山东淄博市2017年中考数学试题含答案

合集下载

山东省淄博市2017年中考数学真题试题-真题卷

山东省淄博市2017年中考数学真题试题-真题卷
1 其面积 S2 ;
6 如图 3,分别将 AC, BC 边 4 等分, D1, D2 , D3, E1, E2 , E3 是其分点,连接 AE3 , BD3 交于点 F3 ,得到四边
1 形 CD3F3E3 ,其面积 S3 10 ;
……
按照这个规律进行下去,若分别将 AC, BC 边 (n 1) 等分,…,得到四边形 CDn Fn En ,其面积
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点 C ,满足以 B, O, C 为顶点的三角形的面积为 2,求点 C 的坐标; (3)如图 2,若点 M 在这条抛物线上,且 MBO ABO ,在(2)的条件下,是否存在点 P ,使得 POC ∽ MOB ?若存在,求出点 P 的坐标;若不存在,请说明理由.
Sn _________.
三、解答题:本大题共 7 个小题,共 52 分.解答要写出必要的文字说明、证明过程或演算步骤.
x2 7x
18.解不等式:

23
19.已知:如图, E, F 为 Y ABCD 对角线 AC 上的两点,且 AE CF .连接 BE, DF .
求证: BE DF .
20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口 420km
空气污染指数( ) 30 40
70 80
90
110
120
140
天数( t )
1
2
3
5
7
6
4
2
说明:环境空气质量指数(AQI)技术规定: 50 时,空气质量为优; 51 100 时,空气质量为良;
101 150 时,空气质量为轻度污染;151 200 时,空气质量为中度污染,……

山东淄博2017中考试题数学卷(word版含解析)

山东淄博2017中考试题数学卷(word版含解析)

2017年山东省淄博市中考数学试题(word 版)第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A .32 B .32- C .23 D .23- 【考点】相反数.【分析】根据:“性质符号相反,绝对值相等的两个数是互为相反数”求解即可.【解答】解:23-的相反数是23, 故选:C .2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A .6110⨯B .410010⨯C .7110⨯D .50.110⨯【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:100万=1000000=1×106,故答案为:A .3.下列几何体中,其主视图为三角形的是( )A .B .C .D .【分析】主视图是从物体的正面看,所得到的图形.【解答】解:主视图是从物体的正面看,所得到的图形为三角形的是D 故选:D .【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.下列运算正确的是( )A . 632a a a =⋅B .235()a a -=-C . 109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-【分析】根据整式的运算法则即可求出答案.【解答】解:A 原式=a 5,故A 不正确;B 原式=a ﹣6,故B 不正确;D 原式=b 2c 2,故D 不正确;故选C【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.若分式||11x x -+的值为零,则x 的值是( ) A .1 B .-1 C . 1± D .2【分析】分式的分母不能为0【解答】解: ∵||11x x -+=0 ∴⎩⎨⎧≠+=-0101x x ∴1=x故选A【点评】本题考查分式的意义,解题的关键是熟练记住知识点,本题属于基础题型.6.若3a b +=,227a b +=,则ab 等于( )A .2B .1C .-2D .-1【考点】完全平方公式,代数式的值,整体思想【分析】根据完全平方公式对3a b +=变形,再整体代入可得.【解答】解:∵3a b +=∴()929222=++=+b ab a b a∵227a b +=∴ab =1故选B7.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A .2(3)2y x =+-B .2(3)2y x =++C . 2(1)2y x =-+D .2(1)2y x =--【考点】二次函数平移【分析】利用二次函数平移规律:①将抛物线解析式转化为顶点式()k h x y +-=2,确定其顶点坐标()k h ,;②h 值正右移,负左移;k 值正上移,负下移,概括成八字诀“左加右减,上加下减”,求出即可。

山东省淄博市2017年中考数学真题试题 (1)

山东省淄博市2017年中考数学真题试题 (1)

淄博市2017年初中学业水平考试数学试题第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A.32 B.32- C.23 D.23-2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A.6110⨯ B.410010⨯ C.7110⨯ D.50.110⨯ 3.下列几何体中,其主视图为三角形的是( )A. B. C. D.4.下列运算正确的是( )A.236a a a =g B.235()a a -=-C. 109(0)a a a a ÷=≠ D.4222()()bc bc b c -÷-=- 5.若分式||11x x -+的值为零,则x 的值是( ) A.1 B.-1 C. 1± D.2 6.若3a b +=,227a b +=,则ab 等于( ) A.2 B.1 C.-2 D.-17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A.223)(x y -+= B.223)(x y ++= C. 221)(x y +-= D.221)(x y --=8.若关于x 的一元二次方程2012x kx --=有两个不相等的实数根,则实数k 的取值范围是( ) A.1k >- B.1k >-且0k ≠ C. 1k <- D.1k <-或0k =9.如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若4BC =,则图中阴影部分的面积是( )A.2π+ B.22π+ C. 4π+ D.24π+10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果,m n 满足||1m n -≤,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38 B.58 C. 14 D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h 与注水时间t 之间的变化情况的是( )A. B.C. D.12.如图,在Rt ABC ∆中,90ABC ∠=o,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则EF的长为( )A.52 B.83 C. 103 D.154第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 13.分解因式:328x x -= .14.已知,αβ是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E F ,则DE +DF =.,17.设ABC ∆的面积为1.如图1,分别将,AC BC 边2等分,11D E ,是其分点,连接11,AE BD 交于点1F ,得到四边形111CD F E ,其面积113S =; 如图2,分别将,AC BC 边3等分,1212,,,D D E E 是其分点,连接22,AE BD 交于点2F ,得到四边形222CD F E ,其面积216S =; 如图3,分别将,AC BC 边4等分,123123,,,,,D D D E E E 是其分点,连接3AE ,3BD 交于点3F ,得到四边形333CD F E ,其面积3110S =; ……按照这个规律进行下去,若分别将,AC BC 边(1)n +等分,…,得到四边形n n n CD F E ,其面积n S =_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解不等式:2723x x--≤. 19.已知:如图,,E F 为ABCD Y 对角线AC 上的两点,且AE CF =.连接,BE DF . 求证:BE DF =.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 30 40 70 80 90 110 120140 天数(t )12357642说明:环境空气质量指数(AQI)技术规定:50ω≤时,空气质量为优;51100ω≤≤时,空气质量为良;101150ω≤≤时,空气质量为轻度污染;151200ω≤≤时,空气质量为中度污染,……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ∆ABC 的直角边AC 在x 轴上,∠ACB =90o,AC =1.反比例函数ky =(k >0)的图象经过BC 边的中点D (3,1).x(1)求这个反比例函数的表达式;(2)若∆ABC 与∆EFG 成中心对称,且∆EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.①求OF 的长;②连接AF ,BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F . (1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的O e (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的O e 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t .(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.。

山东省淄博市2017年中考数学真题试题 (1)

山东省淄博市2017年中考数学真题试题 (1)

淄博市2017年初中学业水平考试数学试题第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A.32 B.32- C.23 D.23-2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A.6110⨯ B.410010⨯ C.7110⨯ D.50.110⨯ 3.下列几何体中,其主视图为三角形的是( )A. B. C. D.4.下列运算正确的是( )A.236a a a =g B.235()a a -=-C. 109(0)a a a a ÷=≠ D.4222()()bc bc b c -÷-=- 5.若分式||11x x -+的值为零,则x 的值是( ) A.1 B.-1 C. 1± D.2 6.若3a b +=,227a b +=,则ab 等于( ) A.2 B.1 C.-2 D.-17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A.223)(x y -+= B.223)(x y ++= C. 221)(x y +-= D.221)(x y --=8.若关于x 的一元二次方程2012x kx --=有两个不相等的实数根,则实数k 的取值范围是( ) A.1k >- B.1k >-且0k ≠ C. 1k <- D.1k <-或0k =9.如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若4BC =,则图中阴影部分的面积是( )A.2π+ B.22π+ C. 4π+ D.24π+10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果,m n 满足||1m n -≤,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38 B.58 C. 14 D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h 与注水时间t 之间的变化情况的是( )A. B.C. D.12.如图,在Rt ABC ∆中,90ABC ∠=o,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则EF的长为( )A.52 B.83 C. 103 D.154第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 13.分解因式:328x x -= .14.已知,αβ是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E F ,则DE +DF =.,17.设ABC ∆的面积为1.如图1,分别将,AC BC 边2等分,11D E ,是其分点,连接11,AE BD 交于点1F ,得到四边形111CD F E ,其面积113S =; 如图2,分别将,AC BC 边3等分,1212,,,D D E E 是其分点,连接22,AE BD 交于点2F ,得到四边形222CD F E ,其面积216S =; 如图3,分别将,AC BC 边4等分,123123,,,,,D D D E E E 是其分点,连接3AE ,3BD 交于点3F ,得到四边形333CD F E ,其面积3110S =; ……按照这个规律进行下去,若分别将,AC BC 边(1)n +等分,…,得到四边形n n n CD F E ,其面积n S =_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解不等式:2723x x--≤. 19.已知:如图,,E F 为ABCD Y 对角线AC 上的两点,且AE CF =.连接,BE DF . 求证:BE DF =.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 30 40 70 80 90 110 120140 天数(t )12357642说明:环境空气质量指数(AQI)技术规定:50ω≤时,空气质量为优;51100ω≤≤时,空气质量为良;101150ω≤≤时,空气质量为轻度污染;151200ω≤≤时,空气质量为中度污染,……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ∆ABC 的直角边AC 在x 轴上,∠ACB =90o,AC =1.反比例函数ky =(k >0)的图象经过BC 边的中点D (3,1).x(1)求这个反比例函数的表达式;(2)若∆ABC 与∆EFG 成中心对称,且∆EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.①求OF 的长;②连接AF ,BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F . (1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的O e (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的O e 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t .(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.。

2017年山东省淄博市中考数学试卷

2017年山东省淄博市中考数学试卷
数的图象上. ①求 OF 的长; ②连接 AF,BE,证明四边形 ABEF 是正方形.
23.(9 分)如图,将矩形纸片 ABCD 沿直线 MN 折叠,顶点 B 恰好与 CD 边上的动点 P 重 合(点 P 不与点 C,D 重合),折痕为 MN,点 M,N 分别在边 AD,BC 上,连接 MB, MP,BP,BP 与 MN 相交于点 F.
第4页(共7页)
22.(8 分)如图,在直角坐标系中,Rt△ABC 的直角边 AC 在 x 轴上,∠ACB=90°,AC =1,反比例函数 y= (k>0)的图象经过 BC 边的中点 D(3,1).
(1)求这个反比例函数的表达式; (2)若△ABC 与△EFG 成中心对称,且△EFG 的边 FG 在 y 轴的正半轴上,点 E 在这个函
13.(4 分)分解因式:2x3﹣8x=

14.(4 分)已知 α,β 是方程 x2﹣3x﹣4=0 的两个实数根,则 α2+αβ﹣3α 的值为

15.(4 分)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:
则计算器显示的结果是

16.(4 分)在边长为 4 的等边三角形 ABC 中,D 为 BC 边上的任意一点,过点 D 分别作
第6页(共7页)
2017 年山东省淄博市中考数学试卷
参考答案
一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)
1.C; 2.A; 3.D; 4.C; 5.A; 6.B; 7.D; 8.B; 9.A; 10.B; 11.D;
12.C;
二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)
(1)求证:△BFN∽△BCP; (2)①在图 2 中,作出经过 M,D,P 三点的⊙O(要求保留作图痕迹,不写做法); ②设 AB=4,随着点 P 在 CD 上的运动,若①中的⊙O 恰好与 BM,BC 同时相切,求此时

山东省淄博市2017年中考数学真题试题 (1)

山东省淄博市2017年中考数学真题试题 (1)

淄博市2017年初中学业水平考试数学试题第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A.32 B.32- C.23 D.23-2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A.6110⨯ B.410010⨯ C.7110⨯ D.50.110⨯ 3.下列几何体中,其主视图为三角形的是( )A. B. C. D.4.下列运算正确的是( )A.236a a a =g B.235()a a -=-C. 109(0)a a a a ÷=≠ D.4222()()bc bc b c -÷-=- 5.若分式||11x x -+的值为零,则x 的值是( ) A.1 B.-1 C. 1± D.2 6.若3a b +=,227a b +=,则ab 等于( ) A.2 B.1 C.-2 D.-17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A.223)(x y -+= B.223)(x y ++= C. 221)(x y +-= D.221)(x y --=8.若关于x 的一元二次方程2012x kx --=有两个不相等的实数根,则实数k 的取值范围是( ) A.1k >- B.1k >-且0k ≠ C. 1k <- D.1k <-或0k =9.如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若4BC =,则图中阴影部分的面积是( )A.2π+ B.22π+ C. 4π+ D.24π+10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果,m n 满足||1m n -≤,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38 B.58 C. 14 D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h 与注水时间t 之间的变化情况的是( )A. B.C. D.12.如图,在Rt ABC ∆中,90ABC ∠=o,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则EF的长为( )A.52 B.83 C. 103 D.154第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 13.分解因式:328x x -= .14.已知,αβ是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E F ,则DE +DF =.,17.设ABC ∆的面积为1.如图1,分别将,AC BC 边2等分,11D E ,是其分点,连接11,AE BD 交于点1F ,得到四边形111CD F E ,其面积113S =; 如图2,分别将,AC BC 边3等分,1212,,,D D E E 是其分点,连接22,AE BD 交于点2F ,得到四边形222CD F E ,其面积216S =; 如图3,分别将,AC BC 边4等分,123123,,,,,D D D E E E 是其分点,连接3AE ,3BD 交于点3F ,得到四边形333CD F E ,其面积3110S =; ……按照这个规律进行下去,若分别将,AC BC 边(1)n +等分,…,得到四边形n n n CD F E ,其面积n S =_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解不等式:2723x x--≤. 19.已知:如图,,E F 为ABCD Y 对角线AC 上的两点,且AE CF =.连接,BE DF . 求证:BE DF =.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 30 40 70 80 90 110 120140 天数(t )12357642说明:环境空气质量指数(AQI)技术规定:50ω≤时,空气质量为优;51100ω≤≤时,空气质量为良;101150ω≤≤时,空气质量为轻度污染;151200ω≤≤时,空气质量为中度污染,……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ∆ABC 的直角边AC 在x 轴上,∠ACB =90o,AC =1.反比例函数ky =(k >0)的图象经过BC 边的中点D (3,1).x(1)求这个反比例函数的表达式;(2)若∆ABC 与∆EFG 成中心对称,且∆EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.①求OF 的长;②连接AF ,BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F . (1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的O e (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的O e 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t .(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.。

山东省淄博市2017年中考数学真题试题 (1)

山东省淄博市2017年中考数学真题试题 (1)

淄博市2017年初中学业水平考试数学试题第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A.32 B.32- C.23 D.23-2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A.6110⨯ B.410010⨯ C.7110⨯ D.50.110⨯ 3.下列几何体中,其主视图为三角形的是( )A. B. C. D.4.下列运算正确的是( )A.236a a a =g B.235()a a -=-C. 109(0)a a a a ÷=≠ D.4222()()bc bc b c -÷-=- 5.若分式||11x x -+的值为零,则x 的值是( ) A.1 B.-1 C. 1± D.2 6.若3a b +=,227a b +=,则ab 等于( ) A.2 B.1 C.-2 D.-17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A.223)(x y -+= B.223)(x y ++= C. 221)(x y +-= D.221)(x y --=8.若关于x 的一元二次方程2012x kx --=有两个不相等的实数根,则实数k 的取值范围是( ) A.1k >- B.1k >-且0k ≠ C. 1k <- D.1k <-或0k =9.如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若4BC =,则图中阴影部分的面积是( )A.2π+ B.22π+ C. 4π+ D.24π+10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果,m n 满足||1m n -≤,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38 B.58 C. 14 D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h 与注水时间t 之间的变化情况的是( )A. B.C. D.12.如图,在Rt ABC ∆中,90ABC ∠=o,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则EF的长为( )A.52 B.83 C. 103 D.154第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 13.分解因式:328x x -= .14.已知,αβ是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E F ,则DE +DF =.,17.设ABC ∆的面积为1.如图1,分别将,AC BC 边2等分,11D E ,是其分点,连接11,AE BD 交于点1F ,得到四边形111CD F E ,其面积113S =; 如图2,分别将,AC BC 边3等分,1212,,,D D E E 是其分点,连接22,AE BD 交于点2F ,得到四边形222CD F E ,其面积216S =; 如图3,分别将,AC BC 边4等分,123123,,,,,D D D E E E 是其分点,连接3AE ,3BD 交于点3F ,得到四边形333CD F E ,其面积3110S =; ……按照这个规律进行下去,若分别将,AC BC 边(1)n +等分,…,得到四边形n n n CD F E ,其面积n S =_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解不等式:2723x x--≤. 19.已知:如图,,E F 为ABCD Y 对角线AC 上的两点,且AE CF =.连接,BE DF . 求证:BE DF =.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 30 40 70 80 90 110 120140 天数(t )12357642说明:环境空气质量指数(AQI)技术规定:50ω≤时,空气质量为优;51100ω≤≤时,空气质量为良;101150ω≤≤时,空气质量为轻度污染;151200ω≤≤时,空气质量为中度污染,……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ∆ABC 的直角边AC 在x 轴上,∠ACB =90o,AC =1.反比例函数ky =(k >0)的图象经过BC 边的中点D (3,1).x(1)求这个反比例函数的表达式;(2)若∆ABC 与∆EFG 成中心对称,且∆EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.①求OF 的长;②连接AF ,BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F . (1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的O e (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的O e 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t .(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.。

2017年山东省淄博市中考数学试卷-答案

2017年山东省淄博市中考数学试卷-答案
山东省淄博市 2017 年初中学业水平考试
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】C
【解析】解:∵ 2 与 2 是只有符号不同的两个数,∴ 2 的相反数是 2 .故选 C.
33
3
3
【提示】直接根据相反数的】解:将 100 万用科学记数法表示为:1106 ,故选:A. 【提示】科学记数法的表示形式为 a 10n 的形式,其中1| a |10 ,n 为整数.确定 n 的值时,要看把原数
【考点】整体代换思想,完全平方公式 7.【答案】D 【解析】解:∵ y x2 2x 1 (x 1)2 2 ,∴二次函数 y x2 2x 1的图象沿 x 轴向右平移 2 个单位长
度,得到的函数表达式是: y (x 1 2)2 2 (x 1)2 2 ,故选 D.
【提示】找出四个选项中几何体的主视图,由此即可得出结论.
【考点】主视图
4.【答案】C
【解析】解:A.a2 a3 a5 ,故 A 错误;B.(a2 )3 a6 ,故 B 错误;C.a10 a9 a(a 0) ,故 C 正确;
D. (bc)4 (bc)2 b2c2 ,故 D 错误;故选 C.
【提示】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果
数,根据概率公式求解可得.
【考点】概率的计算
11.【答案】D
【解析】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向鱼缸内流,这时水位
高度不变,当鱼缸水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D.
平分∠ACB,∴ ED EH EG ,DAE HAE ,∴四边形 BDEG 是正方形,在△DAE 和△HAE 中,∵

山东省淄博市2017年中考数学真题试题

山东省淄博市2017年中考数学真题试题

淄博市2017年初中学业水平考试数学试题第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A.32 B.32- C.23 D.23-2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A.6110⨯ B.410010⨯ C.7110⨯ D.50.110⨯ 3.下列几何体中,其主视图为三角形的是( )A. B. C. D.4.下列运算正确的是( )A.236a a a =g B.235()a a -=-C. 109(0)a a a a ÷=≠ D.4222()()bc bc b c -÷-=- 5.若分式||11x x -+的值为零,则x 的值是( ) A.1 B.-1 C. 1± D.2 6.若3a b +=,227a b +=,则ab 等于( ) A.2 B.1 C.-2 D.-17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A.223)(x y -+= B.223)(x y ++= C. 221)(x y +-= D.221)(x y --=8.若关于x 的一元二次方程2012x kx --=有两个不相等的实数根,则实数k 的取值范围是( ) A.1k >- B.1k >-且0k ≠ C. 1k <- D.1k <-或0k =9.如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若4BC =,则图中阴影部分的面积是( )A.2π+ B.22π+ C. 4π+ D.24π+10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果,m n 满足||1m n -≤,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38 B.58 C. 14 D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h 与注水时间t 之间的变化情况的是( )A. B.C. D.12.如图,在Rt ABC ∆中,90ABC ∠=o,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则EF的长为( )A.52 B.83 C. 103 D.154第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 13.分解因式:328x x -= .14.已知,αβ是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E F ,则DE +DF =.,17.设ABC ∆的面积为1.如图1,分别将,AC BC 边2等分,11D E ,是其分点,连接11,AE BD 交于点1F ,得到四边形111CD F E ,其面积113S =; 如图2,分别将,AC BC 边3等分,1212,,,D D E E 是其分点,连接22,AE BD 交于点2F ,得到四边形222CD F E ,其面积216S =; 如图3,分别将,AC BC 边4等分,123123,,,,,D D D E E E 是其分点,连接3AE ,3BD 交于点3F ,得到四边形333CD F E ,其面积3110S =; ……按照这个规律进行下去,若分别将,AC BC 边(1)n +等分,…,得到四边形n n n CD F E ,其面积n S =_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解不等式:2723x x--≤. 19.已知:如图,,E F 为ABCD Y 对角线AC 上的两点,且AE CF =.连接,BE DF . 求证:BE DF =.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 30 40 70 80 90 110 120140 天数(t )12357642说明:环境空气质量指数(AQI)技术规定:50ω≤时,空气质量为优;51100ω≤≤时,空气质量为良;101150ω≤≤时,空气质量为轻度污染;151200ω≤≤时,空气质量为中度污染,……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ∆ABC 的直角边AC 在x 轴上,∠ACB =90o,AC =1.反比例函数ky =(k >0)的图象经过BC 边的中点D (3,1).x(1)求这个反比例函数的表达式;(2)若∆ABC 与∆EFG 成中心对称,且∆EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.①求OF 的长;②连接AF ,BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F . (1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的O e (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的O e 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t .(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.。

山东省淄博市2017年中考数学真题试题-真题

山东省淄博市2017年中考数学真题试题-真题

13.分解因式: 2x3 8x

14.已知 , 是方程 x2 3x 4 0 的两个实数根,则 a2 3 的值为

15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:
则计算器显示的结果是

16.在边长为 4 的等边三角形 ABC 中,D 为 BC 边上的任意一点,过点 D 分别作 DE AB ,DF AC ,
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点 C ,满足以 B, O, C 为顶点的三角形的面积为 2,求点 C 的坐标; (3)如图 2,若点 M 在这条抛物线上,且 MBO ABO ,在(2)的条件下,是否存在点 P ,使得 POC ∽ MOB ?若存在,求出点 P 的坐标;若不存在,请说明理由.
科学记数法表示为( )
A.110 0.1105
3.下列几何体中,其主视图为三角形的是( )
A.
B.
C.
D.
4.下列运算正确的是( )
A. a2 ga3 a6
B. (a2 )3 a5
C. a10 a9 a(a 0)
D. (bc)4 (bc)2 b2c2
垂足分别为 E, F ,则 DE DF

17.设 ABC 的面积为 1. 如图 1,分别将 AC, BC 边 2 等分, D1,E1 是其分点,连接 AE1, BD1 交于点 F1 ,得到四边形 CD1F1E1 ,其
1 面积 S1 ;
3 如图 2,分别将 AC, BC 边 3 等分,D1, D2 , E1, E2 是其分点,连接 AE2 , BD2 交于点 F2 ,得到四边形 CD2F2E2 ,
B.
C.
D.
12.如图,在 RtABC 中, ABC 90o , AB 6 , BC 8 , BAC , ACB 的平分线相交于点 E ,

山东省淄博市2017年中考数学真题试题

山东省淄博市2017年中考数学真题试题

淄博市2017年初中学业水平考试数学试题第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 23-的相反数是( ) A.32 B.32- C.23 D.23-2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A.6110⨯ B.410010⨯ C.7110⨯ D.50.110⨯ 3.下列几何体中,其主视图为三角形的是( )A. B. C. D.4.下列运算正确的是( )A.236a a a =g B.235()a a -=-C. 109(0)a a a a ÷=≠ D.4222()()bc bc b c -÷-=- 5.若分式||11x x -+的值为零,则x 的值是( ) A.1 B.-1 C. 1± D.2 6.若3a b +=,227a b +=,则ab 等于( ) A.2 B.1 C.-2 D.-17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A.223)(x y -+= B.223)(x y ++= C. 221)(x y +-= D.221)(x y --=8.若关于x 的一元二次方程2012x kx --=有两个不相等的实数根,则实数k 的取值范围是( ) A.1k >- B.1k >-且0k ≠ C. 1k <- D.1k <-或0k =9.如图,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合.若4BC =,则图中阴影部分的面积是( )A.2π+ B.22π+ C. 4π+ D.24π+10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果,m n 满足||1m n -≤,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38 B.58 C. 14 D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h 与注水时间t 之间的变化情况的是( )A. B.C. D.12.如图,在Rt ABC ∆中,90ABC ∠=o,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则EF的长为( )A.52 B.83 C. 103 D.154第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 13.分解因式:328x x -= .14.已知,αβ是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E F ,则DE +DF =.,17.设ABC ∆的面积为1.如图1,分别将,AC BC 边2等分,11D E ,是其分点,连接11,AE BD 交于点1F ,得到四边形111CD F E ,其面积113S =; 如图2,分别将,AC BC 边3等分,1212,,,D D E E 是其分点,连接22,AE BD 交于点2F ,得到四边形222CD F E ,其面积216S =; 如图3,分别将,AC BC 边4等分,123123,,,,,D D D E E E 是其分点,连接3AE ,3BD 交于点3F ,得到四边形333CD F E ,其面积3110S =; ……按照这个规律进行下去,若分别将,AC BC 边(1)n +等分,…,得到四边形n n n CD F E ,其面积n S =_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.解不等式:2723x x--≤. 19.已知:如图,,E F 为ABCD Y 对角线AC 上的两点,且AE CF =.连接,BE DF . 求证:BE DF =.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h .求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图: 空气污染指数(ω) 30 40 70 80 90 110 120140 天数(t )12357642说明:环境空气质量指数(AQI)技术规定:50ω≤时,空气质量为优;51100ω≤≤时,空气质量为良;101150ω≤≤时,空气质量为轻度污染;151200ω≤≤时,空气质量为中度污染,……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ∆ABC 的直角边AC 在x 轴上,∠ACB =90o,AC =1.反比例函数ky =(k >0)的图象经过BC 边的中点D (3,1).x(1)求这个反比例函数的表达式;(2)若∆ABC 与∆EFG 成中心对称,且∆EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上.①求OF 的长;②连接AF ,BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F . (1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的O e (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的O e 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t .(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标; (3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.。

【试题】22017年淄博市中考数学试卷解析版

【试题】22017年淄博市中考数学试卷解析版

【关键字】试题2017年山东省淄博市中考数学试题(解析版)第Ⅰ卷(选择题共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.B.C.D.2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为()A.B.C.D.3.下列几何体中,其主视图为三角形的是()A.B.C.D.4.下列运算正确的是()A.B.C.D.5.若分式的值为零,则的值是()A.1 B..D.26.若,,则等于()A.2 B..-2 D.-17.将二次函数的图象沿轴向右平移2个单位长度,得到的函数表达式是()A.B.C.D.8.若关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A.B.且C.D.或9.如图,半圆的直径恰与等腰直角三角形的一条直角边完全重合.若,则图中阴影部分的面积是()A.B.C.D.10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为,再由乙猜这个小球上的数字,记为.如果满足,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是()A.B.C.D.11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位与注水时间之间的变化情况的是()A.B.C.D.12.如图,在中,,,,,的平分线相交于点,过点作交于点,则的长为()A.B.C.D.第Ⅱ卷(非选择题共72分)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果.13.分解因式:.14.已知是方程的两个实数根,则的值为.15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 1 .16.在边长为4的等边三角形中,为边上的任意一点,过点分别作,,垂足分别为,则.17.设的面积为1.如图1,分别将边2等分,是其分点,连接交于点,得到四边形,其面积;如图2,分别将边3等分,是其分点,连接交于点,得到四边形,其面积;如图3,分别将边4等分,是其分点,连接,交于点,得到四边形,其面积;……按照这个规律进行下去,若分别将边等分,…,得到四边形,其面积_________.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.解不等式:.19.已知:如图,为对角线上的两点,且.连接.求证:.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了.求汽车原来的平均速度.21.为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:说明:环境空气质量指数(AQI )技术规定:时,空气质量为优;时,空气质量为良;时,空气质量为轻度污染;时,空气质量为中度污染,…… 根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数________,中位数________; (2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt ABC ∆的直角边AC 在x 轴上,90ACB ∠=,1AC =.反比例函数(0)ky k x=>的图象经过BC 边的中点(3,1)D . (1)求这个反比例函数的表达式;(2)若ABC ∆与EFG ∆成中心对称,且EFG ∆的边FG 在y 轴的正半轴上,点E 在这个函数的图象上. ①求OF 的长;②连接,AF BE ,证明四边形ABEF 是正方形.23.如图,将矩形纸片ABCD 沿直线MN 折叠,顶点B 恰好与CD 边上的动点P 重合(点P 不与点C ,D 重合),折痕为MN ,点,M N 分别在边,AD BC 上.连接,,MB MP BP ,BP 与MN 相交于点F .(1)求证:BFN ∆∽BCP ∆;(2)①在图2中,作出经过,,M D P 三点的圆O (要求保留作图痕迹,不写作法);②设4AB =,随着点P 在CD 上的运动,若①中的圆O 恰好与,BM BC 同时相切,求此时DP 的长.24.如图1,经过原点O 的抛物线2(0)y ax bx a =+≠与x 轴交于另一点3(,0)2A ,在第一象限内与直线y x =交于点(2,)B t . (1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以,,B O C 为顶点的三角形的面积为2,求点C 的坐标;(3)如图2,若点M 在这条抛物线上,且MBO ABO ∠=∠,在(2)的条件下,是否存在点P ,使得POC ∆∽MOB ∆?若存在,求出点P 的坐标;若不存在,请说明理由.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

2017年山东省淄博市中考数学试卷

2017年山东省淄博市中考数学试卷

则计算器显示的结果是
.
16.在边长为 4 的等边三角形 ABC 中, D 为 BC 边上的任意一 点,过点 D 分别作 DE AB , DF AC ,垂足分别为 E , F ,则 DE DF 17.设 △ABC 的面积为 1. 如图 1,分别将 AC , BC 边二等分,点 D1 , E1 是其分点,连接 AE1 , BD1 交于点 F1 ,得到 四边形 CD1 F1 E1 ,其面积 S1 .
7

山东省淄博市 2017 年初中学业水平考试

( B. k> 1 且 k≠0 D. k< 1 或 k=0 ( )
)


9.如图,半圆的直径 BC 恰与等腰直角三角形 ABC 的一条直角边完全重合.若 BC 4 ,
本试卷满分 120 分,考试时间 120 分钟。

--------------------
2 A. y ( x 3) 2 2 C. y ( x 1) 2

-------------------B C B. ( a 2 ) 3 a 5 D. ( bc) 4 ( bc) 2 b 2 c 2 ( C. 1 D. 2 ( ) ) D ( )
则下面可以近似地刻画出容器最高水位 h 与注水时间 t 之间 的变化情况的是 ( )
11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状 相同的无水鱼缸内 , 看作一个容器. 然后, 小明对准玻璃杯口 匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部. A 4.下列运算正确的是 A. a 2 a 3 a 6 C. a10 a 9 a ( a≠0) (| x | 1) 5.若分式 的值为零,则 x 的值是 x 1 A. 1 A. 2 B. 1 B. 1 6.若 a b 3 , a 2 b 2 7 ,则 ab 等于 C. 2 D. 1 (

山东省淄博市2017年中考数学真题试题【真题卷】

山东省淄博市2017年中考数学真题试题【真题卷】
②设 AB 4 ,随着点 P 在 CD 上的运动,若①中的 e O 恰好与 BM , BC 同时相切,求此时 DP 的长.
24.如图 1,经过原点 O 的抛物线 y ax2 bx(a 0) 与 x 轴交于另一点 A( 3 , 0) ,在第一象限内与直线 2
y x 交于点 B(2, t) .
率是( )
3
A.
8
5
B.
8
1
C.
4
1
D.
2
11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,
小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画
出容器最.高.水位 h 与注水时间 t 之间的变化情况的是( )
A.
B.
C.
D.
12.如图,在 RtABC 中, ABC 90o , AB 6 , BC 8 , BAC , ACB 的平分线相交于点 E ,
过点 E 作 EF / / BC 交 AC 于点 F ,则 EF 的长为( )
5
A.
2
8
B.
3
10
C.
3
ቤተ መጻሕፍቲ ባይዱ
15
D.
4
第Ⅱ卷(非选择题 共 72 分)
二、填空题:本大题共 5 个小题,每小题 4 分,共 20 分.请直接填写最后结果.
淄博市 2017 年初中学业水平考试
数学试题
第Ⅰ卷(选择题 共 48 分)
一、选择题:本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合
题目要求的.
2 1. 的相反数是( )
3

【精校】2017年山东省淄博市中考真题数学

【精校】2017年山东省淄博市中考真题数学

2017年山东省淄博市中考真题数学一、选择题(本大题共12小题,每小题4分,共48分)1.23-的相反数是( )A.3 2B.3 2 -C.2 3D.2 3 -解析:直接根据相反数的定义即可得出结论.∵23-与23是只有符号不同的两个数,∴23-的相反数是23.答案:C.2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A.1×106B.100×104C.1×107D.0.1×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将100万用科学记数法表示为:1×106.答案:A.3.下列几何体中,其主视图为三角形的是( )A.B.C.D.解析:找出四个选项中几何体的主视图,由此即可得出结论.A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.答案:D.4.下列运算正确的是( )A.a2·a3=a6B.(-a2)3=-a5C.a10÷a9=a(a≠0)D.(-bc)4÷(-bc)2=-b2c2解析:根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.A、a2·a3=a5,故A错误;B、(-a2)3=-a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(-bc)4÷(-bc)2=b2c2,故D错误.答案:C.5.若分式11xx-+的值为零,则x的值是( )A.1B.-1C.±1D.2解析:直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.∵分式11xx-+的值为零,∴|x|-1=0,x+1≠0,解得:x=1.答案:A.6.若a+b=3,a2+b2=7,则ab等于( )A.2B.1C.-2D.-1解析:根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.答案:B.7.将二次函数y=x2+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是( )A.y=(x+3)2-2B.y=(x+3)2+2C.y=(x-1)2+2D.y=(x-1)2-2解析:根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.∵y=x2+2x-1=(x+1)2-2,∴二次函数y=x2+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1-2)2-2=(x-1)2-2.答案:D.8.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>-1B.k>-1且k≠0C.k<-1D.k<-1或k=0解析:利用一元二次方程的定义和判别式的意义得到k≠0且△=(-2)2-4k·(-1)>0,解得k>-1且k≠0.答案:B.9.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是( )A.2+πB.2+2πC.4+πD.2+4π解析:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积:290223012226BOD CODS S Sππ⨯=+=⨯⨯+=+ Vg阴影扇形.答案:A.10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m-n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A.3 8B.5 8C.1 4D.1 2解析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m-n|≤1的有10种结果,∴两人“心领神会”的概率是101658.答案:B.11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )A.B.C.D.解析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.答案:D.12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为( )A.5 2B.8 3C.10 3D.15 4解析:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE 和△HAE 中,DAE HAE AE AEADE AHE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAE ≌△HAE(SAS),∴AD=AH ,同理△CGE ≌△CHE ,∴CG=CH ,设BD=BG=x ,则AD=AH=6-x 、CG=CH=8-x ,∵10AC ===,∴6-x+8-x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF ∥BC ,∴△ADF ∽△ABC , ∴AD DF AB BC =,即468DF =, 解得:DF=163, 则1610233EF DF DE =-=-=. 答案:C.二、填空题(本大题共5小题,每小题4分,共20分)13.分解因式:2x 3-8x= .解析:先提取公因式2x ,再对余下的项利用平方差公式分解因式.2x 3-8x=2x(x 2-4)=2x(x+2)(x-2).答案:2x(x+2)(x-2).14.已知α,β是方程x2-3x-4=0的两个实数根,则α2+αβ-3α的值为 .解析:根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)-3α,然后利用整体代入的方法计算即可.根据题意得α+β=3,αβ=-4,所以原式=a(α+β)-3α=3α-3α=0.答案:0.15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 .解析:根据计算器的按键顺序,写出计算的式子.然后求值.根据题意得:(3.5-4.5)×312+4=-959.答案:-959.16.在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF ⊥AC,垂足分别为E,F,则DE+DF= .解析:如图,作AG⊥BC于G,∵△ABC是等边三角形,∴∠B=60°,∴AG AB==连接AD,则S△ABD+S△ACD=S△ABC,∴111222AB DE AC DF BC AG+=g g g,∵AB=AC=BC=4,∴答案:.17.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=13.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=16.如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1 10.…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .解析:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D 1,E 1是△ABC 两边的中点,∴D 1E 1∥AB ,D 1E 1=12AB , ∴△CD 1E 1∽△CBA ,且1111112D E D E BF AB ==, ∴111144CD E ABC S S ==V V , ∵E 1是BC 的中点, ∴111114BD E CD E S S ==V V , ∴11111111334112D E F BD E S S ==⨯=V V , ∴1111111114321CD E D E F S S S =+=+=V V , 同理可得:图2中,2222221191681CD E D E F S S S =+=+=V V , 图3中,333333131680110CD E D E F S S S =+=+=V V , 以此类推,将AC ,BC 边(n+1)等分,得到四边形CD n E n F n ,其面积()()()()221112111211n S n n n n n n =+⨯⨯=++++++. 答案:()()212n n ++.三、解答题(本大题共7小题,共52分)18.解不等式:2723x x --≤. 解析:不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.答案:去分母得:3(x-2)≤2(7-x),去括号得:3x-6≤14-2x ,移项合并得:5x ≤20,解得:x ≤4.19.已知:如图,E ,F 为?ABCD 对角线AC 上的两点,且AE=CF ,连接BE ,DF ,求证:BE=DF.解析:证明△AEB ≌△CFD ,即可得出结论.答案:证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=DC.∴∠BAE=∠DCF.在△AEB 和△CFD 中,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△CFD(SAS).∴BE=DF.20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度.解析:求的汽车原来的平均速度,路程为420km ,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h.等量关系为:原来时间-现在时间=2. 答案:设汽车原来的平均速度是x km/h ,根据题意得:()4204202150%x x -=+, 解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数 ,中位数 .解析:(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90.答案:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90. 故答案为:90,90.(2)请补全空气质量天数条形统计图:解析:(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可.答案:(2)由题意,得轻度污染的天数为:30-3-15=12天.(3)根据已完成的条形统计图,制作相应的扇形统计图.解析:(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可.答案:(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°.(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?解析:(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以答案:(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数kyx=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式.解析:(1)由D点坐标可求得k的值,可求得反比例函数的表达式.答案:(1)∵反比例函数kyx=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为3yx =.(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长.②连接AF,BE,证明四边形ABEF是正方形.解析:(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF 的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.答案:(2)①∵D为BC的中点,∵△ABC 与△EFG 成中心对称,∴△ABC ≌△EFG ,∴GF=BC=2,GE=AC=1,∵点E 在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG-GF=1;②如图,连接AF 、BE ,∵AC=1,OC=3,∴OA=GF=2,在△AOF 和△FGE 中AO FG AOF FGE OF GE =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC ,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF ∥AB ,且EF=AB ,∴四边形ABEF 为平行四边形,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP.解析:(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP.答案:(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法).②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.解析:(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度. 答案:(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP ,∴△BMP 为等腰直角三角形.∵∠AMB+∠PMD=180°-∠AMP=90°,∠MBA+∠AMB=90°, ∴∠PMD=∠MBA.在△ABM 和△DMP 中,90MBA PMD A PMD BM MP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABM ≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a ,则AM=2a ,OE=4-a ,BM ==∵BM=MP=2OE ,()24a =⨯-, 解得:a=32, ∴DP=2a=3.24.如图1,经过原点O 的抛物线y=ax 2+bx(a ≠0)与x 轴交于另一点A(32,0),在第一象限内与直线y=x 交于点B(2,t).(1)求这条抛物线的表达式.解析:(1)由直线解析式可求得B 点坐标,由A 、B 坐标,利用待定系数法可求得抛物线的表达式.答案:(1)∵B(2,t)在直线y=x 上,∴t=2,∴B(2,2),把A 、B 两点坐标代入抛物线解析式可得93442220a b a b +=⎧⎪⎨+=⎪⎩,解得23a b =⎧⎨=-⎩, ∴抛物线解析式为y=2x 2-3x.(2)在第四象限内的抛物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标.解析:(2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C 点坐标可表示出CD 的长,从而可表示出△BOC 的面积,由条件可得到关于C 点坐标的方程,可求得C 点坐标.答案:(2)如图1,过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,∵点C 是抛物线上第四象限的点,∴可设C(t ,2t 2-3t),则E(t ,0),D(t ,t),∴OE=t ,BF=2-t ,CD=t-(2t 2-3t)=-2t 2+4t , ∴()()2221112422224OBC CDO CDB S S S CD OE CD BF t t t t t t =+=+=-++-=-+V V V g g , ∵△OBC 的面积为2,∴-2t 2+4t=2,解得t 1=t 2=1,∴C(1,-1).(3)如图2,若点M 在这条抛物线上,且∠MBO=∠ABO ,在(2)的条件下,是否存在点P ,使得△POC ∽△MOB ?若存在,求出点P 的坐标;若不存在,请说明理由.解析:(3)设MB 交y 轴于点N ,则可证得△ABO ≌△NBO ,可求得N 点坐标,可求得直线BN 的解析式,联立直线BM 与抛物线解析式可求得M 点坐标,过M 作MG ⊥y 轴于点G ,由B 、C 的坐标可求得OB 和OC 的长,由相似三角形的性质可求得OM OP的值,当点P 在第一象限内时,过P 作PH ⊥x 轴于点H ,由条件可证得△MOG ∽△POH ,由OM MG OG OP PH OH ==的值,可求得PH 和OH ,可求得P 点坐标;当P 点在第三象限时,同理可求得P 点坐标.答案:(3)存在.设MB 交y 轴于点N ,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB 和△NOB 中AOB NOB OB OBABO NBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOB ≌△NOB(ASA),∴ON=OA=32, ∴N(0,32), ∴可设直线BN 解析式为y=kx+32, 把B 点坐标代入可得2=2k+32,解得k=14, ∴直线BN 的解析式为1342y x =+, 联立直线BN 和抛物线解析式可得2214233y x y x x ⎧=+⎪⎨⎪=-⎩,解得22x y =⎧⎨=⎩或453238x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴M(38-,4532), ∵C(1,-1),∴∠COA=∠AOB=45°,且B(2,2),∴,,∵△POC ∽△MOB , ∴2OM OB OP OC==,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH , ∴2OM MG OG OP PH OH===, ∵M(38-,4532), ∴MG=38,OG=4532, ∴31612PH MG ==,124564OH OG ==, ∴P(4564,316); 当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得31612PH MG==,124564OH OG==,∴P(316-,4564);综上可知存在满足条件的点P,其坐标为(4564,316)或(316-,4564).考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:A山东省淄博市二〇一七年初中学业水平考试数学试题(试卷满分为120分,考试时间为120分钟)2017年山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.23-的相反数是( ) A .32 B .32- C .23 D .23-3.下列几何体中,其主视图为三角形的是( )A .B .C .D .4.下列运算正确的是( )A .236a a a ⋅= B .235()a a -=-C .109a a a ÷=(a ≠0) D .4222()()bc bc b c -÷-=-5.若分式||11x x -+的值为零,则x 的值是( ) A .1 B .﹣1 C .±1 D .2 6.若a +b =3,227a b +=,则ab 等于( )A .2B .1C .﹣2D .﹣17.将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( ) A .2(3)2y x =+- B .2(3)2y x =++ C . 2(1)2y x =-+ D .2(1)2y x =--8.若关于x的一元二次方程2210kx x--=有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0 9.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.1211.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C .D .12.如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52 B .83 C . 103 D .154二、填空题(本大题共5小题,每小题4分,共20分)13.分解因式:328x x -= .14.已知α,β是方程2340x x --=的两个实数根,则23a αβα+-的值为 .15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 .16.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF = . 17.设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; …按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S = .三、解答题(本大题共7小题,共52分)18.解不等式:2723x x--≤. 19.已知:如图,E ,F 为▱ABCD 对角线AC 上的两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度.21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数,中位数;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数k(kyx>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.24.如图1,经过原点O的抛物线2y ax bx=+(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.2017年山东省淄博市中考数学试卷参考答案与评分标准一、选择题(本大题共12小题,每小题4分,共48分)1-5.CADCA 6-10.BDBAB 11-12.DC二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)2x(x﹣2)(x+2)14.(4分)015.(4分)95916.(4分)217.(4分)三、解答题(本大题共7小题,共52分)18.(5分)解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.19.(5分)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.20.(8分)解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.21.(8分)解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.22.(8分)解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.23.(9分)(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM==2.∵BM=MP=2OE,∴2=2×(4﹣a),解得:a=,∴DP=2a=3.24.(9分)解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(﹣,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);综上可知存在满足条件的点P,其坐标为(,)或(﹣,).。

相关文档
最新文档