地铁盾构隧道毕设论文
盾构毕业设计
盾构毕业设计引言盾构是一种常用于地下工程中的隧道开挖技术,具有快速、高效、安全等优点。
因此,盾构技术在现代城市建设中得到广泛应用。
随着城市化进程的加快,对盾构技术的需求也在不断增长。
为了进一步提高盾构技术的质量和效率,本文将探讨盾构毕业设计的相关内容。
盾构技术概述盾构是一种静力掘进方法,通过在地下挖掘隧道时使用盾构机械进行推进。
盾构机械由盾构机和配套设备组成,可以根据工程需要进行定制。
盾构机械通常由刀盘、螺旋输送机、脱泥装置、推进液供应系统等部分组成,确保隧道开挖的顺利进行。
盾构毕业设计的目标盾构毕业设计的目标是设计一个能够满足实际工程需求的盾构机械。
具体而言,该设计需要考虑以下方面:1.功能需求:盾构机械需要具备可靠的推进功能,能够适应不同地质条件下的隧道开挖工作。
2.安全性:盾构机械需要具备可靠的安全系统,能够及时发现和处理故障,确保操作人员的安全。
3.效率:盾构机械需要具备高效的工作性能,能够完成预定的工程任务,并具备快速更换刀盘等配件的能力。
盾构毕业设计的步骤1. 需求分析在设计盾构机械之前,需要进行充分的需求分析。
这包括分析盾构工程的特点、难点,以及现有盾构机械存在的问题和不足。
2. 方案设计根据需求分析的结果,设计一个创新的盾构机械方案。
在方案设计中需要考虑盾构机械的结构、工作原理、动力系统等方面。
3. 模型制作和测试根据方案设计的结果,制作盾构机械的模型,并进行各项测试。
测试需要包括盾构机械的推进性能、安全性能、可靠性等方面。
4. 效果评估和改进根据测试结果,评估盾构机械的效果,并对设计进行改进。
改进可能包括优化盾构机械的结构、调整工作参数等方面。
5. 报告撰写根据设计过程和结果,撰写盾构毕业设计报告。
报告需要包括设计目标、设计过程、测试结果、效果评估和改进等内容。
结论通过盾构毕业设计,可以提高对盾构机械设计的理解,培养设计能力和创新意识。
同时,该设计可以为城市化建设提供更加先进、高效、安全的盾构技术,推动城市建设的进一步发展。
隧道盾构-毕设论文外文翻译(翻译-原文)
毕业设计(论文)外文文献翻译院系:土木工程与建筑系年级专业:土木工程姓名:学号:附件:盾构SHIELDS指导老师评语:指导教师签名:年月日S HIEL D S【Abstr act】A tunnel shield is a structural system, used during the face excavation process. The paper mainly discusses the form and the structure of the shield. Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield and the shield is widespread used in the underground environment where can not be in long time stable. The main enemy of the shield is ground pressure. Non-uniform ground pressure caused by the steering may act on the skin tends to force the shield off line and grade. And working decks inside the shield enable the miners to excavate the face, drill and load holes.【Keywor ds】shield hydraulic jacks ground pressure steering working decksA tunnel shield is a structural system, normally constructed of steel, used during the face excavation process. The shield has an outside configuration which matches the tunnel. The shield provides protection for the men and equipment and also furnished initial ground support until structural supports can be installed within the tail section of the shield. The shield also provides a reaction base for the breast-board system used to control face movement. The shield may have either an open or closed bottom. In a closed-bottom shield, the shield structure and skin provide 360-degree ground contact and the weight of the shield rests upon the invert section of the shield skin. The open shield has no bottom section and requires some additional provision is a pair of side drifts driven in advance of shield excavation. Rails or skid tracks are installed within these side drifts to provide bearing support for the shield.Shield length generally varies from1/2 to 3/4 of the tunnel diameter. The front of the shield is generally hooded to so that the top of the shield protrudes forward further than the invert portion which provides additional protection for the men working at the face and also ease pressure on the breast-boards. The steel skin of the shield may varyfrom 1.3 to 10 cm in thickness, depending on the expected ground pressures. The type of steel used in the shield is the subject of many arguments within the tunneling fraternity. Some prefer mild steel in the A36 category because of its ductility and case of welding in the underground environment where precision work is difficult. Others prefer a high-strength steel such as T-1 because of its higher strength/w eight ratio. Shield weight may range from 5 to 500 tons. Most of the heaviest shields are found in the former Sovier Union because of their preference for cast-iron in both structural and skin elements.Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield that thrust against the last steel set that has been installed. The total required thrust will vary with skin area and ground pressure. Several shields have been constructed with total thrust capabilities in excess of 10000 tons. Hydraulic systems are usually self-contained, air-motor powered, and mounted on the shield. Working pressures in the hydraulic system may range from 20-70 Mpa. To resist the thrust of the shield jacks, a horizontal structure member (collar brace) must be installed opposite each jack location and between the flanges of the steel set. In addition, some structural provision must be made for transferring this thrust load into the tunnel walls. Without this provision the thrust will extend through the collar braces to the tunnel portal.An Englishman, Marc Brunel, is credited with inventing the shield. Brunel supposedly got his idea by studying the action of the Teredo navalis, a highly destructive woodworm, when he was working at the Chatham dock yard. In 1818 Brunel obtained an English patent for his rectangular shield which was subsequently uses to construct the first tunnel under the River Thames in London. In 1869 the first circular shield was devised by Barlow and Great Head in London and is referred to as the Great Head-type shield. Later that same year, Beach in New York City produced similar shield. The first use of the circular shield came during 1869 when Barlow and Great Head employed their device in the construction of the 2.1 in diameter Tower Subway under the River Thames. Despite the name of the tunnel, it was used only for pedestrian traffic. Beach also put his circular shield to work in 1869 to construct a demonstration project for a proposed NewYork City subway system. The project consisted of a 2.4 m diameter tunnel, 90 m long, used to experiment with a subway car propelled by air pressure.Here are some tunnels which were built by shield principle.Soft-ground tunneling Some tunnels are driven wholly or mostly through soft material. In very soft ground, little or no blasting is necessary because the material is easily excavated.At first, forepoling was the only method for building tunnels through very soft ground. Forepoles are heavy planks about 1.5 m long and sharpened to a point. They were inserted over the top horizontal bar of the bracing at the face of the tunnel. The forepoles were driven into the ground of the face with an outward inclination. After all the roof poles were driven for about half of their length, a timber was laid across their exposed ends to counter any strain on the outer ends. The forepoles thus provided an extension of the tunnel support, and the face was extended under them. When the ends of the forepoles were reached, new timbering support was added, and the forepoles were driven into the ground for the next advance of the tunneling.The use of compressed air simplified working in soft ground. An airlock was built, though which men and equipment passed, and sufficient air pressure was maintained at the tunnel face to hold the ground firm during excavation until timbering or other support was erected.Another development was the use of hydraulically powered shields behind which cast-iron or steel plates were placed on the circumference of the tunnels. These plates provided sufficient support for the tunnel while the work proceeded, as well as full working space for men in the tunnel.Under water tunneling The most difficult tunneling is that undertaken at considerable depths below a river or other body of water. In such cases, water seeps through porous material or crevices, subjecting the work in progress to the pressure of the water above the tunneling path. When the tunnel is driven through stiff clay, the flow of water may be small enough to be removed by pumping. In more porous ground,compressed air must be used to exclude water. The amount of air pressure that is needed increases as the depth of the tunnel increases below the surface.A circular shield has proved to be most efficient in resisting the pressure of soft ground, so most shield-driven tunnels are circular. The shield once consisted of steel plates and angle supports, with a heavily braced diaphragm across its face. The diaphragm had a number of openings with doors so that workers could excavate material in front of the shield. In a further development, the shield was shoved forward into the silty material of a riverbed, thereby squeezing displaced material through the doors and into the tunnel, from which the muck was removed. The cylindrical shell of the shield may extend several feet in front of the diaphragm to provide a cutting edge. A rear section, called the tail, extends for several feet behind the body of the shield to protect workers. In large shields, an erector arm is used in the rear side of the shield to place the metal support segments along the circumference of the tunnel.The pressure against the forward motion of a shield may exceed 48.8 Mpa. Hydraulic jacks are used to overcome this pressure and advance the shield, producing a pressure of about 245 Mpa on the outside surface of the shield.Shields can be steered by varying the thrust of the jacks from left side to right side or from top to bottom, thus varying the tunnel direction left or right or up or down. The jacks shove against the tunnel lining for each forward shove. The cycle of operation is forward shove, line, muck, and then another forward shove. The shield used about 1955 on the third tube of the Lincoln Tunnel in New York City was 5.5 m long and 9.6 m in diameter. It was moved about 81.2 cm per shove, permitting the fabrication of a 81.2 cm support ring behind it.Cast-iron segments commonly are used in working behind such a shield. They are erected and bolted together in a short time to provide strength and water tightness. In the third tube of the Lincoln Tunnel each segment is 2 m long, 81.2 cm wide, and 35.5 cm thick, and weighs about 1.5 tons. These sections form a ring of 14 segments that are linked together by bolts. The bolts were tightened by hand and then by machine.Immediately after they were in place, the sections were sealed at the joints to ensure permanent water tightness.Shields are most commonly used in ground condition where adequate stand-up time does not exist. The advantage of the shield in this type of ground, in addition to the protection afforded men and equipment , is the time available to install steel ribs, liner plates, or precast concrete segments under the tail segment of the shield before ground pressure and movement become adverse factors.One of the principle problems associated with shield use is steering. Non-uniform ground pressure acting on the skin tends to force the shield off line and grade. This problem is particularly acute with closed bottom shield that do not ride on rails or skid tracks. Steering is accomplished by varying the hydraulic pressure in individual thrust jacks. If the shied is trying to dive, additional pressure on the invert jacks will resist this tendency. It is not unusual to find shield wandering several feet from the required. Although lasers are frequently used to provide continuous line and grade data to operator, once the shield wanders off its course, its sheer bulk resists efforts to bring it back. Heterogeneous ground conditions, such as clay with random boulders, also presents steering problems.One theoretical disadvantage of the shield is the annular space left between the support system and the ground surface. When the support system is installed within the tail section of the shield, the individual support members are separated from the ground surface by the thickness of the tail skin. When steel ribs are used, the annular space is filled with timber blocking as the forward motion of the shield exposes the individual ribs.A continuous support system presents a different problem. In this case, a filler material, such as pea gravel or grout, is pumped behind the support system to fill the void between it and the ground surface.The main enemy of the shield is ground pressure. As ground pressure begins to build, two things happen, more thrust is required for shield propulsion and stress increases in the structural members of the shield. Shields are designed and function undera preselected ground pressure. Designers will select this pressure as a percentage of the maximum ground pressure contemplated by the permanent tunnel design. In some cases, unfortunately, the shield just gets built without specific consideration of the ground pressures it might encounter. When ground pressure exceeds the design limit, the shield gets “stuck”.The friction component of the ground pressure on the skin becomes greater than the thrust capability of the jacks. Several methods, including pumping bentonite slurry into the skin, ground interface, pushing heavy equipment, and bumping with dynamite, have been applied to stuck shields with occasional success.Because ground pressure tends to increase with time, the cardinal rule of operation is “keeping moving”.This accounts for the fracture activity when a shield has suffered a temporary mechanical failure. As ground pressure continues to build on the nonmoving shield , the load finally exceeds its structural limit and bucking begins. An example of shield destruction occurred in California in 1968 when two shields being used to drive the Carly V.Porter Tunnel were caught by excessive ground pressure and deformed beyond repair. One of the Porter Tunnel shields was brought to a halt in reasonably good ground by water bearing ground fault that required full breast-boards. While the contractor was trying to bring the face under control, skin pressure began to increase. While the face condition finally stabilized, the contractor prepared to resume operations and discovered the shield was stuck. No combination of methods was able to move it, and the increasing ground pressure destroyed the shield.To offset the ground pressure effect, a standard provision in design is a cutting edge radius several inches greater than the main body radius. This allows a certain degree o f ground movement before pressure can come to bear on the shield skin. Another approach, considered in theory but not yet put into practice, is the “w atermelon seed”design. The theory calls for a continuous taper in the shield configuration; maximum radius at the cutting edge and the minimum radius at the trailing edge of the tail. With this configuration, any amount of forward movement would create a drop in skin pressure.Working decks, spaced 2.4 to 3.0 m vertically, are provided inside the shield. These working decks enable the miners to excavate the face, drill and load holes, if necessary, and adjust the breast-board system. The hydraulic jacks for the breast-board are mounted on the underside of the work decks. Blast doors are sometimes installed as an integral part of the work decks if a substantial amount of blasting is expected.Some form of mechanical equipment is provided on the rear end of the working decks to assist the miners in handing and placing the element of the support system. In large tunnels, these individual support elements can weigh several tons and mechanical assistance becomes essential. Sufficient vertical clearance must be provided between the invert and the first working deck to permit access to the face by the loading equipment.盾构【摘要】隧道盾构是一结构系统,通常用于洞室开挖。
【设计】地铁街站区间盾构隧道设计毕业设计
本科毕业设计沈阳地铁一号线怀远门站至中街站区间盾构隧道设计王钊燕山大学2012年6月本科毕业设计沈阳地铁一号线怀远门站至中街站区间盾构隧道设计学院(系):建筑工程与力学学院专业:土木工程(岩土)学生姓名:王钊学号:0指导教师:潘慧敏答辩日期:2012年6月25日【关键字】设计燕山大学毕业设计任务书摘要中国城市化的发展必然带动城市地铁的发展。
地铁产业作为中国的朝阳产业,是中国城市根底交通设施中最有前景、最有市场的产业,发展轨道交通势在必行。
目前,修建地铁的施工方法主要有明挖法、矿山法以及盾构法。
针对沈阳的地质情况以及隧道施工对地面交通的影响等方面考虑,本设计采用盾构法修建沈阳地铁一号线怀远门~中街区间隧道方案。
因为盾构法有着良好的防渗性、施工安全快速、与埋深无关和对环境影响小等明挖法和矿山法无法比拟的优点。
本设计为沈阳地铁一号线怀远门站~中街站区间盾构隧道设计。
区间盾构隧道左线全长,右线全长。
在充分考虑隧道建筑限界的根底上,对盾构隧道的横断面进行了设计。
设计选取最不利断面,采用日本惯用法进行结构内力计算,分析出结构的弯矩、轴力、剪力。
再根据分析出的结构内力进行配筋计算,并利用所配的钢筋进行相关的管片结构强度检算、管片结构允许裂缝宽度检算、螺栓强度检算、结构抗浮检算。
关键词盾构隧道;内力计算;配筋;检算Abstractcity development will promote the development of Metro city. Subway industry as a sunrise industry in , it is Chinese city traffic infrastructure in the future, most of the market of the industry, the development of rail transportation be imperative. At present, the construction of the subway construction method are mainly open-cut method, mining method and shield. According to the geological situation of Shenyang and the influence of tunnel construction on ground transportation into consideration, the design of the shield construction of Shenyang Metro Line 1Huaiyuan Gate Street tunnel scheme. Because the shield method has a good barrier, construction safety fast, and buried depth and little influence on environment, independent of the cut-and-cover method and mine method incomparable advantages.The design of Shenyang Metro Line 1Huaiyuan Gate Station - street running design of shield tunnel. Interval shield tunnel left line full-length , length of right line of. In full consideration of the tunnel construction clearance on the basis of the shield tunnel, cross section design for.Design of selecting the most adverse section, using the Japanese usage of structure internal force calculation, analysis of structure of the bending moment, axial force, shear force. According to the analysis of internal force calculation of reinforcing bars, and the use of the reinforced related segment structure strength calculation, segment structure allows the crack width calculation, bolt strength calculation, structural anti-buoyancy calculation. Keywords Shield tunnel; calculation of internal force; reinforcement bar; check calculation目录第6章管片配筋及验算 ..................................................... 错误!未定义书签。
盾构隧道论文防排水设计论文
盾构隧道论文防排水设计论文摘要:城市地铁区间隧道的构建给盾构工法带来了新一轮的挑战,因其具有传统矿山法无法比拟的优势,将会成就今后城市建造的主流形式。
然而,隧道的渗漏问题关乎隧道整体建设,关乎隧道的使用寿命。
因此加强盾构隧道的防排水设计是十分重要的。
为了加强盾构隧道的防排水设计,要进行合理的设计、有保证的施工,保证防排水工程的质量。
同时,也要进行新的防水材料和注入工法的开发,引进概念全新的新技术来全面提高盾构隧道的防排水工程。
1 引言随着国民经济的发展,城市化进程的加快,人们对于交通工具的选择提出了更高的要求,并促进了我国交通运输业的发展,因此大量的公路隧道和地铁应运而生。
又因盾构工法具有对环境影响小,不影响地表交通,对施工附近的居民影响小,相对而言成本较低等优点深受工程领域的青睐。
虽然国内外在使用盾构工法上已经建成了大量的地下工程,具备了较成熟的理论设计与工程实践体系,且开发了软土层盾构工法和硬地层、岩层的盾构工法,但是在修建盾构隧道和地下工程的渗漏水问题上依然比较突出,在防排水认识的层面上相对而言比较落后。
盾构隧道在使用过程中出现的渗漏现象,将直接影响其内部构造和附属管线,造成不良影响。
如果在高寒地区,渗漏水严重造成在路面结冰将会降低隧道的使用寿命,与此同时严重影响人们的行车安全。
2 盾构隧道的防排水设计要点在盾构工法的防水处理原则上,采用:以防为主,多道防线,综合治理,以期实现良好的防排水效果。
在喷射混凝土隧道的衬砌中,渗漏水一般不会通过喷射混凝土衬砌的本身,而是通过接缝和嵌入的钢筋入侵。
而大部分盾构隧道的渗漏水位置是管片本身上的裂缝、管片与管片的接缝、注浆孔和手孔等。
因此,将盾构隧道的防水重点放在管片接缝处。
在防水等级上,根据《地下工程防水技术规程》(GB 08-87),地下铁道区间隧道的防水等级为2级,设计具体要求为:①隧道平均渗水量<0.1L(m2·d),同时任意100m2每昼夜渗水量小于20L;②隧道拱顶不滴漏、侧墙不挂流、拱底无大面积湿迹。
岩土工程专业毕业论文 — 地铁盾构隧道施工中的地层探查和风险评估方法
岩土工程专业毕业论文—地铁盾构隧道施工中的地层探查和风险评估方法一、引言地铁作为现代城市交通的主要组成部分,已经成为解决交通拥堵和提高城市运输效率的重要方式。
在地铁建设中,盾构隧道是一种常用的施工方法。
然而,地下地质条件的复杂性和不确定性给盾构隧道施工带来了挑战。
因此,地层探查和风险评估成为了确保盾构隧道施工顺利进行的关键步骤。
二、地层探查方法1. 地质资料收集:地质资料收集是进行地层探查的重要步骤。
通过查阅地质图、地质报告、土工资料等,了解地下地质背景、地质构造、地层厚度等信息,有助于确定地下地质环境,为盾构隧道施工提供参考。
2. 地质勘测技术:地质勘测技术包括地震勘探、电磁法、地磁法、电阻率法等。
这些技术可以通过测量地下介质的物理特性来确定地层情况。
在盾构隧道施工中,常用的地质勘测技术包括钻孔测试、地质雷达、超声波测量等。
3. 隧道探测技术:隧道探测技术是在地表或地下进行隧道勘探的一种方法。
常用的隧道探测技术包括地质雷达勘测、电磁法勘测、地震勘测等。
这些技术可以用于获取地下地质情况、岩层强度、水位等信息,为盾构隧道施工提供参考。
三、风险评估方法1. 地下水位评估:地下水位是影响盾构隧道施工的重要因素之一。
通过地下水位评估,可以确定隧道施工过程中是否会遇到水位过高的问题,及时采取相应的措施。
常用的地下水位评估方法包括水位测量、水质监测等。
2. 岩层稳定性评估:岩层稳定性是盾构隧道施工中的关键问题。
通过对岩层进行评估,可以确定岩层的强度、稳定性以及可能存在的岩层崩塌、滑倒等风险。
常用的岩层稳定性评估方法包括岩层钻孔测试、地质雷达勘测等。
3. 地质风险评估:地质风险评估是通过综合分析地质条件、地下水位、岩层稳定性等因素,评估盾构隧道施工中可能遇到的地质风险。
通过这种评估,可以制定合理的工程措施,降低地质风险。
常用的地质风险评估方法包括定性评估和定量评估。
四、案例分析以某城市地铁盾构隧道施工为例,通过地层探查和风险评估方法,成功解决了以下问题:1. 在地层探查中,通过地质勘测和隧道探测技术,确定了地下地质环境,包括地下岩层、地下水位等情况,为盾构隧道施工提供了重要依据。
施工技术课题研究论文(五篇):地铁隧道盾构始发施工技术分析、工民建施工技术管理问题及措施…
施工技术课题研究论文(五篇)内容提要:1、地铁隧道盾构始发施工技术分析2、工民建施工技术管理问题及措施3、高层住宅燃气管道施工技术分析4、叠合阳台板吊装施工技术要点5、地铁基坑注浆封底止水施工技术探讨全文总字数:18344 字篇一:地铁隧道盾构始发施工技术分析地铁隧道盾构始发施工技术分析摘要:随着社会的发展,科学技术的进步,地铁隧道工程技术的使用也更为专业化和精细化。
地铁隧道盾构始发施工过程是整个工程系统中最为关键的一部分。
盾构始发工作不仅与工程的进度、质量、安全等息息相关,还与其整个工程的使用寿命紧紧相连,影响经济效益和长久发展。
本文将就地铁隧道盾构法概述、地铁隧道盾构始发施工技术的前、中、后工作准备和过程等进行阐述。
关键词:地铁隧道工程;盾构法;施工技术;安全地铁隧道是目前城市交通区间投入相对较大的一部分,但其工程的开展,不仅需要资金链的支持还需要相应条件下的技术施加。
地铁隧道一般常修建于繁华人流量较大的路段或是周围地势对于普通公路不易施工的路段,所以从地质、地势条件等方面而言,地铁隧道的施工比其他交通区间更具有难度。
而盾构始发施工技术则是在地铁隧道工程技术应用中最为重要的环节,在利用一定施工技术的基础上,大大降低了施工的难度。
1地铁隧道盾构法概述在地铁隧道施工工程中,盾构法相对于其他工程方法而言,更具有工程安全的保障且其在施工的过程中对其周围的环境的影响是极小的,大大提高了其施工速度。
就工程内部施工计划而言,首先,地铁隧道等工程采用的盾构施工方法是为了工程的安全性。
众所周知,地层开挖是地铁隧道工程最为基本的环节,但同时也是安全隐患较大的一个环节,使用盾构法对地层开挖工作进行防护支撑,既是对地层开挖工作的帮助也是为整个工程顺利进行、长久发展做铺垫。
其次,需要根据地质土层要求,设计挖法。
在明确挖法的基础上,不仅需要多次地对土层进行测量还要建造基坑并保证合理性。
一般而言,基坑的内部都会安装盾构机,而在盾构机的滞洪等设备安装完毕后,则需要在其内部进行土体护砌的工作准备。
毕业论文—浅谈盾构隧道工程测量
兰州交通大学继续教育学院毕业设计论文浅谈盾构隧道工程测量专业:工程造价班级:2011级工程造价3班姓名:王家霖学号:112214517指导老师:王华强毕业设计(论文)任务书班级:11级工程造价3班学生姓名:王家霖学号:112214517题目:盾构隧道工程测量1、本论文的目的、意义:近几年来,我国许多大城市,伴随着城市交通流量的激增和地表空间的减小,地下空间不断开发,城市隧道施工工程中,作为不影响城市商业、交通功能的盾构法以其施工对周围环境影响小、快速的机械化施工等优点而被广泛应用于城市地下空间开发工程,尤其在地铁隧道工程中,逐渐代替传统的明挖法、暗挖法,成为一种较为普及的隧道成型工法。
盾构隧道对周围环境要求较低及造价合理等优势而得到广泛的应用,并且在国内外的隧道工程中应用规模不断扩大。
然而盾构测量工作是盾构隧道的重要组成部分,为工程施工提供准确的定位信息、实时监控量测施工进程地面、隧道相关变化量及周围构筑物、管线等的影响变化,为工程施工提供必要的测量数据,根据测量数据适当调整作业进度和措施方法,确保施工安全。
2.学生应完成的任务:盾构机姿态实时正确测定,是隧道顺利推进和确保工程质量的前提,其重要性不言而喻。
在盾构机自动化程度越来越高的今天,甚至日掘进量超过二十米,可想而知,测量工作的压力是相当大的。
这不仅要求精度高,不出错;还必须速度快,对工作面交叉影响尽可能小。
能够在隧道施工过程中及时准确给出方向偏差,并予以指导纠偏,确保工程顺利进行。
3、论文各部分内容及时间分配:(共8周)第一部分:封面,任务书,检查表(1周)第二部分:内容,目录,正文,参考文献(4周)第三部分:整体修改(3周)指导老师:2013年月日审批人:2013年月日兰州交通大学继续教育学院专科毕业论文检查表班级:11级工程造价3班学生姓名:王家霖指导教师:王华强内容摘要为了在盾构机掘进过程中能直观、快速地反映和评价监测结果,实现自动化定位导向、控制和监测数据的信息化管理,开发了盾构测量自动导向程序,可以动态地以图表的形式直观地显示盾构行进的姿态信息。
隧道工程毕业设计(地铁)
隧道工程毕业设计(地铁)本文将介绍一份隧道工程毕业设计,其主题是地铁。
该毕业设计旨在解决在城市交通网络中地铁所面临的问题,并提出一套有针对性的设计解决方案。
设计背景在如今城市化进程加速、人口日渐增长的社会环境下,城市交通愈发受到人们的关注和重视。
城市交通系统的完善与发展是加速城市化和城市现代化进程的重要举措之一。
然而,地铁的建设涉及技术、资金、环保等问题,其前景不仅仅受到经济和政治尤其是政治因素的影响,还有其他更加重要的因素,例如地铁站的选址、车站设计等问题。
设计目的本毕业设计旨在解决城市地铁建设中的一些问题,并为地铁线路和车站提供有针对性的解决方案。
具体而言,本毕业设计的目的包括:1. 分析城市地铁建设中常见的问题,例如选址、车站设计等方面的问题;2. 提出一套系统化、有针对性的解决方案,帮助城市地铁建设更加顺畅和高效;3. 尝试着从环保和节能的角度思考地铁建设。
设计内容本毕业设计包含以下四个部分:1. 研究背景与意义:通过对城市地铁建设的背景、意义和目的进行深入剖析,展示地铁建设对城市发展的重要作用;2. 基础理论研究:对选址、车站设计方面的基础理论进行研究,为后续的解决方案提供基础分析;3. 设计解决方案:通过分析基础理论,并探讨实际案例,展示解决方案的地址、车站设计、环保等方面的优势;4. 结论:总结本毕业设计,通过对前文研究和分析的综合总结,展示本毕业设计的应用前景和意义。
设计步骤1. 研究背景与意义:首先,通过大量的文献查阅和实地走访等方式,对城市地铁建设的背景、意义和目的进行剖析。
具体而言,应该关注地铁建设背后的比较深层次的经济、政治、文化等因素,以及地铁建设目的是为了缓解城市交通拥堵的现象等。
2. 基础理论研究:对于对选址、车站设计等方面的基础理论的研究可以采用历史资料、文献查找、采访等多种方法。
具体而言,应该收集大量的案例,了解不同地铁线路的选址和设计优劣,通过对优质案例的深入分析,为后续设计解决方案打下基础。
地铁盾构工程毕业设计方案
地铁盾构工程毕业设计方案
在本次毕业设计中,我将首先对地铁盾构工程的基本原理和施工流程进行深入研究和分析,了解盾构机的主要部件和工作原理,以及在实际施工中可能遇到的问题和挑战。
其次,我
将调研当前盾构工程领域的最新技术和装备,包括盾构机的结构设计、控制系统、刀盘和
导向系统等方面的创新技术,以及在施工过程中可能用到的辅助设备和工具。
通过对现有
技术和设备的分析和对比,我将提出一系列可行的设备优化方案和施工技术改进措施,以
提高地铁盾构工程的施工效率和质量。
为了验证设备优化方案和施工技术改进措施的可行性和有效性,我将选取一个实际地铁盾
构工程项目作为案例,并进行实地调研和数据采集。
通过对施工现场的观察和数据分析,
我将评估设备优化方案和施工技术改进措施对施工效率和质量的影响,从而验证毕业设计
的可行性和实用性。
在毕业设计的最后阶段,我将根据调研和实地调查的结果,编写毕业设计论文并进行答辩。
在论文中,我将详细介绍地铁盾构工程的基本原理和施工流程,分析现有技术和设备的优
缺点,提出设备优化方案和施工技术改进措施,并结合实际案例对其有效性进行验证。
同时,我还将总结毕业设计的研究成果和创新点,并展望地铁盾构工程领域的未来发展方向。
通过本次毕业设计,我将深入了解地铁盾构工程的建设技术和设备,并提出可行的设备优
化方案和施工技术改进措施,为地铁盾构工程领域的发展和进步做出贡献。
同时,本次毕
业设计也将是我在学术研究和工程实践中的一次宝贵经验,为我未来的职业发展奠定基础。
毕业设计-文献综述-我国盾构法隧道施工技术研究
毕业设计(论文)—文件综述题目:我国盾构法隧道施工技术研究学院:土木建筑学院专业:土木工程(岩土与地下结构工程)学生:00000000000学号:**********指导教师:000000000000重庆交通大学2013 年我国盾构法隧道施工技术研究000000(重庆交通大学,重庆,400074,中国)摘要:经过近半个世纪的发展,我国盾构法隧道施工技术得到了不断进步。
本文阐述了盾构法在我国轨道交通、越江公路隧道及能源隧道等不同领域的应用及发展,总结了目前我国盾构法施工的总体水平,并根据当今地下空间的开发要求,对今后盾构法软土隧道新技术的发展方向作了探索 [1~6]。
关键词:盾构法;隧道;轨道交通;越江隧道;施工技术Research on construction technology of shield tunnel inour countryLifeng(Chongqing Jiaotong University, Chongqing 100074,china) ABSTRACKT: After nearly half a century of development, tunnel shield construction technique of our country has been continuous progress. This paper describes the development and application of shield method in rail transit, cross-river tunnel and power tunnel in different fields, and summarized the overall level of construction of our shield, and according to the development of underground space requirements, the development direction of the new technology of shield tunnel in soft soil is studied. KEYWORDS: shield tunnel; tunnel; rail transit; cross-river tunnel; construction technique一、引言盾构法施工技术自1806年由英国工程师布鲁诺首创,并用于英国伦敦泰晤士河水底隧道,至今已有200余年历史。
地铁盾构隧道毕设论文
石家庄地铁一号线北宋站~谈固站区间隧道土层的物理力学参数表1 土层的物理力学参数计算原则:(1)设计服务年限100年;(2)工程结构的安全等级按一级考虑;(3)取上覆土层厚度最大的横断面计算;(4)满足施工阶段,正常运营阶段和特殊情况下强度计算要求;(5)接缝变形在接缝防水措施所能适应的范围内;(6)成型管片裂缝宽度不大于0.2mm;(7)隧道最小埋深处需满足抗浮要求;采用规范:(1)《混凝土结构设计规范》(GB50010-2002);(2)《地下工程防水技术规范》(GB50108-2001);(3)《地下铁道工程施工及验收规范》(GB50299-1999);(4)《建筑工程施工质量验收统一标准》(GB50300-2001);(5)《地下铁道、轻轨交通工程测量规范》(GB50308-1999);(6)《盾构法隧道施工与验收规范》(GB50446-2008);(7)《混凝土结构工程施工质量验收规范》(GB50204-2002)。
方案确定明挖法施工对城市地面交通和居民的正常生活有较大影响,易造成噪音、粉尘及废弃泥浆等的污染,且工期较长。
由于本工程位处地区附近有很多居民居住,地面交通复杂,故不适合选择明挖法施工。
矿山法适用于硬、软岩层中各类地下工程,特别是对于中硬岩中。
本工程要求工期较短,且地下水丰富,矿山法堵水较为繁琐且占用较长工期;隧道穿过地层为砂土和砾石层,矿山法对围岩的破坏较严重。
因此不选用矿山法施工。
本工程设计隧道内径为5.5m,内径较大,顶管法适宜中小尺寸管道,管道顶进困难,考虑到场地以及经济效益的影响不选用顶管法施工。
区间工程地质条件较为复杂,地下水丰富,工程的工期要求较紧,附近也有大量居民走动,地面交通复杂。
采用盾构法施工可以很好的发挥它的优点,充分满足工程的要求,最终确定本隧道区间采用盾构法进行施工。
衬砌选型盾构隧道衬砌用管片按材料可分为钢筋混凝土管片和铸铁管片、钢管片,复合管片。
钢筋混凝土管片有一定的强度,加工制作比较容易,耐腐蚀,造价低,是最为常用的管片形式,但是较为笨重,在运输、安装施工过程中易损坏。
石家庄铁道大学地铁区间盾构隧道毕业设计
工程概况一、设计范围本次设计范围为鼓楼站~东南角站区间盾构隧道土建工程设计。
区间起讫里程为:左线——DK9+863.200~DK10+439.158,其中短链0.334m,区间长575.624m;右线——DK9+910.500~DK10+439.158,其中长链0.027m,区间长528.685m。
二、工程地质天津平原浅部广泛发育一层以海相淤质土层为主,并杂以湖沼相淤质土和近代流相粉细砂层的软弱土层。
它具有厚度大、承载力低、易产生不均匀沉陷和砂土液化的不良特性。
天津市中心城市20m 以浅地层主要由全新世晚期(Qh3)河流相沉积(局部新近沉积)地层、全新世中期(Qh2)海相地层、全新世早期(Qh1)湖沼相和洪泛平原沉积地层组成。
在海水入侵和上游河流的共同作用下沉积了大量的粉土和粉砂层,这部分土层往往作为一般工业和民用建筑物的持力层使用,同时它们还是天津地区主要的液化土层。
区间所处地段属冲积平原,地形较为平坦。
工程涉及地层主要为第四系全新统人工填土层(人工堆积Qml)、新近沉积层(故河道、洼淀冲积Q43Nal)、第Ⅰ海相层(第四系全新统中组浅海相沉积Q42m)、第Ⅱ陆相层(第四系全新统下组河床~河漫滩相沉积Q41al)、第Ⅲ陆相层(第四系上更新统五组河床~河漫滩相沉积Q3eal)、第Ⅱ海相层(第四系上更新统四组滨海~潮汐带相沉积Q3dmc)、第Ⅳ陆相层(第四系上更新统三组河床~河漫滩相沉积Q3cal)。
本场地属稳定场地,适宜地铁建设。
但场地内存在软弱地层,工程地质条件较差,应针对具体工程要求采取适宜的处理措施。
三、水文地质天津自古被称为“九河下稍之地”,它的兴起发展源于河流沿岸,因此,地下水的复杂程度,对地下空间的修建和应用有着很大的制约,尤其对地铁的施工难度大大提高。
地铁工程影响范围内地下水的类型:(1) 上层滞水上层滞水水位埋深为0 5m左右,主要以松散的人工填筑土层①为含水层,下部新近沉积层和第Ⅰ陆相层中粘土层(②3、③3)为相对隔水层。
隧道类毕业设计
山东科技大学本科毕业设计(论文)题目青岛地铁3号线汇泉广场站3号出入口结构设计学院名称土木工程与建筑学院专业班级城市地下空间工程1摘要城市地下轨道交通已成为城市交通的重要模式,城市地铁在城市交通运输中也起到了越来越重要的作用.自1863年伦敦建成世界上第一条地下铁道,迄今地铁建设已积累了130余年的经验与理论成果,在地铁隧道设计与施工方面的技术水平越来越成熟。
我国地铁建设事业起步较晚。
改革开放以来,随着国民经济的不断发展,我国的城市化进程也在逐步加快。
经济的发展,人们生活水平的提高,城市规模的扩大,城市人口的急剧增加,城市交通面临着严峻的局势,就在这时,地铁建设才越来越多的进入到人们的视野里。
本设计为青岛市地铁3号线汇泉广场站3号出入口结构设计,运用荷载—结构法进行隧道衬砌结构力学计算,利用规范规定、工程类比、理论推导等多种方法结合进行结构设计,如对于隧道断面形状尺寸的设计采用工程类比法借鉴青岛市其他地铁隧道工程经验,利用规范规定方法进行材料系数选取、隧道深浅埋判断荷载计算、衬砌结构配筋等,利用理论推导及数值近似方法进行隧道衬砌内力、弹性抗力计算。
关键词:隧道出入口结构结构-荷载法新奥法初期支护2AbstractUrban underground rail transportation has become the important mode of urban transportation, and urban subway plays an increasingly importantrole in urban transportation。
Since 1863 London built the world’s first underground railway, subway construction has accumulated more than 130 years of experience and theoretical results so far, the design ofand construction of metro tunnel technology became more and more mature. China's subway construction began late。
毕业设计 盾构区间隧道结构设计
本科生毕业设计(论文)中文题目:北京地铁六号线盾构区间隧道结构设计英文题目: The Tunnel Structure Design of Shield Interval of BeijingMetro Line 6姓名:学号:学院:专业:班级:指导教师:职称:完成日期: 2010 年 1 月 10 日1 工程概况北京地铁十号线二期工程17标盾构井~终点段工程分别采用矿山及明挖施工,采用明挖施工(含人防防护单元),长29.6m;部分采用矿山法施工,长约110m,终点25m暗挖段初支已施做,后采用盾构法施工。
由于本区间与10号线一期起点相接,导致区间工法比较复杂。
根据业主提供的资料,一期起点~巴沟站区间发生过变更,变更后的区间长度比原设计缩短了50m,在原设计中此50m范围内区间线路为直线段,双连拱结构,采用暗挖中洞法施工。
二期火器营站~终点区间应与变更后的一期区间起点相接,经调查,根据一期起点~万柳站(巴沟站)区间的施工资料得知:此段区间变更缩短的50m中导洞、中隔墙施工完毕,两侧洞亦施工32.2m。
若将10号线二期区间与一期起点相接,二期线路必须设计成半径R=300m的曲线,经限界专业核实,一期施工的部分结构已不满足二期曲线隧道限界要求,须将已施工的直线段结构断面扩大,而采用矿山法扩大既有结构断面,无论工程造价和施工风险都比较大,考虑到此段区间场地现状为大片空地,具备明挖条件,故将不满足限界的区段采用明挖施工,在基坑内凿除侵限结构后重新施做。
表1.1 工程概况明细表1.1 风险源分级1.1.1 自身风险工程1.1.2 环境风险工程1.2 工程地质与水文地质条件1.2.1 地质概况根据《北京地铁十号线二期工程火器营站~终点区间岩土工程详细勘察报告》,本场地除表层人工填土外,勘察深度范围内岩土以第四纪沉积物为主,根据钻探资料及室内土工试验结果,按地层沉积年代、成因类型,将本工程场地勘探范围内的上层划分为人工堆积层、新近沉积地层、第四纪全新世冲洪积层、第四纪晚更新世冲洪积层4个大层,按地层岩性及其物理力学性质进步划分为7个岩上分层,各上层的岩土工程特征描述见表1.2。
地铁施工盾构法的施工技术研究论文[精选5篇]
地铁施工盾构法的施工技术研究论文[精选5篇]第一篇:地铁施工盾构法的施工技术研究论文引言随着我国现代化建设进程的逐步加快,城市建设水平逐步提高,与之相对应的庞大的城市人群给城市交通带来巨大压力。
为了缓解城市交通压力,保障人们出行正常,各级政府千方百计寻找新的交通解决方案。
地下铁路就是其中重要一项内容。
地铁以其低碳环保、高效便捷的优点有效缓解了大型城市人群出行交通困难的问题,广泛应用于世界各国大型都市中,已经成为城市现代化水平的一个重要标志。
我国第一条地铁于上世纪70 年代初期在北京投入使用,至今已有四十多年。
目前,各地大中城市都已经或正在实施地铁工程,地铁建设已经成为我国城市建设的一项重要组成部分,受到社会各界的普遍关注。
由于地铁工程大部分工程都在地面以下,地下施工的特殊性给地铁项目工程建设带来很多与其它交通工程截然不同的特点和问题。
作为地铁工程中的关键部分,隧道施工目前普遍使用盾构法进行施工。
该技术相对成熟,其以盾构机为主要施工设备,在土层中实施迅速的挖掘作业。
在盾构机外壳强大的支护作用和千斤顶等其它设备的配合下,盾构挖掘作业施工速度快,安全系数高,受到世界各地地铁工程建设单位的普遍欢迎,进而广泛应用于地下工程隧道挖掘施工中。
我国地铁事业正处于高速发展阶段,加强盾构施工技术研究,深入把握盾构施工技术特点,对于改进我国地铁工程建设质量,提高施工水平,保障施工安全,降低工程成本,促进地铁事业顺畅健康发展具有极为有利的促进作用。
地铁工程盾构施工技术的施工原理盾构施工技术,顾名思义,其以盾构机为主要施工设备进行施工。
盾构机具有坚强的盾构钢壳,可以为地下挖掘施工提供极为可靠的安全保障。
在盾构机挖掘行进过程中,盾构机的尾部同步进行持续的注浆作业。
注浆作业可以最大限度降低盾构机挖掘过程中对周围土层的扰动,从而保障隧道的稳定。
盾构机由刀盘、压力舱、盾型钢壳、管片和注浆体等部分组成,各部分各有作用,又相互配合,协调运转,使得盾构机挖掘作业得以顺利实施。
地铁盾构隧道毕设论文
石家庄地铁一号线北宋站~谈固站区间隧道土层的物理力学参数表1 土层的物理力学参数计算原则:(1)设计服务年限100年;(2)工程结构的安全等级按一级考虑;(3)取上覆土层厚度最大的横断面计算;(4)满足施工阶段,正常运营阶段和特殊情况下强度计算要求;(5)接缝变形在接缝防水措施所能适应的范围内;(6)成型管片裂缝宽度不大于0.2mm;(7)隧道最小埋深处需满足抗浮要求;采用规范:(1)《混凝土结构设计规范》(GB50010-2002);(2)《地下工程防水技术规范》(GB50108-2001);(3)《地下铁道工程施工及验收规范》(GB50299-1999);(4)《建筑工程施工质量验收统一标准》(GB50300-2001);(5)《地下铁道、轻轨交通工程测量规范》(GB50308-1999);(6)《盾构法隧道施工与验收规范》(GB50446-2008);(7)《混凝土结构工程施工质量验收规范》(GB50204-2002)。
方案确定明挖法施工对城市地面交通和居民的正常生活有较大影响,易造成噪音、粉尘及废弃泥浆等的污染,且工期较长。
由于本工程位处地区附近有很多居民居住,地面交通复杂,故不适合选择明挖法施工。
矿山法适用于硬、软岩层中各类地下工程,特别是对于中硬岩中。
本工程要求工期较短,且地下水丰富,矿山法堵水较为繁琐且占用较长工期;隧道穿过地层为砂土和砾石层,矿山法对围岩的破坏较严重。
因此不选用矿山法施工。
本工程设计隧道内径为5.5m,内径较大,顶管法适宜中小尺寸管道,管道顶进困难,考虑到场地以及经济效益的影响不选用顶管法施工。
区间工程地质条件较为复杂,地下水丰富,工程的工期要求较紧,附近也有大量居民走动,地面交通复杂。
采用盾构法施工可以很好的发挥它的优点,充分满足工程的要求,最终确定本隧道区间采用盾构法进行施工。
衬砌选型盾构隧道衬砌用管片按材料可分为钢筋混凝土管片和铸铁管片、钢管片,复合管片。
钢筋混凝土管片有一定的强度,加工制作比较容易,耐腐蚀,造价低,是最为常用的管片形式,但是较为笨重,在运输、安装施工过程中易损坏。
软土地区地铁盾构隧道施工引起的地表沉降分析毕业论文
中国矿业大学力学与建筑工程学院2012~2013学年度第二学期《地铁与轻轨》课程报告学号02100578班级土木城市地下10-1班姓名______________________ 力学与建筑工程学院教学管理办公室软土地区地铁盾构隧道施工引起的地表沉降分析摘要:盾构法作为在软土地区修建地铁隧道的一种重要手段,较其它施工方法有许多优点,但仍不可避免地会对周围土体及邻近建筑物产生一定影响。
本文针对盾构施工对周围土体扰动机理展开论述,分析了盾构法对周围土体扰动的成因,讨论了盾构施工对周围土体引起地面沉降的因素,并总结了国内外盾构施工引起土体变形研究方法,提出了盾构施工附近建筑物沉降保护措施。
关键词:软土地区;盾构隧道;邻近建筑物;沉降分析1引言我国自20世纪50年代起,伴随着我国地下铁路的迅猛发展,盾构法施工也因具有地面作业少、适宜建造深埋隧道、对周围环境影响小、自动化程度高、劳动强度低、施工速度快等优点,盾构施工方法以其独特的施工工艺特点和较高的技术经济优越性,越来越受到建设和施工单位的重视。
城市地铁盾构隧道工程是在岩石土体内部进行的,无论其埋深大小,隧道开挖的各种施工将不可避免地扰动地下岩土体,破坏了原有的平衡状态,而向新的平衡状态转化,故而引起地表沉降和变形。
同时在软土地层中采用盾构法施工,会引起地层移动而导致不同程度的沉降和位移。
因此有必要对盾构法施工引起地层移动的规律进行深入的研究,尽量准确地预测盾构施工引起的地面沉降和对邻近建筑物的影响程度,以便于在设计和施工中采取必要的减少地层移动的措施,选择最合理的施工技术,制定出完善的施工措施,确保施工对邻近楼房、建筑物与地下管线等的影响降到最低。
2盾构施工对地层及周边建筑影响原因分析盾构施工引起周围地层地表沉降,邻近建筑物受其影响将产生变形、沉降或变位,从而影响建筑物的使用。
由于邻近建筑物变形是由地层变形所引起的,因此只有控制好了地层的沉降和变形才能更好的控制对邻近建筑物的影响。
地铁盾构隧道毕设论文
石家庄地铁一号线北宋站~谈固站区间隧道土层的物理力学参数表1 土层的物理力学参数计算原则:(1)设计服务年限100年;(2)工程结构的安全等级按一级考虑;(3)取上覆土层厚度最大的横断面计算;(4)满足施工阶段,正常运营阶段和特殊情况下强度计算要求;(5)接缝变形在接缝防水措施所能适应的范围内;(6)成型管片裂缝宽度不大于0.2mm;(7)隧道最小埋深处需满足抗浮要求;采用规范:(1)《混凝土结构设计规范》(GB50010-2002);(2)《地下工程防水技术规范》(GB50108-2001);(3)《地下铁道工程施工及验收规范》(GB50299-1999);(4)《建筑工程施工质量验收统一标准》(GB50300-2001);(5)《地下铁道、轻轨交通工程测量规范》(GB50308-1999);(6)《盾构法隧道施工与验收规范》(GB50446-2008);(7)《混凝土结构工程施工质量验收规范》(GB50204-2002)。
方案确定明挖法施工对城市地面交通和居民的正常生活有较大影响,易造成噪音、粉尘及废弃泥浆等的污染,且工期较长。
由于本工程位处地区附近有很多居民居住,地面交通复杂,故不适合选择明挖法施工。
矿山法适用于硬、软岩层中各类地下工程,特别是对于中硬岩中。
本工程要求工期较短,且地下水丰富,矿山法堵水较为繁琐且占用较长工期;隧道穿过地层为砂土和砾石层,矿山法对围岩的破坏较严重。
因此不选用矿山法施工。
本工程设计隧道内径为 5.5m,内径较大,顶管法适宜中小尺寸管道,管道顶进困难,考虑到场地以及经济效益的影响不选用顶管法施工。
区间工程地质条件较为复杂,地下水丰富,工程的工期要求较紧,附近也有大量居民走动,地面交通复杂。
采用盾构法施工可以很好的发挥它的优点,充分满足工程的要求,最终确定本隧道区间采用盾构法进行施工。
衬砌选型盾构隧道衬砌用管片按材料可分为钢筋混凝土管片和铸铁管片、钢管片,复合管片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁盾构隧道毕设论文 Prepared on 22 November 2020石家庄地铁一号线北宋站~谈固站区间隧道土层的物理力学参数表1 土层的物理力学参数计算原则:(1)设计服务年限100年;(2)工程结构的安全等级按一级考虑;(3)取上覆土层厚度最大的横断面计算;(4)满足施工阶段,正常运营阶段和特殊情况下强度计算要求;(5)接缝变形在接缝防水措施所能适应的范围内;(6)成型管片裂缝宽度不大于;(7)隧道最小埋深处需满足抗浮要求;采用规范:(1)《混凝土结构设计规范》(GB50010-2002);(2)《地下工程防水技术规范》(GB50108-2001);(3)《地下铁道工程施工及验收规范》(GB50299-1999);(4)《建筑工程施工质量验收统一标准》(GB50300-2001);(5)《地下铁道、轻轨交通工程测量规范》(GB50308-1999);(6)《盾构法隧道施工与验收规范》(GB50446-2008);(7)《混凝土结构工程施工质量验收规范》(GB50204-2002)。
方案确定明挖法施工对城市地面交通和居民的正常生活有较大影响,易造成噪音、粉尘及废弃泥浆等的污染,且工期较长。
由于本工程位处地区附近有很多居民居住,地面交通复杂,故不适合选择明挖法施工。
矿山法适用于硬、软岩层中各类地下工程,特别是对于中硬岩中。
本工程要求工期较短,且地下水丰富,矿山法堵水较为繁琐且占用较长工期;隧道穿过地层为砂土和砾石层,矿山法对围岩的破坏较严重。
因此不选用矿山法施工。
本工程设计隧道内径为,内径较大,顶管法适宜中小尺寸管道,管道顶进困难,考虑到场地以及经济效益的影响不选用顶管法施工。
区间工程地质条件较为复杂,地下水丰富,工程的工期要求较紧,附近也有大量居民走动,地面交通复杂。
采用盾构法施工可以很好的发挥它的优点,充分满足工程的要求,最终确定本隧道区间采用盾构法进行施工。
衬砌选型盾构隧道衬砌用管片按材料可分为钢筋混凝土管片和铸铁管片、钢管片,复合管片。
钢筋混凝土管片有一定的强度,加工制作比较容易,耐腐蚀,造价低,是最为常用的管片形式,但是较为笨重,在运输、安装施工过程中易损坏。
铸铁管片强度高,易铸成薄壁结构,管片质量轻,搬运安装方便,管片精度高,外形准确,防水性能好。
但是管片金属消耗量大,机械加工量也大,价格昂贵。
由于铸铁管片具有脆性破坏的特性,不宜用作承受冲击荷载的隧道衬砌结构。
钢管片的优点是重量轻,强度高。
缺点是刚度小,耐修饰性差,需要进行机械加工已满足防水要求。
成本昂贵,金属消耗大。
复合管片外壳采用钢板制成,在壳内设钢筋,浇注混凝土,组成一个复合结构,这样其重量比钢筋混凝土管片轻,刚度比钢管片大,金属消耗量比钢管片小,缺点是钢板耐腐蚀性差,加工复杂冗繁。
钢筋混凝土管片型式中,有箱型管片和平板型管片。
箱型管片常用于大直径的隧道。
在等量材料的条件下,与平板型管片相比,箱型管片能做到抗弯刚度大、管片之间便于连接等。
因而,可有效地降低造价。
当然,当管片的背板厚度较小、腔格偏大时,在盾构千斤项作用下混凝土将会发生剥落、压碎等情况。
平板管片是目前最常用的管片型式,常用于中小直径的隧道,在相等厚度条件下,其抗弯刚度及强度均大于箱型管片。
本次隧道穿过地层主要是中粗砂和砾石,地下水丰富,施工期间以及使用阶段对防水的要求比较高,铸铁管片、钢管片满足防水要求,但是价格昂贵,不宜选取;复合管片耐腐蚀性差,不适宜在地下水丰富的地层使用;钢筋混凝土管片中,箱型管片由于背板厚度较小,在施工期间容易损坏,而相同厚度的平板管片抗弯刚度和强度均大于箱型管片。
通过比较,本区间采用平板型钢筋混凝土管片。
管片初步设计圆环的拼装形式有通缝、错缝两种。
错缝拼装的优点在于能加强圆环接缝刚度,约束接缝变形,圆环近似地可按均质刚度考虑。
但当管片制作精度不够好时,采用错缝拼装形式容易使管片在盾构推进过程中顶碎。
通缝拼装的优点是管片拼装简单,施工速度快。
由于此工程接缝刚度要求易满足,为使管片安装方便快捷,施工进度快,采用通缝拼装的形式。
根据盾构隧道覆土深度,周围环境,工程地质条件,综合北京地铁工程成熟的设计、施工经验,本工程盾构隧道衬砌的选择为:初步确定衬砌厚度为350mm,外径为Φ6200mm,环宽1200mm。
参考北京盾构法隧道的衬砌施工的实践经验,此隧道采用单层衬砌,衬砌采用预制平板型钢筋混凝土管片。
混凝土强度为C55。
隧道衬砌由六块预制钢筋混凝土管片拼装而成,成环形式为小封顶纵向全插入式。
每环管片由一块封顶块,两块邻接块,两块标准块,一块封底块组成。
接缝分别设置在内力较小的8°、73°、138°处。
土层情况根据工程地质剖面图,可得工况的土层地质的分布情况,见图1工况隧道断面土层分布图。
图 1隧道计算断面土层分布图荷载计算及组合图 2隧道计算断面荷载计算分布图区间隧道外径为Φ6200mm,内径为Φ5500mm。
衬砌采用预制钢筋混凝土管片。
混凝土强度为C55。
荷载计算取b=1m的单位宽度进行计算,同时根据管片所处地层的特征及地基土的物理力学性质,在计算水土压力时用水土分算的方法。
(一)基本使用阶段的荷载计算(1)衬砌自重:g(1)=γδh式中 g —衬砌自重,kPa ;γh —钢筋混凝土容重,取为25kN/m 3 δ—管片厚度,m 。
将已知数值带入上式计算可得:g =⨯=m 3。
(2)衬砌拱顶竖向地层压力:(2)式中 P v1 —衬砌拱顶竖向地层压力,kPa ;γi —衬砌顶部以上各个土层的容重,在地下水位以下的土层容重取其浮重度,kN/m 3;h i —衬砌顶部以上各个土层的厚度,m 。
1V P =⨯⨯⨯⨯⨯()⨯=(3)拱背土压:H v22/R Q P = (3)式中 P v2—衬砌拱背竖向地层压力,kPa ;Q —拱背均布荷载,kN/m ;Q γπ-=2H )4/1(2R (4) γ—衬砌拱背覆土的加权平均容重,kN/m 3;R H —衬砌圆环计算半径,m 。
将已知数值带入式3及式4计算可得:γ=09.11925.2/)2.15.10725.15.11(=⨯+⨯kN/m 3 2v P =4)⨯⨯。
(4)地面超载:由于本隧道埋深不是很深,故须考虑到地面超载的影响,取地面超载为20kPa ,并将它叠加到竖向土压上去,故总的竖向土压力为。
(5)侧向水平均匀土压力:1h P =1v P tan 2(45°-2/ϕ)-2c tan(45°-2/ϕ) (5) 式中 P h1—侧向水平均匀土压力,kPa ;φ—衬砌环直径高度内各土层内摩擦角加权平均值,(o );∑=γ=n1i i i v1h Pc '—衬砌环直径高度内各土层内聚力加权平均值,kPa ; 其中,ϕ=)925.02.3725.1/(925.0402.330725.140++⨯+⨯+⨯)(=o c '=0kPa将已知数值带入上式计算可得:14.490)2/53.3445(tan 69.1772h1=--⨯= P kPa 。
(6)侧向三角形水平土压力:)2/45(tan 2020H h2ϕ-γ=R P (6)式中 P h2—侧向三角形水平土压力,kPa ;R H —衬砌圆环计算半径,m ;γ0—衬砌环直径高度内各土层重度的加权平均值,kN/m 3;0γ95.10925.02.3725.1/)5.11925.05.102.35.11725.1(=++⨯+⨯+⨯=)(kN/m 3 将已知数值带入式计算可得:=h2P 276.095.10925.22⨯⨯⨯=。
(7)衬砌拱底反力:w H 2v 1v R )2/(γπ-π++=R g P P P (7) 式中 P R —衬砌拱底反力,kPa ;P v1—衬砌拱顶竖向地层压力,kPa ; P v2—衬砌拱背部荷载,kPa ;g —衬砌自重,kPa ;γw —水的容重,取为10kN/m 3。
将已知数值带入式计算可得:22.16610925.214.35.075.814.3974.669.177R =⨯⨯⨯-⨯++=P kP(8)地层侧向弹性抗力衬砌结构由于外荷作用,在水平方向产生向外的横向变形的同时,衬砌外围土体也相应会对衬砌结构产生一抵抗压力,以阻止衬砌结构进一步变形。
目前,在设计实用计算中应用较为普遍的是温克尔局部变形理论,土层抗力分布在水平直径上下各45°范围内,在水平直径处:)cos 21(k α-⋅=y k P (8) 式中 k —地层基床系数(kN/m 3),取k =20000kN/m 3 y —衬砌在水平直径方向最终变形值(m ) 圆环水平直径处受荷后最终半径变形值为:(9)式中 η—圆环刚度有效系数,η=~,取5.0=η。
EJ —衬砌截面抗弯刚度,其中 E=⨯J )(3244d D -=π)5.52.6(3244-=π=4m则 )925.220000045.023.551055.35.0(24925.2)04.17171.1714.4969.1772(474⨯⨯+⨯⨯⨯⨯⨯⨯+--⨯=πy =610-⨯ 在90o 位置处P k 的值为:P k =ky (1-cos α)=⨯⨯(1-cos90o)=由于土体侧向抗力在90o 的位置处为最值,对衬砌内力影响很小,不考虑其对衬砌变形的影响。
(二)考虑特殊荷载作用采用《地下建筑结构》和《隧道工程》中的计算工法,对基本使用阶段和特殊荷载阶段两种情况下可能出现的最不利荷载进行组合。
取左半衬砌圆环进行分析,将其均分为11个部分,各部分方位角分别为0o 、15o 、o 、45o 、o 、75o 、90o 、o 、135o 、o 、180o ,其中0o 表示衬砌圆环垂直直径处,o 为0o 处向左量取o 处。
计算中弯矩用M (i )表示,轴力用N (i )表示,终值由结构在各种荷载作用下得到的内力经过叠加得到。
各断面内力系数表如下表1。
表1 断面内力系数表)045.0(24)2(4H 4H 2h 1h kR EJ R q P P q y +ηπ+--=荷载 截面 位置截面内力M (kN·m )N (kN )自重0~π )sin cos 5.01(2H αα-α-gR)cos 5.0sin (H α-ααgR 上部 荷载0~π/2)sin 5.0cos 106.0193.0(22H 1v α-α+R P)cos 106.0(sin 2H 1v α-αR Pπ/2~π )sin cos 106.0693.0(2H 1v α-α+R P)cos 106.0(sin H 1v α-αR P底部 反力0~π/2 )cos 106.0057.0(2H R α-R P αcos 106.0H R R Pπ/2~π)sin 5.0cos 106.0sin 443.0(22H R α-α-α+-R P)cos 106.0sin (sin 2H R α+α-αR P水压 0~π)sin 5.0cos 25.05.0(3H αα-α--R HR R +αα-α-)sin 5.0cos 25.01(H均布 测压 0~π)cos 25.025.0(22H 1h α-R Pα2H 1h cos R P△ 测压0~π)125.0cos 063.0cos 083.0sin 25.0(322H 2h -α-α+αR P)cos 25.0cos 5.0063.0(cos 2H 2h α-α+αR P根据表1中内力计算公式,并运用Excel 表格进行汇总计算,计算结果见表2:表2 管片内力计算一览表 截面内力 自重 上层荷重水压 均布侧压 △侧压 底部反力 拱背荷重 0° M () N(kN) 15° M N ° M N 14 45° M N 0 ° M N 75° M N 90°M N°M N135°MN°M N180°M N本设计需考虑特殊荷载,包括人防、地震荷载等。