Polar-Si9000软件计算阻抗及叠层
Polar-SI9000专业计算阻抗软件
Polar-SI9000专业计算阻抗软件一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.' H6 j5 r+ g5 J' D8 q2 u( t" O5 \1.外层特性阻抗模型:2.内层特性阻抗模型:- Z. O5 [) D# _5 ]3 b, u2 p8 [3.外层差分阻抗模型:$ l% R% v7 J8 D/ V1 @# S& Y0 t' z9 L: m- m4.内层差分阻抗模型:: O7 E$ i& ? } [' S5 @5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),/ j! a+ Z! y {8 Q 每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM, 0.2MM , 0.25MM. 0.3MM, 0.4MM, 0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ 的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.' f1 E! T: F6 M" ]$ c8 O当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:一、一般不允许张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.二、7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.三、另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用!四,怎样使用Polar Si9000软件计算阻抗:+ B+ M( R, n" @0 q7 L首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!4五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W 称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。
polar计算阻抗
【原创】使用polar 工具计算阻抗!以一个四层板为例,四层板的一般叠层为topgnd02power03bottom从四层板的叠层来看是由两个信号层加平面层组成。
详细计算步骤如下:☆1. 打开polar 公司的阻抗计算工具如下图:我们先选择模版,由于是两个信号加平面,我们只要计算一个信号加平面就可以了,选择的模版如下图:☆2. 接下来就是参数的选择,一般单线阻抗为 50 ohm,差分线阻抗为100 ohm,H为绝缘介质高度,W,W1为线宽,T为铜厚(内层铜厚一般为1.4MIL,TOP层和BOTTOM层铜厚一般为2.0mil,),介质(FR-4)Er一般为4.3.先确定单线阻抗再计算差分线阻抗,如下图计算的单线阻抗☆3. 根据单线计算出来的高度后,接下来计算差分线阻抗,差分线模版如下图上图中S为差分线间距(注意S<2W),计算差分线阻抗如下图,☆4. 单线,差分线阻抗计算好后,接下来算层叠厚度,假设客户给定板厚为1.6mm.计算如下图TOP和Bottom层的厚度一般用1.7mil计算,因为那个与最小的孔和板厚有点关,再就是厂商有关,当然要过大电流当然要厚点了。
中间层的厚度,如果要通过的电流正常的话,一般会选用35um的。
差动的阻抗其实选用情况也差不多。
也是选有上面有覆盖的那个,和中间不对称的那个edge-coupled coated microstrip 和edge-coupled offset microstrip两个计算的。
有点要注意,一般四层板只有一个介质层,两层PC料,(板厂默认压层工艺)所以介电常数是不一样的.我下了软件看了很久,还是有几点不明白:1、内层铜厚不是按照1.4MIL计算的吗?那下面怎么按照2.0MIL来计算?2、计算单线阻抗的时候,是不是定下来线宽,铜厚等,再来确定绝缘介质高度?3、两个平面之间的距离1H=1.6*39.37-2*(2.0+3.72+1.4)=48.752MIL,这个公司怎么得出?不解之处请指点楼上的问题我大概知道:1. 因为表层(top和bottom)的铜厚度是2.0mil的,所以用2.0算的;电源跟地平面是参考平面,所以走线的平面只在top和bottom层,计算的是top和bottom层走线的阻抗,当然用2.0算啦;2. 单线阻抗跟线宽,铜厚、导电系数和高度相关,确定顺序看需要吧,好像没有一定要先定哪个后定哪个之说;3. 1mil=0.0254mm,即1mm=39.37mil;所以式子里有1.6*39.37,单位是mil。
利用Polar_Is9000计算差分阻抗
T1:为导线的厚度(铜厚)
H1:为绝缘介质厚度
Er1:为绝缘层的介电常数
Zdiff:为阻抗
注意:其中T1、H1、Er1不同PCB厂家其值也有差别,一般向PCB厂家索要 4、单位换算关系
1mil = 0.0254mm = 25.4um
T1 = 1oZ(1盎司) = 0.036mm = 36um = 1.4mil
利用polar_is9000计算差分阻抗 polar_si9000 calculate differential impedence 1,先填好h1,er1,w1,w 2,s1和t1,在求出zdiff 2,先填好h1,er1,s1,t1和zdiff,在计算出w1,w2 3,变量介绍 w1/w2:为差分线对走线的宽度 s1:为差分线对走线之间的距离 t1:为导线的厚度(铜厚) h1:为绝缘介质厚度 er1:为绝缘层的介电常数 zdiff:为阻抗 注意:其中t1,h1,er1不同pcb厂家其值也有差别,一般向pcb厂家索要 4,单位换算关系 1mil = 0.0254mm = 25.4um t1 = 1oz(1盎司) = 0.036mm = 36um = 1.4mil
利用Polar_Is9000计算差分阻抗
Polar_Si9000 Calculate Differential Impedence
1、先填好H1、Er1、W1、W
2、S1和T1,ቤተ መጻሕፍቲ ባይዱ求出Zdiff
2、先填好H1、Er1、S1、T1和Zdiff,在计算出W1、W2
3、变量介绍
W1/W2:为差分线对走线的宽度
详解PolarSI9000软件计算阻抗及设计层叠结构
详解 Polar SI9000 软件计算阻抗及设计层叠结构
第一部分:阻抗知识详细介绍
1、特性阻抗的定义 特性阻抗:又称“特征阻抗”,它不是直流电阻,属于长线传输中的概念。
在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源 或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的, 那么只要信号在传输,就始终存在一个电流 I,而如果信号的输出电平为 V,在 信号传输过程中,传输线就会等效成一个电阻,大小为 V/I,把这个等效的电阻 称为传输线的特性阻抗 Z。信号在传输的过程中,如果传输路径上的特性阻抗发 生变化,信号就会在阻抗不连续的结点产生反射。影响特性阻抗的因素有:介电 常数、介质厚度、线宽、铜箔厚度。 2、控制阻抗的目的
类型二:实测厚度=理论厚度-铜厚 1*(1-残铜率 1)-铜厚 2*(1-残铜率 2)
注:残铜率:残铜率是指板平面有铺铜的面积和整板面积之比;一般表层的残铜
率取 100%,光板的残铜率为 0。没有加工的原材料就是1,蚀刻成光板就是0. 一般我们设计中平面层取残铜率65%-70%,信号层取残铜率 15%-23%。
第三部分:6 层板阻抗计算实例演示
表层阻抗=SI9000 软件计算值(不盖阻焊模式)*0.9+3.2 内层阻抗= SI9000 软件计算值 L1/6 层单端 50 欧姆走线
L3 层单端 50 欧姆走线
L1/6 层差分 100 欧姆走线 L3 层差分 100 欧姆走线
L1 层单端 75 欧姆、隔层参考 L3 层走线 L1/L6 微带线、共面阻抗 100 欧姆走线
增加线宽,可减小阻抗,减小线宽可增大阻抗。线宽的控制要求在+/-10% 的公差内,才能较好达到阻抗控制要求信号线的缺口影响整个测试波形,其单点 阻抗偏高,使其整个波形不平整,阻抗线不允许补线,其缺口不能超过10% 线宽主要是通过蚀刻控制来控制。为保证线宽,根据蚀刻侧蚀量、光绘误差、图 形转移误差,对工程底片进行工艺补偿,达到线宽的要求。 ③ 铜厚 T
polar si9000阻抗计算教程
主题:阻抗计算公式、polar si9000(教程)给初学者的一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这儿阻抗的意义传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论)如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克)在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求一般是1~2mm,根据板厚要求来分层得到各厚度高度. 在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来走线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采用polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过走线阻抗要求来计算出线宽W(目标)2,各厂家的制程能力不一致,因此计算方法不一样,需要和厂家进行确认3,表层采用coated microstrip 计算的原因是,厂家会有覆绿漆,因而没用surface microstrip 计算,但是也有厂家采用surface microstrip 来计算的,它是经过校准的4,w1 和w2 不一样的原因在于pcb 板制造过程中是从上到下而腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候厂家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字面来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2 在计算差分阻抗的时候和上面计算类似,除所需要的通过走线阻抗要求来计算出线宽的目标除线宽还有线距,在此不列出选用的图是在计算差分阻抗注意的是:1,在满足DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时又满足其单端阻抗,因此我通常选择的是先满足差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板厂是不考虑的,实际做很多板子,问题确实不算大,看样子差分线还是走线同层同via 同间距要求一定要符合)----------谨以此文怀念初学SI 的艰苦岁月特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)。
Polar SI9000专业计算阻抗软件
一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.1.外层特性阻抗模型:2.内层特性阻抗模型:3.外层差分阻抗模型:4.内层差分阻抗模型:5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM, 0.2MM , 0.25MM. 0.3MM, 0.4MM, 0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:一、一般不允许4张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.二、7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.三、另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用! 四,怎样使用Polar Si9000软件计算阻抗:首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!4五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。
详解怎样使用Polar Si9000软件计算阻抗及如何设计层迭结构.
一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.7 g1 B: b4 A+ [0 W, d# X1.外层特性阻抗模型:3 c7 ?" ~0 m8 G& X3 k% }2.内层特性阻抗模型:. k2 r/ N# G* I, U. d3 `# [! F3.外层差分阻抗模型:; h+ Z: ?3 B9 w/ S2 t8 J2 _9 S# h& X( k4 _4.内层差分阻抗模型:* N8 N+ D9 F# r0 F8 h" k0 s# @1 V) z* |' X- k7 E5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),8 a& L7 C2 a5 e; M9 A( @每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM,,0.2MM ,,0.25MM.0.3MM,0.4MM,0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.( u4 f% A8 v4 f* M% u当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:1,一般不允许4张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.2,7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.3,另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用!四,怎样使用Polar Si9000软件计算阻抗:( E& A* }* x4 X首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!( S6 t; o* g8 n五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。
使用SI9000进行PCB常规阻抗计算
使用SI9000进行PCB常规阻抗计算SI9000是一款用于高速电路设计的软件,可以帮助工程师进行PCB 常规阻抗计算。
本文将介绍使用SI9000进行PCB常规阻抗计算的步骤和一些注意事项。
步骤一:准备设计文件在进行PCB常规阻抗计算之前,需要准备好设计文件。
设计文件包括PCB的布局和线路连接等信息。
将设计文件导入SI9000软件中。
步骤二:定义材料参数在进行PCB常规阻抗计算之前,需要定义材料参数。
SI9000软件提供了常用的材料参数库,包括介电常数、损耗因子等。
根据实际情况选择合适的材料参数。
步骤三:定义层厚在PCB设计中,不同层之间的层厚可能不同。
因此,需要在SI9000软件中定义层厚。
层厚的定义将对后续的阻抗计算结果产生影响。
步骤四:定义线宽和线间距根据设计文件中的线宽和线间距,定义在SI9000软件中。
线宽和线间距的定义将用于阻抗计算。
步骤五:进行阻抗计算在SI9000软件中,选择进行阻抗计算的线路,点击“计算”按钮即可开始阻抗计算。
软件会在计算完成后给出阻抗计算结果。
步骤六:分析和优化根据阻抗计算的结果,可以分析线路的阻抗变化和不符合要求的地方。
根据需求进行相应的优化和调整,直到满足设计要求为止。
注意事项:1.在使用SI9000进行PCB常规阻抗计算时,要保证输入的材料参数、层厚、线宽等参数与实际设计一致,以确保计算结果准确。
2.在定义线宽和线间距时,应该考虑到PCB制造工艺的限制,避免出现制造上的困难。
3.在进行阻抗计算之前,要对设计文件进行合理的预处理,如去除不必要的线路、修复错误等,确保输入的设计文件是正确的。
4.在进行阻抗计算之后,还要对计算结果进行验证,可以通过快速原型制造进行样品制作,然后进行测试验证,以确保计算结果的准确性。
总结:SI9000能够帮助工程师进行PCB常规阻抗计算,通过合理的定义材料参数、层厚、线宽和线间距等参数,可以得到准确的阻抗计算结果。
在进行阻抗计算之前,应该对设计文件进行合理的预处理,并对计算结果进行验证,确保设计满足要求。
Polar Si9000使用方法
以此信號為例
內層DIFF
此為L6層DIFF信號線,W/S為3.3/4.7,以L5/L7層為參照面 ,阻抗控制為100ohm。
計算過程
內層DIFF
內層DIFF
計算結果核對: 計算結果為93.74,要求值為100,在要求值的+/-10之
內,屬於合格。
Thank you!
表層single net(1)
以此信號為例
此信號為TOP,以相鄰的L2層為參照面
表層single net(1)
計算過程
表層single net(1)
計算結果核對: 計算結果為46.78,要求值為50,在要求值的+/-10之內
都屬於合格。
表層single net(2)
以此信號為例
此信號為L8(BOT)層,但以L6層為參考,中間隔了L7層
Agenda
案例 表層single net計算
表層single net(1)——相鄰層作參照面 表層single net(2)——隔層作參照面
內層single net計算 內層DIFF計算
案例
以專案Rider5為例,以下為板廠提供的疊構
表層single net
選擇左下角的lossless calculation 選擇表層單個信號,有GND照應層的圖標
表層single net(2)
計算過程
注:H1
表層single net(2)
計算結果核對: 計算結果為45.04,要求值為50,在要求值的+/-10之內,屬
於合格。
內層single net
選擇左下角的lossless calculation 選擇表層單個信號,有相照應GND層的圖標
內層single net
polar 工具计算阻抗的方法
polar 工具计算阻抗的方法以一个四层板为例,四层板的一般叠层为topgnd02power03bottom从四层板的叠层来看是由两个信号层加平面层组成。
详细计算步骤如下:☆1.打开polar 公司的阻抗计算工具如下图:我们先选择模版,由于是两个信号加平面,我们只要计算一个信号加平面就可以了,选择的模版如下图:☆2.接下来就是参数的选择,一般单线阻抗为 50 ohm,差分线阻抗为100 ohm,H为绝缘介质高度,W,W1为线宽,T为铜厚(内层铜厚一般为1.4MIL,TOP层和BOTTOM层铜厚一般为2.0mil,),介质(FR-4)Er一般为4.3.先确定单线阻抗再计算差分线阻抗,如下图计算的单线阻抗☆3.根据单线计算出来的高度后,接下来计算差分线阻抗,差分线模版如下图上图中S为差分线间距(注意S<2W),计算差分线阻抗如下图,☆4.单线,差分线阻抗计算好后,接下来算层叠厚度,假设客户给定板厚为1.6mm.计算如下图TOP和Bottom层的厚度一般用1.7mil计算,因为那个与最小的孔和板厚有点关,再就是厂商有关,当然要过大电流当然要厚点了。
中间层的厚度,如果要通过的电流正常的话,一般会选用35um的。
差动的阻抗其实选用情况也差不多。
也是选有上面有覆盖的那个,和中间不对称的那个edge-coupled coated microstrip 和edge-coupled offset microstrip两个计算的。
有点要注意,一般四层板只有一个介质层,两层PC料,(板厂默认压层工艺)所以介电常数是不一样的.我下了软件看了很久,还是有几点不明白:1、内层铜厚不是按照1.4MIL计算的吗?那下面怎么按照2.0MIL来计算?2、计算单线阻抗的时候,是不是定下来线宽,铜厚等,再来确定绝缘介质高度?3、两个平面之间的距离1H=1.6*39.37-2*(2.0+3.72+1.4)=48.752MIL,这个公司怎么得出?不解之处请指点楼上的问题我大概知道:1. 因为表层(top和bottom)的铜厚度是2.0mil的,所以用2.0算的;电源跟地平面是参考平面,所以走线的平面只在top和bottom层,计算的是top和bottom层走线的阻抗,当然用2.0算啦;2. 单线阻抗跟线宽,铜厚、导电系数和高度相关,确定顺序看需要吧,好像没有一定要先定哪个后定哪个之说;3. 1mil=0.0254mm,即1mm=39.37mil;所以式子里有1.6*39.37,单位是mil。
阻抗控制计算Polar si9000
阻抗控制計算目的: 學會使用Polar si9000對特殊信號線的阻抗計算舉例 :1. 差分信號線的阻抗計算以 E03為例,E03 USB2.0 D+ , D- 要求有90歐姆的阻抗匹配,依照此要求,計算出這兩條差分信號線在走線時的線寬和線間距.計算需準備的數據;板層的迭構方式, 各個板層之間的介質厚度,介質常數,銅箔厚度,阻抗控制的設計阻值.板層的迭構方式thickness Er UNIT:MIL SOLDER0.844 4.2TOP 1.0OZ 1.4PP8 4.2VCC 1.0OZ 1.4CORE6 4.2GND 1.0OZ 1.4PP8 4.2BOT 1.0OZ 1.4SOLDER0.844 4.2此差分信號走線是在BOT層,與他相鄰的一層就是GND層,所以我們在計算時用到數據是BOT與GND之間的數據.安裝好計算工具後,打開Polar si9000.依據下圖的設置來計算:2. G06 的GPS 傳輸線阻抗計算紅色走線部分需要做50 OHM 阻抗匹配板層結構thickness Er UNIT:MIL SOLDER0.8 3.8L1 (TOP)1.0OZ 1.4PP21166 4.6L2 (IN2)1.0OZ 1.4CORE6 4.2L3 (IN3)1.0OZ 1.4PP2116441.0OZ 1.42V8_RFDIGCORE44 L5 (IN5 VCC) 1.0OZ 1.4PP211644L6 (IN6) 1.0OZ 1.4CORE6 4.2L7 (IN7) 1.0OZ 1.4PP21166 4.6 L8 (BOT) 1.0OZ 1.4SOLDER0.8 3.8TOL:48.8在LAYOUT 中實際走線為L1(TOP) 層,其下對應的7層為GND即以 L2 層作為參考平面實際計算此傳輸線的線寬在計算工具中輸入參數F。
SI9000各阻抗计算说明
阻抗培训1.外层单端:Coated Microstrip 1BH1:介质厚度(PP片或者板材,不包括铜厚)Er1:PP片的介电常数(板材为:4.5 P片4.2)W1:阻抗线上线宽(客户要求的线宽)W2:阻抗线下线宽(W2=W1-0.5MIL)T1:成品铜厚C1:基材的绿油厚度(我司按0.8MIL)C2:铜皮或走线上的绿油厚度(0.5MIL)Cer:绿油的介电常数(我司按3.3MIL)Zo:由上面的参数计算出来的理论阻值2.外层差分:Edge-Coupled Coated Microstrip 1BH1:介质厚度(PP片或者板材,不包括铜厚)Er1:PP片的介电常数(板材为:4.5 P片4.2)W1:阻抗线上线宽(客户要求的线宽)W2:阻抗线下线宽(W2=W1-0.5MIL)S1:阻抗线间距(客户原稿)T1:成品铜厚C1:基材的绿油厚度(我司按0.8MIL)C2:铜皮或走线上的绿油厚度(0.5MIL)C3:基材上面的绿油厚度(0.50MIL)Cer:绿油的介电常数(我司按3.3MIL)3.内层单端:Offset Stripline 1B1AH1:介质厚度(PP片或者光板,不包括铜厚)Er1:H1厚度PP片的介电常数(P片4.2MIL)H2:介质厚度(PP片或者光板,不包括铜厚)Er2:H2厚度PP片的介电常数(P片4.2MIL)W1:阻抗线上线宽(客户要求的线宽)W2:阻抗线下线宽(W2=W1-0.5MIL)T1:成品铜厚Zo:由上面的参数计算出来的理论阻值4.内层差分:Edge-Couled Offset Stripline 1B1AH1:介质厚度(PP片或者光板,不包括铜厚)Er1:H1厚度PP片的介电常数(P片4.2MIL)H2:介质厚度(PP片或者光板,不包括铜厚)Er2:H2厚度PP片的介电常数(P片4.2MIL)W1:阻抗线上线宽(客户要求的线宽)W2:阻抗线下线宽(W2=W1-0.5MIL)S1:客户要求的线距T1:成品铜厚Zo:由上面的参数计算出来的理论阻值5.外层单端共面地:Coated Coplanar Waveguide With Ground 1BH1:介质厚度(PP片或者板材,不包括铜厚)Er1:PP片的介电常数(板材为:4.5 P片4.2)W1:阻抗线上线宽(客户要求的线宽)W2:阻抗线下线宽(W2=W1-0.5MIL)D1:阻抗线到两边铜皮的距离T1:成品铜厚C1:基材的绿油厚度(我司按0.8MIL)C2:铜皮或走线上的绿油厚度(0.5MIL)Cer:绿油的介电常数(我司按3.3MIL)Zo:由上面的参数计算出来的理论阻值6.外层差分共面地:Diff Coated Coplanar Waveguide With Ground 1BH1:介质厚度(PP片或者板材,不包括铜厚)Er1:PP片的介电常数(板材为:4.5 P片4.2)W1:阻抗线上线宽(客户要求的线宽)W2:阻抗线下线宽(W2=W1-0.5MIL)S1:阻抗线间距(客户原稿)D1:阻抗线到铜皮的距离T1:成品铜厚C1:基材的绿油厚度(我司按0.8MIL)C2:铜皮或走线上的绿油厚度(0.5MIL)C3:基材上面的绿油厚度(0.50MIL)Cer:绿油的介电常数(我司按3.3MIL)Zo:由上面的参数计算出来的理论阻值。
用SI9000计算阻抗是大家众所周知的事情,它不仅仅只是算阻抗
用SI9000计算阻抗是大家众所周知的事情,它不仅
仅只是算阻抗
用SI9000计算阻抗是大家众所周知的事情,用这个软件计算阻抗的教程也是多的数不胜数。
但是关于除了计算阻抗以外的功能运用,似乎我们都关注的比较少,但是在很多设计场合这些功能我们都可以用得到。
对于旧版本的SI9000,打开软件,下方有两个可供切换的功能窗口。
但是2011版本的Polar SI9000又新增了两个功能窗口。
下面就都扒出来瞧一瞧。
1.Lossless Calculation(无损计算)
这个窗口就是用来计算阻抗的功能窗口,也是研发工程师们用的最多和关注度最高的一个功能。
通常我们计算完阻抗,评估好层叠厚度,线宽,铜厚等就完事了。
但是你还可以尝试着按下“More”按钮。
如下图所示。
计算完阻抗,按下“More”按钮之后,你将获取该阻抗线更多的信息:每英尺的传输延时,每英尺的寄生电感,每英尺的寄生电容等如下图所示。
polarsi9000用法
Polar i9000是一款全新的边界元素法场效解算器,建立在早期Polar阻抗设计系统易于使用的用户界面之上。
它增加了增强型建模功能,以便预测多介质PCB层的最终阻抗,同时考虑到邻近差动结构之间的介电常数差异。
使用Polar i9000的步骤如下:
1.打开SI9000,指定Cracksi9000.lic的路径后即可破解成功。
2.使用Polar i9000的增强型建模功能来预测多介质PCB层的最终阻抗,同
时考虑邻近差动结构之间的介电常数差异。
3.根据需要,使用其他建模功能,如模拟涂层与表面等。
4.依照特定要求,如线路之间的阻焊厚度,使用其他工具进行定制。
5.使用新的Si9000m提取偶模阻抗和共模阻抗。
请注意,以上步骤仅供参考,具体的使用方法可能会因软件版本或其他因素而有所不同。
如果您在使用过程中遇到问题,建议参考Polar i9000的用户手册或寻求技术支持。
SI9000各阻抗计算说明
SI9000各阻抗计算说明SI9000是一种用于计算电磁场传输中各种阻抗的软件。
它是一种先进的电磁场仿真软件,可以用于设计和分析高速通信线路、平面电路板、射频传输线等。
SI9000可以根据用户给定的参数和电磁场条件,精确计算出各种阻抗,包括差模阻抗、共模阻抗、传输线阻抗等。
本文将介绍SI9000各阻抗计算的基本原理和步骤。
首先,SI9000可以计算差模阻抗。
差模阻抗是指在差模传输线中两个信号之间的电流和电压之比。
差模传输线是一种常用于高速通信线路中的传输线,由于信号差别较大,容易产生串扰,因此需要计算并控制差模阻抗。
SI9000可以计算差模传输线的电磁场分布,并根据电荷和电流分布计算出差模阻抗。
其次,SI9000可以计算共模阻抗。
共模阻抗是指在共模传输线中两个信号之间的电流和电压之比。
共模传输线是一种常用于抗干扰和抑制噪声的传输线。
SI9000可以根据共模传输线的电磁场分布,计算出共模阻抗。
共模阻抗的计算方法与差模阻抗类似,都是根据电荷和电流分布进行计算。
SI9000还可以计算传输线阻抗。
传输线阻抗是指传输线上电流和电压之比,决定了信号在传输线上的传输特性。
传输线阻抗的计算是电磁场仿真中的一项重要任务。
SI9000可以通过计算传输线上的电场和磁场分布,得到传输线的阻抗。
传输线阻抗的计算需要考虑电磁场的传播速度、传输线的几何结构、介质属性等因素。
SI9000的计算步骤主要包括几何建模、导体和介质特性定义、电磁场分布计算、阻抗计算等。
在几何建模中,用户可以通过导入CAD文件或手动绘制来创建所需的结构模型。
然后,用户需要定义导体和介质的特性,包括电导率、磁导率、介电常数等。
接下来,用户可以选择计算所需的阻抗类型,如差模阻抗、共模阻抗或传输线阻抗。
最后,SI9000会根据用户给定的参数和条件,进行电磁场分布的计算,并计算出所需的阻抗。
SI9000还具有一些其他功能和特点。
例如,它可以显示电磁场分布图、传输线网络图等直观的图形结果,方便用户进行结果分析和设计优化。
polar si9000阻抗计算教程
主题:阻抗计算公式、polar si9000(教程)给初学者的一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这儿阻抗的意义传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论)如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克)在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求一般是1~2mm,根据板厚要求来分层得到各厚度高度. 在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来走线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采用polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过走线阻抗要求来计算出线宽W(目标)2,各厂家的制程能力不一致,因此计算方法不一样,需要和厂家进行确认3,表层采用coated microstrip 计算的原因是,厂家会有覆绿漆,因而没用surface microstrip 计算,但是也有厂家采用surface microstrip 来计算的,它是经过校准的4,w1 和w2 不一样的原因在于pcb 板制造过程中是从上到下而腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候厂家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字面来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2 在计算差分阻抗的时候和上面计算类似,除所需要的通过走线阻抗要求来计算出线宽的目标除线宽还有线距,在此不列出选用的图是在计算差分阻抗注意的是:1,在满足DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时又满足其单端阻抗,因此我通常选择的是先满足差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板厂是不考虑的,实际做很多板子,问题确实不算大,看样子差分线还是走线同层同via 同间距要求一定要符合)----------谨以此文怀念初学SI 的艰苦岁月特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包
括:Si6000,Si8000,及Si9000.
二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.
1.外层特性阻抗模型:
2.层特性阻抗模型:
3.外层差分阻抗模型:
4.层差分阻抗模型:
5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)层共面特性阻抗,(3)外层共面差分阻抗,(4)层共面差分阻抗.
三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),
每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分
有:0.10MM ,0.15MM,,0.2MM ,,0.25MM.0.3MM,0.4MM,0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为
0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度
是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.
半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为
0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.
当我们计算层叠结构时候通常需要把几PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:1,一般不允许4或4以上PP叠放在一起,因为压合时容易产生滑板现象.2,7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.3,另外31080也不允许放在外层,因为压合时也容易产生滑板现象.
后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用!
四,怎样使用Polar Si9000软件计算阻抗:
首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!
五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:
1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而层考虑的蚀刻的因素,我们通常认为层1OZ=1.2MIL,而0.5OZ=0.6MIL。
Zdiff为阻抗值。
Calculate为计算按钮,各因素是可以互相推算的,例如我们要控制50欧姆的阻抗,线宽为
5MIL,H1需要多少呢?在Polar软件中找到特性阻抗模型,把相应要求值写上去,再按H1后面的Calculate为计算按钮,H1的值就计算出来了.大家可以利用Calculate为计算按钮去相互推算试一下。
其中3.2MIL是由两106的PP组合而来,48.42MIL指的是1.3MM 1/1OZ的芯板的介质厚度,具体是这样得来:1.3MM-0.035X2)X39.37=48.42MIL.一般层压厚度需比成品板厚小0.1MM左右,例如成品板厚1.6MM,而我们计算层压厚度一般不也许大于1.5MM,此结构的层压厚度为:0.08MM+1.3MM+0.08MM+0.035MM(铜厚)=1.495MM.即刚好满足成品板厚1.6MM的要求。
2.六层板板厚1.2MM,信号层要求控制50欧姆特性阻抗和100欧姆差分阻抗.具体详见:6层板1.2MM阻抗设计1.jpg和6层板1.2MM阻抗设计2.jpg,阻抗模型中
H2=29.94MIL是怎样得来?5.1+1.2+22.44+1.2=29.94MIL,其中22.44MIL即由37628的PP 组合,0.19MMX3=0.57MMX39.37=22.44MIL,所以其层压厚度
为:0.08MMX2+0.2MMX2+0.49MM+0.035MM=1.085MM.(纠正一个错误:层压结构中0.57MM应改为0.49MM),成品板厚才是1.2MM.0.49MM是由7628*2+2116组合.
六,现给大家提供Polar Si9000 V7.1下载地址及安装方法:
下载地址: 亮腾资讯网
SI9000 V7.1 阻抗计算软件也称PCB叠层阻抗工具SI9000 V7.1
A:点击setup.exe安装完毕。
B:打开SI9000,指定\Crack\si9000.lic的路径后即可破解成功。
Si9000m是全新的边界元素法场效解算器,建立在我们熟悉的早期Polar阻抗设计系统易于使用的用户界面之上。
Si9000m增加了增强型建模功能,以便预测多介质PCB层的最终阻抗,同时考虑到邻近差动结构之间的介电常数差异。
建模时常常忽略了表面涂层,Si9000m模拟涂层与表面线路之间的阻焊厚度。
这是一种更好的解决方案,可根据电路
板采用的特殊阻焊方法进行定制。
新的Si9000m还提取偶模阻抗和共模阻抗。
(偶模阻抗是当两条传输线对都采用相
同量值、相同极性的信号驱动时,传输线一边的特性阻抗。
)在USB2.0和LVDS等高速系统中,越来越需要控制这些
特征阻抗。
七,怎样正确选择阻抗模型:
大家在计算阻抗时,首先要选择正确的阻抗模型是非常重要的!那么怎样选择正确的阻抗模型呢?首先我们必须了解每一个模型所代表的意思,什么情况下采用这种模型?
1.外层特性阻抗模型:外层特性阻抗模型是外层线路中某根线需要控制一般为50欧姆的阻抗,例如:一个四层板,板厚1.6MM,TOP层和BOTTOM层上5MIL的线需控制50欧姆的特性阻抗.
特性阻抗.jpg(112.37 KB, 下载次数: 376)
外层特性阻抗
层特性阻抗.jpg(122.42 KB, 下载次数: 285)层特性阻抗
外层差分阻抗.jpg(120.93 KB, 下载次数: 214)外层差分阻抗
层差分阻抗.jpg(133.4 KB, 下载次数: 223)
层差分阻抗
外层特性共面阻抗.jpg(109.05 KB, 下载次数: 208)外层特性共面阻抗
层特性共面阻抗.jpg(109.28 KB, 下载次数: 247)层特性共面阻抗
外层差分共面阻抗.jpg(99.69 KB, 下载次数: 214)外层差分共面阻抗
层差分共面阻抗.jpg(122.52 KB, 下载次数: 195)
层差分共面阻抗
4层板1.6MM阻抗设计.jpg(187.35 KB, 下载次数: 276) 4层板1.6MM阻抗设计
6层板1.2MM阻抗设计1.jpg(105.44 KB, 下载次数: 214) 6层板1.2MM阻抗结构图
6层板1.2MM阻抗设计2.jpg(162.07 KB, 下载次数: 215) 6层板1.2MM阻抗示意图。