小波变换

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小波变换

/qq_20823641/article/details/51829981

小波,一个神奇的波,可长可短可胖可瘦(伸缩平移),当去学习小波的时候,第一

个首先要做的就是回顾傅立叶变换(又回来了,唉),因为他们都是频率变换的方法,而傅立叶变换是最入门的,也是最先了解的,通过傅立叶变换,了解缺点,改进,慢慢的就成了小波变换。主要的关键的方向是傅立叶变换、短时傅立叶变换,小波变换等,第二代小波的什么的就不说了,太多了没太多意义。当然,其中会看到很多的名词,例如,内积,基,归

一化正交,投影,Hilbert空间,多分辨率,父小波,母小波,这些不同的名词也是学习小

波路上的标志牌,所以在刚学习小波变换的时候,看着三个方向和标志牌,可以顺利的走下去,当然路上的美景要自己去欣赏(这里的美景就是定义和推导了)。因为内容太多,不是很重要的地方我都注释为(查定义)一堆文字的就是理论(可以大体一看不用立刻就懂),同时最下面也给了几个网址辅助学习。

一、基

傅立叶变换和小波变换,都会听到分解和重构,其中这个就是根本,因为他们的变

化都是将信号看成由若干个东西组成的,而且这些东西能够处理还原成比原来更好的信号。那怎么分解呢?那就需要一个分解的量,也就是常说的基,基的了解可以类比向量,向量空

间的一个向量可以分解在x,y方向,同时在各个方向定义单位向量e1、e2,这样任意一个向量都可以表示为a=xe1+ye2,这个是二维空间的基,

而对于傅立叶变换的基是不同频率的正弦曲线,所以傅立叶变换是把信号波分解成

不同频率的正弦波的叠加和,而对于小波变换就是把一个信号分解成一系列的小波,这里时候,也许就会问,小波变换的小波是什么啊,定义中就是告诉我们小波,因为这个小波实在是太多,一个是种类多,还有就是同一种小波还可以尺度变换,但是小波在整个时间范围的

幅度平均值是0,具有有限的持续时间和突变的频率和振幅,可以是不规则,也可以是不对称,很明显正弦波就不是小波,什么的是呢,看下面几个图就是

当有了基,以后有什么用呢?

下面看一个傅立叶变换的实例:

对于一个信号的表达式为x=sin(2*pi*t)+0.5*sin(2*pi*5*t);

这里可以看到是他的基就是sin函数,频率是1和5,下面看看图形的表示,是不是感受了到了频域变换给人的一目了然。

基具有非冗余性,即使基不是正交的,有相关性,但若去掉其中任何一个,则不成为基,这一点也叫完备性;基的表示有唯一性,即给定一族基对一个函数的表达是唯一的;

一般情况下基非正交,也称为为exact frame(Resize basis),这个时候要表示信号可以将基正交化成唯一的正交基(对偶为其自身);也可以求其对偶框架(dual frame),其对应

了小波变换中的双正交情形!信号可以依框架分解,然后用对偶框架重构。若在基集里添加一些新的向量,并随意调整空间位置,则有可能成为框架。把函数与基或框架作内积,也可以说成是一种函数空间到系数空间的变换。若某种变换后的能量(内积的平方和度量)仍然

有一个大于0的上下界,才可以成为框架,由于框架的冗余性,所以系数的表达也不具有唯一性。若上下界相等,则为紧框架,且界表示冗余度。若上下界相等为且为1,称为pasval identity frame,此时不一定为正交基(想象把一组正交基中某一个拆成两个同方向的基之和,则pasval identity仍然成立),此时若加上基的长度均为一的条件,则框架退化为正交

基。可能你会问我们用基来表示信号就行了啊,为什么还要框架呢?其实很多信号表示方法不能构成基,却能构成框架,如短时傅立叶变换中如要求窗函数满足基条件,则可推出该函数有很差的时频局部化性质(事实上退化为了傅立叶变换。

二、内积

在Hilbert空间(查定义)里看到这个东西,用来刻画两个向量的夹角,当内积为0时,两个向量正交,若g为Hilbert空间里的正交基的时候,内积为f向基上的正交投影;(Hilbert空间是一个很直观的空间,我一直都理解为欧氏空间去理解定义在其上的东西,

L^2(平方可积,查定义)和l^2同样为Hilbert空间。

下面这个公式是基本,经过变形后会用在推导中:

如果两个向量的内积为0 ,就说他们是正交的。

如果一个向量序列相互对偶正交,并且长度都为1,那么就说他们是正交归一化的。

对于,存在L2(R)上一组标准正交基gi(t),i=1,2,3….,使得

L2(R)上任意一个函数f(t)都可以由L2(R)上的一个规范正交基gi(t)进行线性组合表示

出来

三、傅立叶的缺点

先列举出来缺点,然后再说明:

(1) Fourier分析不能刻画时间域上信号的局部特性

(2) Fourier分析对突变和非平稳信号的效果不好,没有时频分析

傅立叶变换傅立叶变换将函数投影到三角波上,将函数分解成了不同频率的三角波,

这不能不说是一个伟大的发现,但是在大量的应用中,傅立叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅立叶基已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,而且奇异是平凡的,傅立叶在奇异点的表现就着实让人不爽,从对方波的傅立叶逼近就可以看出来,用了大量不同频率的三角波去逼近其系数衰减程度相当缓慢,

而且会产生Gibbs效应。其内在的原因是其基为全局性基,没有局部化能力,以至局部一个

小小的摆动也会影响全局的系数。实际应用中很需要时频局部化,傅立叶显然缺乏此能力了。即使如此,由于其鲜明的物理意义和快速计算,在很多场合仍然应用广泛。傅立叶变换在从连续到离散的情形是值得借鉴与学习的,大家都知道,时间周期对应频域离散,时间离散对

应频域周期,时间离散周期对应频域离散周期,DFT其实是将离散信号做周期延拓然后做傅立叶变换再截取一个周期,反变换同样如此,所以DFT用的是块基的概念,这样如果信号两

端的信号连接后不再光滑(即使两边都光滑),同样会在边界上产生大幅值系数(边界效应),延伸到图像中就是块效应。当对信号做对称周期延拓后再做傅立叶变换得到的正弦系数全部

为0,也就是任何对称函数可以写成余弦的线性组合,同样按照离散的思路构造得到的是离散块余弦基,即DCT变换,虽然DCT可以通过对称后周期延拓再变换减少了边界效应(两边信号接上了,但不一定平滑),但任不能消除块效应,尤其是图像变换中人为将图像分成8*8处理后块效应更加明显。但是DCT很好的能量聚集效应让人惊奇,加之快速计算方法使它替代DFT成为图像的压缩的标准了很长时间(JPEG)。

上面一堆文字也许看的有点蒙,还是用图来说明

第一个就是傅立叶变换是整个时域,所以没有局部特征,这个也是他的基函数决定

的看图,同时如果在时域张有了突变,那么在频域就需要大量的三角波去拟合,这也是傅立叶变换性质决定的。

相关文档
最新文档