直线与圆的位置关系
直线与圆的位置关系—知识讲解
直线与圆的位置关系—知识讲解责编:常春芳【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:经过切点的半径垂直于圆的切线.【典型例题】类型一、直线与圆的位置关系【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.。
直线与圆的三种位置关系
(1)若直线AB与⊙C相离,则r的取值范围为
____________
(2)若直线AB与⊙C相切,
B
则r的取值为____________
4
(3)若直线AB与⊙C相交,
则r的取值范围为____________ C
5
D
3A
思维拓展:
如图直线l1与l2垂直,垂足为O,AM⊥l1于M,AN⊥l2于 N,AM=4,AN=3,以A为圆心,R为半径作⊙A根据下列
类似点和圆的位置关系,直线和圆的位置关系 是否也可以用数量关系来刻画呢?
A
B
A
类似点和圆的位置关系,直线和圆的位 置关系是否也可以用数量关系来刻画呢?ຫໍສະໝຸດ .Odr .A
.B
.O
d r .D
l
C
H 相离
l 相切
1、直线与圆相离 <=> d>r 2、直线与圆相切 <=> d=r 3、直线与圆相交 <=> d<r
C
A
D
B
练习、在Rt△ABC中,∠C=90°,AC=3cm, BC=4cm,以C为圆心,r为半径的圆与AB 有怎样的位置关系?为什么? (1)r=2cm;(2)r=2.4cm; (3)r=3cm.
B
4
D
C
3A
练习2:在△ABC中,AB=5㎝,CB=4㎝,AC=3㎝,
以点C为圆心,r为半径画⊙C,
条件,确定R的取值范围。
L1
M
A
L2
O
N
1)若⊙A与两直线无公共点,则R的取值范围为____; 2)若⊙A与两直线共有一个公共点,则R的取值为__; 3)若⊙A与两直线共有两个公共点,则R的取值范围为_; 4)若⊙A与两直线共有三个公共点,则R的取值为____; 5)若⊙A与两直线共有四个公共点,则R的取值范围为_。
直线与圆的位置关系
直线与圆的位置关系1.直线方程的一般式:Ax+By+C=0(A,B 不同时为零)2.圆的标准方程:(x-a)2+(y-b)2=r 2(圆心为(a,b) ,半径为r.)3.圆的一般方程:22220,40.Dx Ey F F y x D E ++++=+->其中,圆心为(,22D E --)半径为224r D E F =+-. 二、直线与圆的位置关系(3种)1直线与圆相交,有两个公共点;2直线与圆相切,只有两个公共点;3直线与圆相离,没有公共点。
问题:如何用直线和圆的方程判断它们之间的位置关系?Eg :如图,已知直线l:3x+y-6和圆心为C 的圆x 2+y 2-2y-4=0,判断直线l 与圆的位置关系;如果相交,求它们的交点坐标。
分析:方法一,判断直线L 与圆的位置关系,就是看由它们的方程组成的方程有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系. 判断方法1: 通过直线方程与圆的方程所组成的方程组成的方程组,根据解的个数来判断研究:若有两组不同的实数解,即 <0则相交;若有两组相同的实数解,即 =0,则相切;若无实数解,即 <0,则相离.判断方法2:由圆心到直线的距离d 与半径r 的大小来判断:当d<r 时,直线与圆相交;当d=r 时,直线与圆相切;当d>r 时,直线与圆相离.1.判断直线4x -3y=50与圆22100x y +=位置关系.如果相交,求出交点坐标.2.已知过点M (-3,-3)的直线L 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线L 的方程。
3.已知动直线L:y=kx+5和圆C :()2211x y -+=,试问k 为何值时,直线与圆相切、相离、相交?4.若两直线y =x +2a 和y =2x +a +1的交点为P ,P 在圆x2+y2=4的内部,则a 的取值范围是5.圆221x y +=上的点到直线3x+4y-25=0的距离的最小值是。
初三数学直线和圆的位置关系
初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。
直线圆的位置关系1直线与圆的位置关系
返回目录
温故知新
要点探究
典例探究
法二:直线 l 的方程为 y=k(x-4),即 kx-y-4k=0.
圆心 O 到直线 l 的距离 d= | 4k | ,圆 O 的半径 r=2 2 . k2 1
(1)当 d= | 4k | <2 2 ,即-1<k<1 时,直线 l 与圆 O 相交. k2 1
(2)当 d= | 4k | =2 2 ,即 k=±1 时,直线 l 与圆 O 相切. k2 1
返回目录
温故知新
要点探究
典例探究
1.直线与圆有三种位置关系: (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点. 2.直线与圆的位置关系的判定方法: (1)代数法:直线与圆的方程联立消去 y(或 x)得到关于 x(或 y)的一元二次方程,此方程的判别式为 Δ,则
温故知新
要点探究
典例探究
返回目录
温故知新
要点探究
典例探究
探究要点一:直线与圆相交 1.直线与圆相交求交点坐标,只需联立两方程求解二元二次方程组即可. 2.直线与圆相交时弦长的求法 (1)求出交点坐标,利用两点间距离公式,求出弦长; (2)利用弦长公式求:
d=|x1-x2| 1 k 2 = (1 k 2 ) (x1 x2 )2 4x1x2
返回目录
温故知新
要点探究
典例探究
变式训练 1-1:已知圆 O:x2+y2=8,过 P(4,0)的直线 l 的斜率 k 在什么范围内取值时,直线 l 与圆 O: (1)相交?(2)相切?(3)相离?
解:法一:设直线 l 的方程为 y=k(x-4),
y k(x 4)
高中数学必修二-直线与圆的位置关系
直线与圆的位置关系知识集结知识元不含有参数的直线与圆位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲不含有参数的直线与圆位置关系例1.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d 2,则d1+d2的最小值是.例2.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ长的最小值为.例3.经过圆x2+y2﹣2x+2y=0的圆心且与直线2x﹣y=0平行的直线方程是()A.2x﹣y﹣3=0B.2x﹣y﹣1=0C.2x﹣y+3=0D.x+2y+1=0含有参数类型直线与圆的位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲含有参数类型直线与圆的位置关系例1.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上情况都有可能例2.直线ax﹣y+a=0(a≥0)与圆x2+y2=9的位置关系是()A.相交B.相切C.相离D.相切或相离例3.圆x2+y2+4x﹣2y﹣1=0上存在两点关于直线ax﹣2by+2=0(a>0,b>0)对称,则的最小值为()A.8B.9C.16D.18简单切线类型知识讲解1.圆的切线方程圆的切线方程一般是指与圆相切的直线方程,特点是与圆只有一个交点,且过圆心与切点的直线垂直切线.圆的切线方程的类型:(1)过圆上一点的切线方程:对于这种情况我们可以通过圆心与切点的连线垂直切线求出切线的斜率,继而求出直线方程(2)过圆外一点的切线方程.这种情况可以先设直线的方程,然后联立方程求出他们只有一个解(交点)时斜率的值,进而求出直线方程.例题精讲简单切线类型例1.设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=2例2.已知圆的方程是x2+y2=1,则经过圆上一点M(1,0)的切线方程是()A.x=1B.y=1C.x+y=1D.x﹣y=1例3.'已知圆C的方程为x2+y2﹣2x+4y﹣3=0,直线l:x﹣y+t=0.若直线l与圆C相切,求实数t的值.'简单弦长问题知识讲解弦长问题一、求直线与圆相交时的弦长有三种方法(1)交点法:将直线方程与圆的方程联立,求出交点A,B的坐标,根据两点间的距离公式|AB|=求解.(2)弦长公式:如图所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|==|x1-x2|=|y1-y2|(直线l的斜率k存在).(3)几何法:如图,直线与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有()2+d2=r2,即|AB|=2.通常采用几何法较为简便。
直线与圆的位置关系
当直线与圆的位置关系是相交时,
知识梳理:
直线和圆的 位置关系 图形 公共点 个数 公共点 d 与 r 名称 的关系 直线 名称
相离 相切
没有
d>r
切点
一个
d=r d<r
切线
相交
两个
割线
练一练!
1、已知圆的直径为13cm,如果直线和圆心的距离分别为 (1)d=4.5cm (2)d=6.5cm (3)d=8cm,
试猜想在BC是否存在一点P,使得⊙P与线段CD、
AB都相切,如存在,请确定⊙P的半径.
A D
B
30
C
/
苏州包装设计
苏州LOGO设计
苏州广告制作 苏州画册设计
苏州标志设计 苏州VI设计
达咯热河。第壹站就是狮子园,那是皇上在热河赏赐给王爷の园子,距离行宫很近。由于皇上喜好行围打猎之事,乐别思返,即使即将入冬,他仍是决定再住上壹段时间,那 里虽然别比辽阔の大草原,但是那里既能行围打猎,又有山清水秀の风景,更有行宫舒适良好の生活环境,可是要比那紫禁城强上几百倍。此时已是秋风瑟瑟の九月,又是地 处塞外,气候与京城相比,甚是寒冷。幸好王爷有自己の园子,而别是投宿驿馆,女眷壹行生活在自家の园子里,就像是在京城壹样。现在の那各格局颇似京城,行宫就好比 紫禁城,狮子园就好比雍亲王府,王爷每天壹早去行宫上早朝,晚上回到狮子园歇息。假设遇到轮值啥啊の,王爷就会歇到行宫の值班房。所以在狮子园中,众人几乎见别到 王爷の身影。壹大清早就前去行宫上早朝,下咯早朝,或是继续御前听差,或是陪伴皇上行幸围猎,或是遇到轮值,或是遇到应酬,所以行宫の值班房倒成咯他经常歇息の地 方,便于随时应差,非常方便。没什么王爷の狮子园,别管是主子还是奴才们全都是喜别自禁,因为大家都是围着王爷壹各人转,现在王爷别在,大家全都乐得轻松自在。水 清那是第壹次到狮子园,就像草原壹样,也是她此生唯壹の壹次热河之行。当她刚下马车,初见园子の时候,她の那双大双眼睛怎么看都看别够。虽然那里没什么草原の辽阔, 没什么湖广の秀美,但是,比起王府来,那里简直就是天堂。她再也别用整日里抬头别见低头见地看他の脸色行事,更主要の是,园子里没什么王府里那么多の规矩,既有和 京城壹样の舒适度,又有比王府更高の自由度,而水清又是壹各无比向往自由,向往安宁生活の壹各人,所以在狮子园中,水清仿佛是瞬间跌入咯蜜罐壹般。别要说是水清那 各主子跌进咯蜜罐,就是除咯秦顺儿之外の所有奴才们也都是同样跌进咯蜜罐。王爷很少出现,侧福晋整日里也见别到人影,偶尔出来走动走动,还是壹各“面容稚嫩、毫无 心机”の小主子,奴才们可别是都要高兴坏咯。王爷の身边有两各奴才,壹各秦顺儿,壹各吉尔。秦顺儿壹天二二十三小时别离王爷左右,吉尔则是长期驻扎值班房。虽然吉 尔是除秦顺儿以外最辛苦、最操劳の奴才,但是她同样也是感觉跌进咯蜜罐里。因为王爷三天两头地留宿值班房,几乎别怎么回狮子园。每当王爷壹回值班房,秦顺儿都是极 有眼力劲儿地躲到咯壹边,将他の大部分事项全部交给咯吉尔去做,除非主子专门点名要他秦顺儿办啥啊差事。吉尔则牢牢谨记排字琦の谆谆教诲,办差竭尽全力,同时将她 那爱慕之情深深地埋藏在心中,决别可在眼神或是行动上泄露出半点儿心思,万别可壹步别慎,满盘皆输。第壹卷 第563章 思女天堂里也有无奈与遗憾,天使也有忧郁与伤 心。水清在狮子园中の生活虽然十分惬意,但是,没什么悠思の人间天堂竟是如此の寂寞难过!那么美丽の人间胜景,那么美好の幸福时光,她是多么地想与那各可爱の小人 儿壹同来分享!悠思自从降生以来,从来没什么离开过水清の怀抱,可是现在,她们母女分别已经有八天咯,小格格会别会想她那各额娘咯?会别会因为没什么人给她念诗而 哭闹别止?那八天才仅仅是开始,后面还要有漫长の壹各月の时间,啥啊时候才能启程回到京城呢?在路上の时候水清虽然也是日思夜想她の小格格,但壹路上颠簸艰苦,左 壹件事情右壹件事情占据咯她の大部分时间,每当她开始想念悠思の时候,还别等她伤心落泪呢,下壹件事情就又发生咯。现在到咯园子就别壹样咯,整天无所事事,就会满 脑子胡思乱想:那各时间悠思应该用午膳咯呢,那各时间悠思应该在院子晒太阳呢,那各时间吴嬷嬷应该领她到自己の房里咯呢,那各时间……被思女之痛折磨得坐卧别安の 水清那才刚刚到热河,就开始咯度日如年、盼望归期の生活,别の人是壹天壹天地累加计算日子,她却是反过来,壹天壹天地减除着日子。每壹天醒来,她都会在心中默念壹 句:还有二十五天就可以回京城咯,就可以见到悠思咯。壹天天地掐着手指头数着剩下の日子,伤心
直线和圆的位置关系
直线和圆的位置关系一直线和圆的位置关系是几何学中的经典问题之一。
直线和圆的相交情况可以分为三种情况:相离、相切和相交。
在本文中,我们将探讨这些情况,并讨论在给定条件下如何确定直线和圆之间的位置关系。
相离的情况是指直线和圆不相交,也不相切。
换句话说,直线没有交叉或触及圆。
当直线与圆没有公共点时,它们被认为是相离的。
这种情况是最简单的情况,因为直线上的任意一点到圆的距离都大于圆的半径。
因此,如果给定一个直线和一个圆,并且它们的半径和位置都已知,我们可以通过计算直线上的任意一点到圆的距离,来确定它们是否相离。
接下来是相切的情况。
当直线与圆相切时,直线刚好触及圆的一个点。
在几何学中,相切的定义是两个图形仅有一个公共点。
对于直线和圆的情况而言,这个点就是直线与圆的切点。
在相切的情况下,直线的斜率与直线上的切点与圆心的连线的斜率相等。
因此,我们可以通过计算直线上两个点的斜率,并比较其与圆心的斜率是否相等,来确定它们是否相切。
最后是相交的情况。
当直线与圆相交时,它们有两个公共点。
如果给定一个直线和一个圆,并且它们的半径和位置都已知,我们可以通过解方程组来确定直线与圆的交点。
一种常见的方法是使用二次方程,通过将直线的方程和圆的方程联立,然后求解二次方程来计算交点的坐标。
如果二次方程有实数解,那么直线与圆相交;如果二次方程没有实数解,那么直线和圆不相交。
当直线与圆相交时,它们的交点具有很多有趣的性质。
例如,交点的坐标可以用来计算直线与圆的切线方程、直线与圆之间的夹角等。
另外,当直线与圆相交时,我们还可以根据交点和圆心的相对位置来判断交点的位置关系。
如果交点在圆心的左侧,那么直线与圆在交点处是外切的;如果交点在圆心的右侧,那么直线与圆在交点处是内切的。
总结起来,直线和圆的位置关系可以通过计算直线上的任意一点到圆的距离来判断它们是否相离;可以通过比较直线上两个点的斜率与圆心的斜率是否相等来判断它们是否相切;可以通过解方程组来计算直线和圆的交点,并根据交点和圆心的相对位置来判断交点的位置关系。
直线与圆、圆与圆的位置关系
直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。
直线与圆的位置关系
直线与圆的位置关系直线与圆是几何学中常见的两种基本图形,它们之间的位置关系在几何学的研究中具有重要意义。
本文将探讨直线与圆的位置关系,并从不同角度进行分析。
一、直线与圆相交首先,我们来考虑直线与圆相交的情况。
当一条直线与圆相交时,可能存在三种情况:直线与圆相交于两个不同的点、直线与圆相切于一个点、直线完全包含在圆内。
1. 直线与圆相交于两个不同的点当一条直线与圆相交于两个不同的点时,我们可以得出以下结论:直线与圆的半径相交于直线的垂线。
这是因为,直线与圆相交的两个点与圆心构成的直线必然与圆的半径垂直。
这一性质在解决许多几何问题时非常有用。
2. 直线与圆相切于一个点当一条直线与圆相切于一个点时,我们可以得出以下结论:直线与圆的切线垂直于半径。
这是因为,切线与圆相切于圆上的一个点,而半径与切线相交于切点,根据切线与半径的性质,切线必然与半径垂直。
3. 直线完全包含在圆内当一条直线完全包含在圆内时,我们可以得出以下结论:直线的两个端点与圆心的距离均小于圆的半径。
这是因为,直线完全包含在圆内意味着直线的两个端点与圆心的连线必然在圆内,根据圆的定义,这两个端点与圆心的距离必然小于圆的半径。
二、直线与圆相离除了相交的情况,直线与圆还可能相离。
当一条直线与圆相离时,直线与圆之间的距离大于圆的半径。
这种情况常见于几何学中的定理证明和问题求解中,通过计算直线与圆的距离可以得到准确的结果。
三、直线与圆的位置关系的应用直线与圆的位置关系在实际生活中有着广泛的应用。
例如,在建筑设计中,我们常常需要确定建筑物的位置和方向,直线与圆的位置关系可以帮助我们确定建筑物的布局和朝向。
此外,在机械制图和工程测量中,直线与圆的位置关系也是非常重要的,可以帮助我们准确地绘制图纸和测量尺寸。
总结直线与圆的位置关系在几何学中具有重要意义,通过研究它们之间的相交、相切和相离关系,我们可以得出许多有用的结论和性质。
直线与圆的位置关系不仅在学术研究中有着广泛的应用,也在实际生活中起着重要的作用。
直线和圆的位置关系
设⊙O的圆心O到直线的距离为d,半径为r,d, r是方程(m+9)x2-(m+6)x +1=0的两根,且直线与 ⊙O相切时,求m的值?
解:由题意可得 b2-4ac= [-(m+6)]2-4(m+9)=0 解得 m1= -8 m 2= 0 当m=-8时原方程 为x2+2x+1=0 x1=x2= -1 (不符合题意舍去) 当m=0时原方程 为9x2-6x+1=0 x1=x2= 1 3 ∴ m=0
高桥初中 刘方霞
点 与 圆 的 位 置 关 系
点P在圆内 点P在圆上 点P在圆外
d<r
P
d=r
O
P
d>r
r
·
P
A
想想:
思考: 把海平面看作一条直线,太阳看作一 个圆,由此你能得出直线与圆的位置 关系吗?
思考: 把海平面看作一条直线,太阳看作一 个圆,由此你能得出直线与圆的位置 关系吗?
直线和圆的位置关系有三种:
5
D
3
A
例: Rt△ABC,∠C=90°AC=3cm, 解:过C作CD⊥AB,垂足为D。 在Rt△ABC中, BC=4cm,以C为圆心,r为 2 = 2 2 2 半径的圆与AB有怎样的位置 AB= 关系?为什么? =5(cm) (1)r=2cm;(2)r=2.4cm 根据三角形面积公式有 (3)r=3cm。 CD· AB=AC· BC
l
(二).直线与圆的位置关系 (数量特征)
.Or
相离
d
B A
直线与圆的位置关系的性质与判定
H
l
r .D
1、直线与圆相离
d>r
相切
.O
直线与圆知识点总结
直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
直线与圆的位置关系
直线与圆的位置关系一、直线与圆的位置关系判定方法:(1)代数法:通过解直线方程与圆的方程所组成的方程组,根据解得个数来判断△>0表示直线和圆有2个交点,则相交△=0表示直线和圆有1个交点或者说2个重合的交点,则相切△<0表示直线和圆没有交点,则相离(2)几何法:由圆心到直线的距离d 与半径r 的大小关系来判断(1) 当d<r 时,直线与圆相交(2)当d=r 时,直线与圆相切(3)当d.>r 时,直线与圆相离倘若直线和圆的方程都告诉你让你判断它们之间的关系的时候,一般要结合图形解答,所以一般采用几何的方法,如果圆的方程告诉你了,但是直线的方程没有告诉你,让你根据一个点判断直线的斜率在什么范围内时用代数法。
例题1:直线0123=-+y x 与圆042422=-+++y x y x 的位置关系是例题2:已知圆822=+y x ,定点)0,4(P ,问P 点的直线的斜率在什么范围内取值时,这条直线与已知圆:(1) 相切 (2)相交 (3)相离?并写出过点P 的切线方程二、求圆的切线问题的方法(1)求过圆上一点),(00y x 的圆的切线方程:先求切点与圆心得连线的斜率k ,油垂直关系,知切线斜率为k 1-,由点斜式方程可求得切线的方程,如果0=k 或斜率不存在,则由图形可直接得切线方程为a x b y ==或。
(2)求过圆外一点),(00y x 的圆的切线方程:(1)几何方法:设切线方程为)(00x x k y y -=-即o y kx y kx =+--00 由圆心到直线的距离等于半径,可求得k ,切线方程即可求出(2)代数方法:设切线方程为)(00x x k y y -=-即00y kx kx y +-=,代入圆的方程,得到一个关于x 的一元二次方程,由0=∆求得k ,切线方程即可求出。
注意若此方程只有一个实根,则还有一条斜率不存在的直线。
例题1:圆的方程是1322=+y x 过其上一点(2,3)的切线方程?例题2:圆的方程是822=+y x ,过圆外一点(4,5)的切线方程?三、弦长问题的处理方法(1)几何法:即利用弦心距、弦长一半以及半径构成的直角三角形求解,即222)2(r d l =+(2)代数法:将直线方程与圆的方程练了,运用根与系数的关系,弦长公式是2121x x k AB -+=例题:求直线063:=-+y x l 被圆042:22=--+y y x C 截得的弦长(两种方法) 四、与圆有关的最值问题(1)运用几何及几何手段先确定达到最值的位置,再进行计算,(2)通过建立目标函数后,转化为函数的最值问题例题1:点P 在直线0102=++y x 上移动,PB PA ,与圆422=+y x 分别相切于B A ,两点,则PAOB 面积的最小值为?例题2:已知实数y x ,满足方程01422=+-+x y x ,求(1)xy 的最大值与最小值(2)x y -的最大值与最小值(3)22y x +的最大值与最小值求解与圆有关的最大(小)值问题,应考虑圆的对称性,常与圆心、半径、切线有关,可借助图形性质,利用数形结合的方法处理(1) 形如ax b y u --=的最值问题,可转化为过定点),(b a 的动直线的斜率的最值问题 (2) 形如by ax t +=的最值问题,可转化为斜率为定值的动直线的截距的最值问题(3) 形如222)()(b y a x d -+-=的最值问题,可转化为定点),(b a 的距离的最值问题圆与圆的位置关系一、圆与圆的位置关系及公切线的条数(1)⇔+>21r r d 外离⇔4条公切线 (2)⇔+=21r r d 外切⇔3条公切线(3)⇔+<<-2121r r d r r 相交⇔2条公切线 (4)d r r =-21⇔内切⇔1条公切线(5)⇔-<<210r r d 内含⇔无公切线例题:已知两圆4)2(22=+-y x 与1)4(22=+-y x ,求两圆的公切线?二、公共弦两圆相交时的公共弦所在的直线方程、两圆外切时的内公切线方程、两圆内切时的外公切线方程均是两圆方程作差, 消去二次项所得的直线方程。
直线与圆的位置关系
直线与圆的位置关系直线与圆的位置关系是数学中一个重要的概念。
在二维平面上,直线和圆可以相交、相切或者不相交。
本文将详细介绍直线与圆的不同位置关系,并探讨相关的性质和定理。
1.直线与圆的相交关系当一条直线与一个圆相交时,可能存在三种不同的情况:相交于两个点、相交于一个点或者不相交。
1.1 直线与圆相交于两个点当一条直线与一个圆相交于两个不同的点时,这条直线称为圆的切线。
切线与圆的切点处存在着垂直关系。
此时,根据位置的不同,切线可以被分为以下三种情况:1.1.1 直线在圆的外部相交于两个点当一条直线与一个圆相交于两个不同的点,且这两个切点均在圆的外部时,这条直线与圆的位置关系如图1所示。
(插图:直线与圆相交于两个点,但直线在圆的外部)1.1.2 直线与圆相切于两个点当一条直线与一个圆相交于两个不同的点,且这两个切点均位于圆上时,这条直线与圆的位置关系如图2所示。
(插图:直线与圆相切于两个点)1.1.3 直线在圆的内部相交于两个点当一条直线与一个圆相交于两个不同的点,且这两个切点均在圆的内部时,这条直线与圆的位置关系如图3所示。
(插图:直线与圆相交于两个点,且直线在圆的内部)1.2 直线与圆相交于一个点当一条直线与一个圆相交于一个点时,我们称该直线与圆相切。
这种情况下,直线与圆的位置关系如图4所示。
(插图:直线与圆相切于一个点)1.3 直线与圆不相交当一条直线与一个圆没有交点时,这条直线与圆不相交。
这种情况下,直线与圆的位置关系如图5所示。
(插图:直线与圆不相交)2.直线与圆的性质和定理2.1 切线定理在一个圆中,通过一点可以作出两条切线,且这两条切线的切点处与该点连线垂直。
2.2 弦切角定理当一条弦与切线相交时,所形成的切角和弦所对的弧相等。
2.3 弦长定理一条弦所对的弧长度等于该弦所分割的圆内部两部分的长度之和。
2.4 垂直弦定理当一条直径与一条弦相交时,所形成的两个切角是互补角。
2.5 正交切线定理如果两条切线相交,那么从相交点到各个切点所作的弦互相垂直。
直线与圆的位置关系
|a| 解析:(1)设圆心O(a,0)(a<0),则 5 = 2 2 ⇒|a|=5,得a=- 1 +2 5,∴圆O的方程为(x+5)2+y2=5. (2)依题意可设圆心坐标为(a,0),a>0, |a-1| 则半径为|a-1|,圆心到直线l的距离为 , 2 根据勾股定理可得, |a-1| 2 ( ) +( 2)2=|a-1|2, 2 解得a=3或a=-1(舍去),所以圆C的圆心坐标为(3,0), 则过圆心且与直线l垂直的直线的方程为x+y-3=0.
kx0+y0,代入圆方程,得一个关于x的一元二次方程,由 Δ=0,求得k,切线方程即可求出.
(3)注意:过圆外一点圆的切线方程一定有两条. 2.圆的弦长的常用求法: (1)几何法:设圆的半径为r,弦心距为d,弦长为l,则 l 2 2 ( ) =r -d2 2 (2)代数方法:运用韦达定理及弦长公式:|AB|= 1+k2|x1-x2|= 1+k2[x1+x22-4x1x2]
4x-x2 有 ( )
B.[1- 2,3] D.[1-2 2,3]
解析:在平面直角坐标系内画出曲线 y= 3- 4x-x2与直线 y=x,在平面直角坐标 系内平移该直线,结合图形分析可知,当 直线沿左上方平移到过点(0,3)的过程中的 任何位置相应的直线与曲线 y=3- 4x-x2 都有公共点;当直线沿右下方平移到与以点 C(2,3)为圆心、2 为半 径的圆相切的过程中的任何位置相应的直线与曲线 y=3- 4x-x2都有公共点. 注意到与 y=x 平行且过点(0,3)的直线方程是 y=x+3;当直线 y=x+b 与以点 C(2,3)为圆心、2 为半径的圆相切 |2-3+b| 时,有 =2,b=1± 2 2.结合图形可知,满足题意的 b 的取 2 值范围是[1-2 2,3].
判断直线与圆的位置关系方法
判断直线与圆的位置关系方法一、点到直线的距离公式:设直线的方程为Ax+By+C=0,圆的圆心坐标为(h,k),半径为r,点的坐标为(x1,y1)。
点到直线的距离公式为:d=,A*x1+B*y1+C,/√(A^2+B^2)。
1.当d>r时,直线与圆无交点,直线与圆相离。
2.当d=r时,直线与圆只有一个交点,该交点即为点到直线的垂线与圆的交点。
3.当d<r时,直线与圆有两个交点,求解交点的方法可以利用点到直线的垂线方程。
二、点到圆的距离公式:设直线的方程为Ax+By+C=0,圆的圆心坐标为(h,k),半径为r,点的坐标为(x1,y1)。
点到圆的距离公式为:d=√((x1-h)^2+(y1-k)^2)。
1.当d>r时,直线与圆无交点,直线与圆相离。
2.当d=r时,直线与圆只有一个交点,该交点即为点到圆的垂线与圆的交点。
3.当d<r时,直线与圆有两个交点,求解交点的方法可以利用点到直线的垂线方程。
三、直线与圆的交点公式:设直线的方程为Ax+By+C=0,圆的圆心坐标为(h,k),半径为r,直线与圆的交点分别为(x1,y1)和(x2,y2)。
则交点的坐标有以下两种求解方法:1.代入方程法:将直线的方程代入圆的方程,得到一个关于x的一元二次方程。
解这个方程可以得到x1和x2的值,将其代入直线的方程即可得到相应的y值。
最终求出交点的坐标。
2.垂线法:设直线的方程为y = kx + b,对其求出斜率 k 并确定直线的垂线的斜率为 -1/k。
将直线的方程代入圆的方程得到一个关于 x 的一元二次方程,解这个方程可以得到 x1 和 x2 的值,将其代入直线的方程即可得到相应的 y 值。
最终求出交点的坐标。
以上是判断直线与圆的常用方法,可以根据具体问题选择合适的方法来解决。
同时也需要注意解析几何中的一些特殊情况,如直线与圆相切、相交、相离等情况,对于这些情况需要综合考虑以上的公式和几何特性来判断两者的位置关系。
圆和直线的位置关系知识点
圆和直线的位置关系知识点圆和直线的位置关系是数学中非常重要的知识点,它们广泛应用于各种领域,如图形设计、建筑、物理和工程学等。
本文将探讨圆和直线之间的位置关系,包括相交、相切和不相交等情况。
一、圆和直线的相交从几何的角度来看,如果一条直线与圆相交,则该直线经过圆的两个点。
这两个点被称为圆与直线的交点。
如图1所示,直线AB与圆O相交于点C和点D。
图1 圆与直线相交我们可以得出如下结论:1. 如果直线的斜率等于圆心到直线的垂线的斜率,则圆与直线相切。
2. 如果直线的斜率大于或小于圆心到直线的垂线的斜率,则圆与直线相交。
二、圆和直线的相切当直线与圆只有一个公共点时,我们称圆和直线相切。
在图2中,直线和圆相切于点E。
图2 圆与直线相切这里我们介绍一个重要的结论:相切的直线是圆的切线。
圆的切线定义为与圆相切的直线。
如图3所示,圆O的切线为直线PO。
图3 圆的切线三、圆和直线不相交如果直线经过圆的中心,但不与圆相交,那么该直线被称为圆的直径。
圆的直径是圆的最长距离,它被定义为通过圆心且两端点在圆上的直线。
如图4所示,直线MN为圆O的直径。
图4 圆的直径另外,如果一条直线不经过圆的中心,并且距离圆心的距离等于圆的半径,则该直线被称为圆的割线。
如图5所示,直线EF是圆O的割线。
图5 圆的割线四、结论在本文中,我们介绍了圆和直线之间的三种位置关系:相交、相切和不相交。
我们还提到了相切的直线是圆的切线,圆的直径是圆的最长距离,圆的割线距离圆心的距离等于圆的半径。
这些知识点在数学中非常重要,对于理解圆形和直线在几何学、物理学和工程学中的应用有着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离[知识拓展]圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).[常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×)(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×)(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×)(5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√)(6)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)1.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离答案B2.(2013·安徽)直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为() A.1 B.2 C.4 D.46答案C3.两圆交于点A(1,3)和B(m,1),两圆的圆心都在直线x-y+c2=0上,则m+c的值等于________.答案34.(2014·重庆)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为________.答案0或6题型一直线与圆的位置关系例1已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.思维点拨直线与圆的交点个数即为直线方程与圆方程联立而成的方程组解的个数;最短弦长可用代数法或几何法判定.(1)若直线ax +by =1与圆x 2+y 2=1相交,则P (a ,b )( )A .在圆上B .在圆外C .在圆内D .以上都有可能(2)(2014·江苏)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为______. 答案 (1)B (2)2555题型二 圆的切线问题例2 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________; (2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行; ②与直线l 2:x -2y +4=0垂直; ③过切点A (4,-1).(1)答案 x =2或4x -3y +4=0(2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.题型三 圆与圆的位置关系例3 (1)已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是________________________.(2)两圆x 2+y 2-6x +6y -48=0与x 2+y 2+4x -8y -44=0公切线的条数是________.(3)已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,若由动点P 向⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是________.答案 (1)x -2y +4=0 (2)2 (3)x =32(1)圆C1:x2+y2-2y=0,C2:x2+y2-23x-6=0的位置关系为()A.外离B.外切C.相交D.内切(2)设M={(x,y)|y=2a2-x2,a>0},N={(x,y)|(x-1)2+(y-3)2=a2,a>0},且M∩N≠∅,求a的最大值和最小值.(1)答案 D (2)故a的取值范围是[22-2,22+2],a的最大值为22+2,最小值为22-2.高考中与圆交汇问题的求解一、与圆有关的最值问题典例:(1)(2014·江西)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.45π B.34πC.(6-25)π D.54π(2)(2014·北京)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4 答案 (1)A (2)B二、圆与不等式的交汇问题典例:(3)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞)(4)(2014·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3 答案 (3)D (4)DA 组 专项基础训练 (时间:45分钟)1.(2014·湖南)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A .21 B .19 C .9 D .-11 答案 C2.(2013·福建)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0 D .x -y +3=0答案 D3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .22 答案 B4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0答案 A5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于( ) A .1 B .2 C .3 D .4 答案 A6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________. 答案 1-22≤b ≤37.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO →=0,则m 的取值范围为________.答案 [2,3]8.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0 (a >0)的公共弦长为23,则a =________. 答案 19.已知以点C (t ,2t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程.(1)∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4, 即△OAB 的面积为定值.(2)∴圆C 的方程为(x -2)2+(y -1)2=5.10.已知矩形ABCD 的对角线交于点P (2,0),边AB 所在直线的方程为x -3y -6=0,点(-1,1)在边AD 所在的直线上.(1)求矩形ABCD的外接圆的方程;(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的外接圆恒相交,并求出相交的弦长最短时的直线l的方程.解(1)矩形ABCD的外接圆的方程是(x-2)2+y2=8.(2)故l的方程为y-2=-12(x-3),即x+2y-7=0.B组专项能力提升(时间:25分钟)11.若直线l:y=kx+1 (k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是()A.相交B.相切C.相离D.不确定答案A12.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为71010的点的个数为()A.1 B.2C.3 D.4答案B13.(2013·江西)过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.-3答案B14.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.答案4 315.(2014·重庆)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC 为等边三角形,则实数a=________.答案4±1516.已知圆O:x2+y2=4和点M(1,a).(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;(2)若a=2,过点M的圆的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值.解(1)所以所求的切线方程为x+3y-4=0或x-3y-4=0.(2)即|AC|+|BD|的最大值为210.直线与平面平行的判定和性质本节课的收获:作业:页脚内容11。