北师大版勾股定理 PPT

合集下载

第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

13.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5 和11,则b的面积为( C)
A.4 B.6 C.16 D.55
14.如图,隔湖有两点A,B,从与BA方向成直角的BC方向 上的点C,测得CA=50米,CB=40米,求:
(1)A,B两点间的距离; (2)点B到直线AC的距离.
解:作BD⊥AC于点D.(1)由勾股定理得AB=30米 (2)由面积 法: 12 AB×BC= 12 AC×BD,得BD=24(米).答:A,B两点间的距离 是30米,B点到直线AC的距离是24米
A.0.7米 B.0.8米 C.0.9米 D.1.0米
9.如图所示是一段楼梯,高BC=3 cm,斜边AB是5 m,如果 在楼梯上铺地毯,那么至少需要地毯( C )
A.5米 B.6米 C.7米 D.8米
10.如图,一个透明的圆柱形状的玻璃杯,由内部测得其底面 半径为3 cm,高为8 cm,今有一支12 cm的吸管任意斜放于杯中, 若不考虑吸管的粗细,吸管露出杯口长度最少为____cm2.
17.为了丰富少年儿童的业余文化生活,某社区要在如图的 AB所在的直线上建一图书阅览室.该社区有两所学校,所在 的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB =25 km,CA=15 km,DB=10 km.试问:阅览室E建在距点A 多少千米处,才能使它到C,D两所学校的距离相等.
11.如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请你帮他计算 阳光透过的最大面积.
解:在直角三角形中,由勾股定理可得,直角三角形的斜边长 为5 m,所以长方形塑料薄膜的面积是5×20=100(m2)即阳光 透过的最大面积是100 m2

北师大版八年级数学上册第一章勾股定理勾股定理的应用课件

北师大版八年级数学上册第一章勾股定理勾股定理的应用课件
果梯子的顶端A沿墙下滑了4m,那么梯子的底部B在水平方向上也滑动了4m吗?
解:在Rt△ABO中, ∵AB=25 m,AO=24 m, ∴OB2=AB2-AO2=252-242=49. ∴OB=7 m. 同理,在Rt△COD中, DO2=CD2-CO2=252-202=152, ∴DO=15 m, ∴BD=OD-OB=15-7=8(m). 故梯子的底部B在水平方向滑动了8 m.
A. 9
B. 13
C. 14
D. 25
3. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,
已知大正方形的面积为49,小正方形的面积为4,若用x,y表示直角三角形的两直
角边(x>y),请观察图案,指出以下关系式中不正确的是( D )
A. x2+y2=49
B. x-y=2
C. 2xy+4=49 D. x+y=13
9. 如图,一次“台风”过后,一根旗杆被 台风从离地面9 m处吹断,倒下的旗杆的顶端落在 离旗杆底部12 m处,那么这根旗杆被吹断前有多 高?
解:如下图所示,
∵旗杆剩余部分、折断部分与地面正好构成直角三角 形,
∴BC2=AB2+AC2=225,∴BC=15 m. ∴旗杆的高=AB+BC=9+15=24 (m), 故这根旗杆被吹断前有24 m高.
1. 一根竹竿插到水池中离岸边1.5 m远的水底,竹竿高出水面0.5 m,
若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问
水池的深度为( A )
A. 2m
B. 2.5m
C. 2.25 m
D. 3m
2. 一直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长
为( C )
A. 4
B. 8

第1章第1课时 探索勾股定理PPT课件(北师大版)

第1章第1课时 探索勾股定理PPT课件(北师大版)

2.(2018·山东滨州)在直角三角形中,若勾为 3,股
为 4,则弦为( A )
A.5
B.6
C.7
D.8
3.在一个直角三角形中,两直角边长分别为 3 和 4,
下列说法正确的是( C )
A.斜边长为 25
B.该三角形的周长为 25
C.斜边长为 5
D.该三角形的面积为 20
4.如图,在由边长均为 1 个单位长度的小正方形组 成的网格中,点 A,B 都是格点,则线段 AB 的长为( A )
1.下列说法正确的是( D ) A.若 a,b,c 是△ABC 的三边,则 a2+b2=c2 B.若 a,b,c 是 Rt△ABC 的三边,则 a2+b2=c2 C.若 a,b,c 是 Rt△ABC 的三边,∠A=90°, 则 a2+b2=c2 D.若 a,b,c 是 Rt△ABC 的三边,∠C=90°,则 a2+b2=c2
变式 3 飞机在空中水平飞行,某一时刻刚好飞到一 个男孩头顶上方 3 km 处,过了 20 s,飞机距离这个男孩 头顶 5 km(如图).这一过程中飞机飞行的速度是每秒多 少千米?
解:在 Rt△ABC 中,BC2=52-32=16. 因为 BC>0,所以 BC=4(km). 4÷20=0.2(km/s). 答:这一过程中飞机飞行的速度是每秒 0.2 千米.
A.5 C.7
B.6 D.25
5.已知在 Rt△ABC 中,∠C=90°,∠A,∠B, ∠C 的对应边分别为 a,b,c.
(1)若 a=3,b=4,则 c=____5____; (2)若 a=40,b=9,则 c=___4_1____; (3)若 a=6,c=10,则 b=____8____; (4)若 c=25,b=15,则 a=___2_0____.

北师大版七年级上册第一章勾股定理1.1.2 探索勾股定理(共30张PPT)

北师大版七年级上册第一章勾股定理1.1.2 探索勾股定理(共30张PPT)

勾股定理的
在1876年一个周末的傍晚,在美国首都华盛顿 的郊外,有一位中年人正在散步,欣赏黄昏的美 景……他走着走着,突然发现附近的一个小石凳上, 有两个小孩正在聚精会神地谈论着什么,时而大声 争论,时而小声探讨.由于好奇心驱使他循声向两 个小孩走去,想搞清楚两个小孩到底在干什么.只 见一个小男孩正俯着身子用树枝在地上画着一个直 角三角形……
b c
∴a2+b2=c2
方法二
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为c2 + 2ab. a a2+2ab+b2 = c2 +2ab b a b ∵ (a+b)2 = c2 + 2ab
a a
b
c
c
c
b c
∴a2+b2=c2
方法三 c b 大正方形的面积等于
a
c
2
大正方形面积 也可以表示为
1 4 ab (b a ) 2 2 2ab b 2 a 2 2ab a 2 b2 .
∴a2+b2=c2
方法四
b a c a2
c2
b2
∴ a 2 + b 2 = c2
方法五

c


b
a
① ②
∴ c2 = b2 + a2
方法六
a
b
S梯形
c c b
1 a b a b 2
2002 年 的 数 学 家 大 会 ( ICM-2002)在北京召开,这 届大会会标 的中央图案正是经 过艺术处理的弦图,这既标志 着中国古代的数学成就 ,又像 一只转动的风车,欢迎来自世 界各地的数学家们!

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

北师大版八年级数学上册《勾股定理》课件(共18张PPT)

北师大版八年级数学上册《勾股定理》课件(共18张PPT)

知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.

八年级数学上册第一章勾股定理北师大版ppt课件

八年级数学上册第一章勾股定理北师大版ppt课件

45 3
32 + 42 = 5 2
? 5
12
5 2+ 12 2= 13 2
精品课件
勾股定理
如果直角三角形两直角边分别为a、b,斜
边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等
于斜边的平方。
在西方又称毕达 哥拉斯定理耶!
精品课件



方法一

•••

• •
• •
••C••
• •
分割成若干个直角边 为整数的三角形
精品课件
返回
C A
方法三
S正方形c
B C
图1-1
A
B 图1-2
(图中每个小方格代表一个单位面积)
把C看成边长为6的 正方形面积的一半
精品课件
1 62 2
1 8(单位面积)
返回
方法四
b
a
a c cb
bc c
a
abΒιβλιοθήκη cab ac b (b-a) b c
a ba
c
精品课件
勾股逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
勾股数
能够成为直角三角形三条边长度的三个正整数,称为勾股数.
即 满足a2 +b2=c2的三个正整数,称为勾股数
精品课件
• 下面来看定理的应用.
• 例1 根据下列三角形的三边a、b、c的值,判断三角形是不
2.一颗9米高的树被风折断,树顶落在离树根3 米之处, 若要查看断痕,要从树底开始爬多 高?
精品课件
问题: 城市A要到达城市B必须经过C地的一条互相 垂直的公路才能到达,为了城市发展的需要,政府 决定在城市A、B之间建造一条最短的公路。如果你 是工程师,如何建造?建成之后两个城市之间缩短 了多少距离?

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

( 55 ) 25
30
( 34)
95 61
( 42 ) 18
60
200 ( 350)
150
总结归纳
C A
B
SA+SB=SC
ac b
ac b
a2+b2=c2
a2+b2=c2
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.如果a,b和c分别表示直角三角形的 两直角边和斜边,那么a2+b2=c2.
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课
情境引入
如图,这是一幅美丽的图案,仔细观察,你能发 现这幅图中的奥秘吗?带着疑问我们来一起探索吧.
数学家毕达哥拉斯的故事
相传2005年前,毕达哥拉斯有一次在朋友家做客时,发现 朋友家的用砖铺成的地面…
毕达哥拉斯就从地面上这十分常见的图形中,发现了令世人震惊的定理:
方法一:割
方法二:补
方法三:拼
分割为四个直角三 角形和一个小正方 形.
补成大正方形,用大正 方形的面积减去四个直 角三角形的面积.
将几个小块拼成若干个小 正方形,图中两块红色 (或绿色)可拼成一个小 正方形.
填一填:观察右边两 幅图:完成下表(每 个小
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
怎样计 算正方 形C的面 积呢?
分析表中数据,你发现了什么?
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
C A
B
SA+SB=SC
结论:以直角三角形两 直角边为边长的小正方 形的面积的和,等于以 斜边为边长的正方形的 面积.

北师大版《勾股定理的应用》ppt优质课件3

北师大版《勾股定理的应用》ppt优质课件3

例主3。在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.
2、如满图足,的四条边件形;ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积。
若2、是如,图哪,一四条边边形所A对BC的D中角,是A直B⊥角A?D请,说已明知理AD由=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积。
勾股定理的应用 (二)
本将聚焦
• 1、勾股定理的逆定理 • 2、勾股数 • 3、勾股定理的应用
考点评析
勾股定理逆定理与勾股数是判断直角三角形的 两个常用方法,常与勾股定理结合应用于各种 问题,题型以选择题、填空题和解答题为主。
知识回顾
概念1 勾股定理的逆定理
如果一个三角形的三边满足

那么这个三角形就是直角三角形。
2、满足的条件; 为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.
(3)最短距离问题:在几何图形上移动的最短 (1)直角三角形的三边与面积应用:分别以直角三角形三边为边长向外作正多边形或半圆,以斜边为边的面积等于一直角边为边长的
面积和。


勾(股二定 )理的轨应用迹,可由“立体图形的展开图”,做起点与
B
牛奶盒
A 10cm
8cm 6cm
小试身手
1. 为筹备迎接新生晚会,同学们设计了一个圆筒形灯
罩,底色漆成白色,然后缠绕红色油纸,如图①.已知 如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.
27、,以24下,各25组数为B. 三角形的三边长,其中“不能”构成直角三角形的是( )

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

B
① A′

B′
A
B A′
③Aຫໍສະໝຸດ (2)路线①,②,③中最短路线是哪条?

3
B
① A′
B
A′
12

B′ ②
AA
(3)若圆柱的高为12,底面半径为3时,3条路线分别多 长?(π取3)
做一做
Br
① A′
B
A′
h

B′②
h=12,r=3 h=3.75,r=3 h=2.625,r=3
A A
路线① 路线② 路线③ 最短
最短时: x 1.5,
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
3.如图,在棱长为10 cm的正方体的一个顶点A处有一 只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是 1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬 到B?
B
A
B B
A
【解析】因为从A到B最短路径AB满足 AB2=202+102=500>400,所以不能在20 s内从A爬 到B.
【规律方法】将立体图形展开成平面图形,找出两点间的最 短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1.没有图的要按题意画好图并标上字母. 2.有时需要设未知数,并根据勾股定理列出相应的方程 来解.
数学是无穷的科学.
——赫尔曼外尔
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022

北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT课件

北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT课件

1 2
AC·BC,

1 2
×1
000·CD=
1 2
×600×800,
∴CD=480 m,
即新建的路的长为480 m.
随堂练习
6. 在正方形ABCD中,F是CD的中点,E为BC上一点,且CE= 1CB,试判断AF
4
与EF的位置关系,并说明理由.
课堂小结
内容
勾股定理 的逆定理
作用 注意
如果三角形的三边长a 、b 、c满足a2+b2=c2,
90
120
60
150
12 13
30
180
0
5
25 24
7
15 17 8
合作探究
在△ABC中,三边长分别为a,b,c, Nhomakorabeaa2+b2=c2.你能否判断 △ABC
是直角三角形?并说明理由.
作一个直角∠MC1N, 在C1M上截取C1B1=a=CB, 在C1N上截取C1A1=b=CA, 连接A1B1.
N
A
A1
条路,使工厂C到公路的路最短,请你帮工厂C的负责人设计一种方案,并
求出新建的路的长.
解:过点C作公路AB的垂线,垂足为D,则线段CD即为新建的路.
∵AC2+BC2=6002+8002=1 0002,AB2=1 0002, ∴AC2+BC2=AB2,
∴△ABC为直角三角形.
由三角形的面积公式知1
2
AB·CD=
B.2组
C.3组
D.4组
4.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直 角三角形,其中正确的是 ( C )
随堂练习
5.如图,某工厂C前面有一条笔直的公路,原来有两条路AC,BC可以从工

北师大版八年级上册数学 《一定是直角三角形吗》勾股定理PPT教学课件

北师大版八年级上册数学 《一定是直角三角形吗》勾股定理PPT教学课件

两条较小边长的平方和是否等于最大边长的平方.
2020/11/08
13
变式1: 已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为
大于1的正整数).试问△ABC是直角三角形吗?若是,
哪一条边所对的角是直角?请说明理由 解:∵AB²+BC²=(n²-1)²+(2n)²
=n4 -2n²+1+4n² =n4 +2n²+1
17
8 5
思考:从上述问题中,能发现什么结论吗?
如果三角形的三边长a,b,c满足a2+b2=c2,那么这 个三角形是直角三角形.
2020/11/08
有同学认为测量结果可能有误差,不同意 这个发现.你觉得这个发现正确吗?你能给 出一个更有说服力的理由吗?
6
证明结论
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.
2020/11/08
4
实验结果: ① 5,12,13满足a2+b2=c2,可以构成直角三角形; ② 7,24,25满足a2+b2=c2,可以构成直角三角形; ③ 8,15,17满足a2+b2=c2 ,可以构成直角三角形.
120
90
60
150
12
13
30
180
2020/11/08
0
5
24
25 7
15
解:因为152+82=289,172=289,所以152+82=172,根据勾 股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 , b=14 , c=15; 解:因为132+142=365,152=225,所以132+142≠152,不

北师大版八年级数学上册课件1.1 探索勾股定理(第2课时) 勾股定理的验证及应用课件(26张PPT)

北师大版八年级数学上册课件1.1 探索勾股定理(第2课时) 勾股定理的验证及应用课件(26张PPT)
= 25 km .现要在铁路旁建一个农副产品收购站 ,使 站到 ,
两村的距离相等.你知道应该把 站建在距点 多远的地方吗?
【点拨】设 = km ,由垂直关系可以想到用勾股定理,根据 = 建立方程,
即可使问题得解.
【解】因为 = ,
所以 2 + 2 = 2 + 2 .
当它听到巢中幼鸟的叫声时,立即赶过去.如果它飞行的速度
为 5 m/s ,那么它至少需要多少时间才能赶回巢中?
解:如图,
由题意知 = 3 , = 14 − 1 = 13 , = 24 .
过点 作 ⊥ 于点 ,则 = 13 − 3 = 10 , = 24 .
答:教学楼走廊的宽度是 2.2 m .
作业布置
完成学生书对应课时练习
算,从理论上验证了勾股定理.
做一做
在纸上画一个直角三角形,分别以这个直角三角形的三边为边长向
外作正方形。
c
b
a
图1-4
为了方便计算图中大正方形的面积,
C
D
对其进行适当割补:
b
S正方形ABCD= c2+2ab=(a+b)2
c
A
B
a
c2=a2+b2
图1-5
D
b
c
a
图1-6
A
C
B
S正方形ABCD= c2-2ab=(b-a)2
第一章 勾股定理
1.1 探索勾股定理
第2课时 勾股定理的验证及应用
1.探索勾股定理
2.掌握勾股定理的内容,会用面积法验证勾股定理.
3.能运用勾股定理解决一些简单的实际问题.
探究新知

《第一章勾股定理》PPT课件 (公开课)2022年北师大版 (7)

《第一章勾股定理》PPT课件 (公开课)2022年北师大版 (7)
回顾与思考
知识网络 直角三角形
勾股定理
勾股定理 的逆定理
验证方法
已知两边求 第三边
判定直角三角形 判定勾股数 判定垂直
典型例题
勾股定理与边长问题
例1、一艘帆船由于风向的原因先向正东方向航 行了160千米,然后向正北方向航行了120千米, 这时它离出发点有多远?
B
根据题意画出图形
120
A
160
C
针对训练
12
5 43
针对训练
5、如图,方格纸上每个小正方形的面积为1个单
位。
(1)在方格纸上,以线段
AB为边画正方形并计算
D
所画正方形的面积,解
释你的计算方法;
C
AB2=22+72 AB2=53
2 7
针对训练
5、如图,方格纸上每个小正方形的面积为1个单
位。
(2)你能在图上画出面积
依次为13个单位、10单
针对训练
如果电梯的长、宽、高分别等于米、 米、米,那么,能放入电梯内的竹竿的最大长 度大约是多少米?你能估计出小明买竹竿至少是 多少米吗?
典型例题
勾股定理与面积问题
例2、如图,BC长为3厘米,AB长为4厘米,AF 长为12厘米。求正方形CDEF的面积。
求正方形CDEF的 面积取决于边长CF2
CF2=52+122 =169
针对训练
3、如图,在Rt△ABC中,∠ACB=90°,AC=3, BC=4,求斜边AB上的高CD的长。
C
3
4
A D
B
针对训练 4、小明家住在18层的高楼上,一天,他妈妈去 买竹竿。
如果电梯的长、宽、高分别等于米、米、米,那 么,能放入电梯内的竹竿的最大长度 大约是多少米?你能估计出小明买竹竿至少是 多少米吗?

北师大版数学八年级上册1.3《勾股定理的应用》课件 (共19张PPT)

北师大版数学八年级上册1.3《勾股定理的应用》课件 (共19张PPT)
一、情景导入
从行政 楼A点走 到教学 楼B点怎 样走最 近? 你能说出 这样走的 理由吗?
行政楼 A 教 学 楼
B
在同一平面内,两点之间,线段最短 在同一平面内,
在一个圆柱石凳上,若小明在
吃东西时留下了一点食物在B处,
恰好一只在A处的蚂蚁捕捉到这一 信息,于是它想从A 处爬向B处, 你们想一想,蚂蚁怎么走最近?
A
解:设水池的水深AC为x,则这根芦苇长AD=AB=(x+1),
在直角三角形ABC中,BC=5 由勾股定理得,BC2+AC2=AB2

52+ x2= (x+1)2 25+ x2= x2+2x+1, 2 x=24,
∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13尺.
小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳 子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮 他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回 答用的是什么方法.
AB 12 (3 3) AB 15
2 2 2
A

3
O
B
侧面展开图
A’
12

B
12
A
A
你学会了吗?
例1 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好A 点的正上方B点,问梯子最短需多少米?(已知:油罐的底面半 径是2 m,高AB是5 m,π 取3) B B B'
A
A
A'
解:圆柱形油罐的展开图如图,则AB'为梯子的 最短距离.AA'=12, A'B'=5,所以AB '=13.
B
A
B

北师大版八年级数学上册课件 第1章 第3节 勾股定理的应用(共15张PPT)

北师大版八年级数学上册课件 第1章 第3节 勾股定理的应用(共15张PPT)
1.3 勾股定理的应用
复习回顾
1、勾股定理的内容是什么? 2、如何判断一个三角形是直角三角形? 到目前学习了几种方法?
有一个圆柱,它的高等于
B
12厘米,底面半径等于3
厘米,在圆柱下底面上的 A点有一只蚂蚁,它想从 点A爬到点B , 蚂蚁沿着
我怎么走 会最近呢?
圆柱侧面爬行的最短路 A
程是多少? (π的值取3)
A 2 D A 2 B 3 2 0 4 2 0 2500
BD2 2500 A2 D A2B B2 D
∴AD和AB垂直
李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
A2B 122 (3 3 )214 84 1 22
AB15
A 3O
B

A’ 3π
B
12
12 侧面展开图
A
A
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 12:41:26 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021

北师大版八年级数学上册课件1.1探索勾股定理(第2课时)(19张PPT)

北师大版八年级数学上册课件1.1探索勾股定理(第2课时)(19张PPT)
于是推得 AB2 AC 2 BC 2
课堂小结
勾股定理的验证
探索勾股 定理
勾股定理的简单运用
1. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a,b 和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
2. 我国历史上将弦上的正方形称为弦图(如图).
1. 已知一个等边三角形的边长为6 cm,则以它的高为边长的正方形的面 积为( B )
2
22
a 化简,得
b
B
a2 b2 c2.
欧几里得证明勾股定理
如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M.通过证 明△BCF≌△BDA,利用三 角形面积与长方形面积的关 系,得到正方形ABFG与矩形 BDLM等积,同理正方形 ACKH与 矩形MLEC也等积,
A. 36 cm2 B. 27 cm2 C. 18 cm2 D. 12 cm2
2. 一个直角三角形的两条边的长分别是9和40,则第三条边的长的平方是
(C)
A. 1 681
B. 1 781 C. 1 519或1 681 D. 1 519
3. 一个直角三角形三条边的长为三个连续的自然数,则这三条边的长分
【基础训练】
1. 如图,在△ABC中,CE平分∠ACB,
CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,
若CM=4,则CE2+CF2的值为( D )
A.8 B.16 C.32 D.64
2. 已知Rt△ABC的两直角边分别是6 cm,8 cm,则Rt△ABC斜边上
的高是( A )
A. 4.8cm
B.2.4cm
C.48cm

北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT教学课件

北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT教学课件
10.已知两条线段的长为 3 cm 和 4 cm,当第三条线段的长为 5 cm
或 7 cm 时,这三条线段能组成一个直角三角形.
第六页,共十一页。
11.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为
直角三角形的点C有 4 个.
12.已知△ABC 中,BC=m-n( m>n>0 ),AC=2 ,AB=m+n,
所以∠B=∠C=35°,所以∠BAC=180°-35°-35°=110°.
因为∠BAD=73°,所以∠DAE=110°-73°=37°.
因为DE=3,AD=4,AE=5,
所以DE2+AD2=32+42=25,AE2=52=25,
所以DE2+AD2=AE2,
( 1 )请你通过画图探究并判断:当△ABC的三边长分别为6,8,9时,△ABC为 锐角 三角形;当△ABC的三边长
分别为6,8,11时,△ABC为 钝角 三角形.
( 2 )小明同学根据上述探究,有下面的猜想:“当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC
为钝角三角形.”请你根据小明的猜想回答下面的问题:
北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT教学课件

目:数学
适用版本:北师大版
适用范围:【教师教学】
第一章 勾股定理
一定是直角三角形吗
第一页,共十一页。
知识点1 直角三角形的判定
1.如图所示,小明家里刚铺了正方形地砖,他把其中的三个顶点A,B,C,连成了三角形,则这个三角形是( A )
当a=3,b=4时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.1探索勾股定理
一、情境导入
《周髀算经》中国最古老的天文学和
数学著作,曾记载记录着商高和周公的
一段对话。
我早就听说您是擅长数 学的人,请问古代伏羲测量天文
制定历法,可没有登天的台阶,又
不能测量大地的尺寸,这数据是
怎么来的呢?
数是根据圆形和方形的 数学道理计算得来的。圆来自 方,而方来自直角三角形,直角三角 形是根据乘法九九表算出来的。如果 将一线段折成三段围成直角三角形, 一直角边(勾)为三,另外一直角 边(股)为四,则斜边(弦)
更进一步:
3.如右图,图中所有的三角形 都是直角三角形,所有的四边 形都是正方形,问A+B+C+D的 面积。
答案:49平方厘米
摩拳擦掌:
4.在直角三角形ABC中,AB=3,AC=4,那么以BC为边的正方 形的面积是多少?
分析:分情况讨论
解:情况一:当BC为斜边时
情况一:当BC为斜边时; 由勾股定理可知:AB2 AC 2 BC 2 情况二:当BC为直角边时 所以有BC 2 32 42 9 16 25
例一:如图,从电线杆离地面8m处向地面拉
一条钢索,如果这条钢索在地面的固定点距离 电线杆底部6m,那么需要多长的钢索?
A
B
C
再接再厉:
2.分别以直角三角形三边为边长的 正方形的面积如下图,问另外一个正 方形的面积.

62A5 400
225
81 ∟ 1B44
225
规律:以直角三角形两直角边为边长的正方形的面积 和等于以斜边长的正方形面积。
a2 b2 c2
b
c

a
我国古代把直角三角形中较短的直 角边称为 勾,较长的直角边称为股,斜边 称为弦,“勾股定理”因此而得名. (在西 方称为毕达哥拉斯定理)
弦 勾

四、简单应用 小试牛刀:
1.求出下列直角三角形中未知边的长度.
A
8

C
6B
答案:AB=10
A
13 5

C
B
答案:BC=12
实际问题
情况二:当BC为直角边时
由勾股定理可知:AB2 BC 2 AC 2
所以有BC 2 AC 2 AB2 16 9 7
总结:主要考查勾股定理的运用,以及分类讨论的数学思想
跃跃欲试:
5.若直角三角形的两条直角边分别为3和4,问斜边上 的高是多少?
答案:斜边上的高为2.4
大显身手:
7.如图所示,矩形ABCD沿AE折叠,使 A 点D落在BC边上点F处,若CD =6,FC=2, 求DE的值.
a
1 ab 1 ab 1 c2
222
ab 1 c2 2
所以: 1 a2 b2 ab 1 c2 ab
2
2
1 a2 b2 1 c2
2
2
a2 b2 c2
三、得出结论:勾股定理
直角三角形两直角边的平方和等 于斜边的平方.如果用 a,b和c 分别表 示直角三角形的两直角边和斜边,那 么
就是五。
勾股定理是关于什么图形 的定理?
答:关于直角三角形三边的关系
二、探索发现:如何推导勾股定理?
• 求这个梯形的面积 方法一:
A
b
c
S梯形
1 2
a
ba
b
1 a2 2ab b2
B
2
c
a
1 a2 b2 ab 2

D aE
b
C
方法二:
b
cC
A

a
c B
b
案:DE=
3
B
D E FC
总结:此题与折叠问题结合,同时应用方程的思想
五、课堂总结 :
这堂课你学会了那些知识?学会了那些 数学思想?
六、家庭作业
作业: 1.除了上课老师讲的一种证明勾股 定理的方法,请你尝试找到另外一 种证明勾股定理的方法; 2.课堂精炼相对应的练习题; 3.复习这节课的知识,预习下节内 容。
相关文档
最新文档