历年高考理科数学真题汇编+答案解析(4):数列

合集下载

2019年高考真题汇编理科数学(解析版)4:数列

2019年高考真题汇编理科数学(解析版)4:数列

2018高考真题分类汇编:数列一、选择题1.【2018高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S = A.7 B.15 C.20 D.25【答案】B【解析】因为12=a ,54=a ,所以64251=+=+a a a a ,所以数列的前5项和156252)(52)(542515=⨯=+=+=a a a a S ,选B. 2.【2018高考真题浙江理7】设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是A.若d <0,则数列﹛S n ﹜有最大项B.若数列﹛S n ﹜有最大项,则d <0C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列【答案】C【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.故选C 。

3.【2018高考真题新课标理5】已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【答案】D【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选D.4.【2018高考真题上海理18】设25sin 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( )A .25B .50C .75D .100【答案】D【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0。

(完整)历年数列高考题(汇编)答案,推荐文档

(完整)历年数列高考题(汇编)答案,推荐文档

n
3
26
3
4
9
a>0,故 q 1 。
3
1
1
由2a1 3a2
1得2a1
3a2q
1
,所以
a1 3 。故数列{an}的通项式为
an=

3n
(Ⅱ ) bn log1 a1 log1 a1... log1 a1
(1 2 ... n) n(n 1)
2
1
2
11

2( )
bn n(n 1)
1.S
1 3
(1
1 3n
)
1
31n
,
n
() 33
3n n
1 1
2
3
所以
Sn
1
an , 2
(Ⅱ) bn log3 a1 log3 a2 log3 an
n(n 1)
所以{bn }的通项公式为bn
. 2
n(n 1) (1 2 ....... n)
2
2、(2011 全国新课标卷理)
{a1 9
解得 d 2
数列{an}的通项公式为 an=11-2n。 ...................................................6 分
专业整理
word 格式文档
n(n 1)
(2)由(1) 知 Sn=na1+
d=10n-n2。
2
因为 Sn=-(n-5)2+25.
a1 d 0, 解:(I)设等差数列{an } 的公差为 d,由已知条件可得2a1 12d 10,
a1 1,
解得 d
1.
故数列{an } 的通项公式为 an 2 n. ………………5 分

(完整word)2019年高考试题汇编理科数学--数列,推荐文档

(完整word)2019年高考试题汇编理科数学--数列,推荐文档

解答: 13,设等比数列公比为q3、25•- (ag )ag••• q 3• S 121 …S 53(1)证明:a nb n 是等比数列,a n b n 是等差数列;(2 )求a n 和b n 的通项公式. 答案: (1) 见解析 1 x n 11 x n 1(2)a n () n,b n () n2222解析:(1)将 4a n 1 3a n b n 4 , 4b n 1 3b n a n 4 相加可得 4a n1 4b n 1 3a n 3b n a n b n ,11 整理可得a n 1 b n 1丄(a n b n ),又玄1 Q 1,故a . b n 是首项为1,公比为1的等比数列22将 4a n 1 3a n b n 4, 4b n 13b n a n 4 作差可得 4a n14b n13a n 3b n a . b n 8,整理可得a n 1 b n 1a nb n 2,又a 1 Q 1,故a .b n 是首项为1,公差为2的等差数列1 1A. a n 2n 5B.3n 3n 10 CS2n 28nD.S n■In 2 2n 2答案:A解析:S 4 4冃 6d 0a 1 3 5, S n2依题意有 可得 a nn 4n .3S 31 4d 5 d 2 n(2019全国1理)9•记S n 为等差数列 a n 的前n 项和•已知S 40 , a 5 5,则(2(2019全国1理)14.记S n 为等比数列 a n 的前 n 项和,a 436,则 S5答案: S 51213 2019全国2理)19.已知数列a n 和b n满足a 10 , 4a n 1 3a n b n 4, 4b n 1 3b n a n 4.-31 2 3436(2)由a n b n是首项为1 ,公比为?的等比数列可得a n b n ()"①;由a n bn 是首项为1公差为2的等差数列可得a n b n 2n 1②;【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值.【详解】等差数列 a n 中,8s 5a 3 10,得a 3 2& 3,公差da 3 a ?1, a§% 2d 0,由等差数列a n 的性质得n 5时,a n 0, n 6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为10.①②相加化简得a n(!)n n 1,①②相减化简得b n 2 2(2019全国3理)5.已知各项均为正数的等比数列的前4项和为15,且a s 3a 3 4印,则a ?()A. 16B. 8 答案: C解答:C. 4D.设该等比数列的首项 a i ,公比由已知得,4a©3dq 24a i , 因为a 0且q 0, 则可解得2,又因为 a i (1q 3) 15,即可解得c 1,则4.(2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若q0, a 2 3a ,则 3°S 5答案:4解析:设该等差数列的公差为d 2a 1 a 1 0,d 0 ,10 a 1 a 10S 0____________2S 55 a 1 a 522 2a 1 9d3 4.2a 1 4d 5d(2019北京理)10.设等差数列 的前n 项和为S n,若a 2=-3 ,S s =-10,则a s = ,S n 的最小值为【答案】 (1). 0. (2). -10.【点睛】本题考查等差数列的通项公式?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算能力的考查a i (2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i l<i2<・・Vm),若a h a2则称新数列a h, a i2, , a m为{a n}的长度为m的递增子列•规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1 , 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(H)已知数列{a n}的长度为p的递增子列的末项的最小值为a m o,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m°<a n°;(川)设无穷数列{a n}的各项均为正整数,且任意两项均不相等若{ a n}的长度为s的递增子列末项的最小值为2s -, 且长度为S末项为2s-1的递增子列恰有2s-1个(s=1 , 2,…),求数列{a n}的通项公式.【答案】(I )1,3,5,6.(n )见解析; (川)见解析.【解析】【分析】(I )由题意结合新定义的知识给出一个满足题意的递增子列即可;(n )利用数列的性质和递增子列的定义证明题中的结论即可;(川)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可•【详解】(I )满足题意的一个长度为4的递增子列为:1,3,5,6.(n)对于每一个长度为q的递增子列a n a2丄a q,都能从其中找到若干个长度为p的递增子列色总丄a p,此时a p a q ,设所有长度为q的子列的末项分别为:a q, ,a q2,a q3 ,L ,所有长度为p的子列的末项分别为:a p1,a p2,a p3,L ,则a n0 min a q1,a q2,a q3,L ,注意到长度为P的子列可能无法进一步找到长度为q的子列,故a m0 min a p1,a p2,a p3,L ,据此可得:a m0a n0n 1, n为偶数(川)满足题意的一个数列的通项公式可以是a n 斗才来朴2,1,4,3,6,5,8,7,L ,n 1,n为奇数面说明此数列满足题意很明显数列为无穷数列,且各项均为正整数,任意两项均不相等.长度为s 的递增子列末项的最小值为2s-1,下面用数学归纳法证明长度为s 末项为2s-1 的递增子列恰有2s 1个s 1,2,L :当n 1 时命题显然成立,假设当n k时命题成立,即长度为k末项为2k-1的递增子列恰有21个,则当n k 1时,对于n k 时得到的每一个子列a s1,a s2,L ,a s k 1,2k 1,可构造:aq,a s2丄,a s「2k 1,2 k 1 1和a5^,a S2,L ,a^l,2k,2 k 1 1两个满足题意的递增子列,则长度为k+1 末项为2k+1 的递增子列恰有 2 2k 12k2k 1 1个,n 1, n为偶数综上可得,数列a n、,卄沁.2,1,4,3,6,5,8,7,L是一个满足题意的数列的通项公式•n 1, n为奇数注:当s 3时,所有满足题意的数列为:2,3,5 , 1,3,5 , 2,4,5 , 1,4,5 ,当s 4 时,数列2,3,5 对应的两个递增子列为:2,3,5,7 和2,3,6,7 .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2019天津理) 19.设a n 是等差数列,b n 是等比数列.已知a1 4,b1 6,b2 2a2 2,b3 2a3 4.(I)求a n和b n的通项公式;(n)设数列q满足G 1,c n X 2 J 2「其中k Nn 1 n b k,n 2k ,i )求数列a2n c2n1 的通项公式;2nii )求a i c i n Ni1答案】(I )a n 3n 1 ; b n 3 2n(n )(i )a2n c2n 1 9 4n1 (ii )* 2n 1n 1 *aqnN 27 25 2 n 12 nNi 1【解析】 【分析】(I )由题意首先求得公比和公差,然后确定数列的通项公式即可; (n )结合(I )中的结论可得数列a 2n c 2n 1的通项公式,结合所得的通项公式对所求的数列通项公式进行等2n价变形,结合等比数列前n 项和公式可得aG 的值.i 12 4 d 26 2d,解得2 4 2d 4 12 4d故a n 4 (n 1) 33n1 ,b n6 2n13 2n.所以,a n的通项公式为 a n 3n 1 , b n的通项公式为b n3 2n (n )( i ) a 2n C 2n 1 a ?n b n 1 3 2n 1 3 2n 19 4n 1所以,数列 a ?n c?n1 的通 项公式 :为a2nc 2n 19 4n 12n 2n2n2n(ii )a &a i a C i 1a ia c 2i1i 1i 1i 1i 12n 2n 1n2 n4-39 412i 14 1 4n3 ?2 n5 2n 19n1 427 _2n•1J 112N*25 2n n【点睛】本题主要考查等差数列 ?等比数列的通项公式及其前 n 项和公式等基础知识.考查化归与转化思想和数列 求和的基本方法以及运算求解能力.【详解】(I )设等差数列a n 的公db n 的公比为q .依题意得6q6q 2(2019上海)18•已知数列{a n } , a 1 3,前n 项和为S n •(1)若{an }为等差数列,且 a 4 15, 求S n ;(2)若{a n }为等比数列,且 lim n S n 12,求公比 q 的取值范围 【解答】解:(1) Q a 4 a 3d 3 3d 15 ,d 4 ,n(n 1),S n 3n4 2n 2 n;2lim S n 存在,nlim 3(^ 2 ,n1 q 1 q3 4公比q 的取值范围为(1 , 0) (0 , 3).42综上,d -或者d3Hm S n存在, lim S n n (2019上海)21.已知等差数列{务}的公差d (0, ],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n2 、(1 )若a 1 0,d 一,求集合 30,d —,3{乜,0, △.2 2根据三角函数线,①等差数列 {a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时此时d —,3(2)若a 1,求d 使得集合 2 S 恰好有两个(3)若集合S 恰好有三个元素: b n T b n , T 是不超过7的正整数,求 T 的所有可能的值.【解答】解:(1) Q 等差数列{a n }的公差d (0,],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n当a 1集合S (2) Q,数列{b n }满足 b n sin (a .),2集合S x|x N *恰好有两个元素,如图:②a 1终边落在OA 上,要使得集合 S 恰好有两个元素,可以使 a 2, a 3的终边关于y 轴对称,如图OB , OC ,(3)①当T 3 时,b n 3 b n,集合S {bl,b2, b3},符合题意.②当T 4 时,b n 4 b n ,sin(a n 4d) sina. a n 4d a n 2k ,或者a n 4d 2k a n ,4d a n 2k,又k 1,2当k1时满足条件,此时S {,1, 1}.③当T 5时,b n 5b n,si n(a n5d)sina n,故k1,2.当k1时,S{sin—,1,sin}满足题意1010④当T 6时,b n 6b n,sin (an6d)sina n,a na n等差数列{a n}的公差d (0,],故a n5d a n 2k ,或者a n 5d 2k a n,因为 d (0 ,所以6d a n 2k 或者a n 6d 2k a n,d (0,1 , 2, 3.1时,S {-^O, —3},满足题意.2 2⑤当T 7 时,b n 7 b n,si n(a n 7d) si na n si na n,所以a n 7d a n 2k ,或者a n 7d 2k a n,d (0,故k 1 , 2, 31时,因为b i ~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d m 7,不符合条件.k 2时,因为b i~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d n不是整数,不符合条件.k 3时,因为bi ~ b7对应着3 个正弦值,故必有一个正弦值对应着3个点,必然有a m a n—,或者d7—,此时,m n均不是整数,不符合题意.7综上,T3,4,5,6.(2019江苏)8.已知数列{a n}( n N*)是等差数列,S n是其前n项和若a2^ 兎0,S9 27 ,则Q的值是 _____________________ 【答案】16【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.a 2a 5CBa 1 d a-i 4d7d 0【详解】由题意可得:9 8S99a 1 9 8d227解得: a 1 51 ,则 S 8 8a 1 8 7d40 28 216.d 22【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应 用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a 1, d 的方程组.(2019江苏)20.定义首项为1且公比为正数的等比数列为“M—数列”.(1)已知等比数列{a n }满足:a ?a 4 a 5,a 3 4a ? 4印 0 ,求证:数列{a n }为“M—数列”;u . 1 2 2(2)已知数列{b n }满足:b 1 1,S b b ,其中S 为数列{b n }的前n 项和.S n b n b n 1① 求数列{b n }的通项公式;② 设m 为正整数,若存在 “M—数列” {} (n € N *),对任意正整数k ,当k 呦 时,都有C k b k q 1成立,求m 的 最大值.【答案】(1)见解析; (2[① b n = n n N * :② 5. 【解析】 【分析】(1 )由题意分别求得数列的首项和公比即可证得题中的结论; (2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得【详解】(1)设等比数列{a n }的公比为q ,所以a 1^0, q 丰0.因此数列{a n }为M —数列”1 22 (2) ①因S n—,所以b nb nbn11 2 2由b| 1,S 1th 得1 1 ,则 b 22.1由2 2 得 S nb n b n 1m 的最大值.a 2&4 a s由a 3 4a : 4ci|。

全国高考理科数学试题分类汇编4:数列 Word版含答案.pdf

全国高考理科数学试题分类汇编4:数列 Word版含答案.pdf

2 3
an
+
1 3
,则数列{
an
}的通
项公式是 an =______. 【答案】 an = (−2)n−1 .
21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,互不-相同
的点 A1, A2 K , X n ,K 和 B1, B2 K , Bn ,K 分别在角O的两条边上,所有 An Bn 相互平行,且所有
所以数列的前 n
项和
sn
=
4n
或 sn
=
3n2 − 2
n
11.(2013 年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯 WORD 版含答案))等差数
列 an的前 n 项和为 Sn ,已知 S10 = 0, S15 = 25 ,则 nSn 的最小值为________.
【答案】 −49
12.(2013 年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三
图像如图所示,在区间a,b 上可找到 n(n 2) 个不同的数 x1,x2...,xn , 使得
f (x1) = f (x2 ) = f (xn ) , 则 n 的取值范围是
x1
x2
xn
(A)3,4
(B)2,3,4 (C) 3,4,5
(D)2,3
【答案】B
5 .(2013 年普通高等学校招生统一考试福建数学(理)试题(纯 WORD 版))已知等比数列

学海无涯
(1) a3 = _____; (2) S1 + S2 + + S100 = ___________.
【答案】 − 1 16
;
1 3
(

2012年高考真题汇编——理科数学(解析版)4:数列

2012年高考真题汇编——理科数学(解析版)4:数列

2012 高考真题分类汇编:数列一、选择题1.【 2012 高考真题重庆理 1】在等差数列 { a n } 中, a 21 , a 45 则 { a n } 的前 5 项和 S 5 =A.7B.15C.20D.25【答案】 B【 解 析 】 因 为 a 2 1 , a 45 , 所 以 a 1 a 5 a 2a 46 , 所 以 数 列 的 前 5 项 和5( a 1a 5 ) 5(a 2a 4 ) 5 , 选 B.S 5226 1522.【 2012 高考真题浙江理 7】设 S n 是公差为 d ( d ≠ 0)的无穷等差数列﹛ a n ﹜的前 n 项和,则 下列命题错误的是A.若 d < 0,则数列﹛ S n ﹜有最大项B.若数列﹛ S n ﹜有最大项,则 d < 0C.若数列﹛ S n ﹜是递增数列,则对任意n N * ,均有 S nD. 若对任意 n N * ,均有 S n 0 ,则数列﹛ S n ﹜是递增数列【答案】 C【解析】选项 C 显然是错的,举出反例:— 1,0, 1, 2, 3,⋯.满足数列 {S n }是递增数列,但是 S n > 0 不成立.故选 C 。

3.【 2012 高考真题新课标理 5】已知 a n 为等比数列, a 4 a 72 , a 5 a 68 ,则 a 1 a 10()( A) 7 (B) 5(C )( D )【答案】 D【 解 析 】 因 为 { a n } 为 等 比 数 列 , 所 以 a 5a 6 a 4 a 78 , 又 a 4 a 7 2 , 所 以 a 4 4,a 7 2 或 a 4 2,a 7 4 . 若 a 44,a 72 , 解 得 a 18,a 10 1 ,a 1a107 ;若 a 42, a 7 4 ,解得 a 108, a 1 1 ,仍有 a 1 a 107 ,综上选D.4.【2012 高考真题上海理18】设a n 1sin n, S n a1 a2a n,在S1, S2 ,, S100 n25中,正数的个数是()A. 25B. 50C.75D. 100【答案】 D【解析】当 1≤n≤ 24 时,a n> 0,当 26≤n≤ 49 时,a n< 0,但其绝对值要小于1≤n≤ 24时相应的值,当51≤n≤ 74时, a n>0,当76≤ n ≤99时, a n<0,但其绝对值要小于51≤ n ≤74时相应的值,∴当1≤n≤ 100 时,均有S n> 0。

2012年高考真题理科数学解析汇编:数列

2012年高考真题理科数学解析汇编:数列
(Ⅲ)当 时,比较 与 的大小,并说明理由.
.(2012年高考(四川理))已知数列 的前 项和为 ,且 对一切正整数 都成立.
(Ⅰ)求 , 的值;
(Ⅱ)设 ,数列 的前 项和为 ,当 为何值时, 最大?并求出 的最大值.
.(2012年高考(上海理))对于数集 ,其中 , ,定义向量集
.若对于任意 ,存在 ,使得 ,则称X
函数 .定义数列 如下: 是过两点 的直线 与 轴交点的横坐标.
(1)证明: ;
(2)求数列 的通项公式.
.(2012年高考(北京理))设A是由 个实数组成的 行 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记 为所有这样的数表构成的集合.
对于 ,记 为A的第 行各数之和 , 为A的第 列各数之和 ;
.(2012年高考(上海春))已知等差数列 的首项及公差均为正数,令 当 是数列 的最大项时, ____.
.(2012年高考(辽宁理))已知等比数列 为递增数列,且 ,则数列的通项公式 ______________.
.(2012年高考(江西理))设数列 都是等差数列,若 ,则 __________。
3.考点分析:本题考察等比数列性质及函数计算.
解析:等比数列性质, ,① ;② ;③ ;④ .选C
3.【答案】B
【解析】 ,而 ,解得 .
【考点定位】该题主要考查等差数列的通项公式,考查计算求解能力.
3.答案A
【命题意图】本试题主要考查等差数列的通项公式和前 项和的公式的运用,以及裂项求和的综合运用,通过已知中两项,得到公差与首项,得到数列的通项公式,并进一步裂项求和.
3.【解析】选
二、填空题
3.【解析】 的前 项和为
可证明:

高考真题汇编——理科数学(解析版)4:数列.pdf

高考真题汇编——理科数学(解析版)4:数列.pdf

an
f
an + 2
= 2 2 = 2 2 = f a an an+2
an +an+2
2an+1
2 n +1

( ) ( ) ( ) ③ f an f an+2 =
anan+2 =
2
an +1
=
f2
an +1

( ) ④ f (an ) f (Байду номын сангаасn+2 ) = ln an ln an+2 ln an+1 2 = ( ) f 2 an+1 .选 C
()
( A) 7
【答案】D
(B) 5
(C) −
(D) −
【 解 析 】 因 为 {an } 为 等 比 数 列 , 所 以 a5a6 = a4a7 = −8 , 又 a4 + a7 = 2 , 所 以 a4 = 4,a7 = −2 或 a4 = −2,a7 = 4 . 若 a4 = 4,a7 = −2 , 解 得 a1 = −8,a10 = 1 , a1 + a10 = −7 ;若 a4 = −2,a7 = 4 ,解得 a10 = −8,a1 = 1,仍有 a1 + a10 = −7 ,综上选
学海无涯
比 数 列 {an} , { f (an )} 仍 是 等 比 数 列 , 则 称 f (x) 为 “ 保 等 比 数 列 函 数 ”. 现 有 定 义 在 (−,0) U(0, +) 上的如下函数:
① f (x) = x2 ; ② f (x) = 2x ; ③ f (x) = | x | ; ④ f (x) = ln | x | .

历年高考理科数列真题汇编含答案解析

历年高考理科数列真题汇编含答案解析

高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100(B )99(C )98(D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是()(A )1a(C )1a (2016(A )(2016n ,a 2n ?1+a 2n (A (C (2016∈*N ,1n n B B +=若n d =A .{}n S C .{}n d 1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1B 、0 C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于() A .6B .7 C .8D .93.【2015高考北京,理6】设{}n a 是等差数列.下列结论中正确的是()A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则()A.140,0a d dS >>B.140,0a d dS <<C.140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是()13.,,A a a a 24.,,C a a 2.【A .5.【2014 ) A .(2016(2016同的数组成,{}3,2,则k (2016(2016的值是▲. (20165.【2015}n a 的前n 6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=. 8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为.9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=。

2013年高考真题理科数学解析分类汇编4-数列

2013年高考真题理科数学解析分类汇编4-数列
2 n -1 2
( - 1) n +1 综上,第 n 个等式: 1 - 2 + 3 - ⋯ + ( - 1) n = n (n + 1) 2
2 2
5.江西 1 等比数列 x,3x+3,6x+6, …..的第四项等于 A.-24 B.0 C.12 D.24
6. 福 建 9. 已 知 等 比 数 列 {a n } 的 公 比 为 q , 记 bn = a m ( n−1) +1 + am ( n−1) +2 + ⋅ ⋅ ⋅ + a m ( n−1) + m ,
照此规律 , 第 n 个等式可为
n +1 n -1 2 ( - 1) 12 - 2 2 + 3 2 - ⋯ + ( - 1) n = n (n + 1) 2
.
( - 1) n +1 【答案】 1 - 2 + 3 - ⋯ + ( - 1) n = n (n + 1) 2
2 2 2 n -1 2
【解析】分 n 为奇数、偶数两种情况。第 n 个等式为 1
C、{S2n-1}为递增数列,{S2n}为递减数列 D、{S2n-1}为递减数列,{S2n}为递增数列 答案 B 【解析】 = cn+an bn+an + = 2 2
=2
,
=2
=2
,
=−
=
+2
=4
,
−2
=
=

,是正数递增数列
所以
=
=
=
−1(因为
边不是最大边,所以
是锐
角)是正数递减数列
是正数递增数列

2018--2020年高考数学试题分类汇编数列附答案详解

2018--2020年高考数学试题分类汇编数列附答案详解
解:∵{an}是等差数列,且a1=3,a2+a5=36,
∴ ,解得a1=3,d=6,
∴an=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.
∴{an}的通项公式为an=6n﹣3.
故答案为:an=6n﹣3.
3、(2018年高考浙江卷10)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( )
当q=2时,an=2n﹣1,
当q=﹣2时,an=(﹣2)n﹣1,
∴{an}的通项公式为,an=2n﹣1,或an=(﹣2)n﹣1.
(2)记Sn为{an}的前n项和.
当a1=1,q=﹣2时,Sn= = = ,
由Sm=63,得Sm= =63,m∈N,无解;
当a1=1,q=2时,Sn= =
A. B. C. D.
答案:C
解:由 知,序列 的周期为m,由已知, ,
,对于选项A,
,不满足;
对于选项B,
,不满足;
对于选项D,
,不满足;
故选:C
二、填空题.
1、(2018年高考全国卷1理科14)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=﹣63.
答案:
解析:Sn为数列{an}的前n项和,Sn=2an+1,①
把a1=2,代入得d=﹣3
∴a5=2+4×(﹣3)=﹣10.
故选:B.
2、(2019年高考全国I卷理科9)记 为等差数列 的前n项和.已知 ,则
A. B. C. D.
答案:A
解析:有等差数列的性质可知 ,解得
所以 ,故选A。
3、(2019年高考全国III卷理科5文科6)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=

2019年高考真题汇编理科数学(解析版):数列

2019年高考真题汇编理科数学(解析版):数列

2018高考真题分类汇编:数列一、选择题1.【2018高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S = A.7 B.15 C.20 D.25【答案】B【解析】因为12=a ,54=a ,所以64251=+=+a a a a ,所以数列的前5项和156252)(52)(542515=⨯=+=+=a a a a S ,选B. 2.【2018高考真题浙江理7】设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是A.若d <0,则数列﹛S n ﹜有最大项B.若数列﹛S n ﹜有最大项,则d <0C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列【答案】C【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.故选C 。

3.【2018高考真题新课标理5】已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【答案】D【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选D.4.【2018高考真题上海理18】设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( )A .25B .50C .75D .100【答案】D【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0。

高考数学(理)真题专题汇编:数列

高考数学(理)真题专题汇编:数列

高考数学(理)真题专题汇编:数列一、选择题1.【来源】2019年高考真题——数学(浙江卷)设,a b R ∈,数列{a n }中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =->D. 当104,10b a =->2.【来源】2019年高考真题——数学(浙江卷)已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >->D. 1,0a b >-<3.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<4.【来源】2019年高考真题——数学(浙江卷) 在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.5.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 3247.【来源】2019年高考真题——数学(浙江卷)若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. -1B. 1C. 10D. 128.【来源】2019年高考真题——数学(浙江卷)渐近线方程为0x y ±=的双曲线的离心率是( )B. 1D. 29.【来源】2019年高考真题——数学(浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(C U A )∩B =( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}二、填空题10.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.11.【来源】2019年高考真题——数学(浙江卷)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.12.【来源】2019年高考真题——数学(浙江卷)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 13.【来源】2019年高考真题——数学(浙江卷)在△ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.14.【来源】2019年高考真题——数学(浙江卷)在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______. 15.【来源】2019年高考真题——数学(浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =_____,r =______.16.【来源】2019年高考真题——数学(浙江卷) 复数11z i=+(i 为虚数单位),则||z =________. 17.【来源】2019年高考真题——理科数学(北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.18.【来源】2019年高考真题——理科数学(北京卷)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.三、解答题19.【来源】2019年高考真题——数学(浙江卷)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数f (x )的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.20.【来源】2019年高考真题——数学(浙江卷)如图,已知点F (1,0)为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q在点F 右侧.记,AFG CQG △△的面积为12,S S .(I)求p的值及抛物线的标准方程;(Ⅱ)求12SS的最小值及此时点G的坐标.21.【来源】2019年高考真题——数学(浙江卷)设等差数列{a n}的前n项和为S n,34a=,43a S=,数列{b n}满足:对每个12,,,n n n n n nn S b S b S b*++∈+++N成等比数列.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记,,2nnnac nb*=∈N证明:12+2,.nc c c n n*++<∈N22.【来源】2019年高考真题——数学(浙江卷)如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,90ABC∠=︒,1130,,,BAC A A AC AC E F∠=︒==分别是AC,A1B1的中点.(I)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.23.【来源】2019年高考真题——数学(浙江卷)设函数()sin ,f x x x =∈R .(I )已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++ 的值域. 24.【来源】2019年高考真题——数学(浙江卷)设01a <<,则随机变量X 的分布列是:则当a 在(0,1)内增大时( ) A. D (X )增大 B. D (X )减小 C. D (X )先增大后减小D. D (X )先减小后增大25.【来源】2019年高考真题——理科数学(北京卷)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.26.【来源】2019年高考真题——理科数学(北京卷)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;(Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记F (x )在区间[-2,4]上的最大值为M (a ),当M (a )最小时,求a 的值.27.【来源】2019年高考真题——理科数学(北京卷)已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.28.【来源】2019年高考真题——理科数学(北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 29.【来源】2019年高考真题——理科数学(北京卷)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.30.【来源】2019年高考真题——理科数学(北京卷)在△ABC中,a=3,b−c=2,cos B=12 -.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.试卷答案1. A 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a = 选项C :不动点满足22192024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为ax 12-,令2a =,则210n a =<,排除选项D :不动点满足221174024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为1712x =±,令1712a =,则171102n a =±<,排除. 选项A :证明:当12b =时,2222132431113117,,12224216a a a a a a =+≥=+≥=+≥≥, 处理一:可依次迭代到10a ; 处理二:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>则12117(4)16n na n -+⎛⎫≥≥ ⎪⎝⎭,则626410217164646311114710161616216a ⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++> ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解. 2. D 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析. 【详解】原题可转化为()y f x =与y ax b =+,有三个交点.当BC AP λ=时,2()(1)()(1)f x x a x a x a x '=-++=--,且(0)0,(0)f f a ='=,则(1)当1a ≤-时,如图()y f x =与y ax b =+不可能有三个交点(实际上有一个),排除A ,B(2)当1a >-时,分三种情况,如图()y f x =与y ax b =+若有三个交点,则0b <,答案选D下面证明:1a >-时,BC AP λ=时3211()()(1)32F x f x ax b x a x b =--=-+-,2()(1)((1))F x x a x x x a '=-+=-+,则(0)0 ,(+1)<0F >F a ,才能保证至少有两个零点,即310(1)6b a >>-+,若另一零点在0<【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.. 3. B 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即γ>β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 4. D【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 5.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 6. B【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.7. C 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 8. C 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b ,则c ==的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 9. A 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 10.0 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB ADλ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。

(word完整版)历年高考真题汇编数列,推荐文档

(word完整版)历年高考真题汇编数列,推荐文档
历年高考真题汇编数列(含)
、(年新课标卷文)
已知等比数列{an}
中,
a1
1 3
,公比
q
1 3

()
Sn
为{an}
的前项和,证明:
Sn
1 an 2
()设 bn log3 a1 log3 a2 log3 an ,求数列{bn}的通项公式.
解:(Ⅰ)因为 an
1 (1)n1 33
1 3n
.
Sn
1 (1 1 ) 3 3n
①②得
(1 22 ) Sn 2 23 25 22n1 n 22n1 。

Sn
1 [(3n 9
1)22n1
2]
、(年全国新课标卷文)
设等差数列an 满足 a3 5 , a10 9 。
(Ⅰ)求 an 的通项公式;
(Ⅱ)求an的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值。
解:()由 ()及,得
1 1
1 1 3n
2
,
3
所以 Sn
1 an 2
,
(Ⅱ) bn log 3 a1 log 3 a2 log 3 an
所以{bn }的通项公式为 bn
n(n 1) . 2
(1 2 ....... n)
n(n 1) 2
、(全国新课标卷理)
等比数列an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6. ()求数列 an 的通项公式.
1,
Sn a1 a2 an .
2 24
2n
所以,当 n 1时,
3 / 12
Sn 2
a1
a2
2
a1
an an1 an
2n1

历年高考理科数学真题汇编+答案解析(4):数列

历年高考理科数学真题汇编+答案解析(4):数列

历年高考理科数学真题汇编+答案解析专题4 数列(2020年版)考查频率:一般为2个小题或1个大题 考试分值:10分~12分 知识点分布:必修5一、选择题和填空题(每题5分)1.(2019全国I 卷理9)记为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-【解析】设等差数列{}n a 的公差为d ,依题意有⎩⎨⎧=+=+5406411d a d a ,解之得⎩⎨⎧=-=231d a .∴1(1)25n a a n d n =+-=-,21(1)42n n n S na d n n -=+=-. 【答案】A【考点】必修5 等差数列2. (2019全国I 卷理14)记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【解析】由246a a =可得,26511a q a q =,11a q =,∴3q =.∴551(13)1213133S -==-. 【考点】必修5 等比数列3.(2019全国III 卷理5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D .2【解析】由题意可得,23142111(1)1534a q q q a q a q a ⎧+++=⎨=+⎩,解得2q =,11a =. ∴2314a a q ==. 【答案】C【考点】必修5 等比数列n S4.(2019全国III 卷理14)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【解析】∵12103a a a =≠,,∴2113a a d a =+=,即12d a =.∵1011111091010901002S a d a a a ⨯=+=+=,51111545520252S a d a a a ⨯=+=+=. ∴1054S S =. 【答案】4【考点】必修5 等差数列5.(2018全国I 卷理4)记为等差数列的前项和.若,,则 A . B . C . D . 【解析】由4213S S S +=得,)64()2()33(3111d a d a d a +++=+,解得3231-=-=a d , ∴10122415-=-=+=d a a .【答案】B【考点】必修5 等差数列6.(2018全国I 卷理14)记为数列的前项和.若,则_____________. 【解析】当n =1时,1121a a =+,解得11a =-;当n ≥2时,有1121n n S a --=+,21n n S a =+,二式相减,得122n n n a a a -=-,化简得12n n a a -=. 所以{a n }是一个以-1为首项,以2为公比的等比数列.所以661(12)6312S -⨯-==--.【答案】-63【考点】必修5 等比数列7.(2017全国I 卷理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【解析】由题意得4512724a a a d +=+=,6161548S a d =+=,解得4d =. 【答案】C【考点】必修5 等差数列n S {}n a n 3243S S S =+12a ==5a 12-10-1012n S {}n a n 21n n S a =+6S =8.(2017全国I 卷理11)几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. 求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂. 那么该款软件的激活码是 A .440B .330C .220D .110【解析】第1组有1个数:20,其和为21-1;第2组有2个数:20、21,其和为22-1; 第3组有3个数:20、21、22,其和为23-1; ……第k 组有k 个数:20、21、…、2k -1,其和为2k -1; 于是,前k 组共(1)122++++=L k k k 个数, 其和为1212(12)2222(2)12+-+++-=-=-+-L k kk k k k ,即1(1)2(2)2++⎛⎫=-+⎪⎝⎭k k k S k ,设第k +1组有n 个数(n ≤k +1),其和为2n -1, 则(1)2+=+k k N n ,()12(2)(21)+=-++-k n S N k , ∵ 数列的前N 项和为2的整数幂,∴ 212-=+n k ,由(1)1002+>k k 得,14≥k ,∴n =5,k =29, 则29(291)54402⨯+=+=N .【答案】A【考点】必修5 等差数列、等比数列9. (2017全国II 卷理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【解析】设这个塔顶层有a 盏灯,∴ 宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴ 从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列, ∴ 总共有灯381盏,∴7(12)38112a -=-,解得3a =. 【答案】B【考点】必修5 等比数列10. (2017全国II 卷理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 【解析】等差数列{}n a 的公差为d ,则有11234(23)102a d a d +=⎧⎪⎨+=⎪⎩,解得1=11a d =,. ∴ (1)2n n n S +=,∴ 12112(1)1nS n n n n ⎛⎫==- ⎪++⎝⎭,则1111111122121223111nk kn S n n n n =⎛⎫⎛⎫=-+-++-=-=⎪ ⎪+++⎝⎭⎝⎭∑L . 【答案】21nn + 【考点】必修5 等差数列11.(2017全国III 卷理9)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .8【解析】设等差数列{}n a 的公差为d ,∵ a 2,a 3,a 6成等比数列,∴ 2326=a a a ,即2(12)(1)(15)+=++d d d ,解得2=-d ;∴ {}n a 前6项的和为1666()3(1110)242+==+-=-a a S . 【答案】A【考点】必修5 等差数列12.(2017全国III 卷理14)设等比数列{}n a 满足a 1+a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 【解析】设等比数列{}n a 的公差为q ,∵ a 1+a 2 = –1, a 1 – a 3 = –3,∴ 1(1)1+=-a q ,21(1)3-=-a q ,解得11,2==-a q ,∴ 3418==-a a q .【答案】-8【考点】必修5 等比数列二、简单题(每题12分)13.(12分)(2019全国II 卷理19)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434+-=+n n n a a b ,1434+-=-n n n b b a . (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()+++=+n n n n a b a b ,即111()2+++=+n n n n a b a b . 又因为a 1+b 1=l ,所以{}+n n a b 是首项为1,公比为12的等比数列. 由题设得114()4()8++-=-+n n n n a b a b ,即112++-=-+n n n n a b a b . 又因为a 1–b 1=l ,所以{}-n n a b 是首项为1,公差为2的等差数列. (2)由(1)知,112-+=n n n a b ,21-=-n n a b n . 所以 111[()()]222=++-=+-n n n n n n a a b a b n , 111[()()]222=+--=-+n n n n n n b a b a b n .【考点】必修5 等差数列、等比数列14.(2018全国II 卷理17)(12分)记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.【考点】必修5 等差数列15.(2018全国III 卷理17)等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【解析】(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.【考点】必修5 等比数列n S {}n a n 17a =-315S =-{}n a n S n S {}n a 15314a a a ==,{}n a n S {}n a n 63m S =m {}n a q 1n n a q -=424q q =0q =2q =-2q =1(2)n n a -=-12n n a -=1(2)n n a -=-1(2)3n n S --=63m S =(2)188m-=-12n n a -=21n n S =-63m S =264m=6m =6m =。

2012年高考真题理科数学解析汇编:数列

2012年高考真题理科数学解析汇编:数列

2012年高考真题理科数学解析汇编:数列一、选择题1 .(2012年高考(新课标理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a += ()A .7B .5C .-5D .-72 .(2012年高考(浙江理))设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意的n ∈N*,均有S n >0D .若对任意的n ∈N*,均有S n >0,则数列{S n }是递增数列3 .(2012年高考(重庆理))在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( )A .7B .15C .20D .254 .(2012年高考(四川理))设函数()2cos f x x x =-,{}n a 是公差为8π的等差数列,125()()()5f a f a f a π++⋅⋅⋅+=,则2313[()]f a a a -=( )A .0B .2116π C .218πD .21316π 5 .(2012年高考(上海理))设251sin πn nn a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是( )A .25.B .50.C .75.D .100.6 .(2012年高考(辽宁理))在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( )A .58B .88C .143D .1767 .(2012年高考(江西理))²+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,,则a 10+b 10= ( )A .28B .76C .123D .1998 .(2012年高考(湖北理))定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()||f x x =; ④()ln ||f x x =. 则其中是“保等比数列函数”的()f x 的序号为 ( )A .① ②B .③ ④C .① ③D .② ④9 .(2012年高考(福建理))等差数列{}n a 中,15410,7a a a +==,则数列{}n a 的公差为( )A .1B .2C .3D .4[来源:学*科*网Z*X*X*K]10.(2012年高考(大纲理))已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为 ( )A .100101 B .99101C .99100D .10110011.(2012年高考(北京理))某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( )A .5B .7C .9D .1112.(2012年高考(安徽理))公比为32等比数列{}n a 的各项都是正数,且31116a a =,则 ( )A .4B .5C .6D .7二、填空题13.(2012年高考(新课标理))数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为_______ 14.(2012年高考(浙江理))设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.15.(2012年高考(上海春))已知等差数列{}n a 的首项及公差均为正数,令*2012(,2012).n n n b a a n N n -=+∈<当k b 是数列{}n b 的最大项时,k =____.16.(2012年高考(辽宁理))已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列的通项公式n a =______________.17.(2012年高考(江西理))设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=,则55a b +=__________。

2019年全国高考理科数学试题分类汇编4:数列

2019年全国高考理科数学试题分类汇编4:数列

一、选择题1 .(2019年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==L L )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2019年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=•••∈则以下结论一定正确的是( ) A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mqC.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2019年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )【答案】C8 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d>的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2019年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于【答案】A二、填空题10.(2019年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2019年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a ΛΛ2121>+++的最大正整数n 的值为_____________.【答案】1214.(2019年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2019年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____ 【答案】2019.(2019年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ 20.(2019年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X K K和12,,,n B B B K K 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-= 22.(2019年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- 23.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈K ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=>ΛΘ是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x Λ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322Λ时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n Λ0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n ΛΛ上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ΛΛΛ)()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ΛΛ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2019年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a L 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a L L 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+L 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a L :,-,-,-,-,-,-,,-1-1-1-1k k k k k 644474448L 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++L ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S •=,440a S •=,551a S •=,662a S •=,11111a S •-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+•-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+•-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i Λ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i Λ的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i Λ所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i Λ的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(Λ 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++Λ【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==g g g g g g②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=g g g g g g g g g g g g g g g所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩g g g ;28.(2019年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =. (I)求数列{}n a 的通项公式;(II)是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-L 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦L ,不存在这样的正整数m .29.(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414n nn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈) (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=. 当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2019年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0nn S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+. 于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=.综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦… 222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦. 是等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考理科数学真题汇编+答案解析专题4数列(2020年版)考查频率:一般为2个小题或1个大题考试分值:10分~12分知识点分布:必修5一、选择题和填空题(每题5分)1.(2019全国I 卷理9)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-【解析】设等差数列{}n a 的公差为d ,依题意有⎩⎨⎧=+=+5406411d a d a ,解之得⎩⎨⎧=-=231d a .∴1(1)25n a a n d n =+-=-,21(1)42n n n S na d n n -=+=-.【答案】A【考点】必修5等差数列2.(2019全国I 卷理14)记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【解析】由246a a =可得,26511a q a q =,11a q =,∴3q =.∴551(13)1213133S -==-.【考点】必修5等比数列3.(2019全国III 卷理5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A .16B .8C .4D .2【解析】由题意可得,23142111(1)1534a q q q a q a q a ⎧+++=⎨=+⎩,解得2q =,11a =.∴2314a a q ==.【答案】C【考点】必修5等比数列4.(2019全国III 卷理14)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.【解析】∵12103a a a =≠,,∴2113a a d a =+=,即12d a =.∵1011111091010901002S a d a a a ⨯=+=+=,51111545520252S a d a a a ⨯=+=+=.∴1054S S =.【答案】4【考点】必修5等差数列5.(2018全国I 卷理4)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .12【解析】由4213S S S +=得,)64()2()33(3111d a d a d a +++=+,解得3231-=-=a d ,∴10122415-=-=+=d a a .【答案】B【考点】必修5等差数列6.(2018全国I 卷理14)记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =_____________.【解析】当n =1时,1121a a =+,解得11a =-;当n ≥2时,有1121n n S a --=+,21n n S a =+,二式相减,得122n n n a a a -=-,化简得12n n a a -=.所以{a n }是一个以-1为首项,以2为公比的等比数列.所以661(12)6312S -⨯-==--.【答案】-63【考点】必修5等比数列7.(2017全国I 卷理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【解析】由题意得4512724a a a d +=+=,6161548S a d =+=,解得4d =.【答案】C【考点】必修5等差数列8.(2017全国I 卷理11)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .110【解析】第1组有1个数:20,其和为21-1;第2组有2个数:20、21,其和为22-1;第3组有3个数:20、21、22,其和为23-1;……第k 组有k 个数:20、21、…、2k -1,其和为2k -1;于是,前k 组共(1)122++++=k k k 个数,其和为1212(12)2222(2)12+-+++-=-=-+- k k k k k k ,即1(1)2(2)2++⎛⎫=-+ ⎪⎝⎭k k k S k ,设第k +1组有n 个数(n ≤k +1),其和为2n -1,则(1)2+=+k k N n ,()12(2)(21)+=-++-k n S N k ,∵数列的前N 项和为2的整数幂,∴212-=+n k ,由(1)1002+>k k 得,14≥k ,∴n =5,k =29,则29(291)54402⨯+=+=N .【答案】A【考点】必修5等差数列、等比数列9.(2017全国II 卷理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏【解析】设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,∵总共有灯381盏,∴7(12)38112a -=-,解得3a =.【答案】B【考点】必修5等比数列10.(2017全国II 卷理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑.【解析】等差数列{}n a 的公差为d ,则有11234(23)102a d a d +=⎧⎪⎨+=⎪⎩,解得1=11a d =,.∴(1)2n n n S +=,∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭,则1111111122121223111n k kn S n n n n =⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭∑ .【答案】21nn +【考点】必修5等差数列11.(2017全国III 卷理9)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .8【解析】设等差数列{}n a 的公差为d ,∵a 2,a 3,a 6成等比数列,∴2326=a a a ,即2(12)(1)(15)+=++d d d ,解得2=-d ;∴{}n a 前6项的和为1666()3(1110)242+==+-=-a a S .【答案】A【考点】必修5等差数列12.(2017全国III 卷理14)设等比数列{}n a 满足a 1+a 2=–1,a 1–a 3=–3,则a 4=___________.【解析】设等比数列{}n a 的公差为q ,∵a 1+a 2=–1,a 1–a 3=–3,∴1(1)1+=-a q ,21(1)3-=-a q ,解得11,2==-a q ,∴3418==-a a q .【答案】-8【考点】必修5等比数列二、简单题(每题12分)13.(12分)(2019全国II 卷理19)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434+-=+n n n a a b ,1434+-=-n n n b b a .(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()+++=+n n n n a b a b ,即111()2+++=+n n n n a b a b .又因为a 1+b 1=l ,所以{}+n n a b 是首项为1,公比为12的等比数列.由题设得114()4()8++-=-+n n n n a b a b ,即112++-=-+n n n n a b a b .又因为a 1–b 1=l ,所以{}-n n a b 是首项为1,公差为2的等差数列.(2)由(1)知,112-+=n n n a b ,21-=-n n a b n .所以111[()()]222=++-=+-n n n n n n a a b a b n ,111[()()]222=+--=-+n n n n n n b a b a b n .【考点】必修5等差数列、等比数列14.(2018全国II 卷理17)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.【考点】必修5等差数列15.(2018全国III 卷理17)等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =.综上,6m =.【考点】必修5等比数列。

相关文档
最新文档