中考数学复习资料

合集下载

中考数学专题复习资料数与式

中考数学专题复习资料数与式

第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。

一般地,实数a 的倒数为a1。

0没有倒数。

两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =,绝对值的几何意义:数轴上表示一个数到原点的距离。

6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。

(1)正数大于零,零大于负数。

(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

单独的一个数或字母也是代数式。

8.整式:单项式及多项式统称为整式。

单项式:只含有数及字母乘积形式的代数式叫做单项式。

一个数或一个字母也是单项式。

单项式中数字因数叫做这个单项式的系数。

一个单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

中考数学考点复习 勾股定理

中考数学考点复习   勾股定理

中考数学考点复习勾股定理一.选择题1. 在ABC 中,10AB =,AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或102.直角三角形有两边为3和4,则第三边的长为( )A. 5B. D. 无法确定3. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )A 、40B 、80C 、40或360D 、80或3604. 乐乐婷想测量教学楼的高度,他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了 米,当他把绳子的下端拉开 米后,发现绳子下端刚好接触地面,则教学楼的高度是( )米.A. B. C. D.5.在平面直角坐标系中,以点M (6,8)为圆心,2为半径的圆上有一动点P ,若A (﹣2,0),B (2,0),连接PA ,PB ,则当PA 2+PB 2取得最大值时,PO 的长度为( )A .8B .10C .12D ..6.如图,在Rt ABC ∆中,90,45,B BCA AC ︒︒∠=∠==点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .2BC 1D .17.如图,两棵树高分别为6m ,2m ,两树相距5m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞( )A .4mB . mC .3mD .9m 8.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是( )A .B .C .13D .59.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距_________A 25海里B 30海里C 35海里D 40海里10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =6,大正方形的面积为16,则小正方形的面积为( )A .8B .6C .4D .311.如图,有一个圆锥,高为8cm ,底面直径为12cm.在圆锥的底边B 点处有一只蚂蚁,它想吃掉圆锥顶部A 处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm12. 如图,在矩形ABCD 中,BC ,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②DH =;③12HO AE =;④BC BF -.其中正确命题为( )A .①②B .①③C .①③④D .①②③④13.观察图形,可以验证( )A .a 2+b 2=c 2 B.(a ﹣b )2=a 2﹣2ab+b 2 C.a 2﹣b 2=(a+b )(a ﹣b ) D.(a+b )2=a 2+2ab+b 214.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .1215.如图,点E 是矩形ABCD 的边AB 的中点,点F 是边CD 上一点,连接ED ,EF ,ED 平分∠AEF ,过点D 作DG ⊥EF 于点M ,交BC 于点G ,连接GE ,GF ,若FG ∥DE ,则AB AD的值是( )A .32B .2CD 二.填空题16. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .17. 若直角三角形的两直角边的长的比是:512,斜边长是26,则斜边上的高是 .18.19. 如图所示,一架梯子 长 米,顶端 靠在墙 上,此时梯子下端 与墙角 的距离为 米,当梯子滑动后停在 的位置上,测得 长为 米.则梯子顶端 沿墙下移了________米.20. 一长方体如图,在A 处有一只蚂蚁,它想吃到上底面B 点的食物,它沿长方体的侧面爬行的最短距离是 .21. 如图是单位长度为1的网格图,A 、B 、C 、D 是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成________个直角三角形.22.如图是用八个全等的直角三角形拼接而成.记图中正方形 ,正方形 ,正方形 的面积分别为 , , .若 ,则 的值是________.23.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,,则是________.24.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .则AC+CE 的最小值是_____.25.如下图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为________.26. 如图,在等腰ABC 中,5AC BC ==,6AB =,D ,E 分别为AB ,AC 边上的点,将边AD 沿DE 折叠,使点A 落在CD 上的点F 处.当点F 与点C 重合时,AD =________.27.如图,是一个三级台阶,它的每一级的长、宽、高分别为,,20dm 3dm 2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路...程.是 .在一个长为13米,宽为8米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD 平行且大于AD ,木块的正视图是边长为1米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是________米.28.29. 如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ;已知3CE =,5BE =,则AC 的长为________.30.如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5 m 的半圆,其边缘AB =CD =20 cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为__________ m .(π取3)三.解答题31.如图,在△ABC 中,AB =17cm ,AC =8cm ,BC =15cm ,将AC 沿AE 折叠,使得点C 与AB 上的点D 重合.(1)证明:△ABC 是直角三角形;(2)求△AEB 的面积.32. 如果m ,n 是任意给定的正整数(m >n ),证明:m 2+n 2,2mn ,m 2﹣n 2是勾股数(又称毕达哥拉斯数).33.如图,在垂直于地面的墙上2m 的A 点斜放一个长2.5m 的梯子,由于不小心,梯子在墙上下滑0.5m .求梯子在地面上滑出的距离BB ′的长度.34.如图,在中,,为边上一点,且,.(1)求的长; (2)若,求的面积.35.如图,在四边形ACDB 中,CD BD ⊥,4CD =,BCD △的面积为6,12AC =,13AB =,(1)求BC 的长;(2)求ABC 的面积.36.如图,在中,点、分别是,边中点于,延长,过作于. (1)求证:. (2)若,,求的长度.37. 如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在E 处,BE 交AD 于点F .(1)判断BDF 的形状,并说明理由;(2)若6AB =,10AD =,求BDF 的面积.38.已知:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .(1)填表:(2)如果a +b -c =m ,观察上表猜想:S l= (用含有m 的代数式表示). (3)证明(2)中的结论.39.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,乐乐同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.40.在四边形ABCD中,∠A=∠B=90°,BC=4,CD=6,E为AB边上的点.(1)连接CE,DE,CE⊥DE.①如图1,若AE=BC,求证:AD=BE;②如图2,若AE=BE,求证:CE平分∠BCD;(2)如图3,F是∠BCD的平分线CE上的点,连结BF,DF,BF=DF,求CF的长.41.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO,AB边上的动点,点P,点Q同时从点A出发,若P以32个单位每秒的速度从点A向点O运动,点Q以2个单位每秒的速度从点A向点B运动,设运动时间为t.(1)如图1,已知点A的坐标为(a,b),且满足(a﹣3)2﹣b|=0,则A点坐标;(2)如图1,连接BP,OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形?若能,试求:①运动时间t;②此时四边形APDQ的面积;若不能,请说明理由.42.我们在探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边,与斜边满足关系式,称为勾股定理.(1)爱动脑筋的东东把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助东东完成验证的过程.(2)如图,在每个小正方形边长为的方格纸中,的顶点都在方格纸格点上.请在图中画出的高,利用上面的结论,求高的长.。

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。

中考数学专题复习

中考数学专题复习

中考数学专题复习附答案1. 定义新运算“a∗b”:对于任意实数a,b,都有a∗b=(a+b)(a−b)−1,其中等式右边是通常的加法、减法、乘法运算,例4∗3=(4+3)(4−3)−1=7−1=6.若x∗k=x(k为实数)是关于x的方程,则它的根的情况为( )A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2. 定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28= 3.运用以上定义,计算:log5125−log381=()A.−1B.2C.1D.443. 定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为________.4. 对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=√a+b √a−b ,如:3⊕2=√3+2√3−2=√5,那么12⊕4=________.5. 规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0, 1),(0, −1),P是二次函数y=14x2的图象上在第一象限内的任意一点,PQ垂直直线y=−1于点Q,则四边形PMNQ是广义菱形.其中正确的是________.(填序号)6. 定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为________;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60∘,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.7. 用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.8. 阅读下面的材料:对于实数a,b,我们定义符号min{a, b}的意义为:当a<b时,min{a, b}= a;当a≥b时,min{a, b}=b,如:min{4, −2}=−2,min{5, 5}=5.根据上面的材料回答下列问题:(1)min{−1, 3}=________;(2)当min{2x−32,x+23}=x+23时,求x的取值范围.9. 阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba ,x1⋅x2=ca.问题解决:(1)请你写出三个能构成“和谐三数组”的实数________;(2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m, y1),B(m+1, y2),C(m+3, y3)三个点均在反比例函数y=4x的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.10. 在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2...4,14÷3=4...2,所以14是“差一数”;19÷5=3...4,但19÷3=6...1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.参考答案与试题解析中考专题复习(新型定义题型)一、选择题(本题共计 2 小题,每题 3 分,共计6分)1.【答案】C2.【答案】A二、填空题(本题共计 3 小题,每题 3 分,共计9分)3.【答案】x2−14.【答案】√25.【答案】①④三、解答题(本题共计 5 小题,每题 10 分,共计50分)6.【答案】90∘或270∘(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90∘,即∠BAD+∠BCD=90∘,∴四边形ABCD是对余四边形.(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60∘,∴∠ADC=30∘,∵AB=BC,∴将△BCD绕点B逆时针旋转60∘,得到△BAF,连接FD,如图3所示:∴△BCD≅△BAF,∠FBD=60∘,∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30∘,∴∠ADB+∠BDC=30∘,∴∠BFA+∠ADB=30∘,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180∘,∴60∘+30∘+∠AFD+∠ADF=180∘,∴∠AFD+∠ADF=90∘,∴∠FAD=90∘,∴AD2+AF2=DF2,∴AD2+CD2=BD2.7.【答案】解:(1)(−2)※√3=(−2)2×√3−(−2)×√3−3√3=4√3+2√3−3√3=3√3.(2)3※m≥−6,则9m−3m−3m≥−6,解得:m≥−2,将解集表示在数轴上如下:8.【答案】−1(2)由题意得:2x−32≥x+23,3(2x−3)≥2(x+2),6x−9≥2x+4,x ≥134,∴ x 的取值范围为x ≥134.9.【答案】如12,13,15 (2)证明: x 1,x 2是关于x 的方程ax 2+bx +c =0(a,b,c 均不为0)的两根,∴ x 1+x 2=−b a ,x 1⋅x 2=c a ,1x 1+1x 2=x 1+x 2x 1x 2=−b c , ∵ x 3是关于x 的方程bx +c =0(b,c 均不为0)的解,∴ x 3=−c b ,∴1x 3=−b c , ∴ 1x 1+1x 2=1x 3,∴ x 1,x 2,x 3可以构成“和谐三数组”.(3)A (m,y 1),B (m +1,y 2), C (m +3,y 3)三个点均在反比例函数y =4x 的图象上, y 1=4m ,y 2=4m+1,y 3=4m+3, ∴ 1y 1=m 4,1y 2=m+14,1y 3=m+34,∵ A (m,y 1),B (m +1,y 2), C (m +3,y 3)三点的纵坐标恰好构成“和谐三数组”, ∴ ①1y 1+1y 2=1y 3, ∴ m 4+m+14=m+34, ∴ m =2. ②1y 2+1y 3=1y 1, m+14+m+34=m 4, m =−4.③1y 3+1y 1=1y 2, ∴ m+34+m 4=m+14,m =−2,即满足条件的实数m 的值为2或−4或−2.10.解:(1)49÷5=9...4,但49÷3=16...1,所以49不是“差一数”;74÷5=14...4,74÷3=24...2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,329,344,359,374,389.故大于300且小于400的所有“差一数”有314,329,344,359,374,389.。

中考数学总复习资料大全(精华版)

中考数学总复习资料大全(精华版)

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

中考数学复习资料(7篇)

中考数学复习资料(7篇)

中考数学复习资料(7篇)中考数学复习资料(7篇)它是初中毕业证发放的必要条件,中国将这几科考试科目规定为国家课程的学科,全部列入初中学业水平考试的范围。

以下是小编为大家整理的中考数学复习重点,仅供参考,希望能够帮助大家。

中考数学复习重点1中考临近,考生在复习时数学如何才能抓住要点数学复习应该重点抓好数字式、方程(组)与不等式(组)、函数及其图像、统计与概率、几何的基本概念与三角形、四边形、相似图形、特直角三角形、圆及视图与投影等10大模块。

同时,于忠翠老师强调,考生应该以轻松自信的心态应对中考,发挥出自己的真实水平。

数字式以中、低档题居多“这一板块主要包括实数、整式、因式分解、分式及二次根式等内容,中考中多以填空选择的客观题形式出现,淡化了计算难度,主要以中、低档次的题居多。

”于忠翠说,随着课改的深入,这一板块的考察形式将会多样化,一些以实际生活题材为背景、结合当今社会热点的问题将会占据主流,近似数、有效数字、科学论证法、绝对值、因式分解、规律探究及阅读理解题成为近几年的热点题型。

方程与不等式难度不大、函数突出开放性单纯求解方程的不等式问题多以填空、选择的题型出现,一般难度不大。

对于应用方程(组)与不等式(组)解决实际问题,特别是与生产生活相联系的方案设计、决策应用等问题应是中考重点,尤其是方程与函数知识、几何知识的综合运用及不等式的实际运用问题是热点问题。

“函数题越来越突出开放性,单纯求函数解析式的题型越来越少,函数中的一些动点问题,尤其是设计新颖、贴近生产生活的函数最值问题、一些开放性探索题及图表信息题将会成为中考热点问题。

”于忠翠说。

统计概率以图表信息题为主统计与概率在中考试卷中所占分数一般在10分左右,这一板块在考察基础知识和基本技能的同时,多以图表信息题为主,考察学生利用图表的信息及所求概率的大小,解决现实生活中的问题。

对于几何与三角形,于忠翠表示,这一板块主要考察结合图形探索规律,特殊三角形在实际生活中的应用及利用旋转、轴对称等知识解决实际问题,淡化了传统的推理论证题。

人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。

- 有理数可以用分数的形式表示,也可以用小数的形式表示。

2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。

3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。

...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。

- 代数式可以进行加法、减法、乘法和除法运算。

2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。

...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。

- 方程的解是能使方程成立的值。

2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。

- 解一元一次方程的方法包括移项、合并同类项、化简和求解。

...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。

每个章节介绍
了该主题的概念、性质和解题方法。

这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。

初三数学中考复习重点章节知识点归纳

初三数学中考复习重点章节知识点归纳

初三数学中考复习重点章节知识点归纳三角形的重心定义重心:重心是三角形三边中线的交点。

三角形的重心的性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

6.重心是三角形内到三边距离之积最大的点。

直角三角形的判定方法判定1:定义,有一个角为90°的三角形是直角三角形。

判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。

如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。

(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。

那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。

(与判定3不同,此定理用于已知斜边的三角形。

)三角形的外心定义外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

中考数学复习重要知识点

中考数学复习重要知识点

中考数学复习重要知识点中考数学复习重要知识点中考是每个初中生都必须经历的一个大考,而数学是中考必考科目之一。

对于数学的复习,有哪些重要的知识点我们必须掌握呢?下面,就让我们一起来看看。

1. 空间图形空间图形是数学的基础,涉及到的知识点很多。

我们需要学会如何根据三视图画出空间图形,如如何画正方体、长方体等常见的立体图形,也要了解几何体的分类及其特征。

此外,还需牢记如棱台和圆台等几何体的体积公式和表面积公式。

2. 几何运算几何运算是数学的重要内容之一,包括如何计算平均数、中位数、众数等统计学上的基本概念,以及如何计算相似、全等、平移、旋转和对称等几何变换。

3. 三角函数和三角形三角函数是基本的三角学知识,主要包括正弦、余弦、正切等概念,掌握三角函数的计算方法和基本公式至关重要。

同时,在三角函数的学习中,我们也要了解三角形的性质与分类,掌握如何计算三角形面积及周长公式,尤其需要掌握正弦定理、余弦定理和正弦余弦定理的应用。

4. 数列和函数数列和函数是中考数学的重点内容,我们需要掌握各种数列及其通项公式、求和公式和递推公式的计算方法,理解各类函数的性质和图像,特别是对于一次函数、二次函数、指数函数、对数函数等重要的功能函数,要学会在图中解决实际问题。

5. 解方程和不等式解方程和不等式是中考数学必须掌握的重点内容,它们广泛应用于各个领域中,如何快速准确地解决这类问题对于学生自身的数学素养和实际运用都有着重要的意义。

我们需要掌握如何解一元二次方程及不等式,如何变形方程和不等式,以及如何利用图像解决方程和不等式的问题。

6. 统计与概率统计与概率是中考数学的另一个重要内容,需要我们了解如何收集、处理大量数据、绘制统计图并计算各种基本统计量,如均值、中位数、标准差和离散系数等。

此外,还需要了解基本的概率知识,如事件的概念和概率计算公式,熟练运用排列、组合的方法计算概率。

以上就是我总结的中考数学复习的重要知识点,希望能对同学们的备考有所帮助。

2023中考数学一轮复习资料(全国通用):一元二次方程及其应用(练透)(学生版)

2023中考数学一轮复习资料(全国通用):一元二次方程及其应用(练透)(学生版)

专题11 一元二次方程及其应用一、单选题1.(2022·全国九年级课时练习)下列方程是一元二次方程的是( )A .20ax bx c ++=B .()223232x x x -=-C .213x x -=D .242x x x -=2.(2022·全国九年级课时练习)下列各数是方程212x x -=的根的是( )A .3x =B .4x =C .5x =D .10x =3.(2022·全国九年级课时练习)已知方程2(3)210k x x -++=有两个实数根,则k 的取值范围是( ) A .4k < B .4k ≤ C .4k <且3k ≠ D .4k ≤且3k ≠ 4.(2022·全国九年级课时练习)一元二次方程24410x x -+=的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根 5.(2022·全国九年级课时练习)用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -= B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 6.(2022·珠海市九洲中学九年级一模)已知关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,则实数a 的取值范围是( )A .1a =B .1a >且0a ≠C .1a <且0a ≠D .1a ≤或0a ≠7.(2022·全国九年级课时练习)已知一个三角形的一边长为5,其他两边的长是方程(2)(4)0x x --=的根,则这个三角形的周长是( )A .9B .11C .11或13D .9或118.(2022·全国九年级课时练习)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .180(20)501089010x x -⎛⎫--= ⎪⎝⎭B .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭C .(18020)501089010x x ⎛⎫+--= ⎪⎝⎭D .(180)5050201089010x x ⎛⎫+--⨯= ⎪⎝⎭ 9.(2022·全国九年级课时练习)如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为( )A .1B .1.5C .2D .2.510.(2022·全国九年级课时练习)某市2012年有人口100万,2013年人口增长率为5%,“单独二胎”政策开放后,2014年人口增长率约为7%,若2013年、2014年人口年平均增长率为x ,则( ) A .6%x = B .6%x > C .6%x < D .不能确定二、填空题11.(2022·沭阳县怀文中学九年级月考)国家统计局统计数据显示,我国快递业务收入逐年增加.2018年至2020年我国快递业务收入由5000亿元增加到7500亿元.设我国2018年至2020年快递业务收入的年平均增长率为x .则可列方程为________________.12.(2020·沭阳县怀文中学九年级月考)已知关于x 的方程x 2k ﹣14=0有两个不相等的实数根,则k 的取值范围是_______.13.(2020·沭阳县怀文中学九年级月考)九年级(1)班部分学生去秋游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去秋游的人数是____人.14.(2020·沭阳县怀文中学九年级月考)关于x 的一元二次方程(m ﹣2)x 2+3x +m 2﹣4=0有一个解是0,则m 的值为_____.15.(2022·全国九年级课时练习)认真观察下列方程,指出使用何种方法求解比较适当.(1)245x =,应选用________法;(2)2165x x +=,应选用_______法;(3)2(2)(1)(2)(4)x x x x +-=++,应选用__________法;(4)22330x x --=,应选用__________法.三、解答题16.(2022·福建省福州杨桥中学九年级开学考试)解方程:230x x +-=.17.(2020·沭阳县怀文中学九年级月考)解方程:(1)3x 2﹣4x =1;(2)(3y ﹣2)2=(2y ﹣3)2.18.(2022·贵阳市第十九中学九年级月考)随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为2万个,2020年公共充电桩的数量为2.88万个.(1)求2018年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2022年该省将新增多少万个公共充电桩?19.(2022·重庆市育才中学九年级开学考试)中秋来临之际,重百超市看准商机,连续两周进行节日大促销活动,该超市从厂家购进A ,B 两种月饼进行销售,每周都用25000元购进250盒A 种月饼和150盒B 种月饼.重百超市在第一周销售时,每盒A 种月饼的售价比每盒B 种月饼的售价的2倍少10元,且两种月饼在一周之内全部售完,总盈利为5000元.(1)求重百超市在第一周销售B 种月饼每盒多少元?(2)重百超市在第二周销售时,受到各种因素的影响,每盒A 种月饼的售价比第一周A 种月饼的售价每盒增加了53%m ,但A 种月饼的销售盒数比第一周A 种月饼的销售盒数下降了%m ;每盒B 种月饼的售价比第一周B 种月饼的售价每盒下降了%m ,但B 种月饼的销售盒数与第一周B 种月饼的销售盒数相同,结果第二周的总销售额为30000元,求m 的值.20.(2022·西安高新一中实验中学九年级开学考试)解方程:(1)24142x x x x +=-+ (2)22530x x +-=(3)2(2)36x x +=+21.(2022·广州市黄埔华南师范大学附属初级中学)已知:关于x 的方程()228440--+=x m x m 有两个不相等的实数根1x ,2x .(1)求实数m 的取值范围.(2)若方程的两个实数根1x ,2x 满足1212x x x x +=,求出符合条件的m 的值.22.(2022·陕西九年级月考)用一块长8dm ,宽6dm 的矩形薄钢片制作成一个无盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).(1)若要做成的盒子的底面积为15dm2时,求截去的小正方形的边长;(2)当这个无盖的长方体盒子的侧面积与底面积之比为5:6时,求截去的小正方形的边长.23.(2022·宁波市海曙外国语学校九年级开学考试)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?。

2024年中考数学总复习:多选题(附答案解析)

2024年中考数学总复习:多选题(附答案解析)

第1页(共29页)2024年中考数学总复习:多选题一.多选题(共25小题)(多选)1.某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正,减产记为负).如表是本周一至周五的生产情况:星期 一 二 三 四 五 增减(单位:个)﹣1﹣4+2+7﹣3根据记录的数据,该厂本周每天生产量超过基本量35个的是( ) A .星期二B .星期三C .星期四D .星期五(多选)2.对于代数式3x 2﹣x +15,下列说法不正确的是( ) A .它按x 降幂排列 B .它是单项式 C .它的常数项是15D .它是二次二项式(多选)3.下列各式是分式的有( ) A .x3B .1aC .x 2xD .1y(15−πR 2)(多选)4.下列各式是分式的是( ) A .x3B .1aC .xxyD .1y(15﹣πR 2)(多选)5.下列各式变形正确的是( ) A .1−a a 2−2a+1=11−aB .xy−x 2(x−y)2=x x−yC .9ab 2+6abc3a 2b =3b+2c aD .a 2a−1−a −1=a 2−(a−1)2a−1(多选)6.在ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,下列各式一定成立的是( ) A .a =c •cos BB .a =b •cos AC .c =asinAD .a =b •tan A(多选)7.下列各式中,计算结果正确的是( )。

中考数学专题复习-例说线段的最值问题 (共62张)

中考数学专题复习-例说线段的最值问题  (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y

2023中考数学一轮复习资料(全国通用):分式的运算(练透)(教师版)

2023中考数学一轮复习资料(全国通用):分式的运算(练透)(教师版)
15.(2020·齐齐哈尔市第二十八中学九年级月考)已知x2﹣3x﹣2=0,那么代数式 的值为___________.
【答案】2
【分析】
本题考查了分式的化简,多项式的因式分解.化简代数式是解决本题的关键.
【分析】
先化简代数式,再整体代入求值.
【详解】
解:
=
=
=x2﹣3x
因为x2﹣3x﹣2=0,所以x2﹣3x=2
A. B.
C. D.
【答案】C
【详解】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得, .故选C.
考点:由实际问题抽象出分式方程.
5.(2022·北京九年级专题练习)化简 的结果为()
A. B. C. D.
【答案】B
【分析】
根据同分母的分式减法法则进行化简即可得到结果.
【答案】
【分析】
根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.
【详解】
解:依题意,得: ,
故答案为: .
13.(2022·北京平谷·九年级一模)化简: _______________.
【答案】
【分析】
利用分式的通分原则计算即可
【详解】
解:
=
= ,
故答案为: .
14.(2020·贵州贵阳市·)关于x的分式方程 有增根,则m的值为__________.
【答案】4.
【解析】
去分母得:7x+5(x-1)=2m-1,
因为分式方程有增根,所以x-1=0,所以x=1,
把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
解得:m=4,

数学中考复习必背知识点

数学中考复习必背知识点

数学中考复习必背知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学中考复习必背知识点数学中考复习必背知识点归纳即将中考,怎么熟背各科目的知识呢?初中生学习数学要注意知识点的总结,为了方便大家学习借鉴,下面本店铺精心准备了数学中考复习必背知识点内容,欢迎使用学习!数学中考复习必背知识点1实数的知识点1、数轴------规定了原点、正方向、单位长度的直线,叫做数轴。

初三数学考试复习资料

初三数学考试复习资料

初三数学考试复习资料复习是对前面已学过的知识进行系统再加工,并根据学习情形对学习进行适当调剂,为下一阶段的学习做好准备。

下面是作者为大家整理的关于初三数学考试复习资料,期望对您有所帮助!初三数学知识点分类复习题【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性的题型,近几年中考试题中的综合题大多以代数几何综合题的情势显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的类似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范畴.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。

动点M、N分别从点D、B同时动身,沿射线DA、线段BA向点A 的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。

初中数学复习资料大全

初中数学复习资料大全

初中数学总复习资料㈠数与代数⒈数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素” ⑶相反数⑷绝对值:│a │= a(a≥0) │a │=-a(a<0) ⑸倒数 ⑹指数① 零指数:0a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数) ⑺完全平方公式:2222)(b ab a b a +±=± ⑻平方差公式:(a+b )(a-b )=22b a - ⑼幂的运算性质: ①ma ·na =nm a+ ②m a ÷n a =nm a- ③n m a )(=mna④nab )(=n a nb ⑤n nn ba b a =)(⑽科学记数法:na 10⨯(1≤a <10,n 是整数) ⑾算术平方根、平方根、立方根、 ⑿ban d b m c a n d b n m d c b a =++++++⇒≠+++===ΛΛΛΛ:)0(等比性质⒉方程与不等式 ⑴一元二次方程①定义及一般形式:)0(02≠=++a c bx ax ②解法: 1.直接开平方法. 2.配方法 3.公式法:)04(24222,1≥--±-=ac b aac b b x4.因式分解法.③根的判别式:ac b 42-=∆>0,有两个解。

ac b 42-=∆<0,无解。

ac b 42-=∆=0,有1个解。

④维达定理:acx x a b x x =⋅-=+2121,⑤常用等式:2122122212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=- ⑥应用题1.行程问题:相遇问题、追及问题、水中航行:水速船速顺+=v ;水速船速逆-=v2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

4.几何问题⑵分式方程(注意检验) 由增根求参数的值: ①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学常用公式和定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5. 5、乘法公式(反过来就是因式分解的公式):①(a +b )(a -b )=a 2-b 2.②(a ±b )2=a 2±2ab +b 2.③(a +b )(a 2-ab +b 2)=a 3+b 3.④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab .6、幂的运算性质:①a m ×a n =a m +n .②a m ÷a n =a m -n .③(a m )n =a mn .④(ab )n =a n b n .⑤()n =n . ⑥a -n =1n a,特别:()-n =()n.⑦a 0=1(a ≠0).如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=(a >0,b ≥0).如:①(3)2=45.②=6.③a <0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x 24b b ac-±-b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距).当k >0时,y 随x 的增大而增大(直线从左向右上升);当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点. 10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……,nx 的方差为2s ,则2s=222121.....nx xx xx xn标准差:方差的算术平方根. 数据1x 、2x ……,nx 的标准差s,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。

12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。

(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=-, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.14、平面直角坐标系中的有关知识: (1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b ).(2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1).lα15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ). (2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =- 1、多边形内角和公式:n 边形的内角和等于(n -2)180º(n ≥3,n 是正整数),外角和等于360º 2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

相关文档
最新文档