2013年中山大学高等代数考研真题

合集下载

2013-数一真题大全及答案

2013-数一真题大全及答案

2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →−=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==−(B )12,2k c ==(C )13,3k c ==−(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)−处的切平面方程为( ) (A )2x y z −+=− (B )2x y z ++= (C )23x y z −+=− (D )0x y z −−=(3)设1()2f x x =−,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S −=( )(A )34 (B )14(C )14−(D )34−(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++−=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =−≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α−(C )2α (D )12α−二、填空题:9−14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e−−=确定,则1lim (()1)n n f n→∞−= .(10)已知321xxy e xe =−,22xxy e xe =−,23xy xe =−是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。

中山大学历年考试试题总结

中山大学历年考试试题总结
3.(10分)设A= .(1).证明: (2).求
4.(20分)设 的线性变换在标准基下的矩阵A= .
(1).ቤተ መጻሕፍቲ ባይዱA的特征值和特征向量.(2).求 的一组标准正交基,使在此基下的矩阵为对角矩阵.
5.(20分)设 为n维欧氏空间V中一个单位向量,定义V的线性变换如下:
证明:
(1).为第二类的正交变换(称为镜面反射).
3.(16分)设 在[0,1]连续, 求 。
4.(16分)求极限 。
5.(16分)(1)证明级数 在 一致收敛;
(2)令 , ,证明 在 一致连续。
2009.1.11数据库(871)
2008.1.20数据库(879)
(2).V的正交变换是镜面反射的充要条件为1是的特征值,且对应的特征子空间的维数为n-1.
2009.1.15数学分析(650)
2008.1.20数学分析(636)
2007.1.21数学分析(752)
2006.1.15数学分析
2003年数学分析试题
1.(16分)求 在 上的极值;求方程 有两个正实根的条件。2.(16分)计算 ,S为V: 的表面外侧。
中山大学历年考研真题
2009.11.1线性代数(651)
2009.1.11 高等代数(870)
2008.1.20线性代数(651)
2008.1.20高等代数(851)
2007.1.21高等代数(441)
2006.1.25高等代数
2004年高等代数试题(70分)
1.(10分)计算下列n阶行列式:
2.(10分)设 是数域P上线性空间V中一线性无关向量组,讨论向量组 的线性相关性。

2013年考研数学二真题及答案解析

2013年考研数学二真题及答案解析

2
2
当 x 0 时, (x) 0 , sin (x) (x)
(x) 1 x ,即 (x) 与 x 同阶但不等价的无穷小,故选(C). 2
2、已知
y

f
(x) 由方程 cos(xy) ln
y

x
1 确定,则 lim
n[
f
2 ()
1]


n
n
(A)2 (B)1 (C)-1 (D)-2
Dk
3
(A) I1 0 【答案】(B)
(B) I2 0
(C) I3 0
(D) I4 0
【考点】二重积分的性质;二重积分的计算
【难易度】★★
【详解】根据对称性可知, I1 I3 0 .
I2 ( y x)dxdy 0 ( y x 0 ), I4 ( y x)dxdy 0 ( y x 0 )
f (t)dt f (t)dt

F(
)

lim
x
0
0
x

0

F(
)

lim
x
0
0
x
2,
F( ) F( ) ,故 F (x) 在 x 处不可导.选(C).
1
4(、A)设函 数2
f
(
x)

((Bx)1)
1
D2
D4
因此,选B.
7、设A、B、C均为n阶矩阵,若AB=C,且B可逆,则( )
(A)矩阵C的行向量组与矩阵A的行向量组等价
(B)矩阵C的列向量组与矩阵A的列向量组等价
(C)矩阵C的行向量组与矩阵B的行向量组等价

(11)--12-13学年高等代数(I)试卷及参考答案

(11)--12-13学年高等代数(I)试卷及参考答案
AB = |B||DA − AC|.
AC BD
(2) eØb AŒ_, þ¡ ª´Ä¤á? `²nd.
( 7 • 1 5•)
© Ê!(15©) A´••r n Ý , y²: (1) •3••r n Ý B¦ ABA = A; (2) ÷vþã^‡ B´•˜ …= AŒ_.
( 7 • 1 6•)
© 8!(10©) •þ|α1, α2, . . . , αm, β1, β2, . . . , βm ••m, …α1, α2, . . . , αm‚5 Ã'. y²•3áõ‡êc¦ cα1 + β1, cα2 + β2, . . . , cαm + βm‚5Ã'.
(g, g′) = x2 + 3x +1 ( 附 辗 转 相 除 法 过 程 ). 从 而 有 f (x) = (x −1)(x2 + 3x +1)2 . 由
x2 + 3x +1 在有理数域上的不可约性知上式即为 f (x) 在有理数域上的标准分解.
2. 解答:
由| A |= 1,| B |= −1可知
⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞
⎜ ⎜
2
−1
−1
3
⎟ ⎟

⎜ ⎜
0
3
−3
3

2a
⎟ ⎟

⎜ ⎜
0
3
−3
3

2a
⎟ ⎟
⎜⎝ 1 1 −2 2a ⎟⎠ ⎜⎝ 0 3 −3 a ⎟⎠ ⎜⎝ 0 0 0 3a − 3⎟⎠
⎛1

⎜ ⎜
0
−2 1

2013年中山大学考研数学一考试大纲

2013年中山大学考研数学一考试大纲

2013年中山大学考研数学一考试大纲2013年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.以上资料有博学中大考研网整理提供,。

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

2013年全国硕士研究生入学统一考试数学(二)真题及答案解析

2013年全国硕士研究生入学统一考试数学(二)真题及答案解析

2013考研数学二真题ঞㄨḜ解析ZZZ ZHQGXHGX FRP一、选择题1.设cos x -1=x sin ()x α,其中|()x α|<2π,则当x →0时,()x α是()而()0lim 0x F x πππ−−→′==−∫∫,()()()0lim 2xx f t dt f t dtF x ππππ++→−′==−∫∫,()()(),F F F x ππ−+′′≠∴∵在x π=处不可导。

故()F x 在x π=处连续但不可导。

4.设函数f (x )=1,1,(1)11,.ln(1)x e x x e x xαα⎧<<⎪−−⎪⎨⎪≥⎪+⎩若反常积分∫∞+1f (x )d x 收敛,则()解:[]21320,0,()0,(()0),D I I I y x d y x σ===+−>+−>∫∫∵[]44()0,(()0),D I y x d y x σ=+−<+−<∫∫∵所以选(B )。

7.设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则(A)矩阵C 的行向量组与矩阵A 的行向量组等价(B)矩阵C 的列向量组与矩阵A 的列向量组等价(C)矩阵C 的行向量组与矩阵B 的行向量组等价(D)矩阵C 的列向量组与矩阵B 的列向量组等价答案:(B )解:1212(,,,)(,,,),(1)n n i i A A i n βββγγγβγ==≤≤⋯⋯,即C 的列向量组可由A 的列向量组线性表示。

⎪⎪⎩⎭10.设函数(),xf x −=∫则y =f (x )的反函数)(1y f x −=在0=y 处的导数______|0==y dydx解:=0y 即=-1x,=0y dy dx dx dy。

故32xxx y e exe =−+−。

14.设A=()ij a 是3阶非零矩阵,|A |为A 的行列式,Aij 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则|A |=______________答案:-1解:2*3*=-,=(-1)=-=0=-1T ij ij A a A A A A A A A =−⇒⇒或。

中山大学考高等代数研试题(2003-2010)

中山大学考高等代数研试题(2003-2010)

3 0 8 6. 设 A 3 1 6 ,则 A 的若当标准形为______________________________. 2 0 5
7. 实二次型 q( x1 , x2 , x3 ) 2 x1 x2 6 x2 x3 2 x1 x3 的符号差等于____________. 8. 设 f ( x) x 4 2 x 3 x 2 4 x 2 , g ( x ) x 4 x3 x 2 2 x 2 ,则它们的首一最大 公因式 ( f , g ) ______________________. 9. 设 x (1, 2, 2, 3), y (3,1,5,1) R 4 ,则 x 与 y 的夹角 ( x, y ) _______________. 10. 设 W {( x, y, z ) : x y 2 z 0} R 3 ,则 W 的正交补 W _______________. 二、证明题(每小题 10 分. 写出详细步骤) 1. 设 A 为数域 F 上 m n 矩阵,定义 LA : F F , x Ax . 证明: LA 是单射当且仅
( 2) (6 分)设 A 为元素都是整数的 n 级方阵. 证明:若整数 k 是 A 的一个特征值,则 k 是 A 的一个因子. 四、 (15 分)就 a 取何值时讨论以下方程组解的情况,有解时求解:
ax y z a 3 x ay z 2 . x y az 2
1
A1 亦正定.
a b 如果 a d 2 , ,其中 a, b, c, d 是实数,且 ad bc 1 . 证明: c d cos sin sin . cos
k
则存在实数 和实可逆矩阵 T ,使得 T 1 AT

2013年中山大学高等代数考研真题

2013年中山大学高等代数考研真题

2013年中山大学高等代数考研真题1、 设E 为数域,F E,且E 作为F 上的线性空间,维数为m.设V 为 E 上的n 维线性空间.证明:V 作为F 上的线性空间维数为mn.2、 设f 是F 上线性空间M n(F)到F 的线性映射,f(l)= n,且对任意 的矩阵A,B M n (F)有f(AB)=f(BA).证明:f = tr °(注:tr 为迹函数, tr (A)-)). 3、 设 A,B • M n (F ), ra nk (A) ::: n,且 A r B Q ?…B k ,其中 B i 2 二 B i ,i = 1,2,…,k.证明: rank (I _ A)乞 k (n -rank (A)).4、 设A E F m >n .若对任意n 维向量b €F n,线性方程组AX =b 有解.证 明:rank (A) = m.5、 设 f (x) = x 3, g (x) = (1 一 x)2. (1)求 u(x), v(x) 使 (f (x), g(x)) =u(x) f (x) • v(x)g(x ); ( 2 ) 设 n(x) =x - 2,「2(x) =1.求一多项式h(x)使下列同余方程式成立: h(x)三 * (x)(mod f (x)), h(x)三 r 2(x)(mod g (x)).6、设匚是F 上线性空 间V 上的线 性变换.W 是二的不变子空 间.’1,, 'm 是二的两两不同的特征根,…,:m 分别是属于‘1,…,’m&设W 为下列实线性方程组的解空间.分别求W 与W -( W 的正交的根向量.若「-「-〉7、设复矩阵A二 1 5 1 0 <1 -210 -1-W ,证明:i • W, i =1,…,m. 3 -1 2 0 2 -1 0 1」 求A 的Jordan 标准型和最小多项补)的一个标准正交基 : 2x1 x2 _x3• X4 = 0, X j x2 _x3 = 0.广 3 -2 -49、设实矩阵A= _2 6 -2求正交矩阵使P」AP为对角矩阵.<-4 -2 3」10、设A,B都是n阶实矩阵,其中A正定,B半正定.证明:det ( A B) _det A.(这是考试记录下来的资料,答案目前还没弄好,有时间再上传)。

2013年考研数学二试题及答案

2013年考研数学二试题及答案

2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.1、设cos x 1 x sin (x) ,(x) ,当x 0 时,(x)()2(A)比x高阶的无穷小(B)比x低阶的无穷小(C)与x同阶但不等价的无穷小(D)与x是等价无穷小【答案】(C)【考点】同阶无穷小【难易度】★★【详解】cos x 1 x sin ( x) ,12 cos x 1 x212x sin ( x) x ,即21 sin (x) x2当x 0 时,(x) 0 ,sin (x) (x)1(x) x,即(x)与x同阶但不等价的无穷小,故选(C).22、已知y f (x)由方程cos( xy) ln y x 1确定,则(A)2 (B)1 (C)-1 (D)-2【答案】(A)2lim n[ f ( ) 1]nn()【考点】导数的概念;隐函数的导数【难易度】★★【详解】当x 0 时,y 1.2f ( n) 1 f x f x f2 (2 ) 1 (2 ) (0)lim n[ f ( ) 1] lim lim 2lim 2f (0)1 2n n n x 0 x x 0 xn方程cos( xy) ln y x 1两边同时对x求导,得1sin( xy)( y xy ) y 1 0y将x 0 ,y 1代入计算,得y (0) f (0) 11所以,2lim n[ f ( ) 1] 2nn,选(A).3、设sin x [0, )f ( x) ,2 [ ,2 ]xF (x) f (t)dt ,则()(A)x为F (x)的跳跃间断点(B)x为F (x)的可去间断点(C)F ( x) 在x处连续不可导(D)F ( x) 在x处可导【答案】(C)【考点】初等函数的连续性;导数的概念【难易度】★★【详解】 F ( 0) sin tdt 2 sin tdt sin tdt 2 ,F(0) 2,0 02F ( 0) F ( 0) ,F (x) 在x处连续.Fxf ( t)dt f (t)dt0 0( ) lim 0xx,Fxf (t)dt f (t )dt0 0( ) lim 2xx,F ( ) F ( ),故F ( x)在x 处不可导. 选(C).4、设函数 f (x)11( x 1)11xln x1 x ex e,若反常积分1f ( x)dx收敛,则()(A) 2 (B) 2 (C) 2 0 (D)0 2 【答案】(D)【考点】无穷限的反常积分【难易度】★★★【详解】ef ( x)dx f ( x)dx f (x)dx1 1 e由1 f ( x)dx收敛可知,e1f ( x)dx与 f (x)dx均收敛.e1e ef ( x)dx dx11 1 ,x 1是瑕点,因为e11(x1) 1收敛,所以 1 1 2dx(x 1)21 1f ( x)dx dx (ln x)1e e x xln e,要使其收敛,则0所以,0 2 ,选 D.y5、设( )z f xyx ,其中函数 f 可微,则x z zy x y()(A)2yf (xy) (B)2yf (xy ) (C)【答案】(A)2xf (xy) (D)2xf (xy )【考点】多元函数的偏导数【难易度】★★【详解】2z y y2 f ( xy) f ( xy)x x x,z 1y xf (xy ) yf (xy )2x z z x y y 1[ f (xy) f ( xy)] [ f ( xy) yf ( xy)]2y x y y x x x1 1f ( xy) yf ( xy) f ( xy) yf ( xy) 2yf ( xy)x x,故选(A).6、设D 是圆域k2 2D (x, y) x y 1 位于第k 象限的部分,记I ( y x)dxdy (k 1,2,3, 4) ,则()kDk(A)I1 0 (B)I2 0 (C)I3 0 (D)I4 0 【答案】(B)【考点】二重积分的性质;二重积分的计算【难易度】★★【详解】根据对称性可知,I1 I3 0 .I y x dxdy (y x 0),2 ( ) 0 I y x dxdy (y x 0 )4 ( ) 0D2 D4因此,选 B.7、设A、B、C均为n 阶矩阵,若AB=C,且 B 可逆,则()(A)矩阵C的行向量组与矩阵 A 的行向量组等价(B)矩阵C的列向量组与矩阵 A 的列向量组等价3(C)矩阵C的行向量组与矩阵 B 的行向量组等价(D)矩阵C的列向量组与矩阵 B 的列向量组等价【答案】(B)【考点】等价向量组【难易度】★★【详解】将矩阵 A 、C 按列分块, A ( , , n) ,C ( 1, , n)1b b11 1n由于AB C ,故( , , ) ( , , )1 n 1 nb bn1 nn即1b11 1 b n1 n, , n b1n 1 b nn n即C的列向量组可由 A 的列向量组线性表示.由于 B 可逆,故 1A CB ,A的列向量组可由C的列向量组线性表示,故选(B).1 a 12 0 08、矩阵 a b a 0 b 0 相似的充分必要条件是()与1 a 1 0 0 0(A)a 0,b 2(B)a 0,b 为任意常数(C)a 2,b 0(D)a 2,b 为任意常数【答案】(B)【考点】矩阵可相似对角化的充分必要条件【难易度】★★【详解】题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.2 0 0 1 a 1由0 0A a b a 的特征值也是2,b ,0.b 的特征值为2,b ,0 可知,矩阵0 0 0 1 a 11 a 1 1 a 1因此, 2 22E A a 2 b a 0 2 b a 2a 4a 0 a01 a 1 0 2a 041 0 1将a 0代入可知,矩阵 A b 的特征值为2,b ,0.0 01 0 1此时,两矩阵相似,与 b 的取值无关,故选(B).二、填空题:9~14小题, 每小题4分, 共24分. 请将答案写在答题.纸..指定位置上.9、1ln(1 x)lim(2 ) xx 0x. 1【答案】 2e【考点】两个重要极限【难易度】★★【详解】11 ln(1 x ) 1 ln(1 x) 1 ln(1 x) 1 ln(1 x )ln(1 x) ln(1 x) 1 (1 ) (1 ) lim (1 ) x x x x x x x x lim(2 ) lim[1 (1 ) ] lim e ex 0x 0 x 0 x 0x x其中,111 ln(1 x) x ln(1 x) 1 x x 1 lim (1 ) lim lim lim2x x x 2 x 2 (1 ) 20 0 0 0x x x x x x 1故原式=e210、设函数xtf (x) 1 e dt ,则y f (x) 的反函数1x f y 在y 0处的导数1( )1( )dxdyy 0.1 【答案】11 e【考点】反函数的求导法则;积分上限的函数及其导数【难易度】★★【详解】由题意可知, f ( 1) 05dy dx 1 dx dx 1xf (x) 1 edx dy e x dy dy e1 1y 0 x 1 1 .11、设封闭曲线L 的极坐标方程方程为r cos3 ( ) ,则L 所围平面图形的面积6 6是.【答案】12【考点】定积分的几何应用—平面图形的面积【难易度】★★【详解】面积1 1 cos6 1 sin 662 26 6 6S r ( )d cos 3 d d ( )2 0 0 2 2 6 126 012、曲线x arctan t,y ln 1 t 2 上对应于t 1点处的法线方程为.【答案】ln 2 0y x4【考点】由参数方程所确定的函数的导数【难易度】★★★1 12 2 dy dy / dt 1 tdx dx / dt112 2(1 t ) 2t12tt ,故dydx t 1【详解】由题意可知, 1曲线对应于t 1点处的法线斜率为1k 1.1当t 1时,x ,y ln 2 .4法线方程为ln 2 ( )y x ,即y x ln 2 0 .4 413、已知3x 2 xy e xe ,1x 2xy e xe ,22xy xe 是某二阶常系数非齐次线性微分方程的 33个解,则该方程满足条件y,0 0x y 0 1的解为y .x【答案】3x x 2 xy e e xe6【考点】简单的二阶常系数非齐次线性微分方程【难易度】★★【详解】3x x xy y e e ,y2 y3 e 是对应齐次微分方程的解.1 2由分析知,* 2xy xe 是非齐次微分方程的特解.故原方程的通解为3x x x 2xy C1(e e ) C2e xe ,C1,C2 为任意常数.由y0 0,x y 可得C1 1,C2 0 .0 1x通解为3x x 2xy e e xe .14、设A (a )是3 阶非零矩阵, A 为A的行列式,A ij 为a ij 的代数余子式,若ija A 0(i , j 1,2,3) ,则A .ij ij【答案】-1【考点】伴随矩阵【难易度】★★★【详解】* T * Ta A 0 A a A A AA AA A Eij ij ij ij等式两边取行列式得2 3A A A 0或A1T当A 0时,0 0AA A (与已知矛盾)所以A 1.三、解答题:15~23 小题, 共94 分. 请将解答写在答题.纸..指定位置上. 解答应写出文字说明、证明过程或演算步骤.15、(本题满分10 分)当x 0 时,1 cos x cos 2x cos3 x与ax n 为等价无穷小,求n 和a的值.【考点】等价无穷小;洛必达法则【难易度】★★★【详解】cos6x cos4 x cos2x 111 cosx cos2x cos3x 4lim limn nax axx 0 x 03 cos 6x cos4 x cos 2x 6sin 6x4sin 4x 2sin 2x lim limn n 1x 0 4ax x 0 4 a nx7lim x 0 36cos6 x 16cos 4x 4cos 2xn4an (n 1)x2故n 2 0,即n 2时,上式极限存在.当n 2时,由题意得1 cos x cos 2x cos3 x 36cos 6x 16cos 4x 4cos 2x 36 16 4lim lim 1nx 0 ax x 0 a a8 8a 7n 2,a 716、(本题满分10 分)1设D是由曲线y x3 ,直线x a (a 0) 及x 轴所围成的平面图形,V x ,V y 分别是D绕x 轴,y轴旋转一周所得旋转体的体积,若V 10V ,求a的值.y x【考点】旋转体的体积【难易度】★★【详解】根据题意,a1 5 5a 3 323 3 3 V ( x ) dx x a x0 5 5a1 7 76 6 aV 2 x x dx x a .3 3 3y7 7因V 10V ,故y x7 56 33 3a 10 a a 7 7 .7 517、(本题满分10 分)设平面区域D由直线x 3y ,y 3x ,x y 8围成,求 2x dxdyD【考点】利用直角坐标计算二重积分【难易度】★★【详解】根据题意y 3x x 2x y 8 y 6,1 6y x x3y 2x y 8故D2 3x 6 8 x2 2 2x dxdy dx x dy dx x dyx x0 23 32 62 8 1 32 4164 3 4x ( x x ) 1283 3 3 3 30 2818、(本题满分10 分)设奇函数 f (x) 在[ 1,1]上具有二阶导数,且 f (1) 1,证明:(Ⅰ)存在(0,1) ,使得 f ( ) 1;(Ⅱ)存在( 1,1),使得 f ( ) f ( ) 1.【考点】罗尔定理【难易度】★★★【详解】(Ⅰ)由于 f (x) 在[ 1,1]上为奇函数,故 f (0) 0令 F (x) f (x) x ,则F (x) 在[0,1] 上连续,在( 0,1)上可导,且F (1) f (1) 1 ,0 F (0) f (0) 0 0. 由罗尔定理,存在(0,1) ,使得 F ( ) 0 ,即 f ( ) 1.x x x x (Ⅱ)考虑 f (x) f (x) 1 e ( f(x) f (x)) e (e f (x)) ex x[e f (x) e ] 0x x令g( x) e f ( x) e ,由于f ( x) 是奇函数,所以 f ( x)是偶函数,由(Ⅰ)的结论可知,f ( ) f ( ) 1,g( ) g( ) 0 . 由罗尔定理可知,存在( 1,1),使得g ( ) 0 ,即 f ( ) f ( ) 1.19、(本题满分10 分)求曲线 3 3 1( 0, 0)x xy y x y 上的点到坐标原点的最长距离和最短距离.【考点】拉格朗日乘数法【难易度】★★★【详解】设M ( x, y) 为曲线上一点,该点到坐标原点的距离为 2 2d x y构造拉格朗日函数 2 2 ( 3 3 1)F x y x xy y由2F 2x (3x y) 0x2F 2y (3y x) 0y3 3F x xy y 1 0得xy119点(1,1)到原点的距离为 2 2d 1 1 2 ,然后考虑边界点,即(1,0) ,(0,1) ,它们到原点的距离都是 1. 因此,曲线上点到坐标原点的最长距离为 2 ,最短距离为 1.20 、(本题满分11 分)设函数 f (x) ln x 1 x(Ⅰ)求 f (x) 的最小值;(Ⅱ)设数列x 满足n1ln x n 1,证明lim x n 存在,并求此极限.x nn 1【考点】函数的极值;单调有界准则【难易度】★★★【详解】(Ⅰ)由题意, f ( x) ln x 1x,x 0 f (x)1 1 x 12 2x x x令 f (x) 0,得唯一驻点x 1当0 x 1时, f (x) 0 ;当x 1时, f (x) 0 .所以x 1是 f (x) 的极小值点,即最小值点,最小值为 f (1) 1.(Ⅱ)由(Ⅰ)知1ln x n 1xn,又由已知1ln x n 1,可知xn 11 1x xn n1,即x n 1 x n故数列x单调递增.n又由1ln x n 1,故ln x n 1 0 x n e,所以数列x n 有上界.xn 1所以limn x 存在,设为 A. n在1ln x n 1两边取极限得xn 11ln A 1A在1ln x n 1两边取极限得xn1ln A 1A10所以1ln A 1 A 1即lim x n 1 .An21、(本题满分11 分)设曲线L 的方程为 1 2 1 ln (1 )y x x x e 满足4 2(Ⅰ)求L 的弧长;(Ⅱ)设D是由曲线L ,直线x 1,x e及x 轴所围平面图形,求D的形心的横坐标. 【考点】定积分的几何应用—平面曲线的弧长;定积分的物理应用—形心【难易度】★★★【详解】(Ⅰ)设弧长为S,由弧长的计算公式,得1 1 1 1 1 1 e ee e2 2 2 2S 1 ( y ) dx 1 ( x ) dx 1 ( x ) dx ( x ) dx1 1 1 12 2x 2 2x 2 2xe2e 1 1 1 1 1 e2( x )dx ( x ln x)1 2 2x 4 2 41(Ⅱ)由形心的计算公式,得x DD1 1 1 1exdxdy 1dx x ln x xdy x x2 x dx2( ln )4 214 20 01 1 1 12 edxdy 1 dx x ln x dy x2 x dx( ln )4 24 210 01 1 1 1 14 2 2e (e e )16 16 4 2 24 23(e 2e 3)1 1 1 4( 3 7)e.3e12 12 2 22、(本题满分11 分)设1 aA ,1 0B0 11 b,当a,b 为何值时,存在矩阵C使得AC CA B ,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件【难易度】★★★【详解】由题意可知矩阵C为2 阶矩阵,故可设C x x1 2x x3 4. 由AC CA B 可得11x ax2 31 a x x x x 0 1 0 11 2 1 21 0 x x x x 1 b 1 b3 4 3 4 整理后可得方程组ax a ax1 2 4x x x1 3 411①x ax b2 3由于矩阵C存在,故方程组①有解. 对①的增广矩阵进行初等行变换:0 1 a 0 0 1 0 1 1 1 1 0 1 1 1a 1 0 a 1 0 1 a 0 0 0 1 a 0 01 0 1 1 1 0 1 a 0 a 1 0 0 0 0 a 1 0 1 a 0 b 0 0 0 0 b 0 0 0 0 b 方程组有解,故 a 1 0 ,b 0,即a 1,b 0 .1 0 1 1 1当a 1,b 0时,增广矩阵变为0 1 1 0 0 0 0 0 0 0 0 0 0 0 0x3, x4 为自由变量,令x3 1, x4 0,代入相应齐次方程组,得x2 1, x1 1 令x3 0, x4 1,代入相应齐次方程组,得x2 0, x1 1故 1 (1, 1,1,0) T T, 2 (1,0,0,1)T ,令x3 0, x4 0,得特解(1,0,0,0)T方程组的通解为x k1 1 k2 2 (k1 k2 1, k1,k1 ,k2) (k1,k2 为任意常数)所以C k k 1 k1 2 1k k1 2.23、(本题满分11 分)a 1b 1设二次型 2f (x , x ,x ) 2(a x a x a x ) (b x b x b x ) ,记1 2 3 1 1 2 2 3 3 1 1 2 2 3 3 a2,b2 a3b3(Ⅰ)证明二次型 f 对应的矩阵为 2 T T ;(Ⅱ)若, 正交且均为单位向量,证明 f 在正交变换下的标准形为 2 22y y1 2【考点】二次型的矩阵表示;用正交变换化二次型为标准形;矩阵的秩12【难易度】★★★【详解】(Ⅰ)证明:2f (x ,x , x ) 2(a x a x a x ) (b x b x b x )1 2 3 1 1 2 2 3 3 1 1 2 2 3 3a xb x1 1 1 1 2( x , x , x ) a (a , a , a ) x (x , x , x ) b (b ,b ,b ) x1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2a xb x3 3 3 3x1T T T (x , x , x )(2 ) x x Ax1 2 3 2 ,其中A 2T Tx3所以二次型 f 对应的矩阵为2 T T .T T (Ⅱ)由于, 正交,故T T T因, 均为单位向量,故 1,即1. 同理 1T T T T T TA 2 A (2 ) 2 2由于0 ,故A有特征值 12 .T TA (2 ) ,由于0 ,故A有特征值 2 1T T T T T T又因为r( A) r (2 ) r(2 ) r( ) r( ) r( ) 1 1 2 3 ,所以A 0,故 30 .三阶矩阵A的特征值为2,1,0. 因此,f 在正交变换下的标准形为 2 22y y .1 213。

2013考研数学二真题及参考答案

2013考研数学二真题及参考答案

2021考研数学二真题及参考答案一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕设cos 1sin ()x x x α-=,其中()2x πα<,那么当0x →时,()x α是〔 〕〔A 〕比x 高阶的无穷小 〔B 〕比x 低阶的无穷小 〔C 〕与x 同阶但不等价的无穷小 〔D 〕与x 等价的无穷小〔2〕设函数()y f x =由方程cos()ln 1xy y x +-=确定,那么2lim ()1n n f n→∞⎡⎤-=⎢⎥⎣⎦〔 〕〔A 〕2 〔B 〕1 〔C 〕1- 〔D 〕2- 〔3〕设函数sin ,0()=2,2x x f x x πππ≤<⎧⎨≤≤⎩,0()()x F x f t dt =⎰,那么〔 〕〔A 〕x π= 是函数()F x 的跳跃连续点 〔B 〕x π= 是函数()F x 的可去连续点〔C 〕()F x 在x π=处连续但不可导 〔D 〕()F x 在x π=处可导〔4〕设函数111,1(1)()=1,ln x e x f x x e x xαα-+⎧<<⎪-⎪⎨⎪≥⎪⎩,假设反常积分1()f x dx +∞⎰收敛,那么〔 〕〔A 〕2α<- 〔B 〕2α> 〔C 〕20α-<< 〔D 〕02α<< 〔5〕设()y z f xy x =,其中函数f 可微,那么x z z y x y∂∂+=∂∂〔 〕 〔A 〕2()yf xy ' 〔B 〕2()yf xy '- 〔C 〕2()f xy x 〔D 〕2()f xy x- 〔6〕设k D 是圆域{}22(,)|1D x y x y =+≤在第k 象限的局部,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,那么〔 〕〔A 〕10I > 〔B 〕20I > 〔C 〕30I > 〔D 〕40I > 〔7〕设矩阵A,B,C 均为n 阶矩阵,假设,B AB C =则可逆,则 〔A 〕矩阵C 的行向量组与矩阵A 的行向量组等价 〔B 〕矩阵C 的列向量组与矩阵A 的列向量组等价 〔C 〕矩阵C 的行向量组与矩阵B 的行向量组等价 〔D 〕矩阵C 的行向量组与矩阵B 的列向量组等价〔8〕矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为〔A 〕a 0,b 2== 〔B 〕为任意常数b a ,0= 〔C 〕0,2==b a 〔D 〕为任意常数b a ,2=二、填空题:9-14小题,每题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1ln(1)lim(2)x x x x→∞+-= . (10)设函数()xf x -=⎰,那么()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .(11)设封闭曲线L 的极坐标方程为cos3()66r ππθθ=-≤≤,那么L 所围成的平面图形的面积为 .(12)曲线arctan x ty =⎧⎪⎨=⎪⎩1t =的点处的法线方程为 .(13)321x x y e xe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程满足条件00x y==01x y ='=的解为y = .〔14〕设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,假设ij ij a A 0(i,j 1,2,3),____A +===则三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解容许写出文字说明、证明过程或演算步骤.〔15〕〔此题总分值10分〕当0x →时,1cos cos 2cos3x x x -⋅⋅与nax 为等价无穷小,求n 与a 的值。

(NEW)中山大学高等代数历年考研真题汇编

(NEW)中山大学高等代数历年考研真题汇编
目 录
2008年中山大学851高等代数考研真题 2009年中山大学870高等代数考研真题 2010年中山大学874高等代数考研真题 2011年中山大学875高等代数考研真题 2012年中山大学869高等代数考研真题 2013年中山大学869高等代数考研真题 2014年中山大学874高等代数考研真题 2015年中山大学877高等代数考研真题 2016年中山大学868高等代数考研真题 2017年中山大学862高等代数考研真题 2018年中山大学861高等代数考研真题 2019年中山大学867高等代数考研真题
10 设W={(x,y,z):x+y-2z=0}⊆R3,则W的正交补W⊥= ______.
二、证明题(每小题10分) 1 设A为数域F上m×n矩阵,定义LA:Fn→Fm,x→Ax.证明:LA是单 射当且仅当A的列向量组线性无关;LA是满射当且仅当A的行向量组线 性无关.
2 设f(x),g(x)是数域F上的多项式,m(x)=[f,g]是它们的首 一最小公倍式,σ是F上线性空间V的一个线性变换.证明:ker f(σ) +ker g(σ)=ker m(σ).
2018年中山大学861高等代数考研 真题
2019年中山大学867高等代数考研 真题
2008年中山大学851高等代数考研 真题
2009年中山大学870高等代数考研 真题
2010年中山大学874高等代数考研 真题
一、填空题(每小题10分) 1 设U={A∈M2(F):a11+a12=0},V={A∈M2(F):a11+a21= 0},则U+V的维数等于______.(M2(F)表示数域F上所有2阶方阵 构成的F上线性空间.)
2011年中山大学875高等代数考研 真题
2012年中山大学869高等代数考研 真题

教育硕士入学考试教育综合真题中山大学2013年_真题-无答案

教育硕士入学考试教育综合真题中山大学2013年_真题-无答案

教育硕士入学考试教育综合真题中山大学2013年
(总分150,考试时间90分钟)
一、名词解释
1. 学制
2. 讲授法
3. 强化
4. 元认知
5. 社会规范学习
二、简答题
1. 如何培养学生的创造性?
2. 要素主义教育的代表人物有哪些?有何主张?
3. 简述近代留学教育的意义。

4. 简述良好师生关系的具体特征。

5. 简述布鲁纳的认知发现说。

三、论述题
1. 阐述维果茨基有关教学与认知发展关系的观点。

2. 试述书院的特色及其对当前教育改革的借鉴意义。

3. 什么是个性的全面发展?为什么要培养受教育者的独立个性?
4. 评述“六艺”教育与“七艺”教育的异同。

全国2013年1月高等教育自学考试线性代数试题02198答案

全国2013年1月高等教育自学考试线性代数试题02198答案

全国2013年1月高等教育自学考试线性代数试题02198答案一、单项选择题(本大题共5小题,每小题2分,共10分) 1.已知2阶行列式122121221232232a a a a a b b b b b -+=-=-+,则( A )A . -6B . -2C .2D . 6 2.若矩阵A 中有一个r 阶子式不为零,且所有1r +阶子式都不为零,则( B )A .()r A r <B .()r A r =C .()1r A r >+D . ()1r A r =+3.设向量组(1,0,0,),(0,1,0)T T αβ==,下列向量中可以表示,αβ线性组合的是( C )A .(2,1,1)TB .(2,0,1)TC .(2,1,0)TD . (0,1,1)T4.设线性方程组1231231232000x x x kx x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则k 的值为( D )A . -2B . -1C .1D . 25.设12312001A x ⎛⎫⎪=- ⎪ ⎪⎝⎭,且A 的特征值为1,2,3,则x=( D ) A . -2 B . 2 C .3 D .4二、填空题(本大题共10小题,每小题2分,共20分)6.行列式sin cos sin cos sin cos a a a a aa+-+= 17.设10110111111xa x a a --=+=-,则 -2 8.设A 为2阶矩阵,若将A 第二列的2倍加到第一列得到矩阵1234⎛⎫⎪⎝⎭,则A=3254-⎛⎫⎪-⎝⎭9.设A ,B 均为2阶可逆矩阵,则13A O O B -⎛⎫= ⎪⎝⎭11113A O O B ---⎛⎫ ⎪⎪ ⎪⎝⎭10.已知向量组123(1,1,0,),(3,0,),(1,2,3)T T T k ααα===线性相关,则k = -911.设12,a a 是非齐次线性方程组Ax b =的解,12,k k 是常数,若1122k a k a +也是Ax b =的一个解为,则12k k += 112.设线性方程组123231323x x x ax x b x x c -+=⎧⎪-=⎨⎪+=⎩有解,则数,,a b c 应满足2c a b =+ 13.设3阶矩阵A 的特征值为1,-2,3,则2A E += 100 14.若n 阶矩阵A 满足320E A A +=,则必有一个特征值为2315.二次型1,231223(,)f x x x x x x x =+的矩阵为1002110221002⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭三、计算题(本大题共7小题,每小题9分,共63分)16. 计算行列式1231230100010001a a ab D b b ⎛⎫⎪⎪= ⎪⎪⎝⎭。

(NEW)中山大学公共卫生学院数学分析与高等代数历年考研真题汇编

(NEW)中山大学公共卫生学院数学分析与高等代数历年考研真题汇编

目 录
2008年中山大学公共卫生学院642数学分析与高等代数考研真题2009年中山大学公共卫生学院659数学分析与高等代数考研真题2010年中山大学公共卫生学院663数学分析与高等代数考研真题2011年中山大学公共卫生学院670数学分析与高等代数考研真题2012年中山大学公共卫生学院669数学分析与高等代数考研真题2013年中山大学公共卫生学院674数学分析与高等代数考研真题2014年中山大学公共卫生学院681数学分析与高等代数考研真题2015年中山大学公共卫生学院681数学分析与高等代数考研真题2016年中山大学公共卫生学院673数学分析与高等代数考研真题2017年中山大学公共卫生学院678数学分析与高等代数考研真题2018年中山大学公共卫生学院677数学分析与高等代数考研真题2019年中山大学公共卫生学院679数学分析与高等代数考研真题
2008年中山大学公共卫生学院642数学分析与高等代数考研真题。

名校高等代数历年考研试题(1-3章)

名校高等代数历年考研试题(1-3章)

第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中山大学高等代数考研真题
1、设E 为数域,,E F
⊂且E 作为F 上的线性空间,维数为.m 设V 为
E
上的n 维线性空间.证明:V 作为F 上的线性空间维数为.mn
2、设f 是F 上线性空间)(F M n
到F 的线性映射,,)(n I f =且对任意
的矩阵)(,F M
B A n
∈有).()(BA f AB f =证明:0tr f =(注:tr
为迹函数,
))(=A tr ).
3、设),(,F M B A n
∈,
)(n A rank <且,
2
1
k B B
B A =其中.,,2,1,2k i B B i i ==证
明:)).(()(A rank n k A I rank
-≤-
4、设.n
m F A ⨯∈若对任意n 维向量,n
F b ∈线性方程组b
AX
=有解.证
明:.)(m A rank
=
5、设2
3
)
1()(,)(x x g x x f -==.
(1)求
)
(),(x v x u 使
);
x g x v x f x u x g x f ()()()())(),((+=(2)设
.
1)(,2)(21=+=x r x x r 求一多项式)(x h 使下列同余方程式成立:
)).()(mod ()()),()(mod ()(21x g x r x h x f x r x h ≡≡
6、设σ是F 上线性空间V 上的线性变换.W 是σ的不变子空
间.m
λλ,,
1
是σ的两两不同的特征根,m
αα,,1
分别是属于m
λλ,,
1
的根向量.若,1W m ∈++=ααα 证明.,,1,m i W i =∈α
7、设复矩阵
.10
1
1020011112320
⎪⎪⎪⎪
⎪⎭


⎛----=A 求A 的Jordan 标准型和最小多项
式.
8、设W 为下列实线性方程组的解空间.分别求W 与⊥
W (W 的正交
补)的一个标准正交基:.0,023214321
=-+=+-+x x x x x x x
9、设实矩阵.32
4262
423⎪⎪⎪



⎛------=A 求正交矩阵使AP P 1-为对角矩阵.
10、设B A ,都是n 阶实矩阵,其中A 正定,B 半正定.证明:
.det )det(A B A ≥+
(这是考试记录下来的资料,答案目前还没弄好,有时间再上传)。

相关文档
最新文档