物理学分支发展简史(电学)
物理学发展简史
物理学发展简史物理学作为自然科学的一个分支,研究物质、能量以及它们之间的相互作用规律。
自古以来,人们对物质和自然现象的探索就是物理学的雏形。
随着时间的推移,物理学经历了多个阶段的发展,逐渐形成为了现代物理学的体系和理论。
古代物理学的起源可以追溯到古希腊时期。
古希腊哲学家们对自然现象进行了观察和思量,提出了一些关于物质本质和自然规律的假设。
其中,亚里士多德的自然哲学体系对后来的物理学发展产生了深远的影响。
他认为地球是宇宙的中心,万物都是由四种元素(地、水、火、气)组成的,同时还提出了一些关于物体运动和力的理论。
中世纪时期,欧洲的学术研究受到了基督教教义的束缚,物理学的发展相对较慢。
然而,阿拉伯世界的学者们在这一时期对古希腊的科学著作进行了翻译和研究,为后来的物理学复兴奠定了基础。
文艺复兴时期,物理学开始迈入现代化的阶段。
伽利略·伽利莱是这一时期最重要的物理学家之一。
他通过实验研究和数学分析,提出了地球自转和物体自由落体的理论,并建立了实验物理学的基础。
伽利略的工作对于科学方法的发展和物理学的进步产生了重要影响。
17世纪,牛顿的力学理论推动了物理学的革命性发展。
他提出了经典力学的三大定律,成功地解释了物体运动的规律,并建立了万有引力定律。
牛顿的力学理论成为了物理学的基础,并在后来的几个世纪中得到了广泛应用。
19世纪,电磁学的发展成为物理学的一个重要分支。
法拉第、麦克斯韦等科学家的工作奠定了电磁学的基础,揭示了电磁现象的本质和规律。
麦克斯韦方程组的提出为电磁波的存在和传播提供了理论依据,这对于后来的通信技术和无线电技术的发展具有重要意义。
20世纪是物理学发展的一个重要时期,许多重大的科学突破发生在这个时期。
相对论和量子力学的提出彻底颠覆了经典物理学的观念。
爱因斯坦的相对论理论解释了运动物体的行为,揭示了时间和空间的相对性。
量子力学则研究微观世界的行为,揭示了微观粒子的神奇性质,如波粒二象性和不确定性原理。
电学的发展简史
电学的发展简史"电"一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。
自从18世纪中叶以来,对电的研究逐渐蓬勃开展。
它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。
现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。
随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。
电学又可称为电磁学,是物理学中颇具重要意义的基础学科。
电学的发展简史有关电的记载可追溯到公元前6世纪。
早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,后来又有人发现摩擦过的煤玉也具有吸引轻小物体的能力。
在以后的2000年中,这些现象被看成与磁石吸铁一样,属于物质具有的性质,此外没有什么其他重大的发现。
在中国,西汉末年已有"碡瑁(玳瑁)吸偌(细小物体之意)"的记载;晋朝时进一步还有关于摩擦起电引起放电现象的记载"今人梳头,解著衣时,有随梳解结有光者,亦有咤声"。
1600年,英国物理学家吉尔伯特发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。
为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为"电的"。
吉尔伯特在实验过程中制作了第一只验电器,这是一根中心固定可转动的金属细棒,当与摩擦过的琥珀靠近时,金属细棒可转动指向琥珀。
大约在1660年,马德堡的盖利克发明了第一台摩擦起电机。
他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。
盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代。
18世纪电的研究迅速发展起来。
1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。
物理学发展简史
物理学发展简史一、引言物理学作为自然科学的重要分支,研究物质的性质、运动和相互作用规律。
它的发展历程可以追溯到古代,经历了数千年的演变和积累。
本文将从古代物理学的雏形开始,梳理物理学的发展历史,介绍关键人物和重要理论的出现,以及对现代物理学的影响。
二、古代物理学的雏形古代物理学的起源可以追溯到古希腊时期。
早在公元前6世纪,希腊哲学家毕达哥拉斯提出了“万物皆数”的观念,认为宇宙的本质是数。
此后,柏拉图和亚里士多德等哲学家对物质构成和运动提出了不同的理论。
其中,亚里士多德的自然哲学成为古代物理学的主流思想,他认为天体运动是由于物体天然的趋向性和四个元素的相互作用。
三、近代物理学的奠基1. 哥白尼的日心说16世纪,波兰天文学家哥白尼提出了日心说,认为地球是宇宙的中心,行星和恒星围绕太阳运动。
这一理论颠覆了古代的地心说,对物理学发展起到了重要的推动作用。
2. 牛顿的经典力学17世纪,英国科学家牛顿提出了经典力学的三大定律。
他通过研究物体的运动和力的关系,建立了质点力学的基础。
牛顿的研究成果对后来的物理学发展产生了深远的影响,被誉为物理学史上的里程碑之一。
四、电磁学的兴起1. 麦克斯韦的电磁理论19世纪,苏格兰物理学家麦克斯韦提出了电磁场理论,将电学和磁学统一起来。
他的四个麦克斯韦方程式描述了电磁场的本质和传播规律,为电磁学的发展奠定了基础。
2. 雷诺兹的流体力学19世纪,英国物理学家雷诺兹研究了流体的运动和力学规律,提出了著名的雷诺兹数。
他的研究对流体力学的发展产生了重要影响,为后来的科学家提供了理论基础。
五、量子力学的开创20世纪初,量子力学的出现彻底颠覆了经典物理学的观念,成为物理学发展的重要里程碑。
1. 普朗克的量子理论德国物理学家普朗克在研究黑体辐射时,提出了能量量子化的概念。
他的量子理论揭示了物质微观世界的奇特性质,为后来的量子力学奠定了基础。
2. 玻尔的原子模型丹麦物理学家玻尔在普朗克的理论基础上,提出了原子的量子理论。
物理学的发展历程简介
物理学的发展历程简介按照物理学史特点,将其发展大致分期如下:①从远古到中世纪属古代时期。
②从文艺复兴到19世纪,是经典物理学时期。
牛顿力学在此时期发展到顶峰,其时空观、物质观和因果关系影响了光、声、热、电磁的各学科,甚而影响到物理学以外的自然科学和社会科学。
③随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。
1. 古代物理学时期这一时期是从公元前8世纪至公元15世纪,是物理学的萌芽时期。
无论在东方还是在西方,物理学还处于前科学的萌芽阶段,严格的说还不能称其为“学”。
物理知识一方面包含在哲学中,如希腊的自然哲学,另一方面体现在各种技术中,如中国古代的科技。
这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢,社会功能不明显。
这一时期的物理学对于西方又可分为两个阶段,即古希腊-罗马阶段和中世纪阶段。
(1)、古希腊-罗马阶段(公元前8世纪至公元5纪)。
主要有古希腊的原子论、阿基米德(公元前287-公元前212)的力学、托勒密(约90-168)的天文学等。
(2)\中世纪阶段(公元5世纪至公元15世纪)。
主要有勒·哈增,约965-1038)的光学、冲力说等。
2. 近代物理学时期又称经典物理学时期, 这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。
物理学与哲学分离,走上独立发展的道路,迅速形成比较完整严密的经典物理学科学体系。
这一时期的物理学有如下特征:在研究方法上采用实验与数学相结合、分析与综合相结合和归纳与演绎相结合等方法;在知识水平上产生了比较系统和严密科学理论与实验;在内容上形成比较完整严密的经典物理学科学体系;在发展速度上十分迅速,社会功能明显,推动了资本主义生产与社会的迅速发展。
物理学发展简史
物理学发展简史物理学是自然科学的一个重要分支,研究物质、能量和它们之间相互作用的规律。
它的发展可以追溯到古代,经历了数千年的演变和进步。
以下是物理学发展的简史。
古代物理学:古代物理学主要集中在古希腊时期,其中最重要的贡献来自于亚里士多德。
他提出了一种关于物质构成和运动的理论,称为亚里士多德哲学。
他认为地球是宇宙的中心,万物都环绕着地球运动。
这一理论在几个世纪内占领主导地位,直到科学革命时期被推翻。
科学革命时期:科学革命时期是物理学发展的重要里程碑。
伽利略·伽利莱是这一时期的重要人物之一,他通过实验和观察提出了一些重要的理论。
他的研究揭示了自由落体运动的规律,并提出了地球绕太阳运动的观点,这与当时的教会观点相矛盾。
伽利略的工作为现代科学方法的发展奠定了基础。
牛顿力学:艾萨克·牛顿是物理学史上最重要的科学家之一。
他在17世纪末提出了经典力学的三大定律,这些定律描述了物体运动的规律。
牛顿的研究不仅解释了地球上的物体运动,还成功地预测了天体运动。
他的工作为后来的科学研究提供了基础,并被广泛应用于工程和技术领域。
电磁学的兴起:19世纪是电磁学发展的时期。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦是这一时期的重要人物。
法拉第的研究揭示了电磁感应和电磁感应定律,为电动机和发机电的发展奠定了基础。
麦克斯韦则通过数学形式化了电磁理论,并预测了电磁波的存在。
他的工作为后来的无线电通信和电磁波谱的研究提供了理论基础。
相对论和量子力学:20世纪是相对论和量子力学的时期。
阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,这些理论改变了我们对时间、空间和引力的理解。
量子力学的发展由多位科学家共同推动,如马克斯·波恩、尼尔斯·玻尔和沃纳·海森堡等。
量子力学研究了微观世界的行为,揭示了粒子的波粒二象性和量子纠缠等神奇现象。
现代物理学:现代物理学涵盖了广泛的领域,如固体物理学、核物理学、粒子物理学和宇宙学等。
物理学发展简史
物理学发展简史物理学是自然科学的一个分支,研究物质、能量和它们之间相互作用的规律。
它起源于古代,经历了漫长的发展过程,形成为了今天我们所熟知的物理学体系。
本文将为您详细介绍物理学的发展历程和里程碑事件。
1. 古代物理学的起源物理学的起源可以追溯到古代文明时期。
古希腊哲学家们对自然现象进行了观察和思量,提出了一些基本概念和理论。
其中最著名的是亚里士多德的自然哲学,他提出了四种元素(地、水、火、气)和天体运动的观点,对后世的物理学发展产生了重要影响。
2. 文艺复兴时期的突破在文艺复兴时期,欧洲浮现了一系列对古代观点的质疑和批评。
特别是哥白尼的日心说和伽利略的地心说的争论,引起了对宇宙结构和运动的重新思量。
这些思想家们通过观察和实验,对物理学的发展做出了重要贡献。
3. 牛顿力学的建立17世纪末,英国科学家牛顿提出了经典力学的基本原理,奠定了物理学的基础。
他的三大定律和万有引力定律成为了后世物理学研究的基石。
牛顿的力学理论不仅解释了天体运动,还对地球上的运动和力的作用提供了重要的解释。
4. 热力学和电磁学的发展19世纪,热力学和电磁学成为物理学的两个重要分支。
卡诺和克劳修斯等科学家对热力学的基本原理进行了研究,提出了热力学第一、第二定律等重要概念。
同时,法拉第和麦克斯韦等科学家对电磁现象进行了深入研究,建立了电磁学的基本理论和方程。
5. 相对论和量子力学的革命20世纪初,爱因斯坦提出了相对论,彻底改变了人们对时空和物质的认识。
相对论的浮现引起了对物理学基本原理的重新思量,并在后续的科学研究中发挥了重要作用。
与此同时,量子力学的发展也引起了物理学界的哄动。
普朗克和波尔等科学家的研究揭示了微观粒子行为的奇妙性,为量子力学的建立奠定了基础。
6. 现代物理学的发展随着科技的进步和实验技术的提高,物理学的研究领域不断扩展。
现代物理学涵盖了粒子物理学、原子物理学、核物理学、凝结态物理学等多个分支。
人们对宇宙起源和结构、基本粒子的性质、物质的特性等问题进行了深入研究,取得了许多重要的发现和突破。
电学发展简史
电学的发展简史有关电的记载可追溯到公元前6世纪。
早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,后来又有人发现摩擦过的煤玉也具有吸引轻小物体的能力。
在以后的2000年中,这些现象被看成与磁石吸铁一样,属于物质具有的性质,此外没有什么其他重大的发现。
在中国,西汉末年已有“碡瑁(玳瑁)吸偌(细小物体之意)”的记载;晋朝时进一步还有关于摩擦起电引起放电现象的记载“今人梳头,解著衣时,有随梳解结有光者,亦有咤声”。
1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。
为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为“电的"。
吉伯在实验过程中制作了第一只验电器,这是一根中心固定可转动的金属细棒,当与摩擦过的琥珀靠近时,金属细棒可转动指向琥珀。
大约在1660年,马德堡的盖利克发明了第一台摩擦起电机。
他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。
盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代.18世纪电的研究迅速发展起来。
1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。
格雷的实验引起法国迪费的注意。
1733年迪费发现绝缘起来的金属也可摩擦起电,因此他得出所有物体都可摩擦起电的结论。
他把玻璃上产生的电叫做“玻璃的”,琥珀上产生的电与树脂产生的相同,叫做“树脂的”.他得到:带相同电的物体互相排斥;带不同电的物体彼此吸引。
1745年,荷兰莱顿的穆申布鲁克发明了能保存电的莱顿瓶。
莱顿瓶的发明为电的进一步研究提供了条件,它对于电知识的传播起到了重要的作用。
差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。
物理学发展简史
物理学发展简史物理学是自然科学中的一门重要学科,研究物质的性质、运动和相互作用。
它的发展可以追溯到古代希腊时期,经历了漫长而丰富的历史。
本文将为您详细介绍物理学发展的历程,从古代到现代,让您对物理学的发展有一个清晰的了解。
一、古代物理学的起源古代物理学的起源可以追溯到古希腊时期的哲学家们。
他们通过观察自然现象和思考,提出了一些关于宇宙的基本理论。
其中最著名的是亚里士多德的自然哲学,他认为地球是宇宙的中心,万物都是由四种元素(地、水、火、气)组成的。
这些理论在当时被广泛接受,但后来被科学实验和观察所推翻。
二、近代物理学的诞生近代物理学的诞生可以追溯到16世纪末的科学革命时期。
伽利略·伽利莱是物理学的奠基人之一,他通过实验和观察,提出了地球不是宇宙的中心,而是围绕太阳运转的理论,这一理论被称为“日心说”。
同时,伽利略还研究了物体的运动规律,提出了“落体定律”和“惯性定律”,为后来牛顿的力学奠定了基础。
三、经典物理学的发展17世纪末至19世纪初,经典物理学迎来了快速发展的时期。
艾萨克·牛顿的《自然哲学的数学原理》被认为是经典物理学的里程碑,其中包括了牛顿三大定律和万有引力定律。
牛顿的理论不仅解释了地球和天体的运动规律,还奠定了力学和运动学的基础。
随着科学技术的进步,电磁学和热力学也得到了重要的发展。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦等科学家研究了电磁场的性质和电磁波的传播规律,建立了电磁学的基本理论。
同时,卡尔·弗里德里希·高斯、安德烈·玛丽·安培和乔治·西蒙·欧姆等科学家的贡献也推动了电磁学的发展。
热力学的发展也是经典物理学的重要组成部分。
詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼等科学家研究了热力学定律和热力学过程,为工业革命和能源利用提供了理论基础。
物理学发展简史
物理学发展简史引言概述:物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用。
自古以来,人类对于物理学的研究向来在不断发展,推动了科学技术的进步。
本文将以物理学发展的历史为线索,从古代到现代,介绍物理学的重要里程碑。
一、古代物理学的发展1.1 古希腊的自然哲学古希腊哲学家们对自然界的观察和思量,奠定了物理学的基础。
例如,泰勒斯认为水是宇宙的基本构成物质,安纳克西曼德认为万物都来自于无穷无尽的原子。
1.2 亚里士多德的物理学亚里士多德的物理学思想在古代占领主导地位。
他提出了地心说,认为地球是宇宙的中心,天体环绕地球旋转。
亚里士多德的物理学思想影响了几个世纪的科学研究。
1.3 阿拉伯物理学的贡献中世纪的阿拉伯学者对物理学的发展做出了重要贡献。
他们翻译了古希腊和古罗马的著作,并进行了进一步的研究。
他们的工作在欧洲文艺复兴时期被重新发现,对物理学的发展起到了推动作用。
二、近代物理学的诞生2.1 伽利略的实验物理学伽利略通过实验和观察,提出了许多重要的物理学原理。
他的研究包括物体的自由落体、斜面上的运动等,为后来的物理学家们提供了珍贵的思路。
2.2 牛顿的经典力学牛顿的经典力学是物理学的重要里程碑。
他提出了运动定律和万有引力定律,解释了行星运动和物体的运动规律。
牛顿的理论为后来的科学研究提供了基础。
2.3 麦克斯韦方程组的建立19世纪,麦克斯韦通过实验和理论推导,建立了电磁场理论。
他的方程组描述了电磁波的传播和电磁现象的规律,开创了电磁学的新时代。
三、量子力学的诞生与发展3.1 普朗克的量子假设20世纪初,普朗克提出了能量量子化的假设,为量子力学的建立奠定了基础。
他的工作为后来的量子力学研究提供了重要的启示。
3.2 爱因斯坦的光电效应理论爱因斯坦通过对光电效应的研究,提出了光的粒子性,即光子的概念。
他的理论为量子力学的发展做出了重要贡献。
3.3 薛定谔的波函数理论薛定谔通过对粒子的波动性的研究,提出了著名的波函数理论。
物理学发展简史
物理学发展简史物理学作为自然科学的一个重要分支,以研究物质、能量和它们之间的相互作用为主要内容。
它的发展历史可以追溯到古代,经历了漫长的探索和发展过程。
本文将从古代物理学的起源开始,概述物理学的发展历程,重点介绍物理学的重要里程碑和突破性发现。
1. 古代物理学的起源古代物理学的起源可以追溯到古希腊时期。
古希腊的哲学家们开始思量自然界的本质和规律,提出了一些基本的物理学观念。
例如,希腊哲学家毕达哥拉斯提出了宇宙由数学规律支配的观点,而柏拉图则认为世界是由一系列理念构成的。
亚里士多德则建立了自然哲学体系,提出了一些物质和运动的基本概念。
2. 古代物理学的发展古代物理学在亚里士多德的影响下得到了长足的发展。
亚里士多德提出了许多关于物质和运动的理论,他认为物质是由四个元素(地、水、火、气)组成的,而运动则是由天体运动和物体运动两部份组成的。
亚里士多德的理论在中世纪得到广泛传播和应用,成为当时物理学的主流观点。
3. 文艺复兴时期的物理学革命文艺复兴时期,物理学经历了一场革命。
尼古拉·哥白尼提出了地心说的反对者——日心说,即地球环绕太阳运动。
这个观点颠覆了亚里士多德的天文学观点,引起了一场科学革命。
约翰内斯·开普勒进一步发展了日心说,提出了行星运动的三个定律,为后来的物理学研究奠定了基础。
4. 牛顿力学的诞生17世纪,牛顿力学的诞生标志着物理学的又一次革命。
艾萨克·牛顿提出了经典力学的三大定律,建立了质点力学的基本框架。
他的研究成果不仅解释了地球上的运动,还解释了行星运动和物体受力的规律。
牛顿力学成为了物理学的基石,对后来的物理学研究产生了深远影响。
5. 电磁学的兴起19世纪,电磁学的兴起成为物理学发展的又一个重要里程碑。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦等科学家的工作,推动了电磁学的快速发展。
麦克斯韦提出了电磁场理论,将电磁学和光学联系在一起,预言了电磁波的存在。
高中物理总复习-物理学发展简史及著名物理学家汇总
高中物理总复习-物理学发展简史及著名物理学家汇总高中物理学发展简史必修部分:一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
物理学发展简史
物理学发展简史一、引言物理学作为自然科学的一门学科,研究物质的性质、运动和相互作用规律。
它的发展可以追溯到古代的希腊和中国,经历了数千年的演变和进步。
本文将从古代物理学的起源开始,逐步介绍物理学的发展历程,包括经典物理学和现代物理学的重要里程碑。
二、古代物理学的起源1. 古希腊物理学的开端古希腊是物理学发展的重要起源地之一。
早在公元前6世纪,古希腊哲学家毕达哥拉斯提出了宇宙是由数字和几何构成的观念,奠定了物理学的基础。
他的学生们继续探索自然界,包括提出了著名的原子论和运动学理论。
2. 古代中国的物理学贡献古代中国也有独特的物理学贡献。
中国古代科学家对天文学和地球物理学有着深入的研究,例如天文观测和地震测量。
此外,中国古代还有许多发明和发现,如指南针、火药等,对物理学的发展起到了重要作用。
三、经典物理学的发展1. 牛顿力学的奠基17世纪,英国科学家牛顿提出了经典力学的三大定律,即牛顿运动定律。
这一理论解释了物体的运动规律,并建立了质点力学的基础。
牛顿力学成为了经典物理学的重要组成部分,对后来的物理学发展产生了深远影响。
2. 热力学与热学定律18世纪,热力学的发展成为了物理学的另一个重要分支。
热力学研究了物体的热力学性质,如温度、热量和热力学定律。
这一领域的突破包括卡诺循环和热力学第一、第二定律的提出,为工业革命和能源利用提供了理论基础。
3. 电磁学的崛起19世纪,电磁学的发展成为经典物理学的又一个重要分支。
电磁学研究了电荷和电磁场的相互作用规律,包括库仑定律和麦克斯韦方程组的建立。
这一领域的发展推动了电力工业和通信技术的进步。
四、现代物理学的重要里程碑1. 相对论的提出20世纪初,爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空和物质的认识。
相对论解释了运动物体的性质,揭示了质能等价原理,并预言了黑洞和引力波等现象。
2. 量子力学的建立20世纪20年代,量子力学的建立标志着物理学的又一次革命。
物理学发展简史
物理学发展简史物理学是自然科学的一门重要学科,研究物质、能量以及它们之间的相互作用。
它涵盖了广泛的领域,如力学、热学、光学、电磁学、量子力学等。
本文将为您介绍物理学的发展历程,以及其中的重要里程碑和贡献。
1. 古代物理学古代物理学的起源可以追溯到古希腊时期。
古希腊的哲学家和科学家,如亚里士多德、阿基米德等,对物质的本质、力量和运动进行了探索和研究。
亚里士多德提出了天体运动的地心说,阿基米德则研究了浮力和杠杆原理。
2. 中世纪物理学在中世纪,物理学的发展受到了宗教和哲学观念的限制。
然而,一些学者,如伽利略·伽利莱和约翰内斯·开普勒,通过实验和观察,对运动和天体运动提出了新的理论和观点。
伽利略提出了自由落体和斜面上滚动的定律,开普勒则发现了行星运动的三大定律。
3. 近代物理学17世纪是物理学发展的重要时期。
伊萨克·牛顿的《自然哲学的数学原理》(Principia Mathematica)成为了物理学的里程碑之一。
牛顿的力学定律和万有引力定律为后来的物理学研究奠定了基础。
这个时期还涌现出了其他重要的科学家,如罗伯特·赫丁、安德斯·开尔文等。
电学也开始被研究,奥托·冯·瓦尔塔发现了电流和磁场之间的关系。
4. 19世纪物理学19世纪是物理学发展的黄金时代。
在这个时期,热力学、电磁学和光学等领域取得了重大突破。
詹姆斯·克拉克·麦克斯韦的电磁场方程组成为电磁学的基础,赫尔曼·冯·亥姆霍兹提出了能量守恒定律。
热力学的发展由卡诺提出的热力学第一定律和第二定律,以及麦克斯韦的统计物理学假设推动。
光学方面,托马斯·杨的干涉和衍射理论为光的波动性提供了解释。
5. 20世纪物理学20世纪是物理学的革命性时期,量子力学和相对论的发展成为了物理学的两大支柱。
阿尔伯特·爱因斯坦的相对论理论彻底改变了我们对时空和引力的理解。
(完整版)物理学发展简史
欢迎共阅一、古典物理学与近代物理学:1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支。
2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。
理12341)和化(1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。
(2)半导体制成二极管具整流能力。
(3)集成电路(IC):(A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集成电路。
(B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。
(C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。
(4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。
2、雷射:(一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并放射同频率之光子,藉以将光加以增强。
(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。
(三)应用:(1)工业上:测量、切割、精密加工……(2)医学上:切割手术(肿瘤、近视)……(3)军事上:定位、导引……(4)生活、娱乐上:激光视盘、光纤通讯……3、光纤:(一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包层)两层。
(二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而传递至另一端。
(三)特性:(核2。
(1)向量:兼具大小及方向性者,如:速度、力……(2)纯量:仅具大小无方向性者,如:体积、时间、功……(二)依定义方式而分:(1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强度(光度)、物质的量(物量)七种。
物理学发展简史
物理学发展简史物理学是自然科学的一个重要分支,研究物质、能量以及它们之间的相互作用。
它的发展历史可以追溯到古代文明时期,经历了数千年的演变和进步。
本文将为您详细介绍物理学的发展简史。
1. 古代物理学的起源古代的物理学主要集中在希腊、中国、印度和阿拉伯等文明中。
在希腊,著名的哲学家亚里士多德提出了天地万物的四要素理论,即地、水、火、气。
而中国的古代科学家们则研究了天文学、力学和声学等领域。
印度的古代科学家开展了对光学和声学的研究,而阿拉伯的科学家则在物理学和天文学方面取得了重要的进展。
2. 文艺复兴时期的物理学文艺复兴时期标志着物理学的复兴和进一步发展。
尼古拉·哥白尼提出了地心说的观点,认为地球是宇宙的中心。
这个观点在当时得到了广泛的接受,但随着后来伽利略·伽利莱的出现,他的地心说受到了挑战,伽利略提出了日心说的观点,并用实验证明了这个观点的正确性,从而推动了物理学的进一步发展。
3. 牛顿力学的诞生17世纪末,艾萨克·牛顿提出了力学的三大定律,即牛顿三定律。
这些定律奠定了经典力学的基础,解释了物体的运动规律和相互作用原理。
牛顿的力学理论极大地推动了科学的进步,成为物理学的重要里程碑。
4. 电磁学和光学的发展19世纪初,奥斯丁·法拉第和迈克尔·法拉第等科学家在电磁学领域取得了重要的突破。
法拉第提出了电磁感应和电磁场的概念,揭示了电磁现象的本质。
同时,詹姆斯·克拉克·麦克斯韦提出了麦克斯韦方程组,统一了电磁学的理论框架。
光学方面,托马斯·杨和奥古斯特·菲涅耳等科学家的研究推动了光的波动理论的发展。
5. 相对论和量子力学的革命20世纪初,阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空和引力的理解。
狭义相对论解释了光速不变和质能等价的原理,广义相对论则描述了引力的曲率效应。
与此同时,量子力学的发展也引起了物理学的革命。
物理学发展简史
物理学发展简史引言概述:物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用规律。
本文将从物理学的起源开始,逐步介绍物理学的发展历程,包括古代物理学、经典物理学、现代物理学以及当代物理学的发展。
一、古代物理学1.1 古希腊物理学的兴起古希腊哲学家们开始对自然现象进行观察和思考,提出了一些关于宇宙和自然的理论。
例如,毕达哥拉斯学派认为世界是由数字和几何形状构成的,而柏拉图则提出了“理念”和“物质”之间的关系。
1.2 亚里士多德的自然哲学亚里士多德对物质的性质和运动进行了深入研究,提出了“四元素”(土、水、火、气)的理论,并认为天体运动是由“天体之神”驱动的。
他的理论在中世纪成为主流观点。
1.3 阿拉伯物理学的传承阿拉伯学者在古希腊物理学的基础上进行了进一步的研究和发展,尤其是在光学和力学方面取得了重要成果。
他们的工作为欧洲文艺复兴时期的科学发展奠定了基础。
二、经典物理学2.1 牛顿力学的建立伽利略和牛顿的工作使得力学成为物理学的重要分支。
牛顿三大定律和万有引力定律为物理学提供了统一的理论框架,解释了物体的运动和天体的运动规律。
2.2 热学的发展热学的发展始于卡尔文和卡诺等科学家的研究,随后由卡尔·弗里德里希·高斯和鲁道夫·克劳修斯等人进一步完善。
他们提出了热力学定律和热力学循环,为工业革命的进展做出了重要贡献。
2.3 电磁学的兴起奥斯特和法拉第等科学家的研究奠定了电磁学的基础,而麦克斯韦的电磁场理论进一步推动了电磁学的发展。
电磁学的成就包括电磁波的发现和电磁感应定律的提出。
三、现代物理学3.1 相对论的提出爱因斯坦的狭义相对论和广义相对论彻底改变了我们对时空和引力的认识。
狭义相对论解释了高速运动物体的行为,广义相对论则描述了引力的本质。
3.2 量子力学的建立普朗克和波尔等科学家的研究揭示了微观世界的奇妙规律,量子力学诞生。
量子力学描述了微观粒子的行为,其基本原理包括波粒二象性、不确定性原理等。
电学的基本定义及其发展
电学的基本定义及其发展电学的基本定义电学是物理学的分支学科之一。
主要研究“电”的形成及其应用。
“电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。
自从18世纪中叶以来,对电的研究逐渐蓬勃开展。
它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。
现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。
随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。
电学又可称为电磁学,是物理学中颇具重要意义的基础学科。
电学的发展电学作为经典物理学的一个分支,就其基本原理而言,已发展得相当完善,它可用来说明宏观领域内的各种电磁现象。
20世纪,随着原子物理学、原子核物理学和粒子物理学的发展,人类的认识深入到微观领域,在带电粒子与电磁场的相互作用问题上,经典电磁理论遇到困难。
虽然经典理论曾给出一些有用的结果,但是许多现象都是经典理论不能说明的。
经典理论的局限性在于对带电粒子的描述忽略了其波动性方面,而对于电磁波的描述又忽略了其粒子性方面。
按照量子物理的观点,无论是物质粒子或电磁场都既有粒子性,又具有波动性。
在微观物理研究的推动下,经典电磁理论发展为量子电磁理论。
电学的基本内容电学研究的内容主要包括静电、静磁、电磁场、电路、电磁效应和电磁测量。
静电学是研究静止电荷产生电场及电场对电荷作用规律的学科。
电荷只有两种,称为正电和负电。
同种电荷相互排斥,异种电荷相互吸引。
电荷遵从电荷守恒定律。
电荷可以从一个物体转移到另一个物体,任何物理过程中电荷的代数和保持不变。
所谓带电,不过是正负电荷的分离或转移;所谓电荷消失,不过是正负电荷的中和。
静止电荷之间相互作用力符合库仑定律:在真空中两个静止点电荷之间作用力的大小与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比;作用力的方向沿着它们之间的联线,同号电荷相斥,异号电荷相吸。
电荷之间相互作用力是通过电荷产生的电场相互作用的。
物理学的所有分支
物理学的所有分支
物理学是一门广泛而深入的自然科学,它涵盖了从微观粒子到宏观宇宙的各种现象。
以下是物理学的一些主要分支,以及它们的简要介绍:
经典力学:这是物理学的基础,研究宏观物体(如行星、汽车等)的运动规律。
它的基本理论框架由牛顿、拉格朗日和哈密尔顿等人建立。
电磁学:电磁学研究电荷、电流以及它们产生的电场和磁场的相互作用。
这个领域的理论和实验工作对于现代电子技术和通信技术的发展有着深远影响。
热力学和统计力学:这些分支研究热现象、物质性质以及它们与能量之间的关系。
热力学主要关注宏观系统的热平衡和能量转换,而统计力学则从微观粒子的角度解释这些宏观现象。
量子物理学:量子物理学研究微观领域的物理现象,如原子、分子和基本粒子。
它颠覆了经典物理学的观念,引入了如波粒二象性、量子纠缠等新的概念。
相对论:相对论由爱因斯坦提出,它描述了高速运动和强引力场下的物理现象。
特殊相对论处理无引力场的情况,而广义相对论则描述了引力如何影响物质和空间的几何结构。
此外,物理学还有许多其他分支,如原子物理学、生物物理学、环境物理学、计算物理学、材料物理学、核物理学、天体物理学等。
这些分支的研究领域和应用方向各不相同,但它们都建立在物理学的基本原理之上,共同推动着人类对自然界的认识和理解。
物理学发展简史
物理学发展简史物理学是自然科学的一个重要分支,研究物质的本质、性质和运动规律。
它的发展与人类认识世界的进步息息相关。
本文将为您介绍物理学的发展历程,从古代到现代,带您回顾物理学的发展简史。
1. 古代物理学的起源古代物理学的起源可以追溯到古希腊时期。
古希腊哲学家提出了一些关于自然界的基本观点和理论。
例如,希腊自然哲学家泰勒斯认为水是构成一切物质的基本元素。
而后来的众多哲学家和数学家,如毕达哥拉斯、亚里士多德等,也对物质的本质和运动规律进行了探索和研究。
2. 文艺复兴时期的突破文艺复兴时期,欧洲浮现了一批杰出的科学家,他们对物理学的发展做出了重要贡献。
例如,伽利略·伽利莱通过实验和观察,提出了物体自由下落的定律,建立了近代物理学的基石。
同时,伽利略还研究了摆钟的运动规律,奠定了力学的基础。
3. 牛顿力学的革命17世纪末,英国科学家艾萨克·牛顿提出了经典力学的三大定律,并通过万有引力定律解释了行星运动和天体力学现象。
牛顿的力学体系奠定了物理学的基础,成为人类认识自然界的重要里程碑。
4. 热学与热力学的发展18世纪,热学和热力学的发展成为物理学的重要分支。
约瑟夫·布莱兹·普吕斯提出了热力学第一定律,即能量守恒定律。
同时,卡尔·弗里德里希·高斯和拉普拉斯等科学家也做出了重要贡献,推动了热力学的发展。
5. 电磁学的突破19世纪初,电磁学的发展引起了科学界的广泛关注。
迈克尔·法拉第提出了电磁感应定律,詹姆斯·克拉克·麦克斯韦通过数学方程组统一了电磁学的基本定律,形成为了麦克斯韦方程组。
这一理论的建立对电磁波的存在提供了理论依据,为电磁学的发展打下了坚实的基础。
6. 相对论与量子力学的革命20世纪初,阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时间、空间和引力的认识。
与此同时,量子力学的发展也引起了科学界的革命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学分支发展简史(电学)“电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。
自从18世纪中叶以来,对电的研究逐渐蓬勃开展。
它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。
现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。
随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。
电学又可称为电磁学,是物理学中颇具重要意义的基础学科。
电学的发展简史有关电的记载可追溯到公元前6世纪。
早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,后来又有人发现摩擦过的煤玉也具有吸引轻小物体的能力。
在以后的2000年中,这些现象被看成与磁石吸铁一样,属于物质具有的性质,此外没有什么其他重大的发现。
在中国,西汉末年已有“碡瑁(玳瑁)吸偌(细小物体之意)”的记载;晋朝时进一步还有关于摩擦起电引起放电现象的记载“今人梳头,解著衣时,有随梳解结有光者,亦有咤声”。
1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。
为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为“电的”。
吉伯在实验过程中制作了第一只验电器,这是一根中心固定可转动的金属细棒,当与摩擦过的琥珀靠近时,金属细棒可转动指向琥珀。
大约在1660年,马德堡的盖利克发明了第一台摩擦起电机。
他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。
盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代。
18世纪电的研究迅速发展起来。
1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现导体和绝缘体的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。
格雷的实验引起法国迪费的注意。
1733年迪费发现绝缘起来的金属也可摩擦起电,因此他得出所有物体都可摩擦起电的结论。
他把玻璃上产生的电叫做“玻璃的”,琥珀上产生的电与树脂产生的相同,叫做“树脂的”。
他得到:带相同电的物体互相排斥;带不同电的物体彼此吸引。
1745年,荷兰莱顿的穆申布鲁克发明了能保存电的莱顿瓶。
莱顿瓶的发明为电的进一步研究提供了条件,它对于电知识的传播起到了重要的作用。
差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。
1747年他根据实验提出:在正常条件下电是以一定的量存在于所有物质中的一种元素;电跟流体一样,摩擦的作用可以使它从一物体转移到另一物体,但不能创造;任何孤立物体的电总量是不变的,这就是通常所说的电荷守恒定律。
他把摩擦时物体获得的电的多余部分叫做带正电,物体失去电而不足的部分叫做带负电。
严格地说,这种关于电的一元流体理论在今天看来并不正确,但他所使用的正电和负电的术语至今仍被采用,他还观察到导体的尖端更易于放电等。
早在1749年,他就注意到雷闪与放电有许多相同之处,1752年他通过在雷雨天气将风筝放入云层,来进行雷击实验,证明了雷闪就是放电现象。
在这个实验中最幸运的是富兰克林居然没有被电死,因为这是一个危险的实验,后来有人重复这种实验时遭电击身亡。
富兰克林还建议用避雷针来防护建筑物免遭雷击,1745年首先由狄维斯实现,这大概是电的第一个实际应用。
18世纪后期开始了电荷相互作用的定量研究。
1776年,普里斯特利发现带电金属容器内表面没有电荷,猜测电力与万有引力有相似的规律。
1769年,鲁宾孙通过作用在一个小球上电力和重力平衡的实验,第一次直接测定了两个电荷相互作用力与距离二次方成反比。
1773年,卡文迪什推算出电力与距离的二次方成反比,他的这一实验是近代精确验证电力定律的雏形。
1785年,库仑设计了精巧的扭秤实验,直接测定了两个静止点电荷的相互作用力与它们之间的距离二次方成反比,与它们的电量乘积成正比。
库仑的实验得到了世界的公认,从此电学的研究开始进入科学行列。
1811年泊松把早先力学中拉普拉斯在万有引力定律基础上发展起来的势论用于静电,发展了静电学的解析理论。
18世纪后期电学的另一个重要的发展是意大利物理学家伏打发明了电池,在这之前,电学实验只能用摩擦起电机的莱顿瓶进行,而它们只能提供短暂的电流。
1780年,意大利的解剖学家伽伐尼偶然观察到与金属相接触的蛙腿发生抽动。
他进一步的实验发现,若用两种金属分别接触蛙腿的筋腱和肌肉,则当两种金属相碰时,蛙腿也会发生抽动。
1792年,伏打对此进行了仔细研究之后,认为蛙腿的抽动是一种对电流的灵敏反应。
电流是两种不同金属插在一定的溶液内并构成回路时产生的,而肌肉提供了这种溶液。
基于这一思想,1799年,他制造了第一个能产生持续电流的化学电池,其装置为一系列按同样顺序叠起来的银片、锌片和用盐水浸泡过的硬纸板组成的柱体,叫做伏打电堆。
此后,各种化学电源蓬勃发展起来。
1822年塞贝克进一步发现,将铜线和一根别种金属(铋)线连成回路,并维持两个接头的不同温度,也可获得微弱而持续的电流,这就是热电效应。
化学电源发明后,很快发现利用它可以作出许多不寻常的事情。
1800年卡莱尔和尼科尔森用低压电流分解水;同年里特成功地从水的电解中搜集了两种气体,并从硫酸铜溶液中电解出金属铜;1807年,戴维利用庞大的电池组先后电解得到钾、钠、钙、镁等金属;1811年他用2000个电池组成的电池组制成了碳极电弧;从19世纪50年代起它成为灯塔、剧院等场所使用的强烈光电源,直到70年代才逐渐被爱迪生发明的白炽灯所代替。
此外伏打电池也促进了电镀的发展,电镀是1839年由西门子等人发明的。
虽然早在1750年富兰克林已经观察到莱顿瓶放电可使钢针磁化,甚至更早在1640年,已有人观察到闪电使罗盘的磁针旋转,但到19世纪初,科学界仍普遍认为电和磁是两种独立的作用。
与这种传统观念相反,丹麦的自然哲学家奥斯特接受了德国哲学家康德和谢林关于自然力统一的哲学思想,坚信电与磁之间有着某种联系。
经过多年的研究,他终于在1820年发现电流的磁效应:当电流通过导线时,引起导线近旁的磁针偏转。
电流磁效应的发现开拓了电学研究的新纪元。
奥斯特的发现首先引起法国物理学家的注意,同年即取得一些重要成果,如安培关于载流螺线管与磁铁等效性的实验;阿喇戈关于钢和铁在电流作用下的磁化现象;毕奥和萨伐尔关于长直载流导线对磁极作用力的实验;此外安培还进一步做了一系列电流相互作用的精巧实验。
由这些实验分析得到的电流元之间相互作用力的规律,是认识电流产生磁场以及磁场对电流作用的基础。
电流磁效应的发现打开了电应用的新领域。
1825年斯特金发明电磁铁,为电的广泛应用创造了条件。
1833年高斯和韦伯制造了第一台简陋的单线电报;1837年惠斯通和莫尔斯分别独立发明了电报机,莫尔斯还发明了一套电码,利用他所制造的电报机可通过在移动的纸条上打上点和划来传递信息。
1855年汤姆孙(即开尔文)解决了水下电缆信号输送速度慢的问题,1866年按照汤姆孙设计的大西洋电缆铺设成功。
1854年,法国电报家布尔瑟提出用电来传送声音的设想,但未变成现实;后来,赖斯于1861年实验成功,但未引起重视。
1861年贝尔发明了电话,作为收话机,它仍用于现代,而其发话机则被爱迪生的发明的碳发话机以及休士的发明的传声器所改进。
电流磁效应发现不久,几种不同类型的检流计设计制成,为欧姆发现电路定律提供了条件。
1826年,受到傅里叶关于固体中热传导理论的启发,欧姆认为电的传导和热的传导很相似,电源的作用好像热传导中的温差一样。
为了确定电路定律,开始他用伏打电堆作电源进行实验,由于当时的伏打电堆性能很不稳定,实验没有成功;后来他改用两个接触点温度恒定因而高度稳定的热电动势做实验,得到电路中的电流强度与他所谓的电源的“验电力”成正比,比例系数为电路的电阻。
由于当时的能量守恒定律尚未确立,验电力的概念是含混的,直到1848年基尔霍夫从能量的角度考查,才橙清了电位差、电动势、电场强度等概念,使得欧姆理论与静电学概念协调起来。
在此基础上,基尔霍夫解决了分支电路问题。
杰出的英国物理学家法拉第从事电磁现象的实验研究,对电磁学的发展作出极重要的贡献,其中最重要的贡献是1831年发现电磁感应现象。
紧接着他做了许多实验确定电磁感应的规律,他发现当闭合线圈中的磁通量发生变化时,线圈中就产生感应电动势,感应电动势的大小取决于磁通量随时间的变化率。
后来,楞次于1834年给出感应电流方向的描述,而诺埃曼概括了他们的结果给出感应电动势的数学公式。
法拉第在电磁感应的基础上制出了第一台发电机。
此外,他把电现象和其他现象联系起来广泛进行研究,在1833年成功地证明了摩擦起电和伏打电池产生的电相同,1834年发现电解定律,1845年发现磁光效应,并解释了物质的顺磁性和抗磁性,他还详细研究了极化现象和静电感应现象,并首次用实验证明了电荷守恒定律。
电磁感应的发现为能源的开发和广泛利用开创了崭新的前景。
1866年西门子发明了可供实用的自激发电机;19世纪末实现了电能的远距离输送;电动机在生产和交通运输中得到广泛使用,从而极大地改变了工业生产的面貌。
对于电磁现象的广泛研究使法拉第逐渐形成了他特有的“场”的观念。
他认为:力线是物质的,它弥漫在全部空间,并把异号电荷和相异磁板分别连结起来;电力和磁力不是通过空虚空间的超距作用,而是通过电力线和磁力线来传递的,它们是认识电磁现象必不可少的组成部分,甚至它们比产生或“汇集”力线的“源”更富有研究的价值。
法拉第的丰硕的实验研究成果以及他的新颖的场的观念,为电磁现象的统一理论准备了条件。
诺埃曼、韦伯等物理学家对电磁现象的认识曾有过不少重要贡献,但他们从超距作用观点出发,概括库仑以来已有的全部电学知识,在建立统一理论方面并未取得成功。
这一工作在19世纪60年代由卓越的英国物理学家麦克斯韦完成。
麦克斯韦认为变化的磁场在其周围的空间激发涡旋电场;变化的电场引起媒质电位移的变化,电位移的变化与电流一样在周围的空间激发涡旋磁场。
麦克斯韦明确地用数学公式把它们表示出来,从而得到了电磁场的普遍方程组——麦克斯韦方程组。
法拉第的力线思想以及电磁作用传递的思想在其中得到了充分的体现。
麦克斯韦进而根据他的方程组,得出电磁作用以波的形式传播,电磁波在真空中的传播速度等于电量的电磁单位与静电单位的比值,其值与光在真空中传播的速度相同,由此麦克斯韦预言光也是一种电磁波。
1888年,赫兹根据电容器放电的振荡性质,设计制作了电磁波源和电磁波检测器,通过实验检测到电磁波,测定了电磁波的波速,并观察到电磁波与光波一样,具有偏振性质,能够反射、折射和聚焦。