传感器与检测技术_课件第三章

合集下载

传感器与检测技术课件第三章

传感器与检测技术课件第三章

数据分析
采用图表、公式等方法对实验数据进 行分析,得出传感器的性能参数。
结果讨论
根据实验结果,对传感器的性能进行 评估和讨论,提出改进意见或建议。
THANKS
感谢观看
01
02
03
测量误差来源
包括传感器误差、信号调 理电路误差、数据采集误 差等。
误差分类
分为系统误差、随机误差 和粗大误差三类。
数据处理方法
包括算术平均值法、加权 平均值法、最小二乘法等, 用于减小误差和提高测量 精度。
信号调理电路设计
放大电路
用于放大传感器输出的 微弱信号,提高信号的
幅度。
滤波电路
光电倍增管
在光电管的基础上,通过多级倍增电极放大 光电流,提高灵敏度。
光电二极管和三极管
利用半导体材料的光电效应,将光信号转换 为电流或电压信号进行测量。
04
传感器在各个领域应用举例
工业自动化领域应用
生产线自动化
利用传感器监测生产线上物料、 设备状态,实现自动化控制和优
化调度。
过程控制
通过传感器实时监测工艺流程中 的温度、压力、流量等参数,确
等。
实验步骤和注意事项
选择合适的传感器
根据实验需求和目的,选择适合的传感器类型。
搭建检测系统
按照实验指导,正确连接传感器、信号调理电路和数据采集设备, 搭建完整的检测系统。
系统调试
在搭建完成后,进行系统调试,确保各部分正常工作。
实验步骤和注意事项
01
02
03
04
性能测试
按照实验要求,对传感器进行 性能测试,记录实验数据。
06
实验环节:搭建简易检测系统并 测试性能参数

传感器与检测技术ppt课件

传感器与检测技术ppt课件

22
重复性
图1-4所示为校正曲线的重复特性。
正行程的最大重复性偏差为△Rmax1, 反行程的最大重复 性偏差为△Rmax2,重复性误差取这两个最大偏差中之较 大者为△Rmax,再以满量程输出的百分数表示,即
rR
Rmax yFS
100%
(1-15)
式中 △Rmax----输出最大不重复误差。
精选课件ppt
现代人们的日常生活中,也愈来愈离不开检测技术。例 如现代化起居室中的温度、湿度、亮度、空气新鲜度、防火、 防盗和防尘等的测试控制,以及由有视觉、听觉、嗅觉、触 觉和味觉等感觉器官,并有思维能力机器人来参与各种家庭 事务管理和劳动等,都需要各种检测技术。
精选课件ppt
34
自动检测系统的基本组成
自动检测系统是自动测量、自动资料、自动保护、自动 诊断、自动信号处理等诸系统的总称,基本组成如图1-7。
图1-10 微差法测量稳压电源输出电压的微小变化
精选课件ppt
44
误差处理 主要内容
• 一、误差与精确处理 • 二、测量数据的统计处理 • 三、间接测量中误差的传递 • 四、有效数字及其计算法则
精选课件ppt
45
误差与精确处理
主要内容
(1)绝对误差与相对误差 (2)系统误差、偶然误差和疏失误差 (3)基本误差和附加误差 (4)常见的系统误差及降低其对测量结果影响的方法
(1-17)
由于种种原因,会引起灵敏度变化,产生灵敏度误差。灵 敏度误差用相对误差来表示
k10% 0 sk
(1-18)
精选课件ppt
25
分辨率
分辨率是指传感器能检测到的最小的输入增量。 分辨率可用绝对值表示,也可以用满量程的百分比表 示。

传感器与检测技术第3章传感器基本特性参考答案

传感器与检测技术第3章传感器基本特性参考答案

第3章传感器基本特性一、单项选择题1、衡量传感器静态特性的指标不包括()。

A. 线性度B. 灵敏度C. 频域响应D. 重复性2、下列指标属于衡量传感器动态特性的评价指标的是()。

A. 时域响应B. 线性度C. 零点漂移D. 灵敏度3、一阶传感器输出达到稳态值的50%所需的时间是()。

A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间4、一阶传感器输出达到稳态值的90%所需的时间是()。

A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间5、传感器的下列指标全部属于静态特性的是()A.线性度、灵敏度、阻尼系数B.幅频特性、相频特性、稳态误差C.迟滞、重复性、漂移D.精度、时间常数、重复性6、传感器的下列指标全部属于动态特性的是()A.迟滞、灵敏度、阻尼系数B.幅频特性、相频特性C.重复性、漂移D.精度、时间常数、重复性7、不属于传感器静态特性指标的是()A.重复性 B.固有频率 C.灵敏度 D.漂移8、对于传感器的动态特性,下面哪种说法不正确()A.变面积式的电容传感器可看作零阶系统B.一阶传感器的截止频率是时间常数的倒数C.时间常数越大,一阶传感器的频率响应越好D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是()A.重复性 B.固有频率 C.灵敏度 D.漂移10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为()A. 0°°° D. 在0°和90°之间反复变化的值11、传感器的精度表征了给出值与( )相符合的程度。

A.估计值B.被测值C.相对值D.理论值12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。

A.时间B.被测量C.环境D.地理位置13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。

传感器与检测技术第3章 传感器基本特性参考答案

传感器与检测技术第3章   传感器基本特性参考答案

第3章传感器基本特性一、单项选择题1、衡量传感器静态特性的指标不包括()。

A. 线性度B. 灵敏度C. 频域响应D. 重复性2、下列指标属于衡量传感器动态特性的评价指标的是()。

A. 时域响应B. 线性度C. 零点漂移D. 灵敏度3、一阶传感器输出达到稳态值的50%所需的时间是()。

A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间4、一阶传感器输出达到稳态值的90%所需的时间是()。

A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间5、传感器的下列指标全部属于静态特性的是()A.线性度、灵敏度、阻尼系数B.幅频特性、相频特性、稳态误差C.迟滞、重复性、漂移D.精度、时间常数、重复性6、传感器的下列指标全部属于动态特性的是()A.迟滞、灵敏度、阻尼系数B.幅频特性、相频特性C.重复性、漂移D.精度、时间常数、重复性7、不属于传感器静态特性指标的是()A.重复性B.固有频率C.灵敏度D.漂移8、对于传感器的动态特性,下面哪种说法不正确()A.变面积式的电容传感器可看作零阶系统B.一阶传感器的截止频率是时间常数的倒数C.时间常数越大,一阶传感器的频率响应越好D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是()A.重复性B.固有频率C.灵敏度D.漂移10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为()A. 0°°° D. 在0°和90°之间反复变化的值11、传感器的精度表征了给出值与( )相符合的程度。

A.估计值B.被测值C.相对值D.理论值12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。

A.时间B.被测量C.环境D.地理位置13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。

A.相等B.相似C.理想比例D.近似比例14、回程误差表明的是在( )期间输出-输入特性曲线不重合的程度。

传感器和检测技术ppt课件

传感器和检测技术ppt课件

17.黄俊钦.静、动态数学模型的实用建模方法.北京:机械工业出版社, 1988
18. 马修水. 瑞士SYLVAC电容测量系统的发展. 工具技术,1989 (12)
19.于静江,周春晖.过程控制中的软测量技术.控制理论与应 用.1996,13(2)
20. 骆晨钟,邵惠鹤.软测量技术及其工业应用.仪表技术及传感器.
17
传感器原理及其应用-教学层次
中专级 大专级 本科级 硕士级 ……
精选ppt课件
18
谢谢!
传感器与检测技术 教学组
精选ppt课件
19
参 考 文 献 (续)
13.张正伟.传感器原理及应用.北京:中央广播电视大学出版社,1997
14.周春晖. 过程控制工程手册. 北京: 化学工业出版社,1993
15. 陈守仁. 自动检测技术及仪表. 北京: 机械工业出版社,1989
16. 费业泰. 误差理论与数据处理. 北京:机械工业出版社, 2002
课时数
2 4 6 2 4 6 8 2 34
作业 实验
* * * * * * *
15
参考文献
1. 王化祥,张淑英.传感器原理及应用.天津:天津大学出版社,1991 2. 常健生. 检测与转换技术. 北京:机械工业出版社. 2001 3. 严钟豪,谭祖根. 非电量电测技术. 北京:机械工业出版社,2003 4. 强锡富. 传感器. 北京:机械工业出版社,1998 5. 贾伯年,俞朴. 传感器技术. 南京:东南大学出版社,1992 6. 王俊杰. 检测技术与仪表. 武汉. 武汉理工大学出版社,2002 7. 郭振芹.非电量的电测量.北京:中国计量出版社,1986 8. 郁有文,常健,程继红编著. 传感器原理及工程应用. 西安:西安电子科

传感器与检测技术3课件

传感器与检测技术3课件

项目1 传感器误差与特性分析 任务1 检测结果的数据整理
任务1:
现有0.5级的0~300ºC和1.0级0~100ºC的两个温度计,欲测量80ºC的温度, 试问选用哪一个温度计好?为什么?在选用仪器时应考虑哪些方面?
实施:
1.0级的0~100ºC的温度计测量时可能出现的最大绝对误差为:
xm2 m2 Am2 1.0%(100 0) 1
2019/12/7
Page 6
传感器与检测技术课程介绍 检测技术在卫星 中的应用
红外线扫描的区域
检测森林火灾和气象等
2019/12/7
Page 7
传感器与检测技术课程介绍
检测技术在 核电站中的 应用DCS
2019/12/7
Page 8
传感器与检测技术课程介绍
传感器 在本教材中是指一个能将被测的非电量变 换成电量的器件
Page 23
项目1 传感器误差与特性分析
测量方法:
接触性测量 和非接触性 测量
2019/12/7
Page 24
项目1 传感器误差与特性分析
测量方法:
模拟式测量 和数字式测 量
2019/12/7
Page 25
项目1 传感器误差与特性分析
测量方法:
模拟式测量 和数字式测 量
2019/12/7
Page 26
基本误差
去掉百分号
问:用其测量直流、交流电 (%)后的数值
压时,可能产生的满度
相对误差分别为多少? 定义为仪表的精度等级
2019/12/7
Page 30
项目1 传感器误差与特性分析 任务1 检测结果的数据整理
例:某温度计的量程范围为0-500ºC,校 验时该表的最大绝对误差为6ºC,试确定 其精度等级?

传感器与检测技术第三章电感式传感器

传感器与检测技术第三章电感式传感器
架。二节式差动变压器的铁芯长度为全长的60%-80%。铁 芯采用导磁率高,铁损小,涡流损耗小的材料 (4)在不使线圈过热的条件下尽量提高激励电压。
感•传式感传器感与器检测技术
第二节 互感式传感器
三、转换电路 1.反串电路
•2.桥路
感•传式感传器感与器检测技术
第二节 互感式传感器
3.差动整流电路
感•传式感传器感与器检测技术
感•传式感传器感与器检测技术
一、高频反射式涡流传感器
•线圈上通交变高频电流 •线圈产生高频交变磁场
•产生高频交变涡流 •涡流产生反磁场 •阻碍线圈电流交换作用 •等效于L或阻抗的改变
感•传式感传器感与器检测技术
二、低频透射式涡流传感器
• U L1 • 同频交变电流 • 产生一交变磁场 • 磁力线切割M • 产生涡流I • 到达L2的磁力线
传感器与检测技术第三章电 感式传感器
感•传式感传器感与器检测技术
原理
电感式传感器最基本原理是电磁感应原理。
•位 移 •被测物理量 •振 动 •压 力 •流 量 •比
•传感 •的变 器 化
•自感系数 L
•电路 •电
•互感系数
•的变 化

M
•电

感•传式感传器感与器检测技术
电感传感器优点
▪ 灵敏度高,分辨力高,位移:0.1m ; ▪ 精度高,线性特性好,非线性误差:0.05%0.1 % ; ▪ 性能稳定,重复性好 ; ▪ 结构简单可靠、输出功率大、输出阻抗小、抗干扰能力
感•传式感传器感与器检测技术
第一节 自感式传感器
四、影响传感器精度的因素分析 1.电源电压和频率的波动影响 ▪ 电源电压的波动一般允许为5%~10%。 ▪ 严格对称的交流电桥是能够补偿频率波动影响的 2. 温度变化的影响 ▪ 为了补偿温度变化的影响,在结构设计时要合理选择零件

《传感器技术》教学课件第3章

《传感器技术》教学课件第3章
一般变极板间距离电容式传感器的起始电容在20~100pF之 间, 极板间距离在25~200μm 的范围内。最大位移应小于间距的 1/10, 故在微位移测量中应用最广。
14
2 、变面积型电容式传感器
图3-5是变面积型电 容传感器原理结构 示意图。 被测量通
b
a d
x S
过动极板移动引起
两极板有效覆盖面
a)平行板
b)扇形
c)圆筒形
1——定极板
2——动极板
图 3-6 变面积型电容传感器结构图 17
电容b
d
x
(3-8)
平行板电容传感器的灵敏度为
S C b
(3-9)
x d
可见,平板形电容传感器的输出特性是线性的,适合测
量较大的位移,其灵敏度 为常数。增大极板长度 或减小间
距 ,均可使灵敏度提高。极板宽度 的大小不影响灵敏度,
由运算放大器的原理可得:
U0
1 ( jwC x ) U 1 ( jwC )
C Cx
U
(3-18)
S
对于平板电容器,Cx d ,代入(3-18)后可得:
U0
UC
S
d
(3-19)
由式(3-19)可见,输出电压与d是线性关系,负 号表明输出与电源电压反相。这从原理上克服了变极 距型电容式传感器的非线性。但是仍然存在一定的非 线性误差。另外,为保证仪器精度,还要求电源电压U 的幅值和固定电容C值稳定。
24
变介电常数型电容传感器图3-8 如下所示:
a)
b)
例: 极板
带条
c)
滚轮
电容传感器测量
绝缘带条的厚度
25
若忽略边缘效应,圆筒式液位传感器如下图,传

检测与传感第三章(3)

检测与传感第三章(3)

全桥差动
Uo E KU E R1 R1
有非线性误差
无非线性误差;电桥 电压灵敏度是单臂工 作时的两倍;
无非线性误差;电 压灵敏度为单臂工 作时的4倍;
3.4.2 交流电桥 实际中,交流电桥的应用也非常广泛。
图 交 流 电 桥 一 般 形 式
U为交流电压源, 由于供桥电源为交流电源,引线分布电容使得 二桥臂应变片呈现复阻抗特性,即相当于并联一个电容。
应变式数显扭矩扳手
第三章 习题
3-1 什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解 释金属电阻应变片和半导体应变片的工作原理。
答:金属材料在受到外力作用时,产生机械变形,导致其阻值发生 变化的现象叫金属材料的应变效应;半导体材料在受到应力作用后, 其电阻率发生明显变化,这种现象称为压阻效应。 d
R1 R1 0.2 120 0.17%
(2) 若将电阻应变片置于单臂测量桥路中,则
U0 E R1 3 0.0017 1.25mV 4 R1 4
R1 2 R1 非线性误差: l 0.085% R1 1 2 R1 (3)若要减小非线性误差,可采用半桥或全桥差动电路。 半桥差动电路的输出电压是单臂测量的两倍2.5mV,非线性误 差为0; 全桥差动电路的输出电压是单臂测量的四倍5mV ,非线性误 差也为0。
检测与传感技术
上节内容复习
3. 应变式传感器
1. 弹性敏感元件的基本特性 刚度(C) & 灵敏度(S) 2. 应变片的特性 (1)应变片电阻值 (3)横向效应 (2)应变片的灵敏系数K (4)绝缘电阻和最大工作电流 电阻温度系数的影响 试件材料和电阻丝材料的线膨胀系数的影响
Rt R R R0 R0 0 t K 0 ( g s ) t [ 0 K 0 ( g s )]t

《传感器与检测技术》 3.3电感式传感器(电涡流式)

《传感器与检测技术》 3.3电感式传感器(电涡流式)

V系列电涡流位移传感器外 形(参考浙江洞头开关厂资料)
4~20mA电涡流位移传感器外形
(参考德国图尔克公司资料)
齐平式电涡流位移传感器外形(参考德国图尔克公司资料)
齐平式传感器安装时可以不高出安装面, 不易被损害。
2. 振幅测量
(a)汽轮机和空气压缩机常用的监控主轴的径向振动的示意图 (b)测量发动机涡轮叶片的振幅的示意图 (c) 通常使用数个传感器探头并排地安置在轴附近
电涡流的贯穿深度h :
h 5000 f
式中, f:线圈激磁电流的频率,μ :金属的
磁导率。
可见, f 越高,电涡流的渗透深度越浅。
高频反射式和低频透射式
高频反射式
f : 0.1~1MHz
低频透射式
f <1 kHz
等效电路如图 , 其 中 R2 为 电 涡 流短路环等效 电阻.
I 1
R1
M
I 2
L2 R 2
U 1
L1
根据基尔霍夫定律,有:
& j L I& j MI& U& R I 1 1 1 1 2 1 & & & j MI R I j L I 0 1 2 2 2 2
• 等效电阻、等效电感:
2M 2 Req R1 2 R2 2 2 R2 L2
电磁炉内部 的励磁线圈
电磁炉的工作原理 铁质锅底产 生无数的 电涡流, 使锅底自 行发热。
高频电流通过励磁线圈,产生交变磁场
2 基本特性
等效阻抗分析 金属导体等效成一个短路环。 I I
1
M
2
等效电阻:
2 R2 ra h 1n ri

传感器与检测技术第2版课件第3章

传感器与检测技术第2版课件第3章
• 当活动铁心向线圈的另一个方向移动时,用上述分析方法同样可以证明,无论
在Ui的正半周还是负半周,电桥输出电压U0均为负值,即
综上所述可知,采用带相敏整 流的交流电桥,其输出电压既 能反映位移量的大小,又能反 映位移的方向,所以应用较为 广泛。
3.1.3自感式传感器应用实例
• 1. 自感式压力传感器
1)尽可能保证传感器尺寸、线圈电气参数和磁路对称。 2)选用合适的测量电路。 3)采用补偿线路减小零点残余电压。
3.2.2测量电路
• 1. 差动整流电路
• 采用差动整流电路后,不但可以用 0 值居中的直流电表指示输 出电压或电流的大小和极性,还可以有效地消除残余电压,同时 可使线性工作范围得到一定的扩展。
• 2.带相敏整流的交流电桥
为了既能判别衔铁位移的大小,又能判断出衔铁位移的方向,通常 在交流测量电桥中引入相敏整流电路,把测量桥的交流输出转换为 直流输出
图中电桥的两个臂Z1、Z2分别为差动式传感器中 的电感线圈,另两个臂为平衡阻抗Z3、Z4(Z3= Z4 = Z0 ) , VD1、VD2、VD3、VD4四只二极管组成
• 由上式可知,这时电桥输出电压,电桥处于平衡状态。
• 当铁芯向一边移动时,Z1= Z0 + ∆Z, Z2= Z0﹣∆Z,代入上式得
当传感器线圈为高Q值时,可得到输出电压的值为
同理,当活动铁心向另一边(反方向)移动时,则有
综合以上两式可得知电桥输出电压
差动式自感传感器采用变压器交流电桥为测量电路时,电桥输出电压 既能反映被测体位移量的大小,又能反映位移量的方向,且输出电压与 电感变化量呈线性关系。
1~100mm范围内的机械位移,并具有测量精度高、灵敏度高、结构简单、 性能可靠等优点。

传感器与检测技术课件第三章电桥

传感器与检测技术课件第三章电桥

Z1
Us Z3 Z4
Z3
C
Us
Z1
(
Z3 Z4
Z1 Z
)
2
Z3Z1 Z3 Z
4
Z
2
Z3
B
Z2
D
Uo
Z4
Us
Z1Z 4
Z1 Z2
Z3
Z3
Z2 Z
4
Us
图8-3 交流电桥电路
第三章 力、扭矩和压力传感器
电桥
一、电桥工作原理 2.交流电桥
Uo
Us
Z1Z 4
Z1 Z2
Z3Z2
Z3 Z4
第三章 力、扭矩和压力传感器
一、电桥工作原理 2.交流电桥
电桥
A
采用交流电源供电的电桥称为 交流电桥。在这种情况下桥臂
Z1
所接元件可以是电阻、电感或
电容。
C
Z2
D
Uo
Z3
Z4
B
Us
图8-3 交流电桥电路
第三章 力、扭矩和压力传感器
电桥
一、电桥工作原理 2.交流电桥
A
如果交流电源是频率为f的正 弦交流信号,则各桥臂的复阻
Uo
R1R4 R2 R3
R1 R2 R3 R4
Es
第三章 力、扭矩和压力传感器
一、电桥工作原理 1.直流电桥 则电桥输出端电压为:
Uo
R1R4 R2 R3
R1 R2 R3 R4
Es
C
平衡条件
R1R4 R2 R3

R1 R3 R2 R4
电桥
A R1
R2
Rg
D
Ig
R3
R4
B
ES
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/6/14
3
内容
3.1.1 基本工作原理 3.1.2 自感式传感器的测量电路 3.1.3 自感式传感器应用
2020/6/14
4
电感传感器的基本工作原理演示
F
气隙变小,电感变大,电流变小
2020/6/14
5
3.1.1 基本工作原理
线圈的自感量等于线圈中通入单位电流 所产生的磁链数,即线圈的自感系数

Uo
L 2L0

U2
差动式自感传感器采用变压器交流电桥为测量 电路时,电桥输出电压既能反映被测体位移量 的大小,又能反映位移量的方向,且输出电压 与电感变化量呈线性关系。
2020/6/14
18
2.带相敏整流的交流电桥
上述变压器式交流电桥中,由于采用交 流电源,则不论活动铁芯向线圈的哪个 方向移动,电桥输出电压总是交流的, 即无法判别位移的方向。
当活动铁芯向 线圈的一个方 向移动时,传 感器两个差动 线圈的阻抗发 生变化,等效 电路如图4-9 所示。
铁芯向线圈一个方向移动时的等效电路
2020/6/14
22
结果
在Ui的正半周
Uo
VD
VC
Z 2Z0
1
(
1 Z
)2
Ui
2Z0
在Ui的负半周
Uo
VD VC
常采用带相敏整流的交流电桥.
2020/6/14
19
结构
带相敏整流的交流电桥电路
2020/6/14
20
(1)初始平衡位置时
当差动式传感器的 活动铁芯处于中间 位置时,传感器两 个差动线圈的阻抗
Z1=Z2=Z0,其
等效电路如图所示。
铁芯处于初始平衡位置时的等效电路
2020/6/14
21
(2)活动铁芯向一边移动时
第3章 电感式传感器
2020/6/14
1
电感式传感器
电感式传感器可用来测量位移、压力、流量、振动等非电量, 其主要特点是结构简单、工作可靠、灵敏度高;测量精度高、 输出功率较大;可实现信息的远距离传输、记录、显示和控 制,在工业自动控制系统中被广泛应用。但其灵敏度、线性 度和测量范围相互制约;传感器自身频率响应低,不适用于 快速动态测量。
7
结论
只要被测非电量能够引起空气隙长度或 等效截面积发生变化,线圈的电感量就 会随之变化。
电感式传感器从原理上可分为变气隙长 度式和变气隙截面式两种类型,前者常 用于测量直线位移,后者常用于测量角 位移。
2020/6/14
8
自感式传感器
2020/6/14
9
1.变气隙式(闭磁路式)自感传感器
2020/6/14
11
结构
差动式电感传感 器对外界影响, 如温度的变化、 电源频率的变化 等基本上可以互 相抵消,衔铁承 受的电磁吸力也 较小,从而减小 了测量误差。
2020/6/14
1—测杆 2—衔铁 3—线圈
12
特性
从输出特性曲线(如 图4-5所示)可以看 出,差动式电感传感 器的线性较好,且输 出曲线较陡,灵敏度 约为非差动式电感传 感器的两倍。
交流电桥的种类很多,差动形式工作时其电桥 电路常采用双臂工作方式。两个差动线圈Z1和 Z2分别作为电桥的两个桥臂,另外两个平衡臂 可以是电阻或电抗,或者是带中心抽头的变压 器的两个二次绕组或紧耦合线圈等形式。
2020/6/14
14
1.变压器交流电桥
电桥有两臂为传感 器的差动线圈的阻 抗,所以该电路又 称为差动交流电桥
电感式传感器是建立在电磁感应的基础上,利用线圈自感或 互感来实现非电量的检测。 本章主要介绍:
自感式传感器(利用自感原理);
差动变压器式传感器(利用互感原理);
电涡流式传感器(利用涡流原理)。
2020/6/14
2
3.1自感式传感器
自感式传感器由线圈、铁心和衔铁三部 分组成。铁心和衔铁由导磁材料制成。 自感式传感器是把被测量的变化转换成 自感L的变化,通过一定的转换电路转换 成电压或电流输出。按磁路几何参数变 化形式的不同,自感式传感器可分为变 气隙式、变截面积式和螺线管式三种
L / I N / I
N 为磁链,为磁通(Wb),I为流 过线圈的电流(A),N为线圈匝数。根 据磁路欧姆定律: NIS /,l 为磁导率,S
为磁路截面积,l 为磁路总长度。
2020/6/14
6
线圈的电感量
Rm
ቤተ መጻሕፍቲ ባይዱ
2 0 s0
为磁路的磁阻
L N 2 N 20S
Rm
2
变磁阻式传感器
2020/6/14
1、2—L1、L2的特性 3—差动特性
2020/6/14
13
3.1.2 自感式传感器的测量电路
自感式传感器的测量电路用来将电感量的变化 转换成相应的电压或电流信号,以便供放大器 进行放大,然后用测量仪表显示或记录。
测量电路有交流分压式、交流电桥式和谐振式 等多种,常用的差动式传感器大多采用交流电 桥式 。
由电感式可知,变气隙长度式传感器的 线性度差、示值范围窄、自由行程小, 但在小位移下灵敏度很高,常用于小位 移的测量。
1—线圈 2—铁芯 3—衔铁
2020/6/14
10
2.螺线管式(开磁路式)自感式传感器
螺线管式自感式传感器常采用差动式。
它是在螺线管中插入圆柱形铁芯而构成的。其 磁路是开放的,气隙磁路占很长的部分。有限 长螺线管内部磁场沿轴线非均匀分布,中间强, 两端弱。插入铁芯的长度不宜过短也不宜过长, 一般以铁芯与线圈长度比为0.5、半径比趋于1 为宜。铁磁材料的选取决定于供桥电源的频率, 500Hz以下多用硅钢片,500Hz以上多用薄 膜合金,更高频率则选用铁氧体。从线性度考 虑,匝数和铁芯长度有一最佳数值,应通过实 验选定。
电桥输出电压,电桥处于平衡状态。
2020/6/14
16
变化时
当铁芯向一边移动时,则一个线圈的阻
抗增加 , Z1 Z0 Z
Z2 Z0 Z

Uo
( Z0 Z 2Z0
1• 2)U2
Z • 2Z0 U2
2020/6/14
17
变化后的电压
当传感器线圈为高Q值时,则线圈的电阻远小
于其感抗
当活动铁芯向另一边(反方向)移动时
变压器式交流电桥电路图
2020/6/14
15
分析
设O点为电位参考点,根据电路的基本 分析方法,可得到电桥输出电压为

Uo

UAB


VA VB
( Z1 Z1 Z2
1• 2)U2
当传感器的活动铁芯处于初始平衡位置 时,两线圈的电感相等,阻抗也相等, 即,其中表示活动铁芯处于初始平衡位 置时每一个线圈的阻抗。
相关文档
最新文档