D =,33323123222113121144a a a a a a a a a M =().144444444M M A =−=+注意 1.行列式的每个元素都对应一个余子式和一个代数余子式;2.每个元素的余子式和代数余子式只与这个元素的位置有关,而与这个元素的大小无关.n 阶行列式nnn n n n a a a a a a a a a D """""""212222111211=等于它的任意一行(列)的所有元素与其对应的代数余子式乘积之和,即ni A a A a A a D in in i i i i ,,2,1,2211""=+++=),,2,1,(2211n j A a A a A a D nj nj j j j j ""=+++=定理1.4中任一行(列)的所有元素与另一行(列)相应元素的代数余子式乘积之和等于0,即n 阶行列式nnn jn j in i n a a a a a a a a D "##"##"##"111111=.j i ,A a A a A a jn in j i j i ≠=+++02211").,0(2211j i A a A a A a nj ni j i j i ≠=+++"定理1.5关于代数余子式的重要性质⎩⎨⎧≠===∑=.,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ则当当如果记⎩⎨⎧≠===,,0,,1,j i j i a D ij nij δ例1.11计算n 阶行列式xyy x y x y x D n 000000000000""#####""=例1.12证明范德蒙德(Vandermonde)行列式.2,)(1111112112222121≥−==∏≤<≤−−−n x xxxxxx xx x x D ni j j in nn n nn n "###"""例1.13计算三对角行列式βααβαββααββα+++=11%%%%%%%n D例1.14,000111111111111nnn n nkn k kk k k b b b b c c c c a a a a D "##""##""##""##"=设,11111kkk ka a a a D "##"=,11112nnn nb b b b D "##"=.21D D D =证明:例1.14中的行列式D 称为准下三角行列式..00011111111111111111111nnn nkk k k nnn nknk nkk k k b b b b a a a a b b b b c c c c a a a a "##""##""##""##""##""##"⋅=同理可以证明准上三角行列式思考题阶行列式设n )1(10001030012321"#%###"""n nD n −−−=求第一行各元素的代数余子式之和.11211n A A A +++"(2)设计一个n 阶行列式D n ,使得并计算这个行列式.,12+++=n n n D D D1.6Cramer法则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,22112222212111212111n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""设线性方程组,,,,21不全为零若常数项n b b b "则称此方程组为非齐次线性方程组;此时称方程组为齐次线性方程组.,,,,21全为零若常数项n b b b "如果线性方程组)2.1(22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""的系数行列式,0212222111211≠=nnn n nna a a a a a a a a D """"""""""定理1.7则该线性方程组有唯一解:)3.1(.,,,2211D D x D D x DD x n n ===".,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a D nnj n nj n n nj j nj j j """"""""""""""==+−+−+−其中推论2推论1)4.1(000221122221211212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n nn n n nn n n x a x a x a x a x a x a x a x a x a """""""""""""""的系数行列式,0≠D 如果齐次线性方程组则其只有零解;若(1.4)有非零解,.0=D 则必有如果线性方程组(1.2)无解或有两个不同的解,则它的系数行列式必为零.。
线性代数第一章
a1i a2 i ani
a1n
a11
a2 n a21 ann an1
i a1 i a2 ani
a1n a2 n ann
行列式展开定理 行列式等于它的任一行(列)的
各元素与其对应的代数余子式乘积之和,即 按第 ii 1,2,, n 行展开:
detaij ai1 Ai1 ai 2 Ai 2 ain Ain detaij a1 j A1 j a2 j A2 j anj Anj
按第 j j 1,2,, n列展开:
根据行列式展开定理,把行列式按某一行或列展 开是计算行列式最常用方法。
2
定义3 把 nn 2 阶行列式的元素 aij 所在的第 i
来相对位置不变构成的 n 1 阶行列式,称为 aij 的余 子式,记为 M ij ,且把 Aij 1 M ij 称为 aij 的代数余
i j
子式。
n 由定义3可知, 阶行列式有 n 2个元素,而每个元素都
有自己的余子式和代数余子式。因此有 n 2 个余子式,
2 7 4 7 5
1 2 2 7 0
1 5 1 6 1
c2 c1
c 4 c3
3 2 2 3 2
1
0
2
1 2 2 5 0
1 5 1 7 1
r4 r3
3 0 7 2 2 2 4 5 2 0 0 11 5
按第2列展开,得到
1 2 1 1 3 7 2 5 D 4 5 11 5 7 2 5 0 1
a11 a12 D
T n
a21 a22 a2 n
an1 an 2 ann
a1n
线性代数第一章习题及解答
n(n−1) 2
D. a11 . . . a1n ··· ··· ··· D an1 . . . ann
因为 D = D , 而 D =
T
对 DT 作上述行交换得, 于是
D2 = (−1)
n(n−1) 2
D = (−1)
T
n(n−1) 2
5
对 D2 依次进行相邻列交换, 然后转置得
D2 = (−1)
4
a+b 1 Dk = 0 ··· 0 0
ab a+b 1 ··· 0 0 1
0 ab a+b ··· 0 0 a+b 0 ··· 0 0 a+b 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ab a+b 1 ··· 0 0 ab a+b 1 ··· 0 0
0 0 0 ··· a+b 1 0 ab a+b ··· 0 0 0 ab a+b ··· 0 0
··· ··· ··· ···
(a − n)n (a − n)n−1 . . . a−n
1 1 ··· 1 解:将 Dn 一次进相邻行交换, 然后进行相邻列交换得 1 1 ··· 1 a−n a−n+1 ··· a 2 2 (a − n + 1) · · · a2 (xj = a − j, j = 0, 1, . . . , n) Dn = ( a − n ) . . . . . . . . ··· . (a − n)n (a − n + 1)n ∏ = (xj − xi ) 0≤i<j ≤n ∏ = (i − j )
a a . . . x ··· a 0 . . . x−a (rj − r1 , j = 1, 2, . . . , n)
线性代数第一章
1 5 1 , , 3, , 2 , 2 2 2
1 1 3 ( , , 2, , 2). 2 2 2
n维向量的基本运算
定义2 设两个n维向量=(a1 , a2 , , an ),
(b1 , b2 , , bn )
(1)如果它们对应的分量分别相等,即 ai bi , i 1, 2, , n, 则称向量 与 相等,记作 = 。 (2)加法:称向量(a1 b1 , a2 b2 , , an bn )为
16 College of Mathematics Sichuan University
注意:在上面的八条运算规律中只利用了向量 的加法和数乘。但是,利用负向量的概念,依 然可以定义向量的减法运算: - = ( ). 直观地说就是对应的分量相减,
- =(a1 b1 , a2 b2 , , an bn ).
1 2 2 12 3 , 求。
解: (1, 1, 2) 2(1, 2,0) 12(1,0, 3)
(1, 1, 2) (2,4,0) (12,0, 36)
(1 2 12, 1 4 0, 2 0 36) (11, 5, 34).
运动的、变化的、瞬时的、高维的
《线性代数》 线性代数其实就做了一件事情,将中学的线性函数的像空间从一维扩 展到多维,研究“多维实线性空间”到“多维实线性空间”的“线性 [X] 映射”:Y = T ,即 从“n维实线性空间”到“m维实线性空间”的“线性映射”
函数(映射)的三要素:定义域、值域、对应关系 (1)线性映射的定义域、值域:“有穷维的向量空间”(也称有穷 维线性空间)
线性代数第一章课件
(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第
j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元
。
把
a11 到 a22 的实联线称为主对角
到
线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1
第一篇 线性代数 第一章
a12 a1n a22 a2 n 0 ann
a 11 32 Dn a11 (1) an2
a n 3 a nn
a11 Dn1 a11a22 Dn2 a11a22 ann
叫上三角行列式。
习题1.1
1.计算下列行列式:
(1) 2 1
1 1 2 1
(2)
2 x 3 y 12 0 3x 7 y 5 0
x2 4 9 2 1 3 0 1
4.解下列方程
(1) 1
x2 0
1 x2 0
0 。 1 x2
0
(2) x
1
5.写出下列行列式中元素
1 3 2 4 0 8 3 0 1 0 4 1 2 1 0 1
a12
到 a 21 用虚线连接,称该虚线为副对角线。于是二阶行列式的
值便是主对角线上两个元素之积减去副对角线上两个元素之积所得
的差,其计算规律遵循如图1-1所示的对角线法则。
a11
a12
a21 a22
图1-1
(1-1-2)右端的式子又称为二阶行列式的展开式。当所有的 aij 都是数时,行列式的值是一个具提的数值,若其中有字母出现,则 行列式的值是一个代数式。通常用字母D表示行列式。 利用二阶 行列式的概念,方程组(1-1-1)中 x , x 的分子也可以用二阶行列式表 示, b1 a12 a11 b1
(1-1-1)
用消元法消去 x2 ,得到
(a11a22 a12a21 ) x1 b1a22 b2a12
同理消去 x1 ,得到 (a11a22 a12a21 ) x2 a11b2 a21b1 当 a11a22 a12a21 0时,方程组(1-1-1)的解为
线性代数_第一章
印证以上结论。
方法2 n个数中比i大的数有n- i个(i=1,2,…,n),若在排 列x1x2…xn中对i构成的逆序为li个,则在xnxn-1…x1中 对i构成的逆序为(n- i)-li,于是两排列中对i构成的 逆序之和为 表示 li+[(n-i)-li]= n-i (i=1,2,…,n) …… 从而 ( x1 x2 xn ) ( xn xn1 x1 ) n( n 1) ( n 1) ( n 2) 2 1 2 n( n 1) I .为所求 即 ( x n x n 1 x 1 ) 2
第1章 行列式
行列式是线性代数的一个重要组 成部分.它是研究矩阵、线性方程组、 特征多项式的重要工具.本章介绍了 n阶行列式的定义、性质及计算方 法,最后给出了它的一个简单应 用——克莱姆法则.
主要内容
1.1 1.2 1.3 1.4
n阶行列式的定义 行列式的性质 行列式按行(列)展开 克莱姆法则—行列式应用
是所有取自不同行、不同列n个元素的乘积 a1 j1 a2 j2 anjn ( j1 j2 jn ) 并冠以符号 ( 1) 的项的和.
(i) a1 j1 a 2 j2 a nj n 是取自不同行、不同列的n个元素乘积 (ii)行标按自然顺序排列,列标排列的奇偶性 ( j1 j2 jn ) 决定每一项的符号; (iii) 表示对所有的 j1 j2 jn 构成的n!个排列求和.
上三角行列式的值等于其主对角线上各元素的乘积 .
例5 计算
=-4-6+32-24-8-4
=-14
3 x1 x 2 x 3 26 例3 解线性方程组 2 x1 4 x 2 x 3 9 x1 2 x 2 x 3 16
华中《线性代数》PPT课件 第一章
这n个数的次序是可以任意交换的.一般地,n阶行列式
中的任意一个乘积项都可以写成
ai1j1ai2j2…ainjn
(1-12
其中i1i2…in;j1j2…jn是1,2,…,n的两个n级排列.下面
确定式(1-12)所带的符号.
第五节 行列式的性质
为了根据式(1-3)确定式(1-12)所带的符号,就 需要把这n个数,按行标从小到大的顺序进行重新排列, 也就是排成
(1-3)
其中
表示对所有n级排列的求和.通常把式
(1-3)等号右边的求和项称为行列式D的展开式.
第一节 行列式的概念
提示
在式(1-1)中,我们把aij(i,j=1,2,…,n)称为行 列式D的元素,元素aij的第一个下标i称为行标,表示其 处于第i行,第二个下标j称为列标,表示其处于第j列.有 时也把式(1-1)中的行列式简记成D=|aij|n1.
第一章 行列式
教学基本要求
(1)理解行列式的概念. (2)掌握行列式的基本性质. (3)会应用行列式的定义、性质和有关定理计算行列式. 行列式是一种特定的算式,它作为数学工具在数学的许多分 支中有着广泛的应用.其作为研究矩阵的有效工具之一,实质上是 一种特定的算式,它是对方阵按一定法则进行计算得到的一个数.
第五节行列式的性质性质15将行列式的某一行列的所有元素同乘以一个数k加到另外一行列上行列式丌变即第五节行列式的性质证将式121等号右端的行列式记为d则由性质14和性质13的推论13有第五节行列式的性质思考是否所有的行列式都可以按行列式的定义来计算
线性代数
第一章 行列式
第一节 行列式的概念 第二节 排列与逆序 第三节 二阶和三阶行列式 第四节 n阶行列式 第五节 行列式的性质 第六节 行列式的计算
《线性代数》课件第1章
3
1
1 r1 6
1131
1113
1 1 1 1 r2 r1 1 1 1 1
1 3 1 1 r3 r1 0 2 0 0
6
6
48
1 1 3 1 r4 r 1 0 0 2 0
11 1 3
0002
例1.3.4 计算
a1 a1 0 0
0
a2 a2
0 .
0 0 a3 a3
11 1 1
解 根据行列式的特点,可将第1列加至第2列,然后将
an1 an2
a nj
a nn
an1 an2
bn
a nn
性质6 把行列式的某一行(列)的各元素乘以同一数然后 加到另一行(列)对应的元素上去,行列式的值不变,即
a11
a1n
a11
a1n
ai1
ain ri krj ai1 ka j1
ain a jn
a j1
a jn
(1.3.1.3) a1…alabb1…bmc1…cn
再作m+1次相邻对换,式(1.1.4) a1…albb1…bmac1…cn
(1.1.2) (1.1.3) (1.1.4) ( 1.1.5)
1.2 行列式的定义
1.2.1
定义1.2.1 由4个元素aij(i=1,2;j=1,2)排成两行两列, 并定义
3a11 a12
5a23 2 3a21 a22
5a33
3a31 a32
a11 2 (3) 5 a21
a31
5a13 5a23 5a33
a12 a13 a22 a23 a32 a33
2 (3) 51 30.
例1.3.2 计算
3 1 1 2 5 1 3 4 D 2 0 1 1 1 5 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 a 21 D a n1
a1i a1n a11 a 2 i a 2 n a 21 a ni a nn a n1
i a1 n a1 a a2n 2i a a nn ni
性质6 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行)对应的元素上去,行 列式值不变. a11 a1i a1 j a1n
1 7 5 1 7 5 6 6 2 3 5 8 , 3 5 8 6 6 2
1 7 6 6 3 5
7 1 5 2 6 6 2. 5 3 8 8
5
交换 i , j 两行,记作 ri rj . 交换 i , j 两列,记作 ci c j .
1 7 5 1 7 5 r2 r3 6 6 2 3 5 8 , 3 5 8 6 6 2
2. 二阶行列式的计算
主对角线 副对角线
对角线法则
a11a22 a12a21 .
a11
a12
a21
a22
对于二元线性方程组
若记
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22
系数行列式
b1 D1 b2
DT
a11 a21 an1 a12 a22 an 2
an1 an 2 ann
T
a1n a2 n ann
行列式 D 称为行列式 D 的转置行列式.
二、行列式的性质
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此 行列式的性质凡是对行成立的对列也同样成立. 性质2 互换行列式的两行(列),行列式变号.
a12 , a22
a11 b1 D2 . a21 b2
3. 则当系数行列式 D 0时,
二元线性方程组的解为
b1
a12
a11
b1
D1 b2 a22 x1 , D a11 a12 a21 a22
注意
D2 a21 b2 x2 . D a11 a12 a21 a22
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
6 x1 4 x2 10, 5 x1 7 x2 29.
解
D
6 4 5 7
42 ( 20) 62 0,
D1
10 4 29 7
186, D2
6 10 5 29
124,
124 D1 186 D2 3, x2 2. x1 62 D 62 D
同理可得下三角行列式
a11 0 0 0 a 21 a 22 0 0 a11a22 ann . a n1 an2 a n 3 a nn
上三角行列式和下三角行列式统称为 三角行列式 注意 如果一个n阶行列式中等于零的元 素比
n 2 n还多,则此行列式必等 于零.
31 32 33
(6)式称为数表(5)所确定的三阶行列式.
2.
三阶行列式的计算
a11 a12 a21 a22 a31 a32 a13 a23 a33
对角线法则
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
§1 二阶与三阶行列式
一、二阶行列式
二、三阶行列式
一、二阶行列式的引入
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
(1) ( 2)
1 a22 : 2 a12 :
a11a22 x1 a12a22 x2 b1a22 , a12a21 x1 a12a22 x2 b2a12 ,
a11 a12 a1n kai 1
a11
a12 a1n
kai 2 kain k a i 1 a i 2 a in an 2 ann a n1 a n 2 a nn
a n1
推论
行列式的某一行(列)中所有元素的公因
简记作det(aij ).
其中 :
p1 p2 pn 为自然数 1, 2, ,n 的一个排列, t 为这个排列的逆序数.
a11 a12 a1n ( 3) D a21 a22 a2 n an1 an 2 ann
t p1 p2 pn
1 p p p
注意 红线上三元素的乘积冠以正号,
蓝线上三元素的乘积冠以负号.
x
例2
1 0 x 0 0. 1 1
(1) 求解方程
1 4
解
(1) 方程左端
D x2 1
由 x 2 1 0 解得
x1 1 或 x2 1.
§2 全排列及其逆序数
一、概念的引入
二、全排列
三、排列逆序数
一、全排列
1
t 12n
a11a 22 a nn
a11a22 ann .
1 2 3 4
例6
0 4 2 1 D ? 0 0 5 6 0 0 0 8
1 2 3 4 0 4 2 1 D a11a 22a 33a44 1 4 5 8 160. 0 0 5 6 0 0 0 8
2. 定义 一个排列中所有逆序的总数称为此排
列的逆序数. 例如 排列 32514 中,
3. 排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
4.计算排列逆序数的方法
设排列为 p1 p2 pn , t i 为 pi 构成的逆序数 则其逆序数为 t N ( p1 p2 pn ) t1 t 2 t n1 例1 求排列 32514 的逆序数.
思考题
x
已知
1
1
2
1 f x 3 1
3
x 1 1 2 x 1 1 2x 1
求 x 的系数.
思考题解答
解 含 x 3 的项有两项,即
x 1 f x 3 1
对应于
t
1
1
2
x 1 1 2 x 1 1 2x 1
1 a11a22a33a44 1t 1234 a11a22a34a43
1
(
指n!个n级排列之和.) p p p
1 2 n
例
计算行列式
0 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0
解:
0 0 0 4
0 0 3 0
0 2 0 0
1 0 0 0
1
t 4321
1 2 3 4 24.
由方程组的四个系数确定.
(3)
1. 定义
由四个数排成二行二列(横排称行(row)、 竖排称列(column))的数表 a11 a12
a21 a22
( 4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶 行列式,并记作
即
a11
a12
a21 a22
( 5)
a11 a12 D a11a22 a12a21 . a21 a22
例2
计算下列排列的逆序数,并讨论它们的
奇偶性.
2176354
1
2 nn 1n 2321
§3 n 阶行列式的定义
一、三阶行列式的结构 二、n 阶行列式的定义
一、 三阶行列式的结构
三阶行列式
a11 D a 21 a 31
a12 a 22 a 32
a13 a 23 a11a22a33 a12a23a31 a13a21a32 a 33 a13a22a31 a11a23a32 a12a21a33
列标排列的逆序数为 奇排列 负号,
t 132 1 0 1,
a11 a12 a13 a21 a22 a23 ( 1)t a1 p1 a2 p2 a3 p3 . a31 a32 a33
二、n 阶行列式的定义
1. 定义 由 n 2 个数组成的 n 阶行列式等于所有
取自不同行不同列的 n 个元素的乘积 的代数和 ( 1)t a1 p1 a2 p2 anpn 记作 D a11 a21 a n1 a12 a1n a22 a2 n an 2 ann
例4
证明
1 2
(1) 对角行列式
12 n ;
n
1
(2)
n
2
1
n n1 2
12 n .
a11
例5 计算上三角行列式
a11 a12 a1n
a12 a1n
0 a 22 a 2 n 0 0 a nn
解
0 a 22 a 2 n 0 0 a nn
问题 把 n 个不同的元素排成一列 ,共有几种不
同的排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个 元素的全排列(或排列). n 个不同的元素的所有排列的种数,通常 用 Pn表示. 同理
P3 3 2 1 6. Pn n ( n 1) ( n 2) 3 2 1 n!.
子可以提到行列式符号的外面. 性质4 行列式中如果有两行(列)元素对应
成比例,则此行列式为零.
性质5 若行列式的某一列(行)的元素都是两 数之和. i ) a1 n a11 a12 (a1i a1 a 21 a 22 (a 2 i a 例如 2i ) a2n D a n1 a n 2 (a ni a ni ) a nn
说明 (1)三阶行列式共有 6 项,即 3! 项. (2)每项都是位于不同行不同列的三个元素的 乘积.