人教A版高中数学选修11学案:第二章圆锥曲线与方程章末检测b含答案

合集下载

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)

一、选择题1.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B C .12D .22.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 3.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( )A BC D4.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .45.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .6.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .2⎛ ⎝⎭C .23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭7.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( ) A .2y x =±B .3y x =±C .12y x =±D .13y x =±8.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A 227+ B 27+C .53D .29.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A .67B .77C .427D .7710.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A .(42,6)B .(6,8)C .(42,8)D .(6,10)11.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞12.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( ) A .)2,+∞B .)2,⎡+∞⎣C .(2D .(2⎤⎦二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为___________. 14.已知双曲线2222:1(0,0)x y C a b a b-=>>右支上一点12,,P F F 分别为其左右焦点,圆M是12PF F △内切圆,且1PF 与圆M 相切于点2,||2cA PA a=(c 为半焦距),若122PF PF >,则双曲线离心率的取值范围是_____. 15.过双曲线M :2213x y -=的右焦点F 作圆C :221(1)2x y ++=的切线,此切线与M 的右支交于A ,B 两点,则||AB =___________.16.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________. 18.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________. 19.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______. 20.已知下列几个命题:①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=; ②“1x >”是“||0x >”的必要不充分条件;③已知命题:33p ≥,:34q >,则p q ∨为真,p q ∧为假,p ⌝为假;④双曲线221916x y -=-的离心率为54.其中正确的命题的序号为_____.三、解答题21.设动点(),M x y (0x ≥)到定点()2,0F 的距离比它到y 轴的距离大2. (Ⅰ)求动点M 的轨迹方程C ;(Ⅱ)设过点F 的直线l 交曲线C 于A ,B 两点,O 为坐标原点,求AOB 面积的最小值.22.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.23.设1F 、2F 分别是椭圆2214xy +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求1PF ·2PF 的取值范围;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.24.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,12F PF △的面积为1.(1)求椭圆C 的方程(2)设斜率存在的直线2PF ,与椭圆C 的另一个交点为Q .若存在(),0T t ,使得TP TQ =,求t 的取值范围25.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率32e =,椭圆E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,26.如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.2.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a =ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B 【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e =. 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.4.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =, 故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B.方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.5.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.B【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=, 利用2112sin cos 24c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<,2162324πα<<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是2623⎛⎫⎪ ⎪⎝⎭, 故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.7.C解析:C 【分析】依题意可得2244c t te a t ++==+t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=,又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去).故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.9.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b +=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=,所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.7e ∴=== 故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.10.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.11.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点, 所以20a ->,即2a >,此时圆半径为44212r a a =-=->.因此当2r >时,圆无法触及抛物线的顶点O .故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.12.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e-=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】先根据的面积和短轴长得出abc 的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25, 58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB的面积和短轴长得出a,b,c的值,求得1PF的范围,再通分化简1211PF PF+为关于1PF的函数,利用二次函数求得最值,即得取值范围.【详解】由已知得28b=,故4b=,∵1F AB的面积为4,∴()142a c b-=,∴2a c-=,又()()22216a c a c a c b-=-+==,故8a c+=,∴5a=,3c=,∴12121211PF PFPF PF PF PF++=()()()22 1111111210101021010525aPF a PF PF PF PF PF PF====---+--+,又而1a c PF a c-≤≤+,即128PF≤≤,∴当15PF=时,()21525PF--+最大,为25;当12=PF或8时,()21525PF--+最小,为16,即()211652525PF≤--+≤,∴121011102516PF PF≤+≤,即12211558PF PF≤+≤.即1211PF PF+的取值范围为25,58⎡⎤⎢⎥⎣⎦.故答案为:25,58⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c-≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与轴切于顶点再分别表示列出关于的齐次不等式求双曲线的离心率的取值范围【详解】设圆心设内切圆与相切于点如图:根据内切圆性质可知点是双曲线的顶点即整理解析:(1,71)-. 【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与x 轴切于顶点,再分别表示12,PF PF ,列出关于,a c 的齐次不等式求双曲线的离心率的取值范围.【详解】设圆心(),M x y ,设内切圆与1212,,PF PF F F 相切于点,,A BC , 如图:根据内切圆性质可知PA PB =,11F A FC =,22F B F C =, 1212122PF PF PA AF PB BF CF CF a ∴-=+--=-=,∴点C 是双曲线的顶点,即11F A FC c a ==+,22F B F C c a ==-,22c PA PB a==, 2122222c c a PF ac PF c a a++=>-+,整理为:22260c ac a +-<,两边同时除以2a , 得2260e e +-<,解得:1717e --<<-+,且1e >, 所以离心率的取值范围是()1,71-.故答案为:()71 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】首先设出直线利用直线与圆相切求直线方程再利用弦长公式求弦长【详解】因为直线过双曲线的右焦点且与圆相切所以直线的斜率存在设直线方程为()由直线与圆相切知解得或当时双曲线的一条渐近线的斜率是该直解析:【分析】首先设出直线,利用直线与圆相切,求直线方程,再利用弦长公式求弦长AB . 【详解】因为直线过双曲线的右焦点且与圆相切,所以直线的斜率存在,设直线方程为0y k -=(2x -)=,解得1k =或17k =,当17k =时,双曲线的一条渐近线的斜率是3,173<,该直线不与双曲线右支相交于两点,故舍去;所以直线方程为2y x =-,联立双曲线方程,消元得2212150x x -+=.设()11,A x y ,()22,B x y ,则126x x +=,12152x x =,所以12||AB x =-===.故答案为:【点睛】易错点点睛:利用直线与圆相切,得到两个斜率1k =或17k =,需舍去一个,否则出现增根.16.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a=,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭,因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.19.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.20.③④【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断【详解】①的两个顶点为周长为18则C 点轨迹方程为当解析:③④ 【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断. 【详解】①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=(5)x ≠±,当5x =±时,构不成三角形,错误; ②当0.1x =时,1x <,所以||0x >不一定有1x >,错误;③已知命题:33p ≥是真命题,:34q >是假命题,根据复合命题的真假判断,p q ∨为真,p q ∧为假,p ⌝为假,正确;④双曲线221916x y -=-,2216,9a b ==,所以22225c a b =+=,54c e a ==,正确.其中正确的命题的序号是③④, 故答案为:③④.【点睛】本题考查了椭圆定义、双曲线离心率、必要不充分条件及复合命题真假的判断,属于基础题.三、解答题21.(Ⅰ)28y x =;(Ⅱ)8. 【分析】(Ⅰ)根据M 的几何性质可得)20x x +=≥,化简后可得抛物线的方程.(Ⅱ)设:2l x ty =+,联立直线方程和抛物线方程,消元后可得面积的表达式,从而可求面积的最小值. 【详解】(Ⅰ)由题设可得)20x x +=≥,整理可得()280y x x =≥.(Ⅱ)设:2l x ty =+,由228x ty y x=+⎧⎨=⎩可得28160y ty --=,故12y y -==又1282OABS =⨯⨯=≥,当且仅当0t =时等号成立, 故AOB 面积的最小值为8.【点睛】方法点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率、斜率的倒数或点的横、纵坐标等.而目标函数的最值可以通过常见函数的性质、基本不等式或导数等求得.22.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0),当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法.23.(1)[]2,1-;(2)2k -<<2k <<. 【分析】(1)根据椭圆的标准方程可得())12,F F ,设(),P x y ,利用向量数量积的坐标运算可得()2121384PF PF x ⋅=-,再由[]2,2x ∈-即可求解. (2)由题意可得直线0x =不满足题设条件,可设直线:2l y kx =+,将直线与椭圆方程联立,消去y ,可得()221416120kxkx +++=,0∆>,且12120OA OB x x y y ⋅=>+,结合韦达定理即可求解.【详解】解:(1)易知2,1,a b c ===())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=---=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-; 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1; ∴1PF ·2PF 的取值范围是[]2,1-(2)显然直线0x =不满足题设条件,可设直线:2l y kx =+, 联立22244y kx x y =+⎧⎨+=⎩,消去y ,整理得:()221416120k x kx +++= 由题意,()()2216414120k k ∆=-+⋅>得2k <-或2k >,① 令()()1122,,,A x y B x y ,∴1212221612,1414k x x x x k k +=-=++ ∵AOB ∠为锐角,∴cos 0AOB ∠>即0OA OB ⋅>, ∴12120OA OB x x y y ⋅=>+又()()()2121212122224y y kx kx k x x k x x =++=+++22222212322044141414k k k k k k =-+=-++++ ∴2221220401414k OA OB k k⋅=-+>++,解得24k <, ∴22k -<<,②故由①、②得22k -<<-或22k <<. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用数量积()2121384PF PF x ⋅=-,确定[]2,2x ∈-,并且根据题意得出0OA OB ⋅>,考查了运算求解能力.24.(1)2212x y +=;(2)10,2⎡⎫⎪⎢⎣⎭.【分析】。

高中数学(人教A)选修1第二章圆锥曲线与方程测试题(含详解)

高中数学(人教A)选修1第二章圆锥曲线与方程测试题(含详解)

高中数学选修1-1第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .y 2=28xC .y 2=-28xD .x 2=28y2.设P 是椭圆x 225+y 216=1上的点.若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .103.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( ) A .-1 B .1 C .-1020D.1024.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( )A .(5,0)或(-5,0)B .(52,332)或(52,-332)C .(0,3)或(0,-3)D .(532,32)或(-532,32)5.(2010·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1D.x 227-y 29=16.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上点M (m ,-2)到焦点的距离为4,则m 的值为( )A .4或-4B .-2C .4D .2或-28.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且它的一个焦点在抛物线y 2=12x 的准线上,则此双曲线的方程为( )A.x 25-y 26=1 B.x 27-y 25=1 C.x 23-y 26=1D.x 24-y 23=19.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)10.椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点到两焦点的距离分别为d 1,d 2,焦距为2c ,若d 1,2c ,d 2成等差数列,则椭圆的离心率为( )A.12 B.22 C.32D.3411.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=y -12 B .x 2=2y -116C .x 2=2y -1D .x 2=2y -212.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率的取值范围是( )A .(1,3)B .(1,2)C .(1,3]D .(1,2]二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2010·福建)若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则b 等于________.14.若中心在坐标原点,对称轴为坐标轴的椭圆经过点(4,0),离心率为32,则椭圆的标准方程为________.15.设F 1和F 2是双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为________.16.过双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A,B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为________.三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)求与椭圆4x2+9y2=36有相同的焦距,且离心率为5 5的椭圆的标准方程.18.(12分)已知抛物线y2=6x,过点P(4,1)引一条弦P1P2使它恰好被点P平分,求这条弦所在的直线方程及|P1P2|.19.(12分)已知椭圆方程为x 29+y 24=1,在椭圆上是否存在点P (x ,y )到定点A (a,0)(其中0<a <3)的距离的最小值为1,若存在,求出a 的值及P 点的坐标;若不存在,说明理由.20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l 为圆O :x 2+y 2=b 2的一条切线,记椭圆C 的离心率为e .(1)若直线l 的倾斜角为π3,且恰好经过椭圆C 的右顶点,求e 的大小;(2)在(1)的条件下,设椭圆C 的上顶点为A ,左焦点为F ,过点A与AF 垂直的直线交x 轴的正半轴于B 点,且过A ,B ,F 三点的圆恰好与直线l :x +3y +3=0相切,求椭圆C 的方程.21.(12分)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2.(1)若C 2经过C 1的两个焦点,求C 1的离心率;(2)设A (0,b ),Q (33,54b ),又M ,N 为C 1与C 2不在y 轴上的两个交点,若△AMN 的垂心为B (0,34b ),且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程.22.(12分)(2010·北京)已知椭圆C的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.(1)求椭圆C的方程;(2)若圆P与x轴相切,求圆心P的坐标;(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.参考答案1. 解析由条件可知p2=7,∴p=14,抛物线开口向右,故方程为y2=28x.答案 B2. 解析由题可知a=5,P为椭圆上一点,∴|PF 1|+|PF 2|=2a =10. 答案 D3. 解析 把方程化为标准形式-x 2-1m +y 2-3m=1,∴a 2=-3m ,b 2=-1m .∴c 2=-3m -1m =4,解得m =-1. 答案 A4. 解析 |PF 1|+|PF 2|=2a =10,∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=25. 当且仅当|PF 1|=|PF 2|=5时,取得最大值, 此时P 点是短轴端点,故选C. 答案 C5. 解析 本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题.依题意知⎩⎪⎨⎪⎧ba =3,c =6,c 2=a 2+b 2,⇒a 2=9,b 2=27,所以双曲线的方程为x 29-y 227=1.6. 解析 如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |, ∴|AP |+|PF |=|AP |+|PN |≥|AN 1|, 当且仅当A ,P ,N 三点共线时取等号, ∴P 点的横坐标与A 点的横坐标相同即为1, 则可排除A 、C 、D 项,故选B. 答案 B7. 解析 由题可知,p2-(-2)=4,∴p =4.∴抛物线的方程为x 2=-8y . 将(m ,-2)代入可得m 2=16, ∴m =±4.故选A.8. 解析 抛物线y 2=12x 的准线方程为x =-3,由题意,得⎩⎪⎨⎪⎧c =3,ca =3,c 2=a 2+b 2.解得a 2=3,b 2=6,故所求双曲线的方程为x 23-y 26=1. 答案 C9. 解析 直线x +2=0是抛物线的准线,又动圆圆心在抛物线上,由抛物线的定义知,动圆必过抛物线的焦点(2,0).答案 B10. 解析 由椭圆的定义可知d 1+d 2=2a ,又由d 1,2c ,d 2成等差数列, ∴4c =d 1+d 2=2a ,∴e =c a =12. 答案 A11. 解析 由y =14x 2⇒x 2=4y ,焦点F (0,1),设PF 中点Q (x ,y )、P (x 0,y 0), 则⎩⎪⎨⎪⎧2x =0+x 0,2y =1+y 0,4y 0=x 2,∴x 2=2y -1.答案 C12. 解析 |PF 2|2|PF 1|=(|PF 1|+2a )2|PF 1| =|PF 1|+4a 2|PF 1|+4a ≥8a , 当|PF 1|=4a 2|PF 1|,即|PF 1|=2a 时取等号. 又|PF 1|≥c -a ,∴2a ≥c -a .∴c ≤3a ,即e ≤3.∴双曲线的离心率的取值范围是(1,3]答案 C13. 解析 由题意知b 2=12,解得b =1.答案 114. 解析 若焦点在x 轴上,则a =4,由e =32,可得c =23,∴b 2=a 2-c 2=16-12=4,椭圆方程为x 216+y 24=1,若焦点在y 轴上,则b =4,由e =32,可得c a =32,∴c 2=34a 2.又a 2-c 2=b 2,∴14a 2=16,a 2=64.∴椭圆方程为x 216+y 264=1.答案 x 216+y 264=1,或x 216+y 24=115. 解析 由题设知⎩⎪⎨⎪⎧ ||PF 1|-|PF 2||=4,①|PF 1|2+|PF 2|2=20,②)②-①2得|PF 1|·|PF 2|=2.∴△F 1PF 2的面积S =12|PF 1|·|PF 2|=1.答案 116. 解析 如图,设双曲线一个焦点为F ,则△AOF 中,|OA |=a ,|OF |=c ,∠FOA =60°.∴c =2a ,∴e =c a =2.答案 217. 解 把方程4x 2+9y 2=36写成x 29+y 24=1,则其焦距2c =25,∴c = 5.又e =c a =55,∴a =5.b 2=a 2-c 2=52-5=20,故所求椭圆的方程为x 225+y 220=1,或y 225+x 220=1.18. 解 设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2).∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3. ∴直线的方程为y -1=3(x -4),即3x -y -11=0.由⎩⎨⎧ y 2=6x ,y =3x -11,得y 2-2y -22=0,∴y 1+y 2=2,y 1·y 2=-22.∴|P 1P 2|= 1+1922-4×(-22)=22303. 19. 解 设存在点P (x ,y )满足题设条件,则|AP |2=(x -a )2+y 2.又∵x 29+y 24=1,∴y 2=4(1-x 29).∴|AP |2=(x -a )2+4(1-x 29)=59(x -95a )2+4-45a 2.∵|x |≤3,当|95a |≤3,又0<a <3即0<a ≤53时,|AP |2的最小值为4-45a 2.依题意,得4-45a 2=1,∴a =±152∉⎝ ⎛⎦⎥⎤0,53,当95a >3,即53<a <3.此时x =3,|AP |2取最小值(3-a )2.依题意,得(3-a )2=1,∴a =2.此时P 点的坐标是(3,0).故当a =2时,存在这样的点P 满足条件,P 点坐标为(3,0).20. 解(1)如图,设直线l 与圆O 相切于E 点,椭圆C 的右顶点为D , 则由题意易知,△OED 为直角三角形,且|OE |=b ,|OD |=a ,∠ODE =π3,∴|ED |=|OD |2-|OE |2=c (c 为椭圆C 的半焦距).∴椭圆C 的离心率e =c a =cos π3=12.(2)由(1)知,c a =12,∴可设a =2m (m >0),则c =m ,b =3m ,∴椭圆C 的方程为x 24m 2+y 23m 2=1.∴A (0,3m ),∴|AF |=2m .直线AF 的斜率k AF =3,∴∠AFB =60°.在Rt △AFB 中,|FB |=|AF |cos ∠AFB=4m , ∴B (3m,0),设斜边FB 的中点为Q ,则Q (m,0),∵△AFB 为直角三角形,∴过A ,B ,F 三点的圆的圆心为斜边FB 的中点Q ,且半径为2m , ∵圆Q 与直线l :x +3y +3=0相切, ∴|m +3|1+3=2m .∵m 是大于0的常数,∴m =1.故所求的椭圆C 的方程为x 24+y 23=1.21. 解 (1)由已知椭圆焦点(c,0)在抛物线上,可得c 2=b 2,由a 2=b 2+c 2=2c 2,有c 2a 2=12⇒e =22.(2)由题设可知M 、N 关于y 轴对称, 设M (-x 1,y 1),N (x 1,y 1)(x 1>0), 由△AMN 的垂心为B ,有BM →·AN →=0⇒-x 21+(y 1-34b )(y 1-b )=0.由点N (x 1,y 1)在抛物线上,x 21+by 1=b 2,解得y 1=-b 4,或y 1=b (舍去),故x 1=52b ,M (-52b ,-b 4),N (52b ,-b 4),得△QMN 重心坐标(3,b 4).由重心在抛物线上得3+b 24=b 2,∴b =2,M (-5,12),N (5,-12),又∵M ,N 在椭圆上,得a 2=163,椭圆方程为x 2163+y 24=1,抛物线方程为x 2+2y =4.22. 解 (1)∵c a =63,且c =2, ∴a =3,b =a 2-c 2=1.∴椭圆C 的方程为x 23+y 2=1.(2)由题意知P (0,t )(-1<t <1), 由⎩⎪⎨⎪⎧ y =t ,x 23+y 2=1,得x =±3(1-t 2), ∴圆P 的半径为3(1-t 2). ∴3(1-t 2)=|t |,解得t =±32.∴点P 的坐标是(0,±32).(3)由(2)知,圆P 的方程为 x 2+(y -t )2=3(1-t 2). ∵点Q (x ,y )在圆P 上, ∴y =t ±3(1-t 2)-x 2≤t +3(1-t 2).设t =cos θ,θ∈(0,π), 则t +3(1-t 2)=cos θ+3sin θ=2sin(θ+π6),当θ=π3,即t =12,且x =0,y 取最大值2.。

高中数学选修1-1(人教A版)第二章圆锥曲线与方程2.4知识点总结含同步练习及答案

高中数学选修1-1(人教A版)第二章圆锥曲线与方程2.4知识点总结含同步练习及答案

y2 x2 + = 1. 3 2 4 (2)当直线 AB 与 x 轴垂直时,|AB| = ,不符合题意舍去; √3 当直线 AB 与 x 轴不垂直时,设直线 AB 的方程为 y = k(x + 1),代入椭圆方程,消去 y
所以椭圆方程为 得
(2 + 3k2 )x2 + 6k2 x + (3k2 − 6) = 0.
已知椭圆 G :
⎧ y = x + m, ⎨ x2 y2 ⎩ + = 1, 12 4
整理得
4x2 + 6mx + 3m 2 − 12 = 0.

⋯⋯①
A ,B 的坐标分别为 (x1 , y 1 ) , (x2 , y 2 ) (x1 < x2 ) , AB 中点为 E (x0 , y 0 ) ,则 x0 = 3m x1 + x2 =− , 2 4 m . y 0 = x0 + m = 4
因为 AB 是等腰 △P AB 的底边,所以 P E ⊥ AB . 所以 P E 的斜率
m 4 k= = −1. 3m −3 + 4 2−
解得 m = 2 .此时方程① 为 4x2 + 12x = 0 .解得
x1 = −3, x2 = 0.
所以
x1 + x2 = −3, x1 ⋅ x2 = 0
所以
− − − −− − − − − − − − − − − − − − − |AB| = √(x1 − x2 )2 + (y 1 − y 2 )2 − − − − − − − − − − − − − − − − − − − − − = √1 + k2 √(x1 + x2 )2 − 4x1 x2 = 3√2 .

高中数学人教A版选修1-1第2章圆锥曲线与方程课后练习及解析

高中数学人教A版选修1-1第2章圆锥曲线与方程课后练习及解析
|GB|+|GC| =32(|BD|+|CE|)=20. ∵B、C 是两个定点,G 点到 B、C 距离和等于定值 20,且 20>12, ∴G 点的轨迹是椭圆,B、C 是椭圆焦点. ∴2c=|BC|=12,c=6,2a=20,a=10, b2=a2-c2=102-62=64, 故 G 点的轨迹方程为1x020+6y42 =1, 去掉(10,0)、(-10,0)两点. 又设 G(x′,y′),A(x,y),则有x1′002+y6′42=1.
A.椭圆
B.直线
C.圆
D.线段
2.椭圆1x62 +y72=1 的左右焦点为 F1,F2,一直线过 F1 交椭圆于 A、B 两点,则△ABF2 的
周长为( )
A.32
B.16
C.8
D.4
3.椭圆 2x2+3y2=1 的焦点坐标是( )
A.0,±
6 6
B.(0,±1)
C.(±1,0)
D.± 66,0
4.方程|a|x-2 1+a+y2 3=1 表示焦点在 x 轴上的椭圆,则实数 a 的取值范围是(
)
A.(-3,-1) C.(1,+∞)
B.(-3,-2) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点25,-32,则该椭圆的方程是( )
A.y82+x42=1
B.1y02 +x62=1
C.y42+x82=1
D.y62+1x02 =1
6.设 F1、F2 是椭圆1x62 +1y22 =1 的两个焦点,P 是椭圆上一点,且 P 到两个焦点的距离之
11.已知椭圆 4x2+y2=1 及直线 y=x+m. (1)当直线和椭圆有公共点时,求实数 m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(包含答案解析)

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(包含答案解析)

一、选择题1.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+= 2.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出,如图①,一个光学装置由有公共焦点1F 、2F 的椭圆Γ与双曲线Ω构成,现一光线从左焦点1F 发出,依次经Ω与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的Ω去掉,如图②,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若218t t =,则Γ与Ω的离心率之比为( )A .3:4B .2:3C .1:2D .23.已知点()P m n ,是抛物线214y x =-上一动点,则2222(1)(4)(5)m n m n ++-++A .4B .5C 30D .64.若1F ,2F 是双曲线22221(0,0)y x a b a b-=>>与椭圆2251162x y +=的共同焦点,点P 是两曲线的一个交点,且12PF F △为等腰三角形,则该双曲线的渐近线方程是( ) A .2y x =±B .24y x =±C .73y x =±D .37y x =5.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为2的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .22D .3 6.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A 227+ B 27+C .53D .27.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .1102+ B 122+C 51 D 318.已知抛物线2:4C y x =,过点()1,0A -作C 的两条切线,切点分别为B 、D ,则过点A 、B 、D 的圆截y 轴所得弦长为( ) A .3B .2C .43D .429.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( ) A .4877B .2477C .147D .14710.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件11.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2ax c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( )A .12B C .34D .4512.已知抛物线24x y =的焦点为F ,准线为l ,M 是x 轴正半轴上的一点,线段FM 交抛物线于点A ,过A 作l 的垂线,垂足为B .若BF BM ⊥,则FM =( ) A .52B .3C .72D .4二、填空题13.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线:2230l kx y ka --=与双曲线C 交于A 、B 两点.若7AF FB =,则实数k =________.14.已知点()1,2A 在抛物线()2:20C y px p =>上,过点()2,2B -的直线交抛物线C 于P ,Q 两点,若直线AP ,AQ 的斜率分别为1k ,2k ,则12k k ⨯等于___________.15.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________16.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________. 17.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________.18.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.19.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.20.已知抛物线y 2=4x 的焦点为F ,过点F 的直线AB 交抛物线于A ,B 两点,交准线于点C ,若|BC |=2|BF |,则|AB |=_____.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.在平面直角坐标系xOy 中,已知抛物线()2:20C x py p =>,过抛物线焦点F 的直线l 与抛物线相交于M 、N 两点.(1)若l 与y 轴垂直,且OMN 的周长为425+,求抛物线C 的方程; (2)在第一问的条件下,过点()1,2P 作直线m 与抛物线C 交于点A ,B ,若点P 是AB 的中点,求直线m 的方程.23.如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为左焦点、长轴长为40万公里、短轴长为4万公里的椭圆轨道T 1绕月飞行,之后卫星在点P 第二次变轨进入仍以F 为左焦点、长轴长为20万公里的椭圆轨道T 2绕月飞行.(1)求椭圆轨道T 2的短轴长;(近似到0.1)(2)若椭圆轨道T 2上有四个卫星观测点A 、B 、C 、D ,且四边形ABCD 是以椭圆T 2中心为对称中心的矩形,将矩形ABCD 的面积称为观测覆盖面,求观测覆盖面的最大值(近似到0.1).24.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为22离心率为22. (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.25.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的四个顶点围成的四边形的面积为421(2,0)F -(1)求椭圆的方程;(2)11,3A ⎛⎫⎪⎝⎭,是否存在斜率为1-的直线l 与椭圆相交于两点M ,N ,且AM AN =,若存在,求出直线l 的方程,若不存在,说明理由.26.在平面直角坐标系xOy 中,设动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等,记P 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点F 的直线交曲线Γ于点A 、B (其中点A 在第一象限),交直线l 于点C ,且点F 是AC 的中点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22 11 22 22 22 2211x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()1212121222x x x x y y y ya b+-+-+=,整理得到2212214y bx a=,即222222244b a ck ka a-=⇒=,即221k e+=故选:B【点睛】关键点点睛:本题的关键利用三等分点得到211222x xyy=-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.2.A解析:A【分析】设122F F c=,设椭圆Γ的长轴长为12a,双曲线Ω的实轴长为22a,设光速为v,推导出112a vt=,利用椭圆和双曲线的定义可得出1243aa=,由此可计算得出Γ与Ω的离心率之比.【详解】设122F F c=,设椭圆Γ的长轴长为12a,双曲线Ω的实轴长为22a,在图②中,1CDF的周长为111212124CF DF CD CF CF DF DF a vt++=+++==,所以,1148a vt=,可得112a vt=,在图①中,由双曲线的定义可得2122AF AF a-=,由椭圆的定义可得1212BF BF a+=,22AF BF AB=-,则2121111222AF AF BF AB AF a BF AB AF a -=--=---=,即()111222a AB AF BF a -++=,由题意可知,1ABF 的周长为111AB AF BF vt ++=,即112111322222a a a a vt a =-=-=, 所以,1243a a =. 因此,Γ与Ω的离心率之比为122112:::3:4c ce e a a a a ===. 故选:A. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.3.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =.点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.4.B解析:B 【分析】由题意可得双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,由12PF F △为等腰三角形,所以2126PF F F ==,从而可求得1221064PF a PF =-=-=,再利用双曲线的定义可求得在双曲线中1a =,22b =,进而可求出双曲线的渐近线方程 【详解】解:因为椭圆2251162x y +=的焦点坐标为(0,3),所以双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,设点P 为两曲线在第一象限的交点,由于在椭圆中,12PF F △为等腰三角形,所以2126PF F F ==, 所以1221064PF a PF =-=-=,在双曲线中,212642a PF PF =-=-=,所以1a =,代入229a b +=,得22b =,所以该双曲线的渐近线方程为4ay x xb=±==±,故选:B【点睛】关键点点睛:此题考查椭圆、双曲线的定义的应用,解题的关键由12PF F△为等腰三角形和椭圆的定义求出21,PF PF的值,属于中档题5.D解析:D【分析】首先设直线2x y c=+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y=-,与根与系数的关系联立消元可得22213242a bc+=,求得椭圆的离心率.【详解】设直线方程为2x y c=+,设()11,A x y,()22,B x y,与椭圆方程联立得2222412a b y cy b⎛⎫++-=⎪⎝⎭,2122212cy ya b+=-+,4122212by ya b=-+①223AF F B=,()()1122,3,c x y x c y∴--=-,得123y y=-②,由①②联立可得,22213242a bc+=即22222323c a b a c=+=-,得2243c a=,椭圆的离心率cea==.故选:D【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c直接求,2.根据条件建立关于,a c的齐次方程求解,3.根据几何关系找到,,a b c的等量关系求解.6.A解析:A【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54b y xc a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.7.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得12e =(12舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.8.A解析:A 【分析】设出直线方程,与抛物线方程联立,由判别式为零解出B 、D 两点的坐标,进而得出过点A 、B 、D 的圆的方程,求出弦长即可. 【详解】设过点()1,0A -的直线方程为1x my =-,联立214x my y x=-⎧⎨=⎩,可得2440y my -+=,由216160m ∆=-=,解得1m =±即2440y y ±+=,2y =±,不妨设()()1,2,1,2B D -,则BD 的中垂线方程为0y =,即圆心在x 轴上又()1,0A -,且点()1,0到点A 、B 、D 的距离都相等,则圆心坐标为()1,0,半径为2 圆的方程为()2214x y -+=,令0x =,解得y =即圆被y轴所截得的弦长为故选:A 【点睛】关键点点睛:本题考查直线与抛物线的位置关系,考查圆的方程以及直线与圆的位置关系,解决本题的关键点是根据直线与抛物线相切,求出切点的坐标,进而得出圆的方程,求出弦长,考查学生逻辑思维能力和计算能力,属于中档题.9.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案.【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得7a =,则FAB的周长为47a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.10.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.11.B解析:B 【分析】设直线2a x c=交x轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.12.B解析:B 【分析】先利用方程得求得焦点坐标和准线方程,设点(,0)M m ,()00,A x y ,再利用点()00,A x y 在抛物线与直线上列方程,解出0,x m ,最后利用距离公式计算FM 即可. 【详解】如图所示,抛物线24x y =中,()0,1F ,:1l y =-,依题意设(,0)M m ,()00,A x y ,00x >,则2004x y =,故200,4x A x ⎛⎫⎪⎝⎭,()0,1B x -,因为BF BM ⊥,即BF BM ⊥,而()()00,2,,1BF x BM m x =-=-, 所以()0020BF BM x m x ⋅=-+=,直线:11x y FM m +=,A 在直线上,故200:14x x FM m +=,即02044x m x =-,代入上式即得000024420x x x x ⎛⎫-+= ⎪⎝-⎭,化简整理得4200280x x +-=,即()()2200240x x -+=, 故202x =,而00x >,故02x =422242m ==-(22,0)M ,所以FM =()()22220013-+-=.故选:B. 【点睛】本题解题关键在于利用点()00,A x y 既在抛物线上,又在直线上,构建关系式,求解出点M 即突破难点.二、填空题13.【分析】由直线方程过右焦点得的关系设直线方程与双曲线方程联立消去应用韦达定理得出由得这样结合起来可得值【详解】在中令得所以则设由消去得由得所以化简得故答案为:【点睛】方法点睛::本题考查直线与双曲线 解析:3【分析】由直线方程过右焦点得,a b 的关系,设1122(,),(,)A x y B x y ,直线方程与双曲线方程联立消去x ,应用韦达定理得出1212,y y y y +,由7AF FB =,得127y y =-,这样结合起来可得k 值.【详解】在2230kx y ka --=中令0y =得32a x =,所以32a c =,则222254a b c a =-=,设1122(,),(,)A x y B x y ,由222212230x y a bkx y ka ⎧-=⎪⎨⎪--=⎩,消去x 得22222223504b ab a b a y y k k ⎛⎫-++= ⎪⎝⎭, 2122223kab y y a k b+=-,2221222254()k a b y y b a k =-, 由7AF FB =得127y y =-,212222236kab y y y a k b +=-=-,222222()kab y a k b =--, 所以224222212222222225774()4()k a b k a b y y y a k b b a k =-=-⨯=--,化简得2221235b k a==,k =.故答案为: 【点睛】方法点睛::本题考查直线与双曲线相交问题,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,由直线方程与双曲线方程联立,消元后应用韦达定理(本题得)1212,y y y y +,已知条件又得127y y =-,这样结合起来可求得k 值.14.【分析】由题意将的坐标代入抛物线的方程可得的值进而求出抛物线的方程设出直线的方程并与抛物线方程联立求出两根之和及两根之积求出直线的斜率之积化简可得定值【详解】由题意将的坐标代入抛物线的方程可得解得所 解析:4-【分析】由题意将()1,2A 的坐标代入抛物线的方程可得p 的值,进而求出抛物线的方程,设出直线PQ 的方程并与抛物线方程联立求出两根之和及两根之积,求出直线AP ,AQ 的斜率之积,化简可得定值4-. 【详解】由题意将()1,2A 的坐标代入抛物线的方程可得42p =,解得2p =, 所以抛物线的方程为24y x =; 由题意可得直线PQ 的斜率不为0,所以设直线PQ 的方程为:(2)2x m y =++,设1(P x ,1)y ,2(Q x ,2)y ,联立直线与抛物线的方程:2(2)24x m y y x =++⎧⎨=⎩,整理可得:24880y my m ---=,则124y y m +=,1288y y m =--,由题意可得1212 122212122222111144y y y yk ky yx x----=⋅=⋅----1212121616164(2)(2)2()488244y y y y y y m m====-+++++--+⨯+,所以124k k=-.故答案为:4-.【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.15.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3【分析】过A、B作准线l的垂线,垂足分别为,N M,过F作AN的垂线,垂足为D,根据2CB BF=结合抛物线的定义可得30DFA MCB∠=∠=,据此求出||3AD=,再根据抛物线的定义可求出p.【详解】如图:过A、B作准线l的垂线,垂足分别为,N M,过F作AN的垂线,垂足为D,因为2CB BF=,所以||2||CB BF=,因为||||BF BM=,所以||2||CB BM=,所以30MCB∠=,所以30DFA∠=,在直角三角形ADF中,因为||6AF=,所以||3AD=,因为||||6AN AF==,且||||3AN AD p p=+=+,所以63p=+,所以3p=.故答案为:3【点睛】关键点点睛:利用抛物线的定义求解是解题关键.16.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积解析:7【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0, ∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 17.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大,抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=, 264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228x y ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.18.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.19.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=. 由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.20.【分析】分别过作准线的垂线利用抛物线的定义将到焦点的距离转化到准线的距离利用已知和相似三角形的相似比建立关系式求解可算得弦长【详解】设可知如图作垂直于准线分别于则又解得故答案为:【点睛】1本题体现了 解析:163【分析】分别过,A B 作准线的垂线,利用抛物线的定义将,A B 到焦点的距离转化到准线的距离,利用已知和相似三角形的相似比,建立关系式,求解,AF BF 可算得弦长. 【详解】设242y x px ==,可知2p =如图,作AM ,BN 垂直于准线分别于,M N ,则BN BF =,又2BC BN =,23CB CF =,23BN p ∴= 43BN =,83BC =,4CF ∴= 2CF AM CA=,244CF AM CA AM ∴==+,解得4AM =4AF ∴=416433AB AF BF ∴=+=+= 故答案为:163【点睛】1.本题体现了数形结合,解析几何问题,一定要注意对几何图形的研究,以便简化计算2. 抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍),所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =, 所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24x y =;(2)230x y -+=. 【分析】 (1)将将2py =代入抛物线C 的方程可求得,M N 坐标,得,,MN OM ON ,由OMN 的周长参数p ,得抛物线方程;(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由,A B 坐标表示出直线斜率,结合中点坐标即得直线斜率,得直线方程. 【详解】解:(1)由题意,焦点0,2p F ⎛⎫ ⎪⎝⎭,将2p y =代入抛物线C 的方程可求得,2p M p ⎛⎫- ⎪⎝⎭,,2p N p ⎛⎫⎪⎝⎭, ∴2MN p =,2OM ON p ===,所以QMN的周长为24p +=+2p =,故抛物线方程为24x y =.(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭,直线m 的斜率为2212121244x x x x x x -+=-, 由条件1212x x +=,故直线m 的斜率为12,从而直线m 的方程为230x y -+=.【点睛】关键点点睛:本题考查求抛物线方程,求中点弦所在直线方程.已知弦中点坐标,一般设弦两端点坐标为1122(,),(,)x y x y 代入圆锥曲线方程相减即可得中点坐标与直线斜率关系.这称为“点差法”.23.(1)2.8万公里;(2)28.2万平方公里.【分析】(1)根据题意,可得椭圆T 1的半长轴a 1,半短轴b 1,根据a 1,b 1,c 1的关系,可求得c 1的值,即可求得1122PF a c a c =-=-,又椭圆T 2的中,2220a =,可求得2c 的值,进而可求得2b 的值,即可得答案.(2)椭圆T 2放入平面直角坐标系中,可得椭圆T 2的标准方程,设A (x ,y )为椭圆上的任意点,根据题意,可得矩形ABCD 的面积为4S xy =,根据椭圆的方程,结合基本不等式,即可求得xy 的最大值,即可得答案. 【详解】(1)设椭圆T 1的长轴长,短轴长,焦距为2a 1,2b 1,2c 1; 设椭圆T 2的长轴长,短轴长,焦距为2a 2,2b 2,2c 2;.因此2a 1=40,2b 1=4,则c 1=所以112220PF a c a c =--=-=又2220a =,所以210c =,所以2 1.412b ==≈故椭圆轨道T 2的短轴长为2.8万公里(2)将椭圆T 2放入平面直角坐标系中,使得长轴,短轴分别在x 轴,y 轴上,对称中心在原点,则椭圆T 2的标准方程为221100x +=, 设A (x ,y )为椭圆上的任意点,则矩形ABCD 的面积为S =4xy ,221100x =≥, 当且仅当22100x =所以7.06xy ≤≈, 所以428.2S xy =≤因此观测覆盖面的最大值为28.2万平方公里. 【点睛】解题的关键是根据题意,求得面积表达式,再根据椭圆的方程,结合基本不等式求解,计算难度大,考查计算求值的能力,属中档题.24.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程;(2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可. 【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m -=+,∴AB ==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果.25.(1)22142x y +=;(2)存在,:2l y x =-+.【分析】(1)利用四边形面积为2a =,b =的方程;(2)假设存在:l y x m =-+,使得AM AN =,联立直线方程与椭圆方程,利用韦达定理求出MN 中点E 的坐标,再利用AE MN ⊥列方程求出2m =,从而可得结论. 【详解】 (1)∵1222a b ⋅⋅=c ==解得2a =,b =∴椭圆方程为22142x y +=;(2)存在,理由如下,假设存在:l y x m =-+,使得AM AN =,设()()1122,,,M x y N x y ,由22142y x m x y =-+⎧⎪⎨+=⎪⎩得22134240x mx m -+-=,1243mx x +=,()1212223m y y x x m +=-+=+, 28480m ∆=-+>,m <<记E 为MN 中点,则2(,)33m mE , ∵||AM AN =,所以AE MN ⊥,∴1331213AEm k m -==-,∴2m =∵{2|m m ∈<<,∴存在直线:2l y x =-+. 【点睛】方法点睛:存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.①当条件和结论不唯一时要分类讨论.②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.③当条件和结论都不知,按常规方法很难时,采取另外的途径.26.(1)24y x =;(2)16||3AB =. 【分析】(1)根据抛物线定义可得答案;(2)由点F 是AC 的中点可得A 点的坐标,设出直线AB 方程与抛物线方程联立,利用韦达定理再得B 点坐标,再由两点间的距离公式可得答案. 【详解】(1)因为动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等, 由抛物线定义可得曲线Γ为抛物线,设其方程为22(0)y px p =>,则12p=, 所以2p =,曲线Γ的方程为24y x =. (2)设过点F 的直线方程为1x my =+,设1122(,),(,)A x y B x y ,且120,0y y ><,0(1,)C y -, 由214x my y x=+⎧⎨=⎩整理得,2440y my --=,所以124y y =-, 因为点F 是AC 的中点,所以1112x -=,解得13x =,所以211412y x ==,得1y =(3,A ,又因为124y y =-,所以2y =,代入抛物线方程得213x =,所以1,3B ⎛ ⎝⎭,所以163AB ===. 【点睛】本题考查了抛物线方程、直线与抛物线的位置关系及弦长,关键点是由点F 是AC 的中点可得A 点的坐标,利用韦达定理再得B 点坐标,考查了学生的基础知识、基本技能.。

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评10 Word版含答案

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评10 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.双曲线x 29-y 216=1的渐近线方程是( ) A .4x ±3y =0 B .16x ±9y =0 C .3x ±4y =0D .9x ±16y =0【解析】 由题意知,双曲线焦点在x 轴上,且a =3,b =4,∴渐近线方程为y =±43x ,即4x ±3y =0. 【答案】 A2.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=4【解析】 令y =0,得x =-4, ∴等轴双曲线的一个焦点坐标为(-4,0), ∴c =4,a 2=b 2=12c 2=12×16=8,故选A. 【答案】 A3.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22xD .y =±12x【解析】 由已知,得b =1,c =3,a =c 2-b 2= 2. 因为双曲线的焦点在x 轴上, 所以渐近线方程为y =±b a x =±22x . 【答案】 C4.(2014·全国卷Ⅰ)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62 C.52D .1【解析】 由题意得e =a 2+3a =2,∴a 2+3=2a , ∴a 2+3=4a 2,∴a 2=1,∴a =1. 【答案】 D5.与曲线x 224+y 249=1共焦点,且与曲线x 236-y 264=1共渐近线的双曲线的方程为( )A.y 216-x 29=1 B.x 216-y 29=1 C.y 29-x 216=1D.x 29-y 216=1【解析】 根据椭圆方程可知焦点为(0,-5),(0,5).设所求双曲线方程为x 236-y 264=λ(λ<0),即y 2-64λ-x 2-36λ=1.由-64λ+(-36λ)=25,得λ=-14. 故所求双曲线的方程为y 216-x 29=1.【答案】 A二、填空题6.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.【解析】由三角形相似或平行线分线段成比例定理得26=ac,∴ca=3,即e=3.【答案】 37.直线3x-y+3=0被双曲线x2-y2=1截得的弦AB的长是________.【解析】联立消去y,得x2+3x+2=0,设A(x1,y1),B(x2,y2),则x1+x2=-3,x1x2=2,∴|AB|=1+(3)2·(-3)2-4×2=2.【答案】 28.若直线x=2与双曲线x2-y2b2=1(b>0)的两条渐近线分别交于点A,B,且△AOB的面积为8,则焦距为________.【导学号:26160051】【解析】由双曲线为x2-y2b2=1得渐近线为y=±bx,则交点A(2,2b),B(2,-2b).∵S△AOB=12×2×4b=8,∴b=2.又a2=1,∴c2=a2+b2=5. ∴焦距2c=2 5.【答案】2 5三、解答题9.已知双曲线C 的方程为y 2a 2-x 2b 2=1(a >0,b >0),离心率e =52,顶点到渐近线的距离为255,求双曲线C 的方程.【解】 依题意,双曲线的焦点在y 轴上,顶点坐标为(0,a ),渐近线方程为y =±ab x ,即ax ±by =0, 所以ab a 2+b 2=ab c =255.又e =c a =52,所以b =1,即c 2-a 2=1,⎝ ⎛⎭⎪⎫52a 2-a 2=1,解得a 2=4,故双曲线方程为y24-x 2=1.10.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,若双曲线上存在点P ,使|PF 1|=2|PF 2|,试确定双曲线离心率的取值范围.【解】 由题意知在双曲线上存在一点P ,使得|PF 1|=2|PF 2|,如图所示.又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点P ,使得|PF 2|=2a ,即|AF 2|≤2a .∴|OF 2|-|OA |=c -a ≤2a ,∴c ≤3a .又∵c >a ,∴a <c ≤3a ,∴1<ca ≤3,即1<e ≤3.[能力提升]1.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-10,0) B .(-12,0) C .(-3,0)D .(-60,-12)【解析】 双曲线方程化为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k 2,又∵e ∈(1,2),∴1<4-k 2<2,解得-12<k <0.【答案】 B2.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1D.x 25-y 24=1【解析】 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 1)=-12b 2-15a 2=4b 25a 2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1. 【答案】 B3.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________. 【解析】 由题意得A 1(-1,0),F 2(2,0), 设P (x ,y )(x ≥1), 则P A 1→=(-1-x ,-y ), PF 2→=(2-x ,-y ), ∴P A 1→·PF 2→=(x +1)(x -2)+y 2=x 2-x -2+y 2, 由双曲线方程得y 2=3x 2-3, 代入上式得P A 1→·PF 2→=4x 2-x -5 =4⎝ ⎛⎭⎪⎫x -182-8116, 又x ≥1,所以当x =1时,P A 1→·PF 2→取得最小值,且最小值为-2. 【答案】 -24.(2016·荆州高二检测)双曲线C 的中点在原点,右焦点为F ⎝ ⎛⎭⎪⎫233,0,渐近线方程为y =±3x . (1)求双曲线C 的方程; 【导学号:26160052】(2)设直线L :y =kx +1与双曲线交于A ,B 两点,问:当k 为何值时,以AB 为直径的圆过原点?【解】 (1)设双曲线的方程为x 2a 2-y 2b 2=1,由焦点坐标得c =233,渐近线方程为y =±b a x =±3x ,结合c 2=a 2+b 2得a 2=13,b 2=1,所以双曲线C 的方程为x 213-y 2=1,即3x 2-y 2=1.(2)由⎩⎪⎨⎪⎧y =kx +1,3x 2-y 2=1,得(3-k 2)x 2-2kx -2=0,由Δ>0,且3-k 2≠0,得-6<k <6,且k ≠±3.设A (x 1,y 1),B (x 2,y 2),因为以AB 为直径的圆过原点,所以OA ⊥OB ,所以x 1x 2+y 1y 2=0.又x 1+x 2=-2k k 2-3,x 1x 2=2k 2-3,所以y 1y 2=(kx 1+1)·(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=1,所以2k 2-3+1=0,解得k =±1.。

人教A版高中数学选修一第二章B卷答案

人教A版高中数学选修一第二章B卷答案

高中数学学习材料金戈铁骑整理制作答案部分 B11、解析:12222PF PF a +==,∴2221PF =-,故选D 。

2、解析:6,10c a ==,∴21003664b =-=,焦点在y 轴上,故选C 。

3、解析:此题没有交代焦点的位置,所以一定有两解,故选C 。

4、解析:点(),x y 关于x 轴的对称点为(),x y -,关于y 轴的对称点为(),x y -,把两个对称点代入后检验可知,此题选C 。

5、解析:设椭圆的另一个焦点为2F ,则2MF x⊥轴,故x c =代入椭圆方程可得2b y a=±=33223±=±。

故选B 。

6、解析:D 。

18AC BC AB ++=,10CA BC AB +=>,则C 点的轨迹是以,A B为焦点的椭圆,则方程为()2210259x y y +=≠,故选D 。

7、解析:D 。

设()00,P x y ,得[]0,x a a ∈-,由焦半径公式得:10PF a ex =+,20PF a ex =-,222120,PF PF a e x =-∴00x =时为最大,22x a =时最小。

选D 。

8、解析:221610x y +=。

利用待定系数法设椭圆方程为22221x y b a +=,依题意得:222229251442b b c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩,∴1062a b c ⎧=⎪⎪=⎨⎪=⎪⎩,所以椭圆的方程是221610x y +=。

9、解析:01K <<10、解析:5a =。

椭圆的方程可以化为:22162x y a+=,而焦点的坐标为()0,2,所以264a -=,∴5a =。

11、解析:最大值是4。

由条件得:31,2c b e a ==≤,∴223,4c a ≤∴()22413a a -≤,∴24a ≤。

∴02a <≤。

12、解析:2211216x y +=,椭圆。

设(),P x y ,由题意得:()222182x y y ++=+,化简可得:2211216x y +=。

人教A版高中数学选修一第二章B卷答案.docx

人教A版高中数学选修一第二章B卷答案.docx

答案部分 B11、解析:12222PF PF a +==,∴2221PF =-,故选D 。

2、解析:6,10c a ==,∴21003664b =-=,焦点在y 轴上,故选C 。

3、解析:此题没有交代焦点的位置,所以一定有两解,故选C 。

4、解析:点(),x y 关于x 轴的对称点为(),x y -,关于y 轴的对称点为(),x y -,把两个对称点代入后检验可知,此题选C 。

5、解析:设椭圆的另一个焦点为2F ,则2MF x⊥轴,故x c =代入椭圆方程可得2b y a=±=33223±=±。

故选B 。

6、解析:D 。

18AC BC AB ++=,10CA BC AB +=>,则C 点的轨迹是以,A B为焦点的椭圆,则方程为()2210259x y y +=≠,故选D 。

7、解析:D 。

设()00,P x y ,得[]0,x a a ∈-,由焦半径公式得:10PF a ex =+,20PF a ex =-,222120,PF PF a e x =-∴00x =时为最大,22x a =时最小。

选D 。

8、解析:221610x y +=。

利用待定系数法设椭圆方程为22221x y b a +=,依题意得:222229251442b b c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩,∴1062a b c ⎧=⎪⎪=⎨⎪=⎪⎩,所以椭圆的方程是221610x y +=。

9、解析:01K <<10、解析:5a =。

椭圆的方程可以化为:22162x y a+=,而焦点的坐标为()0,2,所以264a -=,∴5a =。

11、解析:最大值是4。

由条件得:31,2c b e a ==≤,∴223,4c a ≤∴()22413a a -≤,∴24a ≤。

∴02a <≤。

12、解析:2211216x y +=,椭圆。

设(),P x y ,由题意得:()222182x y y ++=+,化简可得:2211216x y +=。

高中数学人教A版选修1-1圆锥曲线与方程章末综合测评-含答案解析

高中数学人教A版选修1-1圆锥曲线与方程章末综合测评-含答案解析

人教A 版选修1-1圆锥曲线与方程章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-18x 2的准线方程是( )A .x =132B .y =2C .y =132D .y =-22.下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C .x 2-y 22=1D.x 22-y 2=1 3.若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.534.抛物线y 2=14x 关于直线x -y =0对称的抛物线的焦点坐标是( )A .(1,0) B.⎝ ⎛⎭⎪⎫0,116C .(0,1)D.⎝ ⎛⎭⎪⎫116,0 5.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,PF1→²PF 2→的值为( ) A .2 B .3 C .4D .66.有一个正三角形的两个顶点在抛物线y 2=2px (p >0)上,另一个顶点在原点,则该三角形的边长是( )A .23pB .43pC .63pD .83p7.已知|A B →|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,O P →=13O A →+23O B →,则动点P 的轨迹方程是( ) A.x 24+y 2=1B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=18.AB 为过椭圆x 2a 2+y 2b2=1(a >b >0)的中心的弦F 1为一个焦点,则△ABF 1的最大面积是(c 为半焦距)( )A .acB .abC .bcD .b 29.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.75210.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 211.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积是( )A .3 2B .2 2 C. 2D.32212.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b =________.14.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.15.如图1,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y2b2=1的右焦点F ,且两条曲线的交点连线也经过焦点F ,则该椭圆的离心率为________.图116.已知双曲线C 1、C 2的顶点重合,C 1的方程为x 24-y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知双曲线与椭圆有共同的焦点F1(0,-5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.18.(本小题满分12分)已知直线l:y=x+m与抛物线y2=8x交于A,B两点,(1)若|AB|=10,求m的值;(2)若OA⊥OB,求m的值.19.(本小题满分12分)已知双曲线过点P ()-32,4,它的渐近线方程为y =±43x .(1)求双曲线的标准方程;(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1|²|PF 2|=41,求∠F 1PF 2的余弦值.20.(本小题满分12分)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .21.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点F 及点A (0,b ),原点O 到直线FA 的距离为22b .(1)求椭圆C 的离心率e ;(2)若点F 关于直线l :2x +y =0的对称点P 在圆O :x 2+y 2=4上,求椭圆C 的方程及点P 的坐标.22.(本小题满分12分)已知经过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C ,当直线l 的斜率是12时,A C →=14A B →.(1)求抛物线G 的方程;(2)设线段BC 的垂直平分线在y 轴上的截距为b ,求b 的取值范围.人教A 版选修1-1圆锥曲线与方程章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-18x 2的准线方程是( )A .x =132B .y =2C .y =132D .y =-2【解析】 将y =-18x 2化为标准形式为x 2=-8y ,故准线方程为y =2.【答案】 B2.(2015²安徽高考)下列双曲线中,渐近线方程为y =±2x 的是( )A .x 2-y 24=1B.x 24-y 2=1C .x 2-y 22=1D.x 22-y 2=1 【解析】 法一 由渐近线方程为y =±2x ,可得y2=±x ,所以双曲线的标准方程可以为x 2-y 24=1⎝ ⎛⎭⎪⎫或y 24-x 2=1,舍去.法二 A 中的渐近线方程为y =±2x ;B 中的渐近线方程为y =±12x ;C 中的渐近线方程为y =±2x ;D 中的渐近线方程为y =±22x .故选A.【答案】 A3.若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53【解析】 由双曲线的渐近线过点(3,-4)知b a =43,∴b 2a 2=169. 又b 2=c 2-a 2,∴c 2-a 2a 2=169,即e 2-1=169,∴e 2=259,∴e =53.【答案】 D5.抛物线y 2=14x 关于直线x -y =0对称的抛物线的焦点坐标是( )A .(1,0) B.⎝ ⎛⎭⎪⎫0,116C .(0,1)D.⎝ ⎛⎭⎪⎫116,0 【解析】 ∵y 2=14x 的焦点坐标为⎝ ⎛⎭⎪⎫116,0,∴关于直线y =x 对称后抛物线的焦点为⎝⎛⎭⎪⎫0,116.【答案】 B5.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,PF1→²PF 2→的值为( ) A .2 B .3 C .4D .6【解析】 设P (x 0,y 0),又F 1(-2,0),F 2(2,0), ∴PF1→=(-2-x 0,-y 0),PF 2→=(2-x 0,-y 0).|F 1F 2|=4. S △PF 1F 2=12|F 1F 2|²|y 0|=2,∴|y 0|=1.又x 203-y 20=1,∴x 20=3(y 20+1)=6,∴PF 1→²PF 2→=x 20+y 20-4=6+1-4=3.【答案】 B6.(2016²泰安高二检测)有一个正三角形的两个顶点在抛物线y 2=2px (p >0)上,另一个顶点在原点,则该三角形的边长是( )A .23pB .43pC .63pD .83p【解析】 设A 、B 在y 2=2px 上,另一个顶点为O ,则A 、B 关于x 轴对称,则∠AOx =30°,则OA 的方程为y =33x .由⎩⎪⎨⎪⎧y =33x ,y 2=2px ,得y =23p ,∴△AOB 的边长为43p .【答案】 B7.已知|A B →|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,O P →=13O A →+23O B →,则动点P 的轨迹方程是( ) A.x 24+y 2=1B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1【解析】 设P (x ,y ),A (0,y 0),B (x 0,0),由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|A B →|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9,化简整理得动点P 的轨迹方程是x 24+y 2=1.【答案】 A8.AB 为过椭圆x 2a 2+y 2b2=1(a >b >0)的中心的弦F 1为一个焦点,则△ABF 1的最大面积是(c 为半焦距)( )A .acB .abC .bcD .b 2【解析】 △ABF 1的面积为c ²|y A |,因此当|y A |最大, 即|y A |=b 时,面积最大.故选C. 【答案】 C9.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B.72C.74D.752【解析】 |F 1F 2|=22,|AF 1|+|AF 2|=6, 则|AF 2|=6-|AF 1|,|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|²|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8,即(6-|AF 1|)2=|AF 1|2-4|AF 1|+8, 解得|AF 1|=72,所以S =12³72³22³22=72.【答案】 B10.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 2【解析】 由题设易知A 1(-a,0),A 2(a,0),B ⎝⎛⎭⎪⎫c ,b 2a ,C ⎝ ⎛⎭⎪⎫c ,-b 2a .∵A 1B ⊥A 2C ,∴b 2ac +a ²-b 2ac -a=-1,整理得a =b . ∵渐近线方程为y =±bax ,即y =±x ,∴渐近线的斜率为±1.【答案】 C11.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积是( )A .3 2B .2 2 C. 2D.322【解析】 如图所示,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知:点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).联立直线与抛物线的方程⎩⎪⎨⎪⎧y =22 x -1 ,y 2=4x ,解之得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎪⎨⎪⎧x =2,y =2 2.由图知B ⎝ ⎛⎭⎪⎫12,-2,∴S △AOB =12|OF |²|y A -y B |=12³1³|22+2|=32 2.【答案】 D12.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2【解析】 由题意,知a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d =5³2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12,故选C. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知(2,0)是双曲线x 2-y2b2=1(b >0)的一个焦点,则b =________.【解析】 由题意得,双曲线焦点在x 轴上,且c =2.根据双曲线的标准方程,可知a 2=1.又c 2=a 2+b 2,所以b 2=3.又b >0,所以b = 3.【答案】314.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.【解析】 由题意知|F 1F 2|=26-2=4,设P 点坐标为(x ,y ).由⎩⎪⎨⎪⎧x 26+y 22=1,x 23-y 2=1,得⎩⎪⎨⎪⎧x =±322,y =±22.则S △PF 1F 2=12|F 1F 2|²|y |=12³4³22= 2.【答案】215.如图1,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y2b2=1的右焦点F ,且两条曲线的交点连线也经过焦点F ,则该椭圆的离心率为________.图1【解析】 由条件知,c =p2,∴其中一个交点坐标为(c,2c ),∴c 2a 2+4c 2b2=1,∴e 4-6e 2+1=0, 解得e 2=3±22,∴e =±(2±1). 又0<e <1,故e =2-1. 【答案】2-116.已知双曲线C 1、C 2的顶点重合,C 1的方程为x 24-y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为________.【解析】 因为C 1的方程为x 24-y 2=1,所以C 1的一条渐近线的斜率k 1=12,所以C 2的一条渐近线的斜率k 2=1,因为双曲线C 1、C 2的顶点重合,即焦点都在x 轴上,设C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),所以a =b =2,所以C 2的方程为x 24-y 24=1.【答案】x 24-y 24=1 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.【解】 由共同的焦点F 1(0,-5),F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1,双曲线方程为y 2b 2-x 225-b 2=1(b >0). 点P (3,4)在椭圆上,则16a2+9a 2-25=1,得a 2=40, 双曲线过点P (3,4)的渐近线方程为y =b25-b2x ,即4=b25-b 2³3,得b 2=16.所以椭圆方程为y 240+x 215=1,双曲线方程为y 216-x 29=1.18.(本小题满分12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点,(1)若|AB |=10,求m 的值; (2)若OA ⊥OB ,求m 的值. 【解】 设A (x 1,y 1),B (x 2,y 2),(1)⎩⎪⎨⎪⎧y =x +m ,y 2=8x⇒x 2+(2m -8)x +m 2=0⇒⎩⎪⎨⎪⎧Δ= 2m -8 2-4m 2>0,x 1+x 2=8-2m ,x 1x 2=m 2.|AB |=2|x 1-x 2|=2 x 1+x 2 2-4x 1x 2=10, 得m =716,∵m <2,∴m =716.(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.x 1x 2+(x 1+m )(x 2+m )=0,2x 1x 2+m (x 1+x 2)+m 2=0, 2m 2+m (8-2m )+m 2=0,m 2+8m =0,m =0或m =-8.经检验m =-8.19.(本小题满分12分)已知双曲线过点P ()-32,4,它的渐近线方程为y =±43x .(1)求双曲线的标准方程;(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1|²|PF 2|=41,求∠F 1PF 2的余弦值.【解】 (1)由渐近线方程知,双曲线中心在原点,且渐近线上横坐标为-32的点P ′的纵坐标的绝对值为4 2.∵42>4,∴双曲线的焦点在x 轴上,设方程为x 2a 2-y 2b2=1.∵双曲线过点P (-32,4), ∴18a 2-16b2=1.①又b a =43,② 由①②,得a 2=9,b 2=16, ∴所求的双曲线方程为x 29-y 216=1.(2)设|PF 1|=d 1,|PF 2|=d 2,则d 1²d 2=41.又由双曲线的几何性质知,|d 1-d 2|=2a =6.由余弦定理,得cos ∠F 1PF 2=d 21+d 22-|F 1F 2|22d 1d 2= d 1-d 2 2+2d 1d 2-|F 1F 2|22d 1d 2=941.20.(本小题满分12分)(2015²安徽高考)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .【解】 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510.进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6. 又AB →=(-a ,b ),从而有AB →²NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)的计算结果可知a 2=5b 2, 所以AB →²NM →=0,故MN ⊥AB .21.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点F 及点A (0,b ),原点O 到直线FA 的距离为22b .(1)求椭圆C 的离心率e ;(2)若点F 关于直线l :2x +y =0的对称点P 在圆O :x 2+y 2=4上,求椭圆C 的方程及点P 的坐标.【解】 (1)由点F (-ae,0),点A (0,b ),及b =1-e 2a ,得直线FA 的方程为x -ae +y 1-e 2a=1,即1-e 2x -ey +ae 1-e 2=0. 因为原点O 到直线FA 的距离为 22b =ae 1-e 2, 所以221-e 2²a =ae 1-e 2,解得e =22. (2)设椭圆C 的左焦点F ⎝ ⎛⎭⎪⎪⎫-22a ,0关于直线l :2x +y =0的对称点为P (x 0,y 0),则有⎩⎪⎨⎪⎧ y 0x 0+22a =12,2²x 0-22a 2+y 02=0,解得x 0=3210a ,y 0=225a . 因为P 在圆x 2+y 2=4上,所以⎝ ⎛⎭⎪⎪⎫3210a 2+⎝ ⎛⎭⎪⎪⎫225a 2=4. 所以a 2=8,b 2=(1-e 2)a 2=4.故椭圆C 的方程为x 28+y 24=1, 点P 的坐标为⎝ ⎛⎭⎪⎫65,85. 22.(本小题满分12分)已知经过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C ,当直线l 的斜率是12时,A C →=14A B →. (1)求抛物线G 的方程;(2)设线段BC 的垂直平分线在y 轴上的截距为b ,求b 的取值范围.【解】 (1)设B (x 1,y 1),C (x 2,y 2),由已知,当k l =12时,l 的方程为y =12(x +4),即x =2y -4. 由⎩⎪⎨⎪⎧ x 2=2py ,x =2y -4,得2y 2-(8+p )y +8=0,所以⎩⎪⎨⎪⎧y 1y 2=4,y 1+y 2=8+p 2,又因为A C →=14A B →, 所以y 2=14y 1或y 1=4y 2. 由p >0得:y 1=4,y 2=1,p =2,即抛物线方程为x 2=4y . (2)设l :y =k (x +4),BC 中点坐标为(x 0,y 0), 由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4 , 得x 2-4kx -16k =0.①所以x 0=x 1+x 22=2k ,y 0=k (x 0+4)=2k 2+4k .所以BC 的中垂线方程为y -2k 2-4k =-1k(x -2k ), 所以BC 的中垂线在y 轴上的截距为b =2k 2+4k +2=2(k +1)2, 对于方程①由Δ=16k 2+64k >0得k >0或k <-4.所以b ∈(2,+∞).。

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评11 Word版含答案

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评11 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.抛物线的焦点是⎝ ⎛⎭⎪⎫-14,0,则其标准方程为( ) A .x 2=-y B .x 2=yC .y 2=xD .y 2=-x【解析】 易知-p 2=-14,∴p =12,焦点在x 轴上,开口向左,其方程应为y 2=-x .【答案】 D2.(2014·安徽高考)抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2【解析】 ∵y =14x 2,∴x 2=4y .∴准线方程为y =-1.【答案】 A3.经过点(2,4)的抛物线的标准方程为( )A .y 2=8xB .x 2=yC .y 2=8x 或x 2=yD .无法确定【解析】 由题设知抛物线开口向右或开口向上,设其方程为y 2=2px (p >0)或x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以所求抛物线的标准方程为y 2=8x 或x 2=y ,故选C.【答案】 C4.若抛物线y 2=ax 的焦点到准线的距离为4,则此抛物线的焦点坐标为( )A .(-2,0)B .(2,0)C .(2,0)或(-2,0)D .(4,0)【解析】 由抛物线的定义得,焦点到准线的距离为⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.当a =8时,焦点坐标为(2,0);当a =-8时,焦点坐标为(-2,0).故选C.【答案】 C5.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p的值为( )A .-2B .2C .-4D .4【解析】 易知椭圆的右焦点为(2,0),∴p 2=2,即p =4.【答案】 D二、填空题6.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________.【解析】 由题意知圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为4,抛物线的准线为x =-p 2,由题意知3+p 2=4,∴p =2.【答案】 27.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则P 的轨迹方程是________.【解析】 由题意知,P 的轨迹是以点F (2,0)为焦点,直线x +2=0为准线的抛物线,所以p =4,故抛物线的方程为y 2=8x .【答案】 y 2=8x8.对标准形式的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号 )【解析】 抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足;设M (1,y 0)是y 2=10x 上一点,则|MF |=1+p 2=1+52=72≠6,所以③不满足;由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0,过该焦点的直线方程为y =k ⎝⎛⎭⎪⎫x -52.若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.【答案】 ②④三、解答题9.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线方程和点M 的坐标.【解】 由抛物线定义,焦点为F ⎝ ⎛⎭⎪⎫-p 2,0,则准线为x =p 2.由题意,设M 到准线的距离为|MN |,则|MN |=|MF |=10,即p 2-(-9)=10.∴p =2.故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).10.若动圆M 与圆C :(x -2)2+y 2=1外切,又与直线x +1=0相切,求动圆圆心的轨迹方程. 【导学号:26160056】【解】 设动圆圆心为M (x ,y ),半径为R ,由已知可得定圆圆心为C (2,0),半径r =1.∵两圆外切,∴|MC |=R +1.又动圆M 与已知直线x +1=0相切.∴圆心M 到直线x +1=0的距离d =R .∴|MC |=d +1,即动点M 到定点C (2,0)的距离等于它到定直线x +2=0的距离.由抛物线的定义可知,点M 的轨迹是以C 为焦点,x +2=0为准线的抛物线,且p 2=2,p =4,故其方程为y 2=8x .[能力提升]1.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32 C .1 D. 3【解析】 由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32或d 2=|3×1+0|(3)2+12=32. 【答案】 B2.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和到y轴的距离之和的最小值是()A. 3B. 5C.2 D.5-1【解析】由题意知,抛物线的焦点为F(1,0).设点P到直线l 的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为|2+3|22+(-1)2=5,所以d+|PF|-1的最小值为5-1.【答案】 D3.如图2-3-2所示是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降1 m后,水面宽________m.图2-3-2【解析】建立如图所示的平面直角坐标系,设抛物线方程为x2=-2py(p>0),则A(2,-2),将其坐标代入x2=-2py得p=1.∴x2=-2y.当水面下降1 m,得D(x0,-3)(x0>0),将其坐标代入x2=-2y得x20=6,∴x0= 6.∴水面宽|CD|=2 6 m.【答案】 2 64.若长为3的线段AB 的两个端点在抛物线y 2=2x 上移动,M 为AB 的中点,求M 点到y 轴的最短距离. 【导学号:26160057】【解】 设抛物线焦点为F ,连结AF ,BF ,如图,抛物线y 2=2x的准线为l :x =-12,过A ,B ,M 分别作AA ′,BB ′,MM ′垂直于l ,垂足分别为A ′,B ′,M ′.由抛物线定义,知|AA ′|=|F A |,|BB ′|=|FB |.又M 为AB 中点,由梯形中位线定理,得|MM ′|=12(|AA ′|+|BB ′|)=12(|F A |+|FB |)≥12|AB |=12×3=32,则x ≥32-12=1(x 为M 点的横坐标,当且仅当AB 过抛物线的焦点时取得等号),所以x min =1,即M 点到y 轴的最短距离为1.。

高中数学人教A版选修1-1第2章圆锥曲线与方程章末检测及答案

高中数学人教A版选修1-1第2章圆锥曲线与方程章末检测及答案

高中数学人教A 版选修1-1第2章圆锥曲线与方程章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .42.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 248=13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=14.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=16.设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(2,2)B .(2,5)C .(2,5)D .(2,5)7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( ) A .1 B .2 C .3 D .08.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则FB →|+|FB →|+|FC →|等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞) 10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( ) A .(4,0) B .(2,0) C .(0,2) D .(0,-2)11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )A.(32,54) B .(1,1)C. (32,94) D .(2,4)12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( )A.(34π,π)B.(π4 ,π)C.(π2 ,π)D.(π2 ,34π)二、填空题(本大题共4小题,每小题5分,共20分)13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.15.设椭圆x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点(b2,0)分成3∶1的两段,则此椭圆的离心率为________.16.对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题:①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52. 其中所有正确命题的序号为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.18.(12分)双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.19.(12分)直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长.20.(12分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程; (2)△PF 1F 2的面积.21.(12分)已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA →⊥OB →,求k 的值.答案1.A [由题意可得21m =2×2,解得m =14.] 2.B [∵y 2=8x 的焦点为(2,0), ∴x 2m 2+y 2n 2=1的右焦点为(2,0),∴m >n 且c =2.又e =12=2m ,∴m =4.∵c 2=m 2-n 2=4,∴n 2=12.∴椭圆方程为x 216+y 212=1.]3.B [抛物线y 2=24x 的准线方程为x =-6,故双曲线中c =6. ①由双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =3x ,知ba =3, ② 且c 2=a 2+b 2.③由①②③解得a 2=9,b 2=27.故双曲线的方程为x 29-y 227=1,故选B.]4.D [由椭圆的几何性质得|PF 1|∈[a -c ,a +c ], |PF 1|+|PF 2|=2a ,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2,当且仅当|PF 1|=|PF 2|时取等号.|PF 1|·|PF 2|=|PF 1|(2a -|PF 1|)=-|PF 1|2+2a |PF 1|=-(|PF 1|-a )2+a 2 ≥-c 2+a 2=b 2, 所以|PF 1|·|PF 2|的最大值与最小值之差为a 2-b 2=c 2.] 5.B [由于双曲线的顶点坐标为(0,2),可知a =2,且双曲线的标准方程为y 24-x 2b 2=1. 根据题意2a +2b =2·2c ,即a +b =2c .又a 2+b 2=c 2,且a =2, ∴解上述两个方程,得b 2=4.∴符合题意的双曲线方程为y 24-x 24=1.]6.B [∵双曲线方程为x 2a 2-y 2(a +1)2=1,∴c = 2a 2+2a +1.∴e =c a = 2+1a 2+2a = ⎝⎛⎭⎫1a +12+1. 又∵a >1,∴0<1a <1.∴1<1a +1<2.∴1<⎝⎛⎭⎫1+1a 2<4.∴2<e < 5.] 7.B8.B [设A 、B 、C 三点的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),F (1,0),∵ F A →+FB →+FC →=0,∴x 1+x 2+x 3=3.又由抛物线定义知|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=6.] 9.C [如图所示,要使过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率小于等于渐近线的斜率b a ,∴b a ≥3,离心率e 2=c 2a 2=a 2+b 2a 2≥4,∴e ≥2.]10.B [根据抛物线的定义可得.]11.B [设与直线2x -y =4平行且与抛物线相切的直线为2x -y +c =0 (c ≠-4),2x -y +c =0 由y =x 2得x 2-2x -c =0. ① 由Δ=4+4c =0得c =-1,代入①式得x =1. ∴y =1,∴所求点的坐标为(1,1).]12.D [椭圆方程化为x 21sin α+y 2-1cos α=1.∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0.又∵0≤α<2π,∴π2<α<3π4.]13.32解析 由已知得∠AF 1F 2=30°,故cos 30°=c a ,从而e =32. 14.2x -y -15=0解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0. 因为线段AB 的中点为P (8,1), 所以x 1+x 2=16,y 1+y 2=2.所以y 1-y 2x 1-x 2=x 1+x 24(y 1+y 2)=2.所以直线AB 的方程为y -1=2(x -8), 代入x 2-4y 2=4满足Δ>0. 即2x -y -15=0.15.22解析 由题意,得b 2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c ,因此e =ca = c 2a 2=c 2b 2+c 2= 12=22.16.③④解析 ①错误,当k =2时,方程表示椭圆;②错误,因为k =52时,方程表示圆;验证可得③④正确.17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 29=1. ∵M 是线段PP ′的中点,x 0=x , x 0=x ,∴ y 0=y 2, 把 y 0=y2,代入x 2036+y 209=1,得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b 2=1.由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线, ∴ba =3,解得a 2=1,b 2=3,∴双曲线C 的方程为x 2-y 23=1.19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0,由⎩⎪⎨⎪⎧k ≠0(4k +8)2-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k 2=4⇒k 2=k +2⇒k 2-k -2=0. 解得:k =2或k =-1(舍去) 由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0), 则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c=-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1.因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1.解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1.(2)由椭圆定义知|PF 1|+|PF 2|=65, ① 又|PF 1|2+|PF 2|2=|F 1F 2|2=100, ② ①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20.21.解 焦点F (p2,0),设A (x 1,y 1),B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2pk ,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2= (1+1k 2)·(y 1-y 2)2= 1+1k 2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p2).22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得(k 2+4)x 2+2kx -3=0. 其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.OA →⊥OB →,即x 1x 2+y 1y 2=0. 而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0,化简得-4k 2+1=0,所以k =±12.章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=12.平面内有定点A 、B 及动点P ,设命题甲是“|P A |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( )A.(a 2,0) B .(0, 12a )C. (a 4,0) D .(0, 14a ) 4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( )A .x 2+y 2=2 B .x 2+y 2=4 C .x 2+y 2=2(x ≠±2) D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y2b 2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22B.12C.2-12D.347.已知双曲线的方程为x 2a 2-y 2b 2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A.125B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0C .-2或0D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( )A .5 6B .6 5C .10 2D .5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1±512.设F 1、F 2分别是双曲线x 25-y 24=1的左右焦点。

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评7 Word版含答案

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评7 Word版含答案

学业分层测评
(建议用时:分钟)
[学业达标]
一、选择题
.椭圆+=的长轴长、短轴长、离心率依次是( )
.,.,
.,
.,
【解析】椭圆方程可化为+=.
∴=,=,=,
∴长轴长=,短轴长=,
离心率==.故选.
【答案】.若焦点在轴上的椭圆+=的离心率为,则等于( )
【解析】∵椭圆焦点在轴上,
∴<<,=,=,
===.
故=,∴=.
【答案】.中心在原点,焦点在轴,若长轴长为,且两个焦点恰好将长轴
三等分,则此椭圆的方程是( )
+=+=
+=+=【解析】因为==×=,所以=,=,=-=.故所求方程为+=.
【答案】
.已知椭圆+=(>>)的两顶点为(),(,),且左焦点为,△
是以角为直角的直角三角形,则椭圆的离心率为( )
【解析】由题意得++=(+),即+-=,即+-=,解得=,又>,
故所求的椭圆的离心率为.故选.
【答案】.设是椭圆+=的离心率,且∈,则实数的取值范围是( )
.()
.()
.()∪
【解析】当焦点在轴上时,==∈,
解得<<.
当焦点在轴上时,
==∈,
解得>.综上可知选.
【答案】
二、填空题.已知椭圆的对称轴是坐标轴,离心率为,长轴长为,则椭圆方
程为. 【导学号:】【解析】由题意得(\\(()=(),=,=+,))
解得(\\(=,=(),=,))
∴椭圆方程为+=或+=.
【答案】+=或+=
.若椭圆+=的离心率为,则的值为.【解析】若焦点在轴上,则=-=,=;若焦点在轴上,则=,。

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评8 Word版含答案.doc

高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评8 Word版含答案.doc

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( ) A .-2<a <2 B .a <-2或a > 2 C .-2<a <2D .-1<a <1【解析】 ∵点A (a,1)在椭圆x 24+y 22=1内部, ∴a 24+12<1.∴a 24<12. 则a 2<2,∴-2<a < 2. 【答案】 A2.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( )A .k <-22或k >22B .-22<k <22 C .k ≤-22或k ≥22D .-22≤k ≤22【解析】 由⎩⎪⎨⎪⎧y =kx +1,x 2+2y 2=1, 得(2k 2+1)x 2+4kx +1=0. ∵直线与椭圆有公共点. ∴Δ=16k 2-4(2k 2+1)≥0, 则k ≥22或k ≤-22.【答案】 C3.(2016·重庆高二检测)过椭圆x 24+y 23=1的一个焦点F 作垂直于长轴的弦,则此弦长为( )A.34 B .3 C .2 3D.833【解析】 因为F (±1,0),所以过椭圆的焦点F 且垂直于长轴的弦与椭圆的交点坐标为⎝ ⎛⎭⎪⎫±1,±32,所以弦长为3. 【答案】 B4.直线y =x +1被椭圆x 24+y 22=1所截得线段的中点的坐标是( )A.⎝ ⎛⎭⎪⎫23,53B.⎝ ⎛⎭⎪⎫43,73 C.⎝ ⎛⎭⎪⎫-23,13 D.⎝ ⎛⎭⎪⎫-132,-172 【解析】联立方程⎩⎨⎧y =x +1,x 24+y 22=1,消去y ,得3x 2+4x -2=0.设交点A (x 1,y 1),B (x 2,y 2),中点M (x 0,y 0).∴x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13,∴中点坐标为⎝ ⎛⎭⎪⎫-23,13.【答案】 C5.经过椭圆x 22+y 2=1的右焦点作倾斜角为45°的直线l ,交椭圆于A 、B 两点,O 为坐标原点,则OA →·OB →=( ) 【导学号:26160041】A .-3B .-13C .-13或-3D .±13【解析】 椭圆右焦点为(1,0), 设l :y =x -1,A (x 1,y 1),B (x 2,y 2), 把y =x -1代入x 22+y 2=1, 得3x 2-4x =0.∴A (0,-1),B ⎝ ⎛⎭⎪⎫43,13,∴OA →·OB →=-13. 【答案】 B 二、填空题6.直线l 过定点A (-3,0),则过点A 的直线与椭圆x 29+y 24=1的交点个数为________.【解析】 ∵A (-3,0)为椭圆长轴一个顶点,∴当过点A 作椭圆切线时,直线与椭圆有一个公共点(即切点);当过点A 作与椭圆相交的直线时,二者有两个交点,故填1或2.【答案】 1或27.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM→|=1,且PM →·AM→=0,则|PM →|的最小值是________. 【解析】 易知点A (3,0)是椭圆的右焦点.∵PM →·AM→=0,∴AM→⊥PM →. ∴|PM →|2=|A P →|2-|AM →|2=|A P →|2-1,∵椭圆右顶点到右焦点A 的距离最小,故|A P →|min =2,∴|PM →|min= 3. 【答案】38.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.【解析】 由题意知,右焦点坐标为(1,0),直线的方程为y =2(x -1),将其与x 25+y 24=1联立,消去y ,得3x 2-5x =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=53,x 1x 2=0, 所以|AB |=1+k 2·|x 1-x 2|=1+22·⎝ ⎛⎭⎪⎫532-4×0=553. 设原点到直线的距离为d ,则d =|2|12+22=25.所以S △OAB =12|AB |·d =12×553×25=53.【答案】 53 三、解答题9.已知椭圆x 24+y 23=1,直线l :y =4x +12,若椭圆上存在两点P 、Q 关于直线l 对称,求直线PQ 的方程.【解】 法一:设P (x 1,y 1),Q (x 2,y 2), 则k PQ =-14.设PQ 所在直线方程为y =-x4+b . 由⎩⎪⎨⎪⎧y =-x 4+b ,x 24+y 23=1,消去y ,得13x 2-8bx +16b 2-48=0.∴Δ=(-8b )2-4×13×(16b 2-48)>0. 解得b 2<134,x 1+x 2=8b 13,设PQ 中点为M (x 0,y 0),则有 x 0=x 1+x 22=4b 13,y 0=-14·4b 13+b =12b 13.∵点M ⎝ ⎛⎭⎪⎫4b 13,12b 13在直线y =4x +12上, ∴12b 13=4·4b 13+12,∴b =-138. 直线PQ 的方程为y =-14x -138, 即2x +8y +13=0.法二:设P (x 1,y 1),Q (x 2,y 2), M (x 0,y 0)是PQ 的中点.则有⎩⎪⎨⎪⎧3x 21+4y 21=12,3x 22+4y 22=12,两式相减,得 3(x 1-x 2)(x 1+x 2)+4(y 1-y 2)(y 1+y 2)=0. ∵x 1≠x 2,x 1+x 2=2x 0,y 1+y 2=2y 0, ∴3x 04y 0=-y 1-y 2x 1-x 2=-k PQ .∵k PQ =-14,∴y 0=3x 0.代入直线y =4x +12, 得x 0=-12,y 0=-32,则直线PQ 的方程为y +32=-14⎝ ⎛⎭⎪⎫x +12,即2x +8y +13=0.10.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.【解】 (1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,所以|AB |=43. (2)直线l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎨⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则由根与系数的关系,得x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 1-x 2|, 即43=2|x 1-x 2|.所以(x 1+x 2)2-4x 1x 2=89,即4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2=89, 解得b 2=12或b 2=-14(舍去), 又b >0,∴b =22.[能力提升]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,A (-a,0),B (0,b )为椭圆的两个顶点,若点F 到AB 的距离为b7,则椭圆的离心率为( )A.7-77 B.7-277 C.12D.45【解析】 直线AB 的方程是x -a +yb =1,即bx -ay +ab =0.因为点F 的坐标为(-c,0),所以|-bc +ab |a 2+b2=b7,化简,得8c 2-14ac +5a 2=0,两端同除以a 2,得8e 2-14e +5=0,解得e =12⎝ ⎛⎭⎪⎫e =54舍去. 【答案】 C2.已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交椭圆C 于点B ,若F A →=3F B →,则|A F →|=( )A. 2 B .2 C. 3D .3【解析】 设点A (2,n ),B (x 0,y 0). 由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1,∴右焦点F (1,0). 由F A →=3F B →,得(1,n )=3(x 0-1,y 0). ∴1=3(x 0-1)且n =3y 0. ∴x 0=43,y 0=13n .将x 0,y 0代入x 22+y 2=1,得 12×⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫13n 2=1.解得n 2=1, ∴|A F →|=(2-1)2+n 2=1+1= 2. 【答案】 A3.若直线y =kx +1与曲线x =1-4y 2有两个不同的交点,则k 的取值范围是________.【解析】 由x =1-4y 2,得x 2+4y 2=1(x ≥0), 又∵直线y =kx +1过定点(0,1),故问题转化为过定点(0,1)的直线与椭圆在y 轴右侧的部分有两个公共点,当直线与椭圆(右侧部分)相切时,k =-32,则相交时k <-32.【答案】 ⎝⎛⎭⎪⎫-∞,-324.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,A F →=2F B →.(1)求椭圆C 的离心率; 【导学号:26160042】(2)如果|AB |=154,求椭圆C 的标准方程.【解】 设A (x 1,y 1),B (x 2,y 2),其中y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ), 其中c =a 2-b 2.联立,得⎩⎨⎧y =3(x -c ),x 2a 2+y 2b 2=1,消去x ,得(3a 2+b 2)y 2+23b 2cy -3b 4=0. 解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2因为A F →=2F B →,所以-y 1=2y 2, 即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2,得离心率e =c a =23. (2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b2=154. 由c a =23,得b =53a ,所以54a =154,所以a =3,b = 5. 所以椭圆C 的标准方程为x 29+y 25=1.。

2018人教A版选修1-1《第二章圆锥曲线与方程》质量检测试卷含解析

2018人教A版选修1-1《第二章圆锥曲线与方程》质量检测试卷含解析

1. baa=2+43得43ab=2=43a53,a.
3. 解析:选 B 抛物线 y2=8x 的准线方程为 x=- 2,由 P 到焦点的
距离为 4 知, P 到准线的距离为 4,故 P 的横坐标 xP=2,y2P=16,|PO|=
x2P+y2P=2 5.
4. 解析:选 D 由题意得,点 P 到直线 x=- 2 的距离与它到点 (2,0)
5 7
16. 解析:由题意得
e=
5 7.
2p= 2,p=
4,抛物线方程为
y2=8x,K( -2,0),
设 A(x0 , y0),|AF|=a,x0=a-2,
由|AK| = 2a 得 a2+y20=2a2,
又 y20=8(a-2),∴ a2=8(a-2),解得 a=4.
由已知可得 |y0|=a=4. ∴S△AFK =12×4×4=8.
的距离相等,因此点 P 的轨迹是抛物线. x2 y2
5. 解析:选 C 双曲线 a2- 9 =1 的一条渐近线方程为 3x-2y=0,故
a=2.又 P 是双曲线上一点,故 ||PF1-| |PF2||=4,而 |PF1|=3,则 |PF2|=7.
6. 解析:选 A 设|PF1|=4k,|F1F2|=3k,|PF2|=2k.若曲线 C 为椭圆,
于 A, B 两点,与 C2 相交于 C,D 两点,
.
(1)求 C2 的方程;
(2)若 |AC|=|BD|,求直线 l 的斜率.
答案
1. 解析:选 D 由 x2+ky2=2,得 x22+y22=1,
又∵椭圆的焦点在 y 轴上,
k
∴ 2. ∴ ∴
2k>2,即 0<k< 解析:选 A 由
c= a2+b2= e= ca=53.

最新整理高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评9 Word版含答案.doc

最新整理高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评9 Word版含答案.doc

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到F 1的距离是12,则P 到F 2的距离是( )A .17B .7C .7或17D .2或22【解析】 由双曲线方程x 225-y 29=1得a =5, ∴||PF 1|-|PF 2||=2×5=10. 又∵|PF 1|=12,∴|PF 2|=2或22. 故选D. 【答案】 D2.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1B.x 23-y 2=1 C .y 2-x 23=1D.x 22-y 22=1【解析】 由双曲线定义知,2a =(2+2)2+32-(2-2)2+32=5-3=2, ∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3,因此所求双曲线的标准方程为x 2-y23=1.【答案】 A3.设动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)【解析】 由双曲线的定义得,P 点的轨迹是双曲线的一支.由已知得⎩⎪⎨⎪⎧2c =10,2a =6,∴a =3,c =5,b =4.故P 点的轨迹方程为x 29-y 216=1(x>0),因此选D.【答案】 D4.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A.365B.566C.65D.56【解析】 不妨设点F 1(-3,0),容易计算得出 |MF 1|=32=62,|MF 2|-|MF 1|=2 6. 解得|MF 2|=52 6.而|F 1F 2|=6,在直角三角形MF 1F 2中, 由12|MF 1|·|F 1F 2|=12|MF 2|·d ,求得F 1到直线F 2M 的距离d 为65.故选C. 【答案】 C5.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1【解析】 由于a >0,0<a 2<4,且4-a 2=a +2,所以可解得a =1,故选D.【答案】 D 二、填空题6.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________.【导学号:26160046】【解析】 设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.【答案】 y 225-x 275=17.已知方程x 24-t +y 2t -1=1表示的曲线为C .给出以下四个判断:①当1<t <4时,曲线C 表示椭圆;②当t >4或t <1时,曲线C 表示双曲线;③若曲线C 表示焦点在x 轴上的椭圆,则1<t <52;④若曲线C 表示焦点在y 轴上的双曲线,则t >4.其中判断正确的是________(只填正确命题的序号).【解析】 ①错误,当t =52时,曲线C 表示圆;②正确,若C 为双曲线,则(4-t )(t -1)<0,∴t <1或t >4;③正确,若C 为焦点在x 轴上的椭圆,则4-t >t -1>0.∴1<t <52;④正确,若曲线C 为焦点在y 轴上的双曲线,则⎩⎪⎨⎪⎧4-t <0t -1>0,∴t >4.【答案】 ②③④8.已知F 是双曲线x 24-y 212=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.【解析】 设右焦点为F ′,依题意,|PF |=|PF ′|+4,∴|PF |+|P A |=|PF ′|+4+|P A |=|PF ′|+|P A |+4≥|AF ′|+4=5+4=9.【答案】 9 三、解答题9.求以椭圆x 216+y 29=1短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程.【解】 由x 216+y 29=1,得a =4,b =3,所以短轴两端点的坐标为(0,±3),又双曲线过A 点,由双曲线定义得2a =|(4-0)2+(-5-3)2-(4-0)2+(-5+3)2| =25,∴a =5,又c =3, 从而b 2=c 2-a 2=4, 又焦点在y 轴上,所以双曲线的标准方程为y 25-x 24=1.10.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.【解】 (1)将椭圆方程化为标准形式为x 25+y 2=1. ∴a 2=5,b 2=1,c 2=a 2-b 2=4, 则A (-2,0),B (2,0),|AB |=4. (2)∵sin B -sin A =12sin C ,∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4, 即动点C 到两定点A ,B 的距离之差为定值. ∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为x 2-y23=1(x >1).[能力提升]1.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( )A .2B .4C .6D .8【解析】 由题意,得||PF 1|-|PF 2||=2,|F 1F 2|=2 2.因为∠F 1PF 2=60°,所以|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°=|F 1F 2|2,所以(|PF 1|-|PF 2|)2+2|PF 1||PF 2|-2|PF 1||PF 2|×12=8,所以|PF 1|·|PF 2|=8-22=4.【答案】 B2.(2016·临沂高二检测)已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y29=1C.x 23-y 27=1D.x 27-y 23=1【解析】 由双曲线定义||MF 1|-|MF 2||=2a ,两边平方得:|MF 1|2+|MF 2|2-2|MF 1||MF 2|=4a 2,因为MF 1→·MF 2→=0,故△MF 1F 2为直角三角形,有|MF 1|2+|MF 2|2=(2c )2=40,而|MF 1→|·|MF 2→|=2,∴40-2×2=4a 2,∴a 2=9,∴b 2=1,所以双曲线的方程为x29-y 2=1.【答案】 A3.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________.【解析】 双曲线8x 2-y 2=8可化为标准方程x 2-y 28=1,所以a=1,c =3,|F 1F 2|=2c =6.因为点P 在该双曲线上,且△PF 1F 2是等腰三角形,所以|PF 1|=|F 1F 2|=6,或|PF 2|=|F 1F 2|=6,当|PF 1|=6时,根据双曲线的定义有|PF 2|=|PF 1|-2a =6-2=4,所以△PF 1F 2的周长为6+6+4=16;同理当|PF 2|=6时,△PF 1F 2的周长为6+6+8=20.【答案】 16或204.如图2-2-2,已知双曲线中c =2a ,F 1,F 2为左、右焦点,P 是双曲线上的点,∠F 1PF 2=60°,S △F 1PF 2=12 3.求双曲线的标准方程.【导学号:26160047】图2-2-2【解】 由题意可知双曲线的标准方程为x 2a 2-y 2b 2=1. 由于||PF 1|-|PF 2||=2a , 在△F 1PF 2中,由余弦定理得 cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|= (|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=4(c 2-a 2)=4b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2b 2·32=3b 2,从而有3b 2=123,所以b 2=12,c =2a ,结合c 2=a 2+b 2,得a 2=4.所以双曲线的标准方程为x 24-y 212=1.。

【专业资料】新版高中数学人教A版选修1-1习题:第二章 圆锥曲线与方程 2.1.2.2 含解析

【专业资料】新版高中数学人教A版选修1-1习题:第二章 圆锥曲线与方程 2.1.2.2 含解析

2.1.2椭圆的简单几何性质(二)课时过关·能力提升基础巩固1.椭圆x 225+y24=1的两个焦点为F1,F2,过点F2的直线交椭圆于A,B两点.若|AB|=8,则|AF1|+|BF1|的值为()A.10B.12C.16D.18|AB|+|AF1|+|BF1|=4a, ∴|AF1|+|BF1|=4×5-8=12.2.已知直线l:x+y-3=0,椭圆x 24+y2=1,则直线与椭圆的位置关系是() A.相交 B.相切C.相离D.相切或相交y=3-x代入x 24+y2=1,得5x2-24x+32=0.Δ=(-24)2-4×5×32=576-640=-64<0,方程无解.故直线l与椭圆相离.3.直线y=x+1被椭圆x 24+y22=1所截得的弦的中点坐标是()A.(23,53)B.(43,73)C.(-2,1)D.(-13,17)A(x1,y1),B(x2,y2)为直线与椭圆的交点,中点M(x0,y0),由{y=x+1,x24+y22=1,得3x2+4x-2=0.x0=x1+x22=12×(-43)=−23,y0=x0+1=13,故中点坐标为(-23,13).4.直线y=kx-k+1与椭圆x 29+y 24=1的位置关系是( ) A.相交 B.相切 C.相离D.不确定1=k (x-1)+1,所以直线过点(1,1).又因为点(1,1)在椭圆内,所以直线与椭圆相交.5.若点(x ,y )在椭圆4x 2+y 2=4上,则yx -2的最小值为( ) A.1B.-1C.−23√3D.以上都不对6.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +√3y +4=0有且仅有一个交点,则椭圆的长轴长为( ) A.3√2或4√2B.2√6或2√7 C.2√5或2√7D.√5或√7mx 2+ny 2=1(m ≠n ,且m ,n>0),与直线方程x +√3y +4=0联立,消去x ,得(3m+n )y 2+8√3my +16m −1=0, 由Δ=0,得3m+n=16mn ,即3n +1m=16.① 又c=2,即1m −1n =±4,② 由①②联立得{m =17,n =13或{m =1,n =15, 故椭圆的长轴长为2√7或2√5.7.若直线y=x+2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是 .{x 2m+y 23=1,y =x +2,得(m+3)x2+4mx+m=0.∵直线与椭圆有两个公共点,∴Δ=(4m)2-4m(m+3)=16m2-4m2-12m=12m2-12m>0,解得m>1或m<0.又m>0,且m≠3,∴m>1,且m≠3.∪(3,+∞)8.若直线3x-y-2=0截焦点为(0,±5√2)的椭圆所得弦中点的横坐标是12,则该椭圆的标准方程是.y2a2+x2b2=1(a>b>0),由{y2a2+x2b2=1,3x-y-2=0,联立得(a2+9b2)x2-12b2x+4b2-a2b2=0,x1+x2=12b2a2+9b2=1,∴a2=3b2.①又由焦点为(0,±5√2)知,a2-b2=50.②由①②,得a2=75,b2=25.故所求椭圆方程为x225+y275=1.y275=19.椭圆ax2+by2=1(a>0,b>0,且a≠b)与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2√2,直线OC的斜率为√22,求椭圆的方程.,得{ax2+by2=1,x+y=1,则(a+b)x2-2bx+b-1=0.设A(x1,y1),B(x2,y2),则|AB|=√(1+k2)[(x1+x2)2-4x1x2]=√2·√4b2-4(a+b)(b-1)(a+b)2.∵|AB|=2√2,∴√a+b-aba+b=1.①设C(x,y),则x=x1+x22=ba+b,y=1−x=aa+b.∵直线OC 的斜率为√22,∴a b =√22. 代入①得a =13,b =√23. ∴椭圆方程为x 23+√2y 23=1. 10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A(0,−1),且离心率为√22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.c a =√22,b =1,结合a 2=b 2+c 2,解得a =√2. 所以椭圆的方程为x 22+y2=1.,直线PQ 的方程为y=k (x-1)+1(k ≠2),代入x 22+y2=1,得(1+2k 2)x 2-4k (k-1)x+2k (k-2)=0. 由已知Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k2,x1x2=2k (k -2)1+2k2.从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k+(2-k )(1x 1+1x 2)=2k +(2−k)x 1+x2x 1x 2=2k+(2-k )4k (k -1)2k (k -2)=2k −2(k −1)=2.能力提升1.设P ,Q 分别为圆x 2+(y-6)2=2和椭圆x 210+y2=1上的点,则P,Q 两点间的最大距离是( )A.5√2B.√46+√2C.7+√2D.6√2Q (x ,y ),则该点到圆心的距离d =√(x -0)2+(y -6)2=√x 2+(y -6)2=√10(1-y 2)+(y -6)2=√-9y 2-12y +46,y ∈[-1,1], ∴当y=−-122×(-9)=−23时,d max =√-9×(-23)2-12×(-23)+46=√50=5√2.∴圆上点P 和椭圆上点Q 的距离的最大值为d max +r=5√2+√2=6√2.故选D.2.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( ) A.x-2y=0 B.x+2y-4=0 C.2x+3y+4=0D.x+2y-8=0l 与椭圆的两交点分别为(x 1,y 1),(x 2,y 2),则有{x 1236+y 129=1, ①x 2236+y 229=1,②①-②,得(x 1+x 2)(x 1-x 2)36+(y 1+y 2)(y 1-y 2)9=0.由x 1+x 2=8,y 1+y 2=4,可得2(x 1-x 2)+4(y 1-y 2)=0,即y 1-y2x 1-x 2=−12.故方程为y-2=−12(x −4), 即x+2y-8=0.3.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,过右焦点F 且斜率为k(k >0)的直线与C 相交于A,B 两点,若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k 等于( ) A.1 B .√2C .√3D.2C 的离心率为√3,得c =√3a,b2=a 2. ∴椭圆C :x 22+4y 22=1. 设A (x A ,y A ),B (x B ,y B ),F (√32a ,0).∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ , ∴(√32a -x A ,-y A )=3(x B -√32a ,y B ).∴{√32a -x A =3(x B -√32a),-y A =3y B , 即{x A +3x B =2√3a ,y A +3y B =0.①将点A ,B 的坐标代入椭圆C ,得{x A2a 2+4y A2a 2=1,x B2a 2+4y B 2a2=1,②③③×9-②,得9x B 2-x A2a 2=8,(3x B +x A )(3x B -x A )a 2=8,∴3x B -x A =4√33a.④联立①④,得{x A +3x B =2√3a ,3x B -x A =4√33a , 解得x A =√33a,xB =5√39a. ∴y A =−√66a,yB =√618a. ∴k =y B -y A x B -x A=√618a+√66a 5√39a -√33a=√2.4.若直线ax+by+4=0和圆x 2+y 2=4没有公共点,则过点(a ,b )的直线与椭圆x 29+y 24=1的公共点个数为 .直线ax+by+4=0与圆x 2+y 2=4没有公共点,∴√a 2+b 2>2,∴√a 2+b 2<2.∴点(a ,b )在椭圆内,即过点(a ,b )的直线与椭圆相交,有2个公共点.★5.如图,过点M (-2,0)的直线m 与椭圆x 22+y2=1交于点P1,P2,线段P1P2的中点为P,设直线m 的斜率为k1(k1≠0),直线OP 的斜率为k 2,则k 1k 2的值为 .P 1(x 1,y 1),P 2(x 2,y 2),代入椭圆方程得{x 122+y 12=1,x 222+y 22=1,两式相减并变形整理得y 2-y 1x 2-x 1·y 1+y 2x 1+x 2=−12.设P (x 0,y 0),则y 1+y 2=2y 0,x 1+x 2=2x 0,k 2=y 0x 0,k1=y 2-y 1x 2-x 1,故k 1k 2=−12.16.在平面直角坐标系xOy 中,点P 到两点(0,−√3),(0,√3)的距离之和等于4,设点P 的轨迹为C. (1)写出C 的方程;(2)设直线y=kx+1与C 交于A ,B 两点,则k 为何值时,OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ ?此时|AB|的值是多少?设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,−√3),(0,√3)为焦点,长半轴长为2的椭圆.它的焦距为2√3,所以短半轴的平方为1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2), 其坐标满足{x2+y 24=1,y =kx +1.消去y ,并整理得(k 2+4)x 2+2kx-3=0, 故x 1+x 2=−2k k 2+4,x1x2=−3k 2+4.∵OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ ,∴x1x2+y1y2=0. ∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1, ∴x 1x 2+y 1y 2 =−3k 2+4−3k2k 2+4−2k2k 2+4+1=-4k 2+1k 2+4.又x 1x 2+y 1y 2=0, ∴k=±12.当k=±12时,x 1+x 2=∓417,x1x2=−1217. |AB|=√(x 2-x 1)2+(y 2-y 1)2=√(1+k 2)(x 2-x 1)2,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=(417)2+4×1217=43×13172,∴|AB|=√54×43×13172=4√6517. ★7.已知椭圆G :x 24+y2=1,过点(m,0)作圆x2+y2=1的切线l 交椭圆G 于A,B 两点. (1)求椭圆G 的焦点坐标和离心率;(2)将|AB|表示为m 的函数,并求|AB|的最大值.由已知得a=2,b=1,所以c =√a 2-b 2=√3.所以椭圆G 的焦点坐标为(−√3,0),(√3,0), 离心率为e =c a =√32. (2)由题意知,|m|≥1.当m=1时,切线l 的方程为x=1, 点A ,B 的坐标分别为(1,√32),(1,-√32).此时|AB|=√3.当m=-1时,同理可得|AB|=√3. 当|m|>1时,设切线l 的方程为y=k (x-m ).由{y =k (x -m ),x 24+y 2=1,得(1+4k 2)x 2-8k 2mx+4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=8k 2m 1+4k2,x1x2=4k 2m 2-41+4k2. 又由l 与圆x 2+y 2=1相切,|km |√k +1=1,即m 2k 2=k 2+1.所以|AB|=√1+k 2|x1−x2|=√(1+k 2)[(x 1+x 2)2-4x 1x 2]=√(1+k 2)[64k 4m 2(1+4k 2)2-4(4k 2m 2-4)1+4k 2]=4√3|m |m 2+3.因为当m=±1时,|AB|=√3, 所以|AB|=4√3|m |m 2+3,m ∈(-∞,-1]∪[1,+∞). 因为|AB|=4√3|m |m 2+3=4√3|m |+3|m |≤2,且当m=±√3时,|AB|=2, 所以|AB|的最大值为2.。

高中数学选修1-1(人教A版)第二章圆锥曲线与方程2.2知识点总结含同步练习及答案

高中数学选修1-1(人教A版)第二章圆锥曲线与方程2.2知识点总结含同步练习及答案

c
5. 离心率:双曲线的焦距与实轴长的比
c > 1. a 由等式 c 2 − a2 = b 2 得
曲线的离心率 e =
c ,叫做双曲线的离心率.因为 c > a > 0,所以双 a
− − − − − − − − − − − √− − − − − − b c 2 − a2 c2 = =√ − 1 = √e2 − 1, 2 a a a b b 也越大,即渐近线 y = ± x 的斜率的绝对值越大,这时双曲线 a a b 的形状就从扁狭逐渐变得开阔,即张口越来越大.当离心率 e 越小时, 也越小,渐 a
已知方程 解:(1)若方程表示双曲线,则
{
1 − k > 0, 1 − k < 0, 或{ |k| − 3 > 0, |k| − 3 < 0.
解得 k < −3 或 1 < k < 3; (2)若方程表示焦点在 x 轴的双曲线,则
{
1 − k < 0, |k| − 3 < 0.
解得 1 < k < 3; (3)若方程表示焦点在 y 轴的双曲线,则
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第二章 圆锥曲线与方程 2.2 双曲线
一、学习任务 1. 2.
了解双曲线的标准方程,会求双曲线的标准方程. 了解双曲线的简单几何性质.
二、知识清单
双曲线的基本量与方程
三、知识讲解
1.双曲线的基本量与方程 描述: 双曲线及双曲线的标准方程 把平面内与两个定点 F1 , F2 的距离的差的绝对值等于常数(小于|F1 F2 | 且不等于零)的点 的轨迹叫做双曲线(hyperbola).这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的 焦距. 以过焦点 F1 、 F2 的直线为 x 轴,线段 F1 F2 的垂直平分线为 y 轴,建立平面直角坐标 系. 设 M (x, y) 是双曲线上任意一点,双曲线的焦距为 2c (c > 0),那么焦点 F1 , F2 的坐标 分别是 (−c, 0) ,(c, 0).又设点 M 与 F1 , F2 的距离的差的绝对值等于常数 2a ( 0 < a < c).因为

高中选修1-1导学案 第二章 圆锥曲线与方程(含答案)

高中选修1-1导学案  第二章 圆锥曲线与方程(含答案)

第二章 圆锥曲线与方程2.1.1椭圆及其标准方程学案【学习目标】:(1)掌握坐标法求椭圆的标准方程;(2)掌握椭圆的标准方程的推导及标准方程的形式; (3)通过对同一标准方程的推导,提高运算能力. 【学习过程】:预习课本32~34P P 的内容,记录下疑惑之处,并思考下列问题:1. 我们知道,到一个定点的距离等于定长的动点的轨迹是圆,那么到两个定点的距离之和等于定长的动点的轨迹是什么?动动手,做教材32P 中的演示.2. 椭圆的定义:把平面内与两个定点1F ,2F 的距离之和等于常数(大于 )的点的轨迹叫做椭圆. 这两个定点叫做椭圆的 ,两焦点的距离(2c )叫做 .3.椭圆的标准方程:4.判断下列椭圆的焦点位置,指出焦点的坐标:(1)221169y x +=; (2) 222516400x y +=; (3)221(0)y x m n m n +=>>答:探究1在椭圆标准方程的推导过程中,思考以下问题:(1)如何建立适当的直角坐标系?有几种建立坐标系的方式? 答:(2)根据椭圆的定义,你能得到的等式是.(3)在标准方程的推导过程中,引入了222b a c =-,你能结合图形加以解释b 的含义吗?答:(4)在椭圆的定义中,强调了a c >;若a c =动点的轨迹是什么?若a c <呢?答:【例1】求适合下列条件的椭圆的标准方程: (1) 焦点在y 轴上,且经过两个点(0,2)和(1,0); (2) 中心在原点,且经过点(3,0)P ,3a b =.动动手:求适合下列条件的椭圆的标准方程:(1)两焦点坐标分别是)0,4(-、(4,0),椭圆上一点P 到两焦点的距离的和等于10; (2)两焦点的坐标分别是)2,0(-、(0,2),并且椭圆经过点)25,23(-.【例2】求适合下列条件的椭圆的标准方程:(1)求经过点A、B 的椭圆的标准方程; (2) 与椭圆191322=+y x有相同焦点,且经过点(2,的椭圆方程.【学习评价】1. 已知1,6==c a ,焦点在y 轴上的椭圆的标准方程是 ( )A . 2213635y x +=B . 2213625y x +=C . 2213536y x += D . 2212536y x +=2. 如果椭圆22110036y x +=上一点到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是 ( )A . 8B . 14C . 16D . 203. 椭圆221169y x +=的左、右焦点为1F 、2F ,一直线过1F 交椭圆于A 、B ,则2ABF ∆的周长为 .4. 两焦点为(0,2)-,(0,2),3b =,则椭圆的标准方程是 .5.已知一个储油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m ,外轮廓线上点到两个焦点距离的和为3m ,求这个椭圆的标准方程.6.已知椭圆06322=-+m y mx 的一个焦点为(0,4)-,求实数m 的值.7.方程1)1(2222=-+m y m x 表示焦点在y 轴上的椭圆,求实数m 的取值范围.8.方程1)1(2222=-+m y m x 表示焦点在x 轴上的椭圆,求实数m 的取值范围.9.方程1)1(2222=-+m y m x 表示椭圆,求实数m 的取值范围.10.方程16222=--m y m x 表示椭圆,求实数m 的取值范围.2.1.2 椭圆的简单几何性质学案【学习目标】:(1)掌握椭圆的范围、对称性、对称中心、离心率及顶点(截距)等性质.(2)会根据简单的几何性质求椭圆的标准方程或根据标准方程求,,,a b c e .【学习过程】:1. 在坐标系中画出椭圆221169y x +=的图形,根据图形,就它的图形范围、顶点、对称性等进行讨论.椭圆的长轴长为_ _,短轴长为_ _,顶点坐标为 ,焦距为 ,离心率为 .2. 椭圆22221y x a b += (0a b >>)的图形位于直线 和 围成的矩形内部. 3.椭圆22221y x a b += (0a b >>)的对称轴有 ,对称中心是 .4. 椭圆22221y x a b+= (0a b >>)的顶点 . 椭圆的几何性质:对于椭圆22221y x a b+=,作出图形,观察可知:1. 范围:图形位于直线x a =±和y b =±围成的矩形内部;即椭圆上任意一点的坐标(,)x y ,都有||x a ≤,||y b ≤.2. 对称性:椭圆是轴对称图形,对称轴是0,0x y ==,也是中心对称图形,对称中心是原点.3. 顶点:1212(,0),(,0),(0,),(0,)A a A a B b B b --.4.离心率:定义椭圆的焦距与长轴长的比值c a 为椭圆的离心率,表示为c e a=. 思考:离心率的取值范围是什么?离心率刻画了椭圆的什么变化特征?答:【例1】求椭圆22369324x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.【例2】若椭圆22114y x k +=+.动动手:椭圆中心在原点,焦点在x,且过点(2,1)P -,求椭圆方程.【例3】过椭圆2212x y +=的左焦点1F 作倾斜角为45的直线与椭圆交于A 、B 两点,2F 是椭圆的右焦点,求2ABF ∆的面积.动动手:椭圆22221y x a b+=(0a b >>)的四个顶点顺次连结构成一个菱形,该菱形的面积为.【学习评价】1.椭圆22221y x a b +=和2222y x k a b+=(0)k >具有相同的 ( ) A.顶点 B.离心率 C.长轴 D.短轴2.若椭圆221x my += ( ) A.2 B.1 C.1或3 D.1或23. 椭圆两焦点间的距离等于长轴端点与短轴端点间的距离,则离心率是( B )A .B C D 4. 若长轴在y 上的椭圆的一个焦点到长轴两个端点的距离之比为41,短轴长为8,则椭圆的标准方程是 ( A )A . 2211625y x +=B . 221820y x +=C . 2211650y x +=D . 221825y x +=5.已知椭圆短轴的一个端点与椭圆的两焦点的连线互相垂直,则此椭圆的离心率e = .6. 若21F F 、是椭圆221105y x +=的两个焦点,P 点在椭圆上满足21PF PF ⊥,这样的P 点有_____个.7. 椭圆)0(,12222>>=+b a by a x 的焦点分别为21F F 、,过1F 且与x 轴垂直的直线交椭圆与A 、B 两点,且2ABF ∆是直角三角形,则这个椭圆的离心率为 .8.已知椭圆M 的短轴长为6,一个焦点F 到长轴的一个端点的距离等于9,则椭圆M 的离心率等于 .9.过椭圆22186y x +=的右焦点2F 作长轴的垂线与椭圆交于第一象限的P 点,1F 是椭圆的左焦点,求12F F P ∆的外接圆方程.10. 当m 取何值直线l :y x m =+与椭圆22132y x +=相切、相交、相离.2.2.1 双曲线及其标准方程学案【学习目标】:(1)初步掌握双曲线的定义;(2) 初步掌握双曲线的标准方程;(3)会根据所给的条件画出双曲线的草图并确定双曲线的标准方程.【学习过程】:1. 椭圆的定义是什么?椭圆的标准方程是什么?2. 在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系,若3a =,2b =,则c 是多少?写出符合条件的椭圆方程.3.把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样? 探究11. 动手操作准备一条拉链,固定两点1F 、2F ,将一支笔放在点M 处,移动点M ,则可画出一支曲线.这一过程中,始终有 12||||2MF MF a -=,如图(A )表示双曲线的一支(右支); 或21||||2MF MF a -=如图(B )表示双曲线的另一支(左支).把上面两个等式合并在一起,则有12||||||2MF MF a -=(即差的绝对值).2. 双曲线的定义:平面内与两定点1F 、2F 的距离的差的绝对值等于常数(小于 )的点的轨迹叫做双曲线. 这两个定点叫做双曲线的 ,两焦点的距离12F F 叫做双曲线的 .3. 在双曲线标准方程的推导过程中,思考以下问题:(1)如何建立适当的直角坐标系?有几种建立坐标系的方式?(2)根据双曲线的定义,你能得到的等式是 .(3)在标准方程的推导过程中,引入了,2b = .(4)在双曲线的定义中,强调了c a >;若a c =动点的轨迹是什么?若a c <呢?(5)在下列两种坐标系下,双曲线的标准方程分别是; .【例1】已知双曲线的两焦点为12(8,0),(8,0)F F -,双曲线上任意点到1F 、2F 的距离的差 的绝对值等于10,求此双曲线的标准方程.动动手:求解下列两题: 1.双曲线的两焦点分别为12(3,0),(3,0)F F -,①若2a =,则b = ,②若1b =,则a = . 2.双曲线的两焦点分别为12(10,0),(10,0)F F -,点(8,0)P 在双曲线上求双曲线的标准方程.【例2】如果方程11222=+--m y m x 表示双曲线,求m 的取值范围. 动动手:(1)如果方程11222=++-m y m x 表示焦点在y 轴上的双曲线,求m 的取值范围. (2)如果方程11222=++-m y m x 表示双曲线,求m 的取值范围. 【学习评价】1.椭圆134222=+n y x 和双曲线116222=-y nx 有相同的焦点,则实数n 的值是 ( ) A . 5± B . 3± C . 5 D . 92. 设21,F F 是双曲线1422=-y x 的焦点,点P 在双曲线上,且02190=∠PF F ,则点P 到x 轴的距离为 ( )A . 1B .55C . 2D . 53.P 为双曲线)0,0(12222>>=-b a by a x 上一点,若F 是一个焦点,以PF 为直径的圆与圆222a y x =+的位置关系是 ( )A . 内切B . 外切C . 外切或内切D . 无公共点或相交4.下列方程可以表示双曲线的是 ( )A.22218y x m += B. 2214y x m += C.22212||2y x m m += D. 221||2||y x m m += 5. 若方程22(2)kx k y k ++=表示双曲线,则k 的取值范围是 ( )A.2k >-B.2k <-C. 20k -<<D. 0k >6.方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则α所在的象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7. 分别过点(1,0)A -和(1,0)B 的两直线的斜率之积为1,则这两直线的交点P 的轨迹方程为 ( )A .221x y += B . 221x y -= C . 2212y x += D . 221y x -= 8.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 .9.已知双曲线过(7,A --,B 两点,焦点在x 轴上,试求双曲线的标准方程.10.相距1400m 的两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340/m s ,建立适当坐标系,求出炮弹爆炸点所在的曲线方程.【总结提高】2.2.2双曲线的简单几何性质学案【学习目标】:理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. 【学习过程】:1.回顾双曲线的定义、标准方程(焦点在分别在、y 轴上)、,,a b c 间的关系?2.写出满足下列条件的双曲线的标准方程:①3,4a b ==,焦点在x 轴上;②焦点在y 轴上,焦距为8,2a =;答:① ;② . 3.前面我们学习了椭圆的哪些几何性质? 答: 探究1双曲线的几何性质:由椭圆的哪些几何性质出发,类比探究双曲线的几何性质:(1)对于双曲线22221y x a b -=,讨论它的简单几何性质① 范围:标准方程可变为22221x y a b -=,得知221x a≥,即x a x a ≥≤-或;双曲线在不等式 所表示的区域内.② 对称性:如图,双曲线关于 都对称, 是双曲线的对称中心.③顶点:标准方程中,当0y =时x a =±,当0x =时方程无实根;曲线与x 轴的交点12(,0),(,0)A a A a -叫做双曲线的___ ___.12A A 叫做双曲线的实轴,以12(0,),(0,)B b B b -为端点的线段12B B 叫做双曲线的虚轴. 实轴与虚轴等长的双曲线叫___ ___.④ 离心率e :焦距与实轴的比值;e = .⑤ 渐近线:双曲线22221x y a b-=的渐近线方程为: .(2)你能否类比焦点在x 轴的双曲线的几何性质说出双曲线22221y x a b-=的几何性质吗?①范围:双曲线在不等式 表示的区域内.②对称性:双曲线关于 都对称, 是双曲线的对称中心. ③顶点坐标: ,实轴为 长 ;虚轴为 长 .④离心率:焦距与实轴的比值;e = . ⑤渐进线方程: .【例1】求双曲线229436x y -=的实轴长、虚轴的长、焦点坐标、离心率及渐近线的方程.动动手:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.【例2】双曲线与椭圆1362722=+y x 有相同焦点,且经过点,求其方程.1.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B . 1481622=-y x 或127922=-y x C .127922=-y x D .2212575x y -=或2211648y x -= 2.(07四川高考)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 ( )A .364 B .362 C .62 D .323.双曲线的实轴的长是10,虚轴长是8,焦点在x 轴上,则标准方程是 . 【学习评价】1. 双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为 ( )A .1±B .1-CD .2.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e 等于( )A .12-B .2C .12+D .22+3.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有 ( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线D . 相同的焦点4.双曲线的两条准线将实轴三等分,则它的离心率为( B ) A .23 B .3 C .34D . 35.设12F F ,分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AFAF =,则双曲线的离心率为( )A B C D 6.若双曲线1422=-m y x 渐近线方程为x y 23±=,则双曲线的焦点坐标是 . 7.直线1+=x y 与双曲线22123x y -=相交于B A ,两点,则AB = . 8.双曲线的渐近线方程为20x y ±=,焦距为10,求双曲线的方程.9.设12,F F 是双曲线116922=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 求12F PF ∆的面积.10.求下列双曲线的标准方程:(1)离心率为54,虚半轴长为2;(2)与椭圆2255x y +=共焦点且一条渐近线方程为0y =.【总结提高】2.3.1 抛物线及其标准方程【学习目标】:1.掌握抛物线的定义及其标准方程;2.会根据抛物线的标准方程,求焦点的坐标、准线方程,能画出图形;3.会根据抛物线的焦点坐标或准线方程或用待定系数法求抛物线的标准方程.我们知道,椭圆、双曲线有共同的几何特征:都可以看作是,在平面内在平面内与一个定点的距离和一条定直线的距离的比是常数e 的点的轨迹.(其点不在定直线上)(1)当01e <<时,是椭圆; (2)当e >1时,是双曲线;那么,当1e =时,它又是什么曲线?(预习课本56-59页) 探究1:当1e =时,即MF MH =,点M 的轨迹是什么? 可以发现,点M 随着H 运动的过程中,始终有MF MH =,即点M 与点F 和定直线l 的距离相等. 点M 生成的轨迹是如图所示的形状.我们把这样的一条曲线叫做抛物线.抛物线的定义:课本65页平面内与一个定点F 和一条定直线l 距离相等的点的轨迹 叫 抛物线 .定点F 叫做抛物线的 焦点 ;定直线l 叫抛物线的 准线 . 探究2:如何建立适当的直角坐标系求抛物线方程? 设点F 到定直线M 的距离为p . 第一步: 建系设点:第二步:建立等量关系:第三步:化简:把方程22(0)y px p =>叫做抛物线的标准方程. 其中p 为正常数,表示焦点在x 轴正半轴上.且p 的几何意义是:焦点到准线的距离. 焦点坐标为(,0)2p .准线方程为2p x =-. 探究3:方程的特点:(1)左边是二次式; (2)右边是一次式.【例1】(1)已知抛物线的标准方程是26y x =,求它的焦点坐标及准线方程; (2)已知抛物线的焦点坐标是(0,2)F - ,求抛物线的标准方程; (3)已知抛物线的准线方程为1x =,求抛物线的标准方程; (4)求过点(3,2)A 的抛物线的标准方程.【例 2 】一种卫星接收天线的轴截面如下图所示. 卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处. 已知接收天线的径口(直径)为4.8m ,深度为0.5m. 建立适当的坐标系,求抛物线的标准方程和焦点坐标.【学习评价】1.抛物线2y x =的焦点到准线的距离是 ( )A .12 B .1 C .2 D .142.抛物线)0(2<=a ax y 的焦点坐标是 ( )A .)4,0(aB .)41,0(a -C .1(0,)4aD .)0,41(a3.焦点()3,0F 的抛物线的标准方程 .4.顶点在原点,准线方程2y =的抛物线方程是 .5.焦点到准线的距离为23的抛物线标准方程是.6.焦点在直线34120x y --=上的抛物线标准方程是 .7.求抛物线24y x =上一点M 到它的焦点的距离是5,则点M 到准线的距离是 ;点M 的横坐标是 .8.将下列抛物线的焦点坐标和准线方程填入表中: (1)220y x = (2)212x y = (3)2250y x += (4)280x y +=9. (1)焦点是(3,0)F ;(2)准线方程是14x =;(3)焦点到准线的距离是2.【总结提高】2.3.2 抛物线的几何性质 学案【学习目标】:1.掌握抛物线的几何性质:范围,对称轴,定点;2.进一步掌握根据已知条件特别是利用待定系数法求抛物线的方程; 3.解决简单的问题,强化数形结合的思想,类比思想. (一) 圆锥曲线的统一定义平面内,到定点F 的距离与到定直线l 的距离比为常数e 的点的轨迹, 当01e <<时,是椭圆;当1e >时,是双曲线;当1e =时,是抛物线. (二) 抛物线的标准方程开口向右抛物线的标准方程为 ; 开口向抛物线的左标准方程为 ;开口向上抛物线的标准方程为 ; 开口向下抛物线的标准方程为 . 探究如何研究抛物线22(0)y px p =>的几何性质? 1.范围:由抛物线22(0)y px p => 有220px y =≥且0p >则0x ≥, 所以抛物线的范围为 . 2.对称性:图像关于 轴对称. 3.顶点:顶点坐标为 .4.离心率e :抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率.e =___1___.5.过焦点而垂直于对称轴的弦AB ,称为抛物线的通径,||2AB p =,2p 越大,抛物线张口越大.6.连接抛物线任意一点与焦点的线段叫做抛物线的焦半径.2pMF x =+(其中0x 是M 点的横坐标). 归纳:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;(2)抛物线只有一条对称轴,没有对称中心;(3)抛物线只有一个顶点,一个焦点,一条准线; (4)抛物线的离心率e 是确定的为1.【例】已知抛物线关于坐标轴对称,它的顶点在坐标原点,并且经过点(2,M --,求它的标准方程.【学习评价】1. 抛物线22y x =的通径长是 ( )A .1B .12C .2 D2. 过抛物线22y x =的焦点作倾斜角为45的弦AB ,则AB 的长度是 ( )A .3B .4C .2 D.3. 抛物线22y x =截直线y x b =+所得弦长为4,则b = ( )A .0B .12 C .12- D . 1- 4. 点A 的坐标为(3,1),若P 是抛物线24y x =上的一动点,F 是抛物线的焦点,则PA PF +的最小值为 ( )A . 3B . 4C . 5D . 65 .抛物线24y x =的弦AB 垂直x 轴,若||AB =,则焦点到直线AB 的距离为 .6 .直线2x y -=与抛物线24y x =交于A 、B 两点,则线段AB 的中点坐标是 . 7. 已知点(2,3)A -与抛物线22(0)y px p =>的焦点的距离是5,则P = .8. 正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线22(0)y px p =>上,求这个三角形的边长.9. 直线2y x =-与抛物线22y x =相交于A 、B 两点,求证:OA OB ⊥.10.为2的直线l 经过抛物线28y x =的焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长.2.1.1椭圆及其标准方程3.22221y x a b+= 22221y x b a+=4. (1)焦点在x 轴上,焦点坐标为(;(2)焦点在y 轴上,焦点坐标为(0,3)±;(3)焦点在x 轴上,焦点坐标为(.【例1】2214y x += . 221981y x +=.动动手:,221259y x +=.(2)221610y x += .例 2 22123y x +=.(2)22184y x +=.【学习评价】 1 C 2 B 3 16 4221913y x +=.52212.250.81y x +=或2210.81 2.25y x +=.6.11m = 7. 1m <且0m ≠8. 12m >且1m ≠.9. 0m ≠,12m ≠且1m ≠.10.02m <<或23m <<.2.1.2椭圆的简单几何性质【例1】椭圆的长轴长为212a =,短轴长为26b =,离心率c e a ==,焦点坐标分别为1(0,F -,2F ,四个顶点坐标分别为12(0,6),(0,6)A A -,12(3,0),(3,0)B B -. 【例2】221y x +=.动动手:,221y x +=.【例3】12121114||(||||)2(1)2233S F F y y =⨯+=⨯⨯+=.动动手:22152y x +=.【学习评价】1 B 2. D 3.513.4. e =.5 2225(8x y +-=.6. B 7. A 8.2 9.1.10.相切时, m = m << m <m >2.2.1双曲线及其标准方程学案学习过程 2.22195x y +=. 【例1】2212539y x -=.动动手:1.①b =,② a =.2.2216436x y -=. 【例2】12m -<<.动动手:(1)2m >. (2).2m ≠ 【学习评价】1. B 2. B 3. C4. 14k k ><-或 .5.2212575x y -=.6. B 7. C 8. D 9. B 10.,221260100229900x y -=. 2.2.2双曲线的简单几何性质.【学习过程】:【例1】,实轴长24a =,虚轴长26b =,半焦距c =1(F ,2F ,离心率c e a ==023x y ±=. 动动手: 043y x±=.【例2】22145y x -=. 【学习评价】1. B 2.C3.(.4.221205x y -=或221520y x -=.5.1sin 602S mn == 6. D 7. B 8.B 9.10.(1)2291644x y -=,或2291644y x -=.(2)2213y x -=.2.3.1 抛物线及其标准方程学案【例1】(1)32x =-.(2)28x y =-. (3)24y x =-.(4243y x =,或 292x y =.【例2 】211.52y x =, (2.88,0).【学习评价】1. A2. C3.212y x=.4.28x y=-.5.222244443333y x y x x y x y ==-==-或或或.6221612y x x y ==-或.7. 4 .8. (1)(5,0)5x =-(2)1(0,)818y =-(3) 5(,0)8-58x =(4)(0,2)-2y =9. 212y x =;(2)2y x =-;(3)24y x =或24y x =-或24x y =或24x y =-.2.3.2抛物线的几何性质【例】2x =.【学习评价】1. B 2. B 3. C 4. B . 5. ||AB =6 .(4,2)7. 4 8. ||AB =p 9.略 10. ||10AB =。

(好题)高中数学选修1-1第二章《圆锥曲线与方程》测试(包含答案解析)(1)

(好题)高中数学选修1-1第二章《圆锥曲线与方程》测试(包含答案解析)(1)

一、选择题1.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为抛物线C 的焦点.若4FA FB =,则k =( )A .45B C .23D2.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=3.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .64.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A 、B 两点,则线段AB 的长为( )A .B .C .D .85.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫ ⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( )A BC D6.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与圆()2239x y -+=相交于A 、B 两点,若2AB =,则该双曲线的离心率为( )A .5B .2C .3D .47.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .22B 2C .322D .328.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .19.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分10.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .1102+ B .1222+ C 51 D 3111.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条12.已知动点(),P x y ()()2222522x y x y a a+-++=+(a 为大于零的常数)﹐则动点P 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线二、填空题13.在平面直角坐标系xOy 中,1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的焦点.若椭圆C 上存在点P ,使得12|1|||2PO F F =,则椭圆C 的离心率的取值范围为________.14.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线:2230l kx y ka --=与双曲线C 交于A 、B 两点.若7AF FB =,则实数k =________.15.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.16.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.17.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________18.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________.19.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.A B 是抛物线24y x =上两个不同的点,A 、B 纵坐标之和为4. (1)求直线AB 的斜率;(2)O 为原点,若OA OB ⊥,求直线AB 的方程.22.已知直线:1l y kx =+过抛物线()2:20E x py p =>的焦点,且与抛物线E 交于A 、B 两点,点M 为AB 中点.(1)求抛物线E 的方程;(2)以AB 为直径的圆与x 轴交于C 、D 两点,求MCD △面积取得最小值时直线l 的方程.23.已知四点1234,1,,(1,1),(0,1)P P P P ⎛⎛- ⎝⎭⎝⎭中恰有三点在椭圆2222:1x y C a b+=上,其中0a b >>. (1)求,a b 的值;(2)若直线l 过定点(2,0)M 且与椭圆C 交于,A B 两点(l 与x 轴不重合),点B 关于x 轴的对称点为点D .探究:直线AD 是否过定点,若是,求出该定点的坐标;若不是,请说明理由.24.已知椭圆()2222:10x y C a b a b+=>>,A ,B 为椭圆的左、右顶点,点()0,2N -,连接BN 交椭圆C 于点Q ,ABN 为直角三角形,且:3:2NQ QB = (1)求椭圆的方程;(2)过A 点的直线l 与椭圆相交于另一点M ,线段AM 的垂直平分线与y 轴的交点P 满足154PA PM ⋅=,求点P 的坐标. 25.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △62时,求直线l 的方程. 26.已知椭圆C :22221x y a b +=(0a b >>)32.(1)求椭圆C 的标准方程;(2)过点(1,0)P 的直线l 与椭圆C 交于A ,B 两点若ABO 的面积为35(O 为坐标原点),求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,由4FA FB =可得出124y y =,代入韦达定理求出正数m 的值,即可求得k 的值.【详解】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,联立228x my y x=-⎧⎨=⎩,整理得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由4FA FB =得()12242x x +=+,即124my my =,124y y ∴=,12258y y y m ∴+==,可得285m y =,则22122844165m y y y ⎛⎫==⨯= ⎪⎝⎭, 0m >,解得54m =,因此,145k m ==. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.2.D解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线0x y -+=过(,0)F c -,所以00c --+=,得c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-, 所以221222122(2)ABy y b b k x x a a-==-⋅-=-, 又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.3.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.4.D解析:D 【分析】写出直线l 的方程,设点()11,A x y 、()22,B x y ,联立直线l 与抛物线的方程,列出韦达定理,利用抛物线的焦点弦长公式可求得AB . 【详解】抛物线24y x =的焦点()1,0F ,直线l 的方程为1y x =-,设点()11,A x y 、()22,B x y联立214y x y x=-⎧⎨=⎩,可得2610x x -+=,2640∆=->,所以,126x x +=,由抛物线的焦点弦长公式得1228AB x x =++=. 故选:D. 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式.5.B解析:B 【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e =故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.6.C解析:C 【分析】设双曲线的渐近线方程为y kx =,其中bk a=±,利用勾股定理可求得k 的值,即可求得b a,再由双曲线的离心率公式e =即可求得双曲线的离心率. 【详解】设双曲线的渐近线方程为y kx =,其中bk a=±, 圆()2239x y -+=的圆心为()3,0C ,半径为3r =,圆心C 到直线y kx =的距离为d =,2AB =,由勾股定理可得2222AB r d ⎛⎫=+ ⎪⎝⎭,即2219+=,解得k =±ba∴=,因此,该双曲线的离心率为3c e a =====. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.7.C解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-,不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB的斜率为21=-∴直线AB的方程为1)y x =-,由241)y x y x ⎧=⎪⎨=-⎪⎩,整理可得22520x x -+=, 解得12x =,212x = 当212x =时,2y = 因此AOB 的面积为:121111||||||||112222AOBAOFBOFSSSOF y OF y =+=+=⨯⨯⨯. 故选:C. 【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.8.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解. 【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.9.D解析:D 【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线. 【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离, 因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.10.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩,又P 在双曲线上,∴2222(2)199a c b a b --=,解得12e =(12舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.11.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解;210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.12.C解析:C 【分析】由a 为大于零的常数,可知5a a+的最小值,再根据两点间距离公式得几何意义以及椭圆定义判断轨迹. 【详解】的几何意义为点(),P x y 与点(0,2)A 间的距离,的几何意义为点(),P x y 与点(0,2)B -间的距离,且4AB =又由a 为大于零的常数,可知54a a +≥=>,当且仅当5a a=,即a =54a a=+>, 即动点P 到点A 与到点B 的距离之和为定值,且大于AB , 所以动点P 的轨迹为椭圆, 故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.二、填空题13.【分析】先分析出得到消去b 整理出ac 的齐次式求出离心率的范围【详解】由落在椭圆上则又得:∴由得:即解得:又∴故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件找到abc 的关系消去b 构解析:⎫⎪⎪⎣⎭【分析】先分析出||b PO a ≤≤,得到b c a ≤<,消去b ,整理出a 、c 的齐次式,求出离心率的范围. 【详解】由P 落在椭圆2222:1(0)x y C a b a b +=>>上,则||b PO a ≤≤.又12|1|||2PO F F =得:||PO c = ∴b c a ≤<由b c ≤得:22b c ≤,即222a c c -≤,解得:2c e a =≥又1e <,∴12e ≤<故答案为:2⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.14.【分析】由直线方程过右焦点得的关系设直线方程与双曲线方程联立消去应用韦达定理得出由得这样结合起来可得值【详解】在中令得所以则设由消去得由得所以化简得故答案为:【点睛】方法点睛::本题考查直线与双曲线解析:【分析】由直线方程过右焦点得,a b 的关系,设1122(,),(,)A x y B x y ,直线方程与双曲线方程联立消去x ,应用韦达定理得出1212,y y y y +,由7AF FB =,得127y y =-,这样结合起来可得k 值.【详解】在2230kx y ka --=中令0y =得32a x =,所以32a c =,则222254a b c a =-=,设1122(,),(,)A x y B x y ,由222212230x y a bkx y ka ⎧-=⎪⎨⎪--=⎩,消去x 得22222223504b ab a b a y y k k ⎛⎫-++= ⎪⎝⎭, 2122223kab y y a k b+=-,2221222254()k a b y y b a k =-, 由7AF FB =得127y y =-,212222236kab y y y a k b +=-=-,222222()kab y a k b =--, 所以224222212222222225774()4()k a b k a b y y y a k b b a k =-=-⨯=--,化简得2221235b k a ==,k =.故答案为: 【点睛】方法点睛::本题考查直线与双曲线相交问题,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,由直线方程与双曲线方程联立,消元后应用韦达定理(本题得)1212,y y y y +,已知条件又得127y y =-,这样结合起来可求得k 值.15.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 16.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系1【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF ,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线3()y x c =--的倾斜角为α,则tan 3α=-,0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则22211,213MF MF ==-=由椭圆定义得122||||31a MF MF =+=+∴椭圆的离心率231231c e a ===-+. 故答案为:31-. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.17.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3 【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.18.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a =,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.19.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点,所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.(1)1;(2)y x =或4y x =-. 【分析】(1)法一:设()11,A x y ,()22,B x y 代入抛物线方程相减结合斜率公式即可求得;法二:设直线方程与抛物线联立结合韦达定理求得结果;(2)由OA OB ⊥得0OA OB ⋅=即12120x x y y +=结合两根关系可求得m ,即可求直线方程. 【详解】(1)法一:设()11,A x y ,()22,B x y ,则2112224,4,y x y x ⎧=⎨=⎩两式相减得()()()1212124y y y y x x +-=-. ∵124y y +=,∴()()121244y y x x -=-. 根据题意可知12x x ≠,∴12121AB y y k x x -==-, ∴直线AB 的斜率为1.法二:据题意直线AB 斜率存在,可设直线AB 的方程为y kx m =+, 与24y x =联立得204k m y y -+=,则1244y y k+==, ∴1k =,∴直线AB 的斜率为1.(2)由(1)得,124y y +=,124y y m ⋅=, 由题意,0OA OB ⋅=,即()221212121214016x x y y y y y y m m +=+=+=, 解得,0m =或4m =-.所以,直线AB 的方程为y x =或4y x =-. 【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. 22.(1)24x y =;(2)1y =. 【分析】(1)求出抛物线E 的焦点坐标,将焦点坐标代入直线l 的方程,求出p 的值,即可求得抛物线E 的方程;(2)设点()11,A x y 、()22,B x y ,联立直线l 与抛物线E 的方程,求出点M 的坐标,求出点M 到CD 的距离以及CD ,可得出MCD △的面积的表达式,利用函数的单调性可求得MCD △面积的最小值,进而可求得对应的直线l 的方程. 【详解】(1)抛物线2:2E x py =的焦点为0,2p ⎛⎫ ⎪⎝⎭,则0,2p ⎛⎫⎪⎝⎭在:1l y kx =+上,12p ∴=,2p ∴=,所以,抛物线E 的方程为24x y =; (2)设()11,A x y 、()22,B x y ,由241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以,212121616044k x x k x x ⎧∆=+>⎪+=⎨⎪=-⎩, 则AB 中点()22,21Mk k +,()21241AB x k =-==+,所以,以AB 为直径的圆M 的半径()221r k=+,M 到CD 的距离221d k=+,CD ==((221221212MCD S k k ∴=⨯⨯+=+△,令()20k t t =≥,则(21MCDSt =+[)0,+∞单调递增.当0t =时,即0k =时,MCD Sl 的方程为1y =.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.23.(1)1a b ⎧=⎪⎨=⎪⎩2)直线AD 过定点(1,0)Q .【分析】(1)由于121,,1,22P P ⎛⎫⎛-- ⎪ ⎪ ⎝⎭⎝⎭关于原点对称,从而可得12,PP 和4P 在椭圆上,然后将这些点的坐标代入椭圆方程中可求出,a b 的值;(2)由题意可知直线l 的斜率存在,则设直线l 为2(0)x ty t =+≠,与椭圆方程联立成方程组,消去x ,得()222420t y ty +++=,再由根与系数的关系得12122242,22t y y y y t t +=-=++,而直线AD 方程为()()()122112210y y x x x y x y x y ++--+=,代入化简可得答案【详解】因为12,1,P P ⎛⎛- ⎝⎭⎝⎭关于原点对称,由题意得12,P P 和4P 在椭圆上, 将14,P P 的坐标代入22221x y a b +=得:222111211a b b ⎧+=⎪⎪⎨⎪=⎪⎩解得:1a b ⎧=⎪⎨=⎪⎩ (2)显然,l 与x 轴不垂直,设l 的方程为:2(0)x ty t =+≠()22222242012x ty t y ty x y =+⎧⎪⇒+++=⎨+=⎪⎩ 设()()1122,,,A x y B x y ,则()22,D x y - 且12122242,22t y y y y t t +=-=++ 直线AD 方程为()()()122112210y y x x x y x y x y ++--+= 令0y =,得()()122112211212121222242214ty y ty y x y x y ty y tx y y y y y y t++++===+=+=+++-,故直线AD 过定点(1,0)Q . 【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是设出直线l 的方程为:2(0)x ty t =+≠,与椭圆方程联立方程组,消元后利用根与系数的关系可得12122242,22t y y y y t t +=-=++,进而可得AD 方程为()()()122112210y y x x x y x y x y ++--+=化简可得答案,属于中档题24.(1)2214x y +=;(2)30,2⎛⎫± ⎪⎝⎭,310,⎛⎫± ⎪ ⎪⎝⎭. 【分析】(1)用待定系数法求椭圆方程;(2)设出直线l ,表示出M 的坐标,利用154PA PM ⋅=,求出点P 的坐标. 【详解】(1)由题意可得:三角形ABN 为等腰直角三角形,所以2a =4,即a =2.又由()0,2N -,()2,0B ,:3:2NQ QB =所以64,55Q ⎛⎫ ⎪⎝⎭, 代入22221x y a b+=得:222264()()551a b +=,解得:b =1. 所以椭圆的方程为2214x y +=(2)由(1)可知()2,0A -.设M 点的坐标为()11,x y , 直线l 的斜率显然存在,设为k ,则直线l 的方程为()2y k x =+于是A ,B 两点的坐标满足方程组()22214y k x x y ⎧=+⎪⎨+=⎪⎩,由方程组消去y 并整理, 得()()222214161640kxk x k +++-=由212164214k x k --=+,得2122814k x k-=+,从而12414k y k =+, 设线段AB 是中点为M ,则M 的坐标为22282,1414k k k k ⎛⎫- ⎪++⎝⎭以下分两种情况:①当0k =时,点M 的坐标为()2,0.线段AM 的垂直平分线为y 轴,于是()02,PA y =-,()02,PM y =-由154PA PM ⋅=得02y =± ②当0k ≠时,线段AM 的垂直平分线方程为2222181414k k y x k k k ⎛⎫--=+ ⎪++⎝⎭令0x =,解得02614ky k -=+()02,PA y =--,()110PM x y y =⋅- ()()210102222228646214141414k k k k PA PM x y y y k k k k --⎛⎫⋅=---=++ ⎪++++⎝⎭()()422241615115414k k k +-==+ 整理得12k =±,032y =±综上032y =±或0y =. 点P 的坐标是30,2⎛⎫± ⎪⎝⎭,0,⎛ ⎝⎭. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"坐标法"是解析几何中常见的基本方法,把题目中的条件用坐标翻译出来,把几何条件转化为代数运算.25.(1)22143x y +=;(2)1x y =±+.【分析】(1)设椭圆Γ的标准方程为22221x y a b+=,连接AF ,由AFB AFC ≌,得到ABE FCE △≌△,再利用椭圆定义求解.(2)设直线l 的方程为:1x my =+,联立221143x my x y =+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y -,然后由PNM △求解. 【详解】 (1)如图所示:由题意可设椭圆Γ的标准方程为22221x y a b+=,连接AF ,可得AFB AFC ≌,所以,,4ABE FCE EF AE EA EB EF EB FB =+=+==≌,由椭圆定义可知:2,1a c ==,3b =所以椭圆Γ的方程为22143x y +=.(2)由题意知,(1,0)B ,设直线l 的方程为:1x my =+,设()()1122,,,M x y N x y ,联立221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:()2234690m y my ++-=,可知212212134m y y m +-=+, 2122111234PMNm Sy y m +∴=⨯-⨯=+. 226162347m m +∴=+, 解得1m =±,所以直线l 的方程为1x y =±+. 【点睛】方法点睛:1、解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2、解决直线与曲线的弦长时,往往设直线与曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),则()()2121222121221(1)(1)44AB k x x x x y y y y k ⎡⎤⎡⎤=+=+⎣⎦-⋅+-⋅⎣+⎦k 为直线斜率).注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.26.(1)2214x y +=;(2)10x -=.【分析】(1)由椭圆的性质列方程可得24a =,21b =,即可得解;(2)设直线l 的方程,联立方程组结合韦达定理可得12y y -,再由三角形面积即可解得m =,即可的解.【详解】(1)由题意可得22222c a b c a b ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,解得24a =,21b =,故椭圆C 的标准方程为2214x y +=;(2)由题意可知直线l 的斜率不为0,则设直线l 的方程为1x my =+,()11,A x y ,()22,B x y .联立22114x my x y =+⎧⎪⎨+=⎪⎩,整理得()224230m y my ++-=, ()222(2)44(3)16480m m m ∆=-+⨯-=+>,则12224m y y m +=-+,12234y y m =-+, 故12y y -=== 因为ABO 的面积为35,所以12113||1225OP y y -=⨯==,设t =≥,则22315t t =+,整理得(31)(3)0t t --=,解得3t =,所以m =,故直线l 的方程为1x =+,即10x ±-=. 【点睛】关键点点睛:解决本题的关键是将三角形面积转化为121||2OP y y ,结合韦达定理解方程即可得解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章章末检测(B )(时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1. 中心在原点,焦点在 椭圆的方程是( ) 2 2A 』+ y- = 1 代81十72 2 2 宀L= 181 45 x 轴上,若长轴长为18, 且两个焦点恰好将长轴三等分,则此 2 2 f x y / B.茁+9 =12 2 D& + 出=1 81 36 2. 平面内有定点 A 、B 及动点P ,设命题甲是“ 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的 (A .充分不必要条件B .必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 3. 设0, a € R ,则抛物线y = ax 2的焦点坐标为( ) (0,右 (0,右 为斜边的直角三角形的直角顶点 P 的轨迹方程是 |PA|+ |PB|是定值”,命题乙是“点 P )a c 、 A. (^,0) c.( a ,0) 4. 已知 M ( — 2,0), N (2,0),则以 MN) A . x 2+ y 2= 2 c . x 2+ y 2= 2(X M ±2) 2 2 B .D . B . D . x 2 + y 2= 4 2 2x + y = 4(x M ±2) 5. 已知椭圆予+泊=1 (a>b>0)有两个顶点在直线 x + 2y = 2上,则此椭圆的焦点坐标是 )A . ( ± 3, 0)C . ( 土. 5, 0) x 6.设椭圆£2 + 则椭圆的离心率为( 2 A. 2 22 1 = 1m — 1 )1 巧B . (0, 土. 3)(0, ±. 5) P 到其左焦点的距离为 3,至U 右焦点的距离为 1 , (m>1)上一点 2x_ a2— 1 c.p 2 b 2= 1,点 A , 7.已知双曲线的方程为 的右焦点F 2, |AB|= m , F 1为另一焦点,则△ ABF 1的周长为( ) A . 2a + 2mC . a + m &已知抛物线y 2= 4x 上的点 距离为d 2,贝U d 1 + d 2的最小值是(12 6 A ・T B.69.设点A 为抛物线 A . — 2 C .— 2 或 0 B 在双曲线的右支上,线段 AB 经过双曲线 B . 4a + 2m D . 2a + 4m P 到抛物线的准线的距离为 d 1,到直线3x — 4y + 9= 0的)C . y 2= 4x 上一点, B .D . .5 D W B (1,0),且|AB|= 1,则A 的横坐标的值为() 占 八、、 0—2或210.从抛物线y 1 2= 8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM|= 5,设抛物线的焦点为F ,则△ PFM 的面积为()A . 5,6B . 6.5C . 10.2D . 5.2 11. 若直线y = kx -2与抛物线y 3 4= 8x 交于A , B 两个不同的点,且AB 的中点的横坐标 为2,则k 等于( )A . 2 或—1B .- 1C . 2D . 1 ± 52 212 .设F 1、F 2分别是双曲线X - y= 1的左右焦点。

若P 点在双曲线上,且P ?1 P ?2= 0,5 4 |PF 1+ PF 2I 等于( )二、填空题(本大题共4小题,每小题5分,共20分)13 •以等腰直角△ ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为14. 已知抛物线 C , y 2= 2Px (P>0),过焦点F 且斜率为k ( k>0)的直线与C 相交于A 、 B 两点,若 AF = 3FB ,贝V k = ______ .15.已知抛物线y 2= 2Px (P>0),过点M (p , 0)的直线与抛物线于 A 、B 两点,OA OB16. 已知过抛物线 y 2= 4x 的焦点F 的直线交该抛物线于 A 、B 两点,AF|= 2,则|BF| 三、解答题(本大题共6小题,共70分) 17.(10分)求与椭圆x 9 +十=1有公共焦点,并且离心率为 \5的双曲线方程.2X 21的直线l 过椭圆-+ y 2 = 1的右焦点F 交椭圆于A 、B 两点,求18. (12分)已知斜率为 弦AB 的长.~夕 ~夕220. (12 分)已知点A (0, - 2), B ( 0, 4),动点P (x, y)满足PA PB = y —8. (1)求动点P的轨迹方程;⑵设(1)中所求轨迹与直线y= x+ 2交于C、D两点.求证:0C丄OD (0为原点).21. (12 分)已知抛物线C: y2= 2px(p>0)过点A(1 , —2).(1) 求抛物线C的方程,并求其准线方程.(2) 是否存在平行于0A(0为坐标原点)的直线I,使得直线I与抛物线C有公共点,且直线0A 与I的距离等于二5?若存在,求出直线I的方程;若不存在,说明理由.522. (12分)已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y= 4x2的焦点,离心率为曽.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线I交椭圆C于A, B两点,交y轴于点M,若MA = m F A, MB = nFB,求m + n 的值.第二章圆锥曲线与方程(B )答案1. A [2a = 18,v 两焦点恰好将长轴三等分,1「2c = —x 2a = 6,「a = 9, c = 3,3 「2 2 2b = a —c = 72,2 2故椭圆的方程为x +匕=1.]81 722. B [点P 在线段AB 上时|PA|+ |PB|是定值,但点 P 轨迹不是椭圆,反之成立,故选 B.]3. D4. D [P 在以MN 为直径的圆上.]5. A6. B [2a = 3 + 1 = 4.「a = 2, 又'm 2— m 2— 1 = 1, •••离心率e = c = £]a 2」7. B 「.A , B 在双曲线的右支上,• |BF 1|—|BF 2|= 2a , —(|BF 2|+ |AF 2|)= 4a , |BF 1|+ |AF 1| = 4a + m ,「./ABF 1 的周长为8. A9. B [由题意B 为抛物线的焦点.令 10. Ay = kx —211. C [由$ 2消去y 得,[y = 8x2 2kx — 4(k + 2)x + 4= 0,故△= [ — 4(k + 2)]2 — 4k 2x 4 = 64(1 + k)>0 , 4(k + 2 )解得 k> — 1,由 * + X 2=亡=4,解得 k =— 1 或 k = 2,又 k>— 1,故 k = 2.] 12. B [因为 P F 1 P F 2= 0,所以 P F 1± P F 2, 则 |P F 1|2+ |P F 2|2= |F 1F 2|2= 4c 2= 36,故裨1+ 薛2|2=l 評『+ 2P F 1 P F 2+ 诽2|2= 36,所以 |P^+ P F 2|= 6.故选 B.]|AF 1|— |AF 2|= 2a , |BF 1|+ |AF 1| 4a + m + m = 4a + 2m.]点时,d 1 + d 2最小值为^=自A 的横坐标为 x o ,则 |AB|= x o + 1 = 1,「x o = 0.]P 点为直线FM 与抛物线的交[如图所示过点13. 22或,2 — 1解析 设椭圆的长半轴长为 a ,短半轴长为b ,半焦距为c ,当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有 b = c ,此时可求得离心率同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为 m ,故有2c = m,2a = (1 + .2)m , 所以,离心率e = c =竽=m 一 = 2- 1.a 2a(1+>/2”14/.3解析 设直线I 为抛物线的准线,过 A , B 分别作AA 1, BB 1垂直于| , A 1, B 1为垂足, 16. 2 解析 设点A ,B 的横坐标分别是X 1,X 2,则依题意有焦点F(1,0), |AF|= X 1+ 1 = 2 ,X 1 = 1,直线 AF 的方程是 x = 1 ,故 |BF|=|AF|= 2. X 2 y 217.解 由椭圆方程为9 + 4 = 1,知长半轴长a 1 = 3,短半轴长b 1 = 2,焦距的一半 C 1= a 2— b 2= 5 ,•焦点是 F 1( — . 5 , 0) , F 2( .5 , 0),因此双曲线的焦点也是 F 1( —■. 5 , 0) , F 2( .5 , 0),2 2设双曲线方程为拿一泊=1 (a>0 , b>0),由题设条件及双曲线的性质’c = .5 2= 2 . b 2 a=2得c =a + b,解得c _5b= 1a = T2故所求双曲线的方程为x —y 2= 1. 418. 解设A 、B 的坐标分别为2 2由椭圆的方程知 a =4 , b = 1 , 直线l 的方程为y = x — 3.2将①代入4 + y 2= 1,化简整理得 5x 2— 8\/3x + 8= 0 , 8/38•X 1+ X 2= , X 1X 2 =5 5 ••|AB|=#(X 1 — X 2 $+ (y 1 — y2( =不853 219. 解 设动点M 的坐标为(x , y).设/MAB =/MBA = a 即卩 a= 2 3,nrt2ta n 3—•'tan a= tan 2 3,贝U tan a= -------- .①c=^2 ; 2c 2 '过 B 作 BE 垂直于 AA 1 与 E ,则 |AA 1|=|AF|, |BB 1|=|BF|,由 AF = 3FB ,•••/ BAE = 60° ••• tan / BAE = 3. 即 k =~j 3. 15.— p 2 • - cos / BAE = |AE = |AB| = 1 2’A(x 1 , y"、B(x 2 , y 2). c 2= 3, AF( 3 , 0).—4 X 8 = 85 5'1 —tan 3y y(1)如图(1),当点M在x轴上方时,tan 3= , tan a= ',x+ 1 2—x将其代入①式并整理得3x2—y2= 3 (x>0, y>0);⑵如图⑵,当点M在x轴的下方时,—y , —ytan 3= , tan a= ■,x+ 1 2—x将其代入①式并整理得3x2—y2= 3 (x>0, y<0);y1r A(rW;\ 一o __ T x0 Rg x1⑴ (2)⑶当点M在x轴上时,若满足a= 2 3 M点只能在线段AB上运动(端点A、B除外), 只能有a= 3= 0.综上所述,可知点M的轨迹方程为3x2—y2= 3(右支)或y= 0( —1<x<2).20. (1)解-.A(0, —2), B(0,4),•- R A= (—x,—2—y), PB = (—x, 4 —y).则FA PB= (—x,—2—y) (•—x,4 —y)2 2 八=x + y —2y —8.•—8 = x + y —2y—8,「・x = 2y.2⑵证明将y= x+ 2代入x = 2y,2得x = 2(x+ 2),2即x —2x—4= 0,且△= 4+ 16>0 ,设C、D两点的坐标分别为(X1, y1),(X2, y2),则有X1 + X2= 2, X1x2= — 4.而y1 = X1+ 2, y2= X2 + 2,•'y1y2= (X1 + 2)(x2+ 2)=X1X2+ 2(X1 + X2) + 4= 4,y1 y2 y^ 彳•k°C kOD= X1 X2= X1X2=—1,••OC JOD.21. 解(1)将(1,—2)代入y2= 2px,得(—2)2= 2p 1, 所以p= 2.故所求的抛物线C的方程为y2= 4x,其准线方程为x=— 1.(2)假设存在符合题意的直线I,其方程为y=—2x+ t.人教A 版数学【选修1-1】学案y =- 2x +1, 2由丨 2 得 y 2+ 2y - 2t = 0.y 2= 4x因为直线I 与抛物线C 有公共点, 1 所以△= 4+ 8t >0,解得 t > — 2- 另一方面,由直线 OA 到I 的距离d =半 5 可得^5= 15,解得t =±i. i 1因为一1?[—2,+a ), 1 q —2,+ m ), 所以符合题意的直线I 存在,其方程为2x + y — 1 = 0. 2 2 22.解(1)设椭圆C 的方程为学+ *= 1 (a>b>0). 抛物线方程可化为x 2= 4y ,其焦点为(0,1), 则椭圆C 的一个顶点为(0,1),即b = 1. 由e = c =\/事=誓 a * a 5 得a 2= 5,所以椭圆C 的标准方程为2 x +y 2=1. ⑵易求出椭圆C 的右焦点F(2,0), 设A(X 1, y”,B(X 2, y 2), M(0, y °),显然直线I 的斜率存在,设直线 2x 2 y = k(x — 2),代入方程-+ y = 1, 得(1 + 5k 2)x 2— 20k 2x + 20k 2— 5= 0. 20k 2 20k 2- 5 -x 1 + x2= 2, x1x 2= 2 ・ 1 + 5k 1+ 5k I 的方程为又 MA = (X 1, y 1 — y °), MB =(X 2, y 2 — y 。

相关文档
最新文档