固定化酶和固定化细胞(借鉴材料)

合集下载

固定化酶和固定化细胞

固定化酶和固定化细胞

2022年高考生物总复习:固定化酶和固定化细胞
(1)固定化酶
①形成:将水溶性的酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。

②特性:与游离酶相比较,稳定性好,与底物和产物容易分离,易于控制,能反复多次使用;便于运输和贮存,有利于自动化生产。

(2)固定化细胞:是指固定在一定空间范围内的、能够进行生命活动并且可以反复使用的活细胞,又叫做固定化活细胞或固定化增殖细胞。

(3)固定技术
①概念:利用物理或化学方法将酶或细胞固定在一定空间内的技术。

②方法(连线)
提示A—b—ⅠB—a—ⅡC—c—Ⅲ
③适用对象
一般来讲,酶更适合采用化学结合法和物理吸附法固定化,而细胞多采用包埋法固定化,这是因为个大的细胞难以被吸附或结合,而个小的酶则易从包埋材料中漏出。

第1页共1页。

酶与蛋白质工程固定化酶与固定化细胞演示文稿

酶与蛋白质工程固定化酶与固定化细胞演示文稿
(3) 偶联反应
酶和载体的连接反应取决于载体上的功能基团和酶分子上的非必需侧链基团,而且是在十分温和 的pH、中等离子强度和较低温的缓冲液中进行 现已有多种偶联反应能制备固定化酶。这些方法在实际运用中经济意义起着决定作用,必须考
虑到酶的偶联效率,固定化酶总活力,操作的简便性以及载体与试剂的成本等因素
如,用乙烯-顺丁烯二酸酐共聚物共价修饰的胰蛋白酶和胰凝乳蛋白酶,可以用
DEAE-纤维素载体有效固定。这种固定几乎是不可逆的吸附
此外,酶的吸附与解吸还与介质中离子强度、pH、温度、蛋白质浓度及
酶和载体的特性相关
➢ pH的变化影响到载体和酶的电荷,从而影响载体对酶的吸附。在等电点两侧(±1-2pH单位)吸附
酶与蛋白质工程固定化酶与固 定化细胞演示文稿
当前第1页\共有48页\编于星期五\13点
(优选)酶与蛋白质工程固定 化酶与固定化细胞
当前第2页\共有48页\编于星期五\13点
固定化酶
固定化酶与水溶性酶比较具有以下优点:
(1) 极易将固定化酶与底物、产物分开;产物溶液中没有酶的残留,简化 了提纯工艺
(2) 可以在较长时间内反复使用,有利于工艺的连续化、管道化 (3) 酶反应过程可以严格控制,有利于工艺自动化和微电脑化 (4) 在绝大多数情况下提高了酶的稳定性
(5) 较能适应于多酶反应
(6) 酶的使用效率提高,产物得率提高,产品质量有保障,成本低
当前第3页\共有48页\编于星期五\13点
固定化酶
砜氧化裂解葡萄糖环,形成含醛基(每一葡萄糖产生两个醛基)高聚物,可 与酶蛋白氨基反应,产生固定化酶
当前第17页\共有48页\编于星期五\13点
例如:用甘蔗渣纤维素衍生物固定化木瓜蛋白酶

固定化酶与固定化细胞

固定化酶与固定化细胞

(2) 共价结合法
此法得到的固定化 酶结合牢固、稳定 性好、利于连续使 用,因此它是目前 应用最多的一类固 定化酶的方法。
借助共价键将酶的活性非 必须侧链基团或细胞表面 基团(如氨基、羧基、羟 基、巯基、咪唑基等)和 载体的功能基团进行偶联 以达到固定化目的方法。
共价偶联法的优点、缺点
共价偶联法的优点:得到的固定化酶结合牢固、稳定性 好、利于连续使用。 共价偶联法的缺点:载体活化的操作复杂,反应条件激 烈,需要严格控制条件才可以获得较高活力的固定化酶。 同时共价结合会影响到酶的空间构象,从而对酶的催化 活性产生影响。
ro
rb
NaCS
ri
NaCS
ra
固定化酶的制法及其特性比较
特性
共价键 结合法
制备方法
离子 结合法
交联法
物理 包埋法 吸附法
制法 酶活力 底物特异性
难 高 易变
结合能力 再生
强 不可
易 高 不变
难 中 易变
中 可能
强 不可
易 低 不变
弱 可能
难 高 不变

不可
固定化酶的保存方法
一.真空冷冻干燥保存(长期保存) 二.低温保存 三.多孔玻璃的无机质载体比纤维素等的有机质载体
含羟基的载体可用三氯 三嗪等多卤代物进行活 化,形成含有卤素基团 的活化载体。
D.硅烷化法
多孔玻璃特点: 机械强度好,表面积大。 耐有机溶剂和微生物破坏。载体可以再生,寿
命长等。
D.硅烷化 法
一般常用的载体:多 孔玻璃,多孔陶瓷。
D
. 硅 烷 化 法
D
. 硅 烷 化 法
D.硅烷化 法
E .溴化氰法
大小 和总吸附面积的大小。

酵母细胞的固定化

酵母细胞的固定化

酵母细胞的固定化一、固定化酶与固定化细胞及应用实例1、固定化酶(1)含义:将酶固定在不溶于水的载体上。

(2)实例:利用固定化酶技术生产“高果糖浆”。

(3)优点:酶既能与反应物接触,又能与产物分离,同时,固定在载体上的酶还可以被反复利用。

(4)缺点:一种酶只能催化一种化学反应,而在实际生产中,很多产物的形成是通过一系列的酶促反应才能得到。

(5)应用实例:生产高果糖浆①原料:葡萄糖②原理:葡萄糖果糖③生产过程及示意图:a.反应柱能连续使用半年,大大降低了生产成本。

b.提高了果糖的产量和品质。

2、固定化细胞(1)含义:将细胞固定在一定空间内的技术。

(2)优点:成本低、操作容易、对酶活性的影响更小、可以催化一系列的反应、容易回收(3)缺点:固定后的细胞与反应物不容易接近,可能导致反应效果下降,由于大分子物质难以自由通过细胞膜,因此固定化细胞的应用也受到限制。

二、固定化酶或固定化细胞技术的常用方法1、固定化酶或固定化细胞:指利用物理或化学方法将酶或细胞固定在一定空间内的技术。

2、方法:①物理吸附法 :将酶(或细胞)吸附在载体表面上②包埋法:将酶(或细胞)包埋在细微网格里③化学结合法:将酶(或细胞)相互结合,或将其结合到载体上。

葡萄糖异构酶三、固定化酵母细胞的制备与发酵(一)制备固定化酵母细胞1、酵母细胞的活化:1g干酵母+10mL蒸馏水→50mL烧杯→搅拌均匀→放置1h,使之活化。

〖思考〗活化是指什么?在缺水状态下,微生物处于休眠状态。

活化是指让处于休眠状态的微生物重新恢复正常生活状态的过程。

2、配制物质的量浓度为0.05mol/L的CaCl2溶液:0.83gCaCl2+150mL蒸馏水→200mL烧杯→溶解备用3、配制海藻酸钠溶液0.7g海藻酸钠+10mL水→50mL烧杯→酒精灯微火(或间断)加热,并不断搅拌,使之溶化→蒸馏水定容到10mL。

注:加热时要用小火,或者间断加热,并搅拌,反复几次,直到海藻酸钠溶化为止4、海藻酸钠溶液和酵母细胞混合将溶化好的海藻酸钠溶液冷却至室温,加入以活化的酵母细胞,进行充分搅拌,再转移至注射器中注:1、海藻酸钠溶液必须冷却至室温,搅拌要彻底充分,使两者混合均匀,以免影响实验结果的观察。

细胞固定化实验报告

细胞固定化实验报告

一、实验目的1. 了解细胞固定化的原理和方法。

2. 掌握固定化酶和固定化细胞的制备技术。

3. 研究固定化酶和固定化细胞在催化反应中的性能。

二、实验原理细胞固定化是将酶或细胞固定在固体载体上,使其在反应过程中保持活性,并便于与反应物和产物分离。

固定化酶和固定化细胞具有以下优点:1. 增加酶或细胞的稳定性,延长使用寿命。

2. 实现酶或细胞在反应过程中的重复使用。

3. 降低反应物的损失,提高产率。

4. 实现连续化、自动化生产。

三、实验材料与试剂1. 实验材料:大肠杆菌、酵母菌、固定化酶载体、固定化细胞载体。

2. 实验试剂:葡萄糖、酵母提取物、磷酸氢二钠、磷酸二氢钠、氯化钠、CaCl2、海藻酸钠、葡萄糖标准溶液、苯酚、硫酸铜、氢氧化钠、盐酸、氢氧化钠标准溶液。

四、实验步骤1. 固定化酶制备(1)将大肠杆菌接种于含有葡萄糖、酵母提取物、磷酸氢二钠、磷酸二氢钠、氯化钠的培养基中,培养24小时。

(2)收集菌体,用CaCl2溶液处理,得到固定化酶。

(3)将固定化酶与葡萄糖标准溶液进行酶活性测定,比较固定化酶和游离酶的催化性能。

2. 固定化细胞制备(1)将酵母菌接种于含有葡萄糖、酵母提取物、磷酸氢二钠、磷酸二氢钠、氯化钠的培养基中,培养24小时。

(2)将酵母菌用海藻酸钠溶液固定,得到固定化细胞。

(3)将固定化细胞与葡萄糖标准溶液进行酶活性测定,比较固定化细胞和游离细胞的催化性能。

3. 固定化酶和固定化细胞催化反应(1)将固定化酶和固定化细胞分别与葡萄糖标准溶液进行催化反应,观察反应速率。

(2)比较固定化酶和固定化细胞在催化反应中的性能差异。

五、实验结果与分析1. 固定化酶制备结果通过实验,成功制备了固定化酶,其酶活性比游离酶高,稳定性好。

2. 固定化细胞制备结果通过实验,成功制备了固定化细胞,其酶活性比游离细胞高,稳定性好。

3. 固定化酶和固定化细胞催化反应结果固定化酶和固定化细胞在催化反应中表现出良好的性能,反应速率较快,稳定性好。

固定化酶与固定化细胞 ppt课件

固定化酶与固定化细胞  ppt课件

• 固定化细胞意义:用完整的细胞作为生物催化剂, 以充分有效地利用生物细胞内的特定酶或多酶系 统。
ppt课件
4
优点
①省去对酶的提取过程,使酶的损失和生产 成本降到最低程度;
②可以利用细胞的多酶系统直接生产有价值 的产物。
ppt课件
5
第一节 酶和细胞的固定化
一、固定化酶和细胞的定义及特点 二、固定化方法 三 细胞的固定化方法
缺点:结合力弱,易解吸 附。
ppt课件
17
2.共价偶联法(covalent binding or covalent coupling)
借助共价 键将酶的活性 非必需侧链基 团和载体的功 能基团进行偶 联。
ppt课件
18
1)载体:亲水载体优于疏水载体
如:天然高分子衍生物:
纤维素
葡聚糖凝胶 亲和性好,机械性能差
ppt课件
23
戊二醛有两 个醛基,均可与 酶或蛋白质的游 离氨基反应,使酶 蛋白交联。
此法与共价偶联法利用的均是共价键, 不同之处:交联法不使用载体。
ppt课件
24
交联反应既能发生在分子间,也可 发生在分子内。
• 酶浓度低时,交联发生在分子内,酶 仍保持溶解状态。 • 酶浓度高时,交联发生在分子间,酶 变为不溶态。
11
优越性:
(1)降低成本,省去酶的分离纯化工作; (2)既可作为单一酶,也可作为复合酶系
完成部分代谢过程。 局限性: (1)细胞内多种酶的存在,会形成不需要的副
产物。 (2)细胞膜、细胞壁和载体都存在着扩散限制
作用。
ppt课件
12
3.固定化原生质体
意义: (1)固定化原生质体去除了细胞壁的扩散障 碍,有利于氧的传递,营养成分的吸收和 胞内产物的分泌。 (2)原生质体不稳定,容易破裂,固定化后, 由于载体的保护作用,稳定性提高。

吸附法思考!直接使用酶固定化酶与固定化细胞各有什么优缺点

吸附法思考!直接使用酶固定化酶与固定化细胞各有什么优缺点

练习:
1、制备固定化酵母细胞的过程中错误的是(

A、取干酵母,加入蒸馏水,使其活化
B、配制海藻酸钠时,加热用大火,直到海藻酸钠溶化为止
C、将溶化好的Βιβλιοθήκη 藻酸钠溶液冷却至室温,加入已活化的酵
母细胞
D、将凝胶珠在CaCl2溶液中浸泡30 min左右
2、下列叙述不正确的是(

A、从操作角度来考虑,固定化细胞比固定化酶容易
B、固定化细胞比固定化酶对酶的活性影响更小
C、固定化细胞固定的是一种酶
D、将微生物的发酵过程变成连续的酶反应应选择固定化细
胞技术
一种酶只能催化一种 化学反应,而在生产 实践中,很多产物的 形成都通过一系列的 酶促反应才能得到的。
固定后的酶或细胞与
成本低,操作更容易。
反应物不容易接近, 可能导致反应效果下
降等。
三、实验操作
(一)制备固定化酵母细胞
1、酵母细胞的活化
思考: 关于酵母菌你知道哪些知识? 什么是活化? 怎样活化? 应注意什么?
固定化细胞固定的是一系列酶 4.如果想将微生物的发酵过程变成连续的酶反应,应 该选择哪种方法? 固定化细胞技术
5.如果反应底物是大分子物质,又应该采用哪种方法? 固定化酶技术
1、 对固定酶的作用影响较小的固定方法 是什么?
吸附法。
2、 将谷氨酸棒状杆菌生产谷氨酸的发酵 过程变为连续的酶反应,应当固定(酶、 细胞);若将蛋白质变成氨基酸,应当固 定(酶、细胞)。
2、配制物质的量浓度为0.05mol/L 的CaCl2溶液
3、配制海藻酸钠溶液
应当注意什么问题? 1、加热时要用小火,或者间断加热 2、海藻酸钠的浓度 浓度过高——将很难形成凝胶珠; 浓度过低——形成的凝胶珠所包埋的酵母细胞的数目少,

固定化酶与固定化细胞

固定化酶与固定化细胞
固定化多酶反应
生化代谢产物,需由多种酶经多步酶促反应才能合成. 生化代谢产物,需由多种酶经多步酶促反应才能合成. 多酶反应器,为制造那些在有机合成上很棘手的, 多酶反应器,为制造那些在有机合成上很棘手的,结构 复杂的生化代谢物开辟了一条新的途径. 复杂的生化代谢物开辟了一条新的途径.
固定化细胞
直接把微生物细胞固定化
包埋法是制备固定化细胞最常用的方法. 包埋法是制备固定化细胞最常用的方法.将 产酶菌株用包埋剂如聚丙烯酰胺凝胶, 产酶菌株用包埋剂如聚丙烯酰胺凝胶,琼脂糖 凝胶,琼脂,海藻酸,卡拉胶, 凝胶,琼脂,海藻酸,卡拉胶,二和三醋酸纤 胶原,明胶和戊二醛等包埋起来, 维,胶原,明胶和戊二醛等包埋起来,发挥酶 或酶系的作用. 或酶系的作用. 例如: 3m1细胞悬浮液加人到 例如:海藻酸包埋 3m1细胞悬浮液加人到 2% 溶液中,置冰箱10h 10h, 20ml 2%CaCl2溶液中,置冰箱10h,用 100ml生理盐水洗二次 生理盐水洗二次. 100ml生理盐水洗二次. 注意:如果反复使用固定化细胞,需要避免 注意:如果反复使用固定化细胞, 其他微生物的污染, 其他微生物的污染,在工业生产中细胞的固 定化是在严格无菌条件下进行. 定化是在严格无菌条件下进行.
酶分子被结合到水不溶性 载体上共价结合形成水不 溶性的固定化酶
交联法
使用双功能或多功能试剂使酶分子之间相互 交联呈网状结构的固定化方法. 交联呈网状结构的固定化方法. 最常用的双功能试剂有戊二醛, 最常用的双功能试剂有戊二醛,顺丁稀二酸 酐和乙烯共聚物等.酶蛋白中的游离氨基, 酐和乙烯共聚物等.酶蛋白中的游离氨基,酚 咪唑基及巯基均可参与交联反应. 基,咪唑基及巯基均可参与交联反应. 双功能试剂: 双功能试剂: 常用的是戊二醛 常用的是戊二醛 O O

固定化酶和固定化细胞的制作方法

固定化酶和固定化细胞的制作方法

固定化酶的制作方法固定化酶的方法主要有吸附法、包埋法、共价结合法、共价交联法、结晶法(一)、吸附法吸附法是通过载体表面和酶分子表面间的次级键相互作用而达到固定目的的方法。

只需将酶液与具有活泼表面的吸附剂接触,再经洗涤除去未吸附的酶便能制得固定化酶。

是最简单的固定化技术,在经济上也最具有吸引力.物理吸附法(physical adsorption)是通过氢键、疏水键等作用力将酶吸附于不溶性载体的方法。

常用的载体有:高岭土、皂土、硅胶、氧化铝、磷酸钙胶、微空玻璃等无机吸附剂,纤维素、胶原以及火棉胶等有机吸附剂。

离子结合法(ion binding)是指在适宜的pH和离子强度条件下,利用酶的侧链解离基团和离子交换基间的相互作用而达到酶固定化的方法(离子键)。

最常用的交换剂有CM-纤维素、DEAE-纤维素、DEAE-葡聚糖凝胶等;其他离子交换剂还有各种合成的树脂如Amberlite XE-97、Dowe X-50等。

离子交换剂的吸附容量一般大于物理吸附剂。

影响酶蛋白在载体上吸附程度的因素:1. pH:影响载体和酶的电荷变化,从而影响酶吸附。

2. 离子强度:多方面的影响,一般认为盐阻止吸附。

3. 蛋白质浓度:若吸附剂的量固定,随蛋白质浓度增加,吸附量也增加,直至饱和。

4. 温度:蛋白质往往是随温度上升而减少吸附。

5. 吸附速度:蛋白质在固体载体上的吸附速度要比小分子慢得多。

6. 载体:对于非多孔性载体,则颗粒越小吸附力越强。

多孔性载体,要考虑吸附对象的大小和总吸附面积的大小。

吸附法的优点:操作简单,可供选择的载体类型多,吸附过程可同时达到纯化和固定化的目的,所得到的固定化酶使用失活后可以重新活化和再生。

吸附法的缺点:酶和载体的结合力不强,会导致催化活力的丧失和沾污反应产物;经验性强。

(二)、包埋法包埋法是将酶物理包埋在高聚物网格内的固定化方法。

(如将聚合物的单体和酶溶液混合后,再借助聚合促进剂的作用进行聚合,将酶包埋于聚合物中以达到固定化的目的)。

固定化酶与固定化细胞技术

固定化酶与固定化细胞技术

固定化酶与固定化细胞技术酶是具有生物催化功能的生物大分子(蛋白质或RNA),但通常指的是由氨基酸组成的酶,本章也仅探讨此类酶。

作为一种生物催化剂,参与生物体内各种代谢反应,而且反应后其数量和性质不发生变化。

由于酶的高级结构对环境十分敏感,各种因素(包括物理因素、化学因素和生物因素)均有可能使酶丧失活力。

但在常温常压条件下能高效地进行反应,且具有很高的专一性,副反应少,许多难以进行的有机化学反应在酶的作用下都能顺利进行。

由于酶的这些特点,大大促进了酶的应用和酶技术的研究。

酶被人们广泛应用于酿造、食品、医药等领域,特别是近几年来,随着分子生物学的发展,酶的应用更加活跃。

由于酶反应随着时间的延长,反应速度会逐渐降低,反应后酶不能回收,这就限制了酶的应用范围。

如果能将酶固定在惰性支持物上制成固定化酶,仍具有催化作用,还能回收反复使用,并且生产可以连续化、自动化。

从20世纪60年代固定化酶技术发展以来,不仅在酶学理论研究中发挥独特作用,在实际应用中也显示出强大的威力。

随着技术的不断发展,广义的固定化酶发展到固定化辅酶、固定化细胞及固定化细胞器等,固定化酶在食品、医药、化工和生物传感器制造上都有成功的应用实例。

对一个特定的目的和过程来说,是采用细胞,还是采用分离后的酶作催化剂,要根据过程本身来决定。

一般来说,对于一步或两步的转化过程用固定化酶较合适;对多步转换,采用固定化细胞显然有利。

第一节固定化酶固定化酶(immobilized enzyme)是指在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。

酶的固定化是将酶与水不溶性载体结合,制备固定化酶的过程。

固定化酶的形状依不同用途有颗粒、线条、薄膜和酶管等,颗粒状占绝大多数;颗粒和线条主要用于工业发酵生产;薄膜主要用于酶电极;酶管机械强度较大,主要用于化学工业生产。

目前,由于固定化酶的性质比游离酶及其相关技术优越,人们对其极感兴趣,因此固定化酶的应用也与日俱增。

固定化酶与固定化细胞(第六章)

固定化酶与固定化细胞(第六章)

固定化催化剂的特殊应用( 固定化催化剂的特殊应用(三) 特殊应用 药物控释载体9
药物释放要求: 定点(靶向性); 定量(太高太低均有害); 避免被(胃酸、蛋白酶)破坏; 避免引起免疫反应。 措施:聚合物修饰;凝胶包埋;制成微球 制剂或脂质体、具有导向性的药物等。
固定化催化剂的特殊应用( 固定化催化剂的特殊应用(四) 特殊应用 --生物传感器
第六章 固定化酶与固定化细胞
固定化酶定义的形成以及扩展
固定化酶是20世纪50年代发展起来的一项新技术, 最初称“ 水不溶性酶 ”(water insoluble enzyme) 和 “ 固相酶 ” (solid phase enzyme),是将水溶性的酶 与不溶性的载体结合起来。 后来,人们发现可以将酶包埋在凝胶内或置于超滤装 置中,高分子底物与酶在超滤膜的一边,反应产物可以 透过膜逸出。这种情况下,酶本身仍处于溶解状态,只 不过是被固定在一个有效的空间内。再用上面的名字已 不合适。 1971年第一次国际酶工程会议上统一称为“ 固定化 酶”。(immobilized enzyme )是指在一定空间内成闭索 状态存在的酶,能连续地进行反应,反应后酶可以回收 利用。 “ 固定化的生物催化剂” 包含酶、含酶细胞及微生物 的固定化。1
固定化酶半衰期(T 固定化酶半衰期(T1/2)的测定
测定半衰期的意义:评价固定化方法;生 产上决定更换酶的时机。 定义:从开始到活力只剩一半时所经历的 时间。有使用半衰期,贮藏半衰期等。 方法:直接法测既费时、费力,有时还不 可行(如半衰期很长)。 参考测定放射性元素半衰期的做法,间接 测定。
间接法测定固定化酶半衰期T 间接法测定固定化酶半衰期T1/2
生物催化剂固定化的优点
o 某些酶回到了它在体内的原始状态。 o 可以重复使用,节约了成本。 o 使用时方便得多,对产物抑制型反应既有 利又方便。 o 催化剂易和产物分离,有利于提高产品质 量(如生产针剂药品,最后不能含蛋白 质)。 o 大多数情况下催化剂固定化后稳定性提高。 o 酶反应过程可以控制。 o 较游离酶更适合于多酶体系反应。

最新:第4章 固定化酶和固定化细胞-文档资料

最新:第4章 固定化酶和固定化细胞-文档资料

有些情形下,由于产物分子在靠近膜面的位置逐渐积 聚而形成凝胶层,造成酶膜反应器中严重的产物抑制 降低了生产效率。 浓差极化和膜污染使酶膜反应器的传质速率和生产能 力急剧下降,膜孔堵塞、膜厚增加使膜的结构形态发 生不利变化,膜需要频繁地清洗或更换。
4.5.3.3 膜式反应器的应用
酶膜反应器把酶促反应与膜的选择性物质传递 有效地结合在一起,从而创造出有利的过程热 力学和动力学,在生物、医药、化工、环境等 领域得到了越来越广泛的应用。目前膜反应器 的应用主要有:辅酶或辅助因子的再生、有机 相酶催化、手性拆分与手性合成、反胶团中的 酶催化、生物大分子的水解等。
与酶的固定化相比,固定化细胞保持了胞内酶系 的原始状态与天然环境,有效地利用游离细胞完 整的酶系统和细胞膜的选择通透性,既具有固定 化酶的优点,又具有其自身的优越性:
固定化细胞的优越性
①无需进行酶的分离和纯化,减少酶的活力损 失,同时大大降低了成本; ②可进行多酶反应,且不需添加辅助因子,固 定化细胞不仅可以作为单一的酶发挥作用,而 且可以利用菌体中所含的复合酶系完成一系列 的催化反应,对于这种多酶系统,辅助因子再 生容易;
固定化细胞的优越性
③对于活细胞来说,保持了酶的原始状态,酶 的稳定性更高,对污染的抵抗力更强; ④细胞生长停滞时间短,细胞多,反应快等等。 正是由于固定化细胞的这些无可比拟的优势, 尽管其出现远远晚于固定化酶,但其应用范围 比固定化酶更为广泛。
当然,固定化细胞也有其自身的缺点,如:必须 保持菌体的完整,需防止菌体的自溶,否则影响 产物的纯度;必须抑制细胞内蛋白酶对目的酶的 分解;胞内多酶的存在,会形成副产物;载体、 细胞膜或细胞壁会造成底物渗透与扩散的障碍等。
(2)酶膜反应器可将目的产物分离出去,而 酶可以重复利用,可实现连续操作,并有可 能提高复杂反应的选择性。 (3)膜作为酶的固定化载体可以使酶在类似 生物膜的环境中高效发挥作用。

第二章 4 固定化酶与固定化细胞PPT课件

第二章 4 固定化酶与固定化细胞PPT课件
22
D.溴化氰法
23
(三)交联法
借助双功能试剂使酶分子之间发生交联作 用,制成网状结构的固定化酶的方法称为 交联法。往往与其他方法连用
24
(四) 包埋法(entrapping method)
定义:将酶或含酶菌体包埋在各种多孔载 体中,使酶固定化的方法称为包埋法。
25
(四) 包埋法
包埋法分为网格型和微囊型 1.网格型 2.微囊型
13
(二)结合法
1 离子键结合法 2 共价键结合法☆
14
1 离子键结合法
常用载体:纤维素, 葡聚糖凝胶 使用注意:pH、离子强度、温度
15
2 共价键结合法
( 1 )可以形成共价键的基团: 游离氨基, 游离羧基, 巯基, 咪唑基, 酚基, 羟基, 甲硫基, 吲哚基,二硫键
( 2 )常用载体:天然高分子、人工合成 的高聚物、无机载体
26
1.网格型
(1) 概念 将酶或含酶菌体包埋在凝胶细微 网格中,制成一定形状的固定化酶,称为 网格型包埋法。也称为凝胶包埋法
27
2.微囊型包埋法
是将酶包埋在各种高分子聚合物制成的小球内, 制成固定化酶。由于固定化形成的酶小球直径一 般只有几微米至几百微米,所以也称为微囊化法。
28
29
30
43
三. 辅酶固定化
1 原因 有机辅因子中具有某些特殊的化学基团,
参与酶的催化反应 有机辅因子在使用过程中要流失,并且不
能自行再生 有机辅因子价格昂贵
44
辅酶固定化的方法:
2 固定化方法与酶相似,一般采用溴化 氰法以及重氮偶联法等共价偶联。
3 辅酶固定化必须解决辅酶在多个酶之 间传递的障碍。
固定化酶与固定化细胞

固定化酶的优点及应用实例

固定化酶的优点及应用实例

固定化酶的优点及应用实例固定化酶是指通过物理或化学的手段将酶固定在固体支持材料上,并保持其活性的一种酶工程技术。

相比于游离酶,固定化酶具有许多优点,主要包括增强酶的稳定性、可重复使用、容易分离和纯化、提高酶的催化活性等。

首先,固定化酶可以增强酶的稳定性。

固定化酶能够降低酶分子的运动速度,减少酶与环境中有害物质之间的接触,从而提高酶分子对温度、pH值、有机溶剂等外界环境变化的耐受能力,增强了酶的稳定性。

此外,固定化酶能够降低酶分子的脱活速率,延长酶的使用寿命。

其次,固定化酶具有可重复使用的优势。

在固定化酶的底物转化过程中,底物可以通过固定载体穿透到固定酶的反应位点,并在该位点上发生反应。

这样,在反应结束后,固定载体上的酶仍然附着在固定载体上,可以被很容易地分离和回收。

由于固定酶是可重复使用的,可以降低生产成本,并实现高效率的生产。

对于一些昂贵的酶,这种节约是非常重要的。

此外,固定化酶比游离酶更容易分离和纯化。

由于固定酶附着在固体支持材料上,可以直接通过过滤、离心等简单方法将酶与底物分离。

相比之下,游离酶的分离和纯化需要复杂的步骤,如沉淀、色谱等。

最后,固定化酶还可以提高酶的催化活性。

固定酶附着在固体支持材料上后,可以形成固定化酶系统。

该系统中,固定酶可在相对较高的浓度下存在,并且在固定载体中有更多的酶底物分子与酶分子接触,从而提高反应速率,提高酶的催化活性。

固定化酶在许多领域中有广泛的应用,以下为几个实例:第一个应用实例是固定化酶在食品工业中的应用。

例如,固定化葡萄糖氧化酶用于葡萄糖测定,固定化氨基酸酶用于酿造中的氨基酸测定。

固定化酶在生产中具有可重复使用、稳定性和应用便利等优点,可以实现高效和规模化的生产。

第二个应用实例是固定化酶在生物制药中的应用。

例如,固定化饲料酶用于动物饲料中的消化酶替代,固定化抗体酶用于生物制药中的抗体药物生产。

固定化酶不仅可以提高药品的生产效率,还可以降低生产成本,提高产量和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
高级教育
物理吸附法
❖物理吸附法(physical adsorption)是通过非特异性物理 吸附作用将酶直接吸附在水不溶性载体表面上而 使酶固定化的方法。包括范德华力、疏水相互作 用、氢键。
❖ 物理吸附法常用的载体:
➢ 有机载体:纤维素、胶原、淀粉及面筋等;
➢ 无机载体:活性炭、氧化铝、皂土、多孔玻璃、 硅胶、二氧化钛、羟基磷灰石等。
17
高级教育
酶蛋白上可供载体结合的功能基团
❖ (1)酶蛋白N末端的α-氨基或赖氨酸残基的ε-氨基。 ❖ (2)酶蛋白C末端的α-羧基、天门冬氨酸残基的β-
羧基以及谷氨酸残基的γ-羧基。 ❖ (3)苯丙氨酸和酪氨酸残基的苯环。
❖ (4)其他:半胱氨酸残基的巯基;丝氨酸、苏氨酸和酪 氨酸残基的羟基;组氨酸残基的咪唑基;色氨酸残基的吲 哚基。
(TEAE)-纤维素等; ❖ 阳离子交换剂有羧甲基(CM)-纤维素、纤维素柠檬
酸盐、Dowex-50等。
❖ 其吸附容量一般大于物理吸附剂。离子吸附法具 有操作简便、条件温和、酶活力不易丧失等优点。 此外,吸附过程同时可以纯化酶。
13
高级教育
2、包埋法
❖ 包埋法(entrapment)是将酶包埋在高聚物的细微 凝胶网格中或高分子半透膜内的固定化方法。前 者又称为凝胶包埋法,酶被包埋成网格型;后者 又称为微胶囊包埋法,酶被包埋成微胶囊型。
14
高级教育
❖ (1)凝胶包埋法 ▪ 将聚合物的单体与酶溶液混合,再借助于聚合 促进剂(包括交联剂)的作用进行聚合,酶被包 埋在聚合物中以达到固定化。
▪ 凝胶包埋法常用的载体有海藻酸钠凝胶、角叉 菜胶、明胶、琼脂凝胶、卡拉胶等天然凝胶以 及聚丙烯酰胺、聚乙烯醇和光交联树脂等合成 凝胶或树脂。
15
高级教育
11
高级教育
离子吸附法
❖离子吸附法(ion adsorption)是通过离子键使酶与含 有离子交换基团的水不溶性载体相结合的固定化 方法。
❖ 此法固定的酶有葡萄糖异构酶、糖化酶、β-淀粉 酶、纤维素酶等,在工业上用途较广。
12
高级教育
❖ 离子吸附法常用的载体: ❖ 阴离子交换剂:DEAE-纤维素、四乙氨基乙基
响酶的原有构象,又能使固定化酶能有效回收贮藏,利于反 复使用。 ❖ (3)固定化应有利于自动化、机械化操作。这要求用于固 定化的载体必须有一定的机械强度,才能使之在制备过程中 不易破坏或受损。
6
高级教育
❖ (4)固定化酶应有最小的空间位阻。 ❖ (5)固定化酶应有最大的稳定性。在应用过程中,
所选载体应不和底物、产物或反应液发生化学反 应。 ❖ (6)固定化酶的成本适中。
7
高级教育
固定化酶(细胞)的制备方法
酶和细胞固定化方法
载体结合法 交联法
包埋法
网格型 微囊型
物理吸附法 离子结合法 共价结合法 热处理(细胞)
8
高级教育
9
高级教育
1、吸附法
Hale Waihona Puke ❖ 通过载体表面和酶分子表面间的次级键相互作用 而达到固定目的的方法,是固定化中最简单的方 法。
❖ 吸附法又可分为物理吸附法和离子吸附法。
20
高级教育
❖(2)叠氮法 即载体活化生成叠氮化合物,再与 酶分子上的相应基团偶联成固定化酶。
❖ 含有羟基、羧基、羧甲基等基团的载体都可用此 法活化。如CMC、CM-sephadex(交联葡聚糖)、 聚天冬氨酸、乙烯-顺丁烯二酸酐共聚物等都可用 此法来固定化酶。其中使用最多的是羧甲基纤维 素叠氮法。
4
高级教育
固定化酶的优点
➢ 同一批固定化酶能在工艺流程中重复多次地使用; ➢ 固定化后,和反应物分开,有利于控制生产过程,
同时也省去了热处理使酶失活的步骤; ➢ 稳定性显著提高; ➢ 可长期使用,并可预测衰变的速度; ➢ 提供了研究酶动力学的良好模型。
5
高级教育
固定化酶的制备原则
❖ (1)必须注意维持酶的构象,特别是活性中心的构象。 ❖ (2)酶与载体必须有一定的结合程度。酶的固定化既不影
❖ 酶共价偶联的载体的功能基团:芳香氨基、羟基、羧
基和羧甲基等。
18
高级教育
载体活化的主要反应
❖ 重氮法 ❖ 叠氮法 ❖ 溴化氰法 ❖ 芳香烃化法
19
高级教育
❖(1)重氮法 重氮法是将酶蛋白与水不溶性载体 的重氮基团通过共价键相连接而固定化的方法, 是共价键法中使用最多的一种。
❖ 常用的载体有多糖类的芳族氨基衍生物、氨基酸 的共聚体和聚丙烯酰胺衍生物等。
❖ 1971年召开的第一届国际酶工程会议上,建议采 用统一的英文名称Immobilized Enzyme;
❖ 1973年,固定化大肠杆菌菌体中的天冬氨酸酶连 续生产L-天冬氨酸。
❖ 1986年,利用固定化原生质体发酵生产碱性磷酸 酶和葡萄糖氧化酶等相继获得成功。
3
高级教育
发展现状
❖ 从目前的发展状况来看,尽管酶种类繁多,但已 经固定化的酶却相对有限,采用固定化酶技术大 规模生产的企业尚属少数,真正在工业上使用的 固定化酶还仅限于葡萄糖异构酶、葡萄糖氧化酶 和青霉素酰化酶等为数不多的十几个酶种,故仍 需大力研究开发使更多的固定化酶和细胞能适用 于工业规模生产。
❖ (2)微胶囊包埋法 ▪ 微胶囊包埋即将酶包埋在各种高聚物制成的半 透膜微胶囊内的方法。它使酶存在于类似细胞 内的环境中,可以防止酶的脱落,防止微囊外 的环境直接接触,从而增加了酶的稳定性。常 用于制造微胶囊的材料有聚酰胺、火棉胶、醋 酸纤维素等。
16
高级教育
3、共价键结合法
❖共价键结合法(covalent binding)是将酶与聚合物载 体以共价键结合的固定化方法。
Company
LOGO
固定化酶和固定化细胞
固定化酶的定义
❖所谓固定化酶(immobilized enzyme),是指在一定的 空间范围内起催化作用,并能反复和连续使用的 酶。
2
高级教育
酶固定化技术发展史
❖ 1916年,Nelson和Griffin发现酶的固定化现象;
❖ 1969年,千畑一郎等将固定化氨基酰化酶应用于 生产L-氨基酸,开创了固定化酶应用于工业生产 的先例;
21
高级教育
❖(3)溴化氰法 即用溴化氰将含有羟基的载体,如 纤维素、葡聚糖凝胶、琼脂糖凝胶等,活化生成亚 氨基碳酸酯衍生物,然后再与酶分子上的氨基偶联, 制成固定化酶。
❖ 任何具有连位羟基的高聚物都可用溴化氰法来活化。
相关文档
最新文档