16.1二次根式(第2课时)导学案(1) 春学期初中数学八年级下册人教版
2019八年级数学下册16二次根式16.1《二次根式(I)》导学案(新版)新人教版
2021-2021 年八年级数学下册16 二次根式 16.1 ?二次根式 (I) ?导教学设计〔新版〕新人教版课型 :新授课上课时间:课时:2学习内容:1. a 〔a≥0〕是一个非负数; 2 .〔 a 〕2=a〔a≥0〕.学习目标:1、理解 a 〔a≥0〕是一个非负数和〔 a 〕2=a〔a≥0〕,并利用它进行计算和化简.2、经过复习二次根式的看法,用逻辑推理的方法推出 a 〔a≥0〕是一个非负数,用具体数据结合算术平方根的意义导出〔授课过程一、自主学习〔一〕复习引入1.什么叫二次根式?2a 〕=a〔a≥0〕;最后运用结论慎重解题.2.当 a≥ 0 时, a 叫什么?当a<0 时, a 有意义吗?〔二〕学生学习课本知识〔三〕、研究新知1、 a 〔a≥0〕是一个数。
〔正数、负数、零〕因为。
2、重点: a 〔a≥0〕是一个非负数.3、依照算术平方根的意义填空:〔 4 〕2=_______;〔 2 〕2=_______;〔9 〕2=______;〔 3 〕2=_______;同理可得:〔2〕2,〔9〕2=9,〔3〕2,〔 1 〕2=1 ,〔〕2,=2=333=0所以〔 a 〕2=a〔a≥0〕(4)例1 计算1 、〔3〕2= 2、〔3 5〕2=3、〔5〕2= 4、〔7 〕2= 262(5) 注意: 1、 a 〔a≥0〕是一个非负数;〔 a 〕2=a〔 a≥ 0〕及其运用.2、用分类思想的方法导出a〔a≥0〕是一个非负数;?用研究的方法导出〔a 〕2=a 〔a ≥ 0〕.二、学生小组交流解疑,教师点拨、拓展例 2 计算 1 .〔 x 1〕 2〔 x ≥0〕 2 .〔a 2 〕 2 3 .〔 a 2 2a 1 〕 2例 3在实数范围内分解以下因式:〔 1〕 x 2-3〔 2〕 x 4-4(3) 2x2-3三、坚固练习〔一〕计算以下各式的值:〔 18 〕2=〔2 〕2= 〔9 〕2= 〔0 〕2= 〔 4 7 〕2=(3 5)2(5 3)2348〔二〕 课本 P7、 1 四、课堂检测〔一〕、选择题1 .以下各式中 15 、 3a 、b 2 1 、 a 2 b 2 、 m 2 20 、144 ,二次根式的个数是〔〕.A .4B .3C .2D . 1〔二〕、填空题1 .〔 -3 〕 2=________ .2 .x 1 有意义,那么是一个 _______数.〔三〕、综合提高题1 .计算〔 〕〔9 〕 2 〔 〕 -- 〔 3 〕 2 〔 〕〔 -3 2 〕 2(23 32)(2332)123 3(4)= = = =====2 .把以下非负数写成一个数的平方的形式:〔1〕 5=〔2〕 3.4=〔3〕1〔 4〕x 〔 x ≥ 0〕=63.xy 1 + x 3 =0,求 x y 的值.4 .在实数范围内分解以下因式:〔 1〕 x 2-2 〔 2〕x 4-93x2-5。
八年级数学下册16.1二次根式2导学案新版新人教版2
16.1二次根式(2)学习目标:1.掌握二次根式的基本性质:a a =2;2.能利用上述性质对二次根式进行化简.学习重、难点:重点:二次根式的性质a a =2.(a )2=a (a ≥0)难点:运用性质进行化简和计算(a )2=a (a ≥0),2a =a (a ≥0)”解决具体问题.学习过程: 一、自主学习:1.什么是二次根式,它有哪些性质?2.计算:=24 =22.0 =2)54( =220观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时计算:=-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时计算:=20 当==2,0a a 时归纳总结:将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<->==00002a a a a a a 认真理解!!二、合作交流: 1.化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )2.请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系?3.化简下列各式(1))0(42≥x x (2) 4x(1))3()3(2≥-a a (2)()232+x (x <-2)三、课堂检测(1、2必做 3、4题选做):1.填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=(3)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________.2.若042=-++--y x y x ,则x=3. 已知0<x <1,化简:4)1(2+-x x -4)1(2-+xx4.把()212--x x 的根号外的()x -2适当变形后移入根号内,得( )A 、x -2B 、2-xC 、x --2D 、2--x八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若210m m +-=,则3222019m m ++的值为( ) A .2020 B .2019 C .2021 D .2018【答案】A【分析】根据已知方程可得21m m =-,代入原式计算即可. 【详解】解:∵210m m +-= ∴21m m =-∴原式=()2122019m m m -⋅++222220192019120192020m m m m m =-++=++=+=故选:A 【点睛】这类题解法灵活,可根据所给条件和求值式的特征进行适当的变形、转化. 2.一次函数()0y kx b k =+≠的图象如图所示0y <的取值范围是( )A .3x <B .0x >C .2x <D .2x >【答案】D【分析】y<0也就是函数图象在x 轴下方的部分,观察图象找出函数图象在x 轴下方的部分对应的自变量的取值范围即可得解.【详解】根据图象和数据可知,当y <0即图象在x 轴下侧时,x>2, 故选D . 【点睛】本题主要考查了一次函数与不等式,数形结合思想,准确识图是解题的关键.3.下列式子是分式的是( ) A .2x B .2xC .x πD .2x y+【答案】B【解析】解:A 、C 、D 是整式,B 是分式.故选B .4.下列从左到右的变形:2a ab ab=①;2a ab b b =②;a ac b bc =③;()()221.1a x a b b x +=+④其中,正确的是( )A .①②B .②④C .③④D .①②③④【答案】B【解析】根据分式的基本性质进行计算并作出正确的判断.【详解】①2a ab ab=,当a=1时,该等式不成立,故①错误;②2a ab b b = ,分式a b 的分子、分母同时乘以b,等式仍成立,即2a abb b =,故②正确; ③a ac b bc=,当c=1时,该等式不成立,故③错误; ④()()221a 1a x b b x +=+,因为x2+1≠1,即分式ab 的分子、分母同时乘以(x2+1),等式仍成立,即()()221a 1a xb b x +=+成立,故④正确;综上所述,正确的②④. 故选:B. 【点睛】本题考查了分式的基本性质,注意分式的基本性质中分子、分母乘以(或除以)的数或式子一定不是1. 5.如图,OP 为∠AOB 的平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是( )A .∠COP =∠DOPB .PC =PD C .OC =OD D .∠COP =∠OPD【答案】D【分析】先根据角平分线的性质得出PC =PD ,∠POC =∠POD ,再利用HL 证明△OCP ≌△ODP ,根据全等三角形的性质得出OC =OD 即可判断.【详解】∵OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D , ∴PC =PD ,∠POC =∠POD ,故A ,B 正确; 在Rt △OCP 与Rt △ODP 中,OP OPPC PD =⎧⎨=⎩, ∴Rt △OCP ≌Rt △ODP (HL ), ∴OC =OD ,故C 正确.不能得出∠COP =∠OPD ,故D 错误. 故选:D . 【点睛】此题主要考查角平分线的性质与证明,解题的关键是熟知角平分线的性质定理与全等三角形的判定方法. 6.如图所示:已知两个正方形的面积,则字母A 所代表的正方形的面积为( )A .4B .8C .64D .16【答案】C【解析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即为所求正方形的面积.【详解】∵正方形PQED 的面积等于1,∴PQ 2=1.∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得: PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣1=2,则正方形QMNR 的面积为2. 故选C .【点睛】本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键. 7.若20a ab -=(b ≠0),则aa b+=( ) A .0 B .12 C .0或12D .1或 2【答案】C【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C8.下列算式中,计算结果等于6a 的是( ) A .33a a + B .5a a ⋅C .()24aD .122a a ÷【答案】B【分析】根据同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘,等法则进行计算即可得出答案. 【详解】A .3332a a a +=,所以A 不符合题意 B .56a a a ⋅=,所以B 符合题意 C .()248a a =,所以C 不符合题意D .12210a a a ÷=,所以D 不符合题意.故选B. 【点睛】本题考查的是整式的运算,本题的关键是掌握整式运算的法则.9.已知A (x 1,3),B (x 2,12)是一次函数y =﹣6x+10的图象上的两点,则下列判断正确的是( ) A .12x x < B .12x x >C .12x x =D .以上结论都不正确【答案】B【分析】根据一次函数y =−6x +10图象的增减性,以及点A 和点B 的纵坐标的大小关系,即可得到答案. 【详解】解:∵一次函数y =−6x +10的图象上的点y 随着x 的增大而减小,且3<12, ∴x 1>x 2, 故选B . 【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,3)和(2,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当ABC 的周长最小时,点C 的纵坐标是( )A .0B .1C .2D .3【答案】C【分析】如解析图作B 点关于y 轴的对称点B′,连接AB′交y 轴一点C 点,根据两点之间线段最短,这时△ABC 的周长最小,求出直线AB′的解析式为2y x =+,所以,直线AB′与y 轴的交点C 的坐标为(0,2).【详解】作B 点关于y 轴的对称点B′,连接AB′交y 轴一点C 点,如图所示:∵点A 、B 的坐标分别为(1,3)和(2,0), ∴B′的坐标是(-2,0)∴设直线AB′的解析式为y kx b =+,将A 、B′坐标分别代入,302k b k b =+⎧⎨=-+⎩解得12k b =⎧⎨=⎩∴直线AB′的解析式为2y x =+∴点C 的坐标为(0,2) 故答案为C. 【点睛】此题主要考查平面直角坐标系中一次函数与几何问题的综合,解题关键是根据两点之间线段最短得出直线解析式. 二、填空题11.用科学计数法表示1.111 1526=_____________. 【答案】55.2610-⨯【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×11-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定. 【详解】解:1.111 1226=2.26×11-2; 故答案为:2.26×11-2. 【点睛】本题考查了用科学记数法表示绝对值较小的数,一般形式为a×11-n ,其中1≤|a|<11,n 为由原数左边起第一个不为零的数字前面的1的个数所决定.12.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入_____号球袋.【答案】1【解析】试题解析:根据题意,每次反射,都成轴对称变化,一个球按图中所示的方向被击出,经过3次反射后,落入1号球袋.故答案为:1.13.把多项式因式分解22a b ab b -+的结果是__________.【答案】2(1)b a -【分析】先提取公因式,再利用公式法因式分解即可.【详解】()()2222211a b ab b b a a b a -+=-+=-.故答案为: ()21b a -. 【点睛】本题考查因式分解的计算,关键在于熟练掌握基本的因式分解方法. 14.如果332y x x =-+--,那么y x =_______________________. 【答案】19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x=3, ∴y=﹣2,∴2139yx -==. 故答案为:19.【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.15.如图,已知12∠=∠ ,45B ∠=︒ 则DCE ∠= _________.【答案】45°【分析】根据三角形外角的性质得出∠ACD=∠2+∠B ,再利用12∠=∠即可求出∠DCE 的度数. 【详解】∵∠ACD=∠2+∠B=∠1+∠DCE ,45B ∠=︒ ∴DCE ∠=45B ∠=︒, 故答案为:45°. 【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的两个内角的和,熟记性质并熟练运用是解题的关键.16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于_______.【答案】1.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=12AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得22221068CD AC AD=-=-=.故答案是:1.17.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB= cm.【答案】1.【解析】试题分析:因为Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,所以AB="2" CD=1.考点:直角三角形斜边上的中线.三、解答题18.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A,C坐标分别是(a,5),(﹣1,b).(1)求a,b的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC关于y轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A的纵坐标和点C的横坐标即可画出直角坐标系,即可判定a,b的值;(2)根据点A的纵坐标和点C的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,可得:a=﹣4,b=3(2)如图所示:(3)△A'B'C'如图所示:【点睛】此题主要考查平面直角坐标系的确定以及轴对称图形的画法,熟练掌握,即可解题.19.在ABC 中,AB AC =,点E 、F 分别在AB 、AC 上,BE CF =,BF 与CE 相交于点P . (1)求证:BEC CFB ≌;(2)求证:BP CP =.【答案】(1)见详解;(2)见详解【分析】(1)根据等腰三角形的性质等边对等角、全等三角形的判定进行推导即可;(2)由(1)的结论根据全等三角形的性质可得BCE CBF ∠=∠,再利用等式的性质可得FBC ECB ∠=∠,最后由等腰三角形的判定等角对等边可得结论.【详解】(1)证明:∵AB AC =∴A ABC CB =∠∠在BEC △和CFB 中BE CF ABC ACB BC CB =⎧⎪∠=∠⎨⎪=⎩∴()BEC CFB SAS ≌(2)证明:∵BEC CFB ≌∴BCE CBF ∠=∠∴BP CP =.【点睛】本题考查了等腰三角形的性质和判定、全等三角形的判定和性质、等式的性质等知识点,体现了逻辑推理的核心素养.20.因式分解(1)225105mx mxy my -+;(2)(32)(23)a a b a -+-.【答案】(1)25()m x y -;(2)()(32)a b a --. 【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式即可.【详解】解:(1)原式()2252m x xy y =-+25()m x y =-.(2)原式(32)(32)a a b a =---()(32)a b a =--.【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.21.如图,在平面直角坐标系中,线段AB 的两个端点的坐标分别为1,2,()(24),A B ----.(1)画出线段AB 关于x 轴对称的对应线段11A B ,再画出线段11A B 关于y 轴对称的对应线段22A B ; (2)点2A 的坐标为_________;(3)若此平面直角坐标系中有一点(),M a b ,先找出点M 关于x 轴对称的对应点1M ,再找出点1M 关于y 轴对称的对应点2M ,则点2M 的坐标为_______;【答案】(1)详见解析;(2)(1,2);(3)(,)a b --【分析】(1)根据轴对称图形的作图方法画对称线段即可;(2)根据图像可得点2A 坐标;(3)根据关于x 轴对称的特点可得点1M 坐标,再根据关于y 轴对称的特点可得点2M 坐标.【详解】解:(1)如图,线段11A B ,线段22A B 即为所求.(2)由图得2(1,2)A(3)由点M 关于x 轴对称,横坐标不变,纵坐标互为相反数,可得对应点1(,)M a b -,由1M 关于y 轴对称,纵坐标不变,横坐标互为相反数可得其对应点2M (,)a b --.所以点2M 的坐标为(,)a b --.【点睛】本题考查了平面直角坐标系中的轴对称,熟练掌握关于x 轴和y 轴的对称特点是解题的关键.22.如图,直线l 1:y =kx +4(k 关0)与x 轴,y 轴分别相交于点A ,B ,与直线l 2:y =mx (m ≠0)相交于点C (1,2).(1)求k ,m 的值;(2)求点A 和点B 的坐标.【答案】(1)k =-1,m =1;(1)点A (1,0),点B (0,4)【分析】(1)将点C (1,1)的坐标分别代入y=kx+4和y= mx 中,即可得到k ,m 的值;(1)在y=-1x+4中,令y=0,得x=1;令x=0,得y=4,即可得到点A 和点B 的坐标.【详解】解:(1)将点C (1,1)的坐标分别代入y =kx +4和y =mx 中,得1=k +4,1=m ,解得k =-1,m =1.(1)在y =-1x +4中,令y =0,得x =1,令x =0,得y =4,点A (1,0),点B (0,4).【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b (k ≠0,且k,b 为常数)与x 轴的交点坐标、与y 轴的交点坐标,掌握待定系数法求函数解析式是解题的关键.23.(1)先化简,再求值:21(1)121aa a a -÷+++,其中1a =;(2)解分式方程:23193xx x +=--.【答案】(1)1a +;(2)4x =-【分析】(1)先进行化简,然后将a 的值代入求解;(2)根据分式方程的解法求解.【详解】(1) 原式= 211()1121a aa a a a +-÷++++=2121a aa a a ÷+++ =2211a a a a a ++⋅+=2(1)1a a a a +⋅+=1a +当1a =时,原式= 11+=(2)原方程可化为:31(3)(3)3xx x x +=+--方程两边乘()(33)x x +-得:3(3)(3)(3)x x x x ++=+-22339x x x ++=-22393x x x +-=--312x =-4x =-检验:当4x =-时, (3)(3)0x x +-≠所以原方程的解是4x =-【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.24.因式分解:(1)325x x -(2)22344x y xy y -+【答案】(1)()()55x x x +-;(2)()22y x y -【分析】(1)通过提取公因式法和平方差公式,即可得到答案;(2)通过提取公因式法和完全平方公式,即可得到答案.【详解】(1)原式()225x x =- ()()55x x x =+-;(2)原式()2244y x xy y =-+()22y x y =-.【点睛】本题主要考查分解因式,掌握提取公因式法和公式法因式分解,是解题的关键.25.如图,在ABC ∆中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB(1)若65ABC ∠=,则NMA ∠的度数是 度(2)若10AB cm =,MBC ∆的周长是18cm①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC ∆周长的最小值【答案】(1)40°;(2)①8;②18cm【分析】(1)根据垂直平分线上的点到线段两个端点距离相等得AM BM =,再根据等腰三角形的性质即可求解;(2)①根据垂直平分线的性质得AM BM =,MBC ∆的周长是18cm ,10AC AB cm ==,即可求BC 的长度;②当点P 与点M 重合时,PBC ∆周长的最小,即为MBC ∆的周长.【详解】解:(1)AB AC =,ABC C ∴∠=∠65ABC ∠=︒,65C ∴∠=︒,50A ∴∠=︒,MN 是AB 的垂直平分线,AM BM ∴=,50A ABM ∴∠=∠=︒,15MBC ABC ABM ∴∠=∠-∠=︒,80AMB MBC C ∴∠=∠+∠=︒,1402NMA AMB ∴∠=∠=︒. 故答案为40︒.(2)①10AB AC ==,MBC ∆的周长是18cm ,即18BM MC BC ++=AM BM =,18AM MC BC ∴++=,18AC BC ∴+=,8BC ∴=.答:BC 的长度为8cm .②点B 关于MN 对称点为A ,AC 与MN 交于点M ,∴当点P 与点M 重合时,PBC ∆周长的值最小,且为AC+BC=10+8=18cm ,∴PBC ∆的周长的最小值为18cm .【点睛】本题考查了轴对称—最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5【答案】A【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A .【点睛】本题考查(1)、众数;(2)、中位数.2.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若1BD =,3BC =,则AC 的长为( )A .5B .4C .3D .2【答案】A 【分析】根据已知条件,延长BD 与AC 交于点F ,可证明△BDC ≌△FDC ,根据全等三角形的性质得到BD=DF,再根据A ABD ∠=∠得AF=BF ,即可AC .【详解】解:延长BD,与AC 交于点F,∵BD CD ⊥∴∠BDC =∠FDC=90°∵CD 平分ACB ∠,∴∠BCD =∠FCD在△BDC 和△FDC 中90BDC FDC BCD FCDCD CD ∠∠=︒⎧⎪∠∠⎨⎪=⎩== ∴△BDC ≌△FDC∴BD=FD =1 BC=FC=3∵A ABD ∠=∠∴AF=BF∵1BD =,3BC =,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A【点睛】本题考查的是三角形的判定和性质,全等三角形的对应边相等,是求线段长的依据,本题的AC=AF+FC,AF,FC 用已知线段来代替.3.下列命题中不正确的是( )A .全等三角形的对应边相等B .全等三角形的面积相等C .全等三角形的周长相等D .周长相等的两个三角形全等【答案】D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D .4.如图,已知△ABC 中,PM 、QN 分别是AB ,AC 边上的垂直平分线,∠BAC=100°,AB>AC ,则∠PAQ 的度数是( )A .10°B .20°C .30°D .40【答案】B 【分析】根据三角形内角和定理求出B C ∠+∠,根据线段的垂直平分线的性质得到PA PB =,QA QC =,计算即可.【详解】解:100BAC ∠=︒,80B C ∴∠+∠=︒, PM ,QN 分别是AB ,AC 的垂直平分线,PA PB ∴=,QA QC =,PAB B ∴∠=∠,QAC C ∠=∠,()20PAQ BAC PAB QAC ∴∠=∠-∠+∠=︒,故选:B .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC ∠=∠D .CDE BAD ∠=∠【答案】B 【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.6.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定【答案】B 【分析】如图,直线l 1:y 1=k 1x+b 与直线l 2:y 2=k 2x 在同一平面直角坐标系中的图像如图所示,则求关于x 的不等式k 1x+b >k 2x 的解集就是求:能使函数y 1=k 1x+b 的图象在函数y 2=k 2x 的上方的自变量的取值范围.【详解】解:能使函数y 1=k 1x+b 的图象在函数y 2=k 2x 的上方的自变量的取值范围是x<-1.故关于x 的不等式k 1x+b >k 2x 的解集为:x<-1.故选B .7.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE 的长为( )A .32xB .23xC .33xD 3x【答案】D【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.8.若分式23x x +有意义,则x 的取值范围是( ) A .x≠3B .x≠-3C .x >3D .x >-3 【答案】B【分析】直接利用分式有意义的条件分析得出答案. 【详解】分式23x x +有意义, ∴x 的取值范围为:3x ≠-.故选B .【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5CD .5【答案】D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边=2243-=7;当第三边为斜边时,3和4为直角边,第三边=2243+=5,故选:D .【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10.下列哪个点在第四象限( )A .(1,2)B .(1,2)-C .(2,1)-D .(2,1)-- 【答案】C【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答即可.【详解】因为第四象限内的点横坐标为正,纵坐标为负,各选项只有C 符合条件,故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题11.已知:如图,,AB AD BC DC == ,点P 在AC 上,则本题中全等三角形有___________对.【答案】1【分析】由AB=AD ,BC=DC ,AC 为公共边可以证明△ABC ≌△ADC ,再由全等三角形的性质可得∠BAC=∠DAC ,∠BCA=∠DCA ,进而可推得△ABP ≌△ADP ,△CBP ≌△CDP .【详解】在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC ;∴∠BAC=∠DAC ,∠BCA=∠DCA ,在△ABP 和△ADP 中,AB AD BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP ,在△CBP 和△CDP 中,BC DC BCP DCP CP CP =⎧⎪∠=∠⎨⎪=⎩,△CBP ≌△CDP .综上,共有1对全等三角形.故答案为:1.【点睛】本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.等腰三角形的腰长为8,底边长为6,则其底边上的高为_________.【答案】55【分析】先画出图形,根据等腰三角形“三线合一”的性质及勾股定理即可求得结果.【详解】如图,AB=AC=8,BC=6,AD 为高,则BD=CD=3,∴22228355AD AB BD -=-=55【点睛】本题考查的是等腰三角形的性质,勾股定理,解答本题的关键是熟练掌握等腰三角形“三线合一”的性质:等腰三角形顶角平分线,底边上的高,底边上的中线重合.13.如图,在三角形纸片ABC 中,90,30,6C A AC ︒︒∠=∠==,折叠纸片,使点C 落在AB 边上的点D 处,折痕BE 与AC 交于点E ,则折痕BE 的长为_____________;【答案】4 【分析】根据勾股定理求得23BC =43AB =CBE=∠ABE=12∠ABC=30°,继而证得BE=AE ,在Rt △BCE 中,利用勾股定理列方程即可求得答案.【详解】在Rt △ABC 中,90,30,6C A AC ︒︒∠=∠==,设BC x =,则2AB x =,∵222BC AC AB +=,即()22262x x +=, 解得:23x = ∴23BC =43AB =∵折叠△ABC 纸片使点C 落在AB 边上的D 点处,∴∠CBE=∠ABE ,在Rt △ABC 中,∠A=30°,∴∠ABC=60°,∴∠CBE=∠ABE=12∠ABC=30°, ∴∠ABE=∠A=30°,∴BE=AE ,在Rt △BCE 中,∠C=90°,23BC =6CE AC AE BE =-=-,∵222BC CE BE +=,即(()22236BE BE +-=, 解得:4BE =.【点睛】本题主要考查了勾股定理的应用,含30度的直角三角形的性质以及折叠的性质,利用勾股定理构建方程求线段的长是解题的关键.领会数形结合的思想的应用.14.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为_____.【答案】1【分析】首先根据题意可得MN是AB的垂直平分线,由线段垂直平分线的性质可得AD=BD,再根据△ADC 的周长为10可得AC+BC=10,又由条件AB=7可得△ABC的周长.【详解】解:∵在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=1.故答案为1.15.平面上有三条直线两两相交且不共点,那么平面上到此三条直线距离相等的点的个数是_____.【答案】1【分析】根据角平分线性质的逆定理,结合三角形内角平分线和外角平分线作出图形即可解答.【详解】解:到三条直线的距离相等的点应该有A、B、C、D共1个,故答案为:1.【点睛】本题考查了角平分线性质的逆定理,掌握角平分线性质的逆定理是解题的关键.16.等腰三角形的一个角是70°,则它的底角是_____.【答案】55°或70°.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°; 若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.17.如图,ABC ∠的内角平分线BP 与ACB ∠的外角平分线CP 相交于点P ,若29P ∠=︒,则A ∠=____.【答案】58︒【分析】根据角平分线的定义和三角形外角性质然后整理得到∠BAC=2∠P ,代入数据进行计算即可得解.【详解】∵BP 、CP 分别是∠ABC 和∠ACD 的平分线,∴∠ACD=2∠PCD ,∠ABC=2∠PBC ,由三角形的外角性质得,∠ACD=∠BAC+∠ABC ,∠PCD=∠P+∠PBC ,∴∠BAC+∠ABC=∠ACD=2∠PCD =2(∠P+∠PBC)= 2∠P+2∠PBC=2∠P+∠ABC ,∴∠BAC=2∠P ,∵∠P=29︒,∴∠BAC=58︒.故答案为:58︒.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和,角平分线的定义,熟记性质并准确识图最后求出∠BAC=2∠P 是解题的关键.三、解答题18.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?【答案】20°.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC 和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°﹣∠BAD=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),再求∠MAN的度数即可得出答案.【详解】如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于M,交CD于N,则A'A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA'M+∠A″=180°﹣∠BAD=180°﹣100°=80°.∵∠MA'A=∠MAA',∠NAD=∠A″,且∠MA'A+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA'A+∠MAA'+∠NAD+∠A″=2(∠AA'M+∠A″)=2×80°=160°,∴∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.19.已知一次函数y1=kx+b(其中k、b为常数且k≠0)(1)若一次函数y2=bx﹣k,y1与y2的图象交于点(2,3),求k,b的值;(2)若b=k﹣1,当﹣2≤x≤2时,函数有最大值3,求此时一次函数y1的表达式.【答案】(1)39,55;(2)y1=x或y1=﹣3x﹣1【分析】(1)y1与y2的图象交于点(2,3),代入y1与y2的解析式,组成k与b方程组,解之即可, (2)当﹣2≤x≤2时,y1函数有最大值3,一次函数y1增减性由k确定,分k>0,x=2,y=2与k<0,x=-2,y=2,代入解之即可.【详解】解:(1)∵y1与y2的图象交于点(2,3),∴把点(2,3)代入y1与y2的解析式得,23 23 k bb k+=⎧⎨-=⎩,解得,3595kb⎧=⎪⎪⎨⎪=⎪⎩;(2)根据题意可得y1=kx+k﹣1,①当k>0时,在﹣2≤x≤2时,y1随x的增大而增大,∴当x=2时,y1=3k﹣1=2,∴k=1,∴y1=x;②当k<0时,在﹣2≤x≤2时,y1随x的增大而减小,∴当x=﹣2时,y1=﹣k﹣1=2,∴k=﹣3,∴y1=﹣3x﹣1.综上所述,y1=x或y1=﹣3x﹣1.【点睛】本题考查解析式的求法,利用两直线的交点,与区间中的最值来求,关键是增减性由k确定分类讨论.20.计算:①(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)②(x﹣2y)(3x+2y)﹣(x﹣2y)2【答案】①﹣3a3b2;②2x2﹣8y2【分析】①先计算乘方运算,在计算乘除运算,最后算加减运算即可得出答案;②根据多项式乘多项式和完全平方公式可以解答本题.【详解】①解:(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)=﹣a3•b2+4a6b4÷(﹣2a3b2)=﹣a3b2﹣2 a3b2=﹣3a 3b 2②解:(x ﹣2y )(3x+2y )﹣(x ﹣2y )2=3x 2+2xy ﹣6xy ﹣4y 2﹣x 2+4xy ﹣4y 2=2x 2﹣8y 2【点睛】本题考查整式的混合运算,有乘方、乘除、加减的混合运算中,要按照先乘方后乘除、最后加减的顺序运算,其运算顺序和有理数的混合运算顺序相似.掌握整式的混合运算顺序是解题的关键.21.如图,四边形ABCD 中,//AB CD ,CD AD =,60ADC ∠=︒,对角线BD 平分ABC ∠交AC 于点P.CE 是ACB ∠的角平分线,交BD 于点O.(1)请求出BAC ∠的度数;(2)试用等式表示线段BE 、BC 、CP 之间的数量关系,并说明理由;【答案】(1)60︒;(2)BE+CP=BC ,理由见解析.【分析】(1)先证得ADC ∆为等边三角形,再利用平行线的性质可求得结论;(2)由BP 、CE 是△ABC 的两条角平分线,结合BE=BM ,依据“SAS ”即可证得△BEO ≌△BMO ;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60︒,求出∠BOM ,即可判断出∠COM=∠COP ,即可判断出△OCM ≌△OCP ,即可得出结论;【详解】(1)∵CD AD =,60ADC ∠=︒,∴ADC ∆为等边三角形,∴∠ACD=60︒,∵//AB CD ,∴∠BAC=∠ACD=60︒;(2)BE+CP=BC ,理由如下:在BC 上取一点M ,使BM=BE ,连接OM ,如图所示:。
(精品)最新八年级下册16.1二次根式第2课时二次根式的性质导学案新人教版
【变式题】实数a 、b 2244a ab b a b ++-.方法总结利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为53的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.教学备注 配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0负数的算术平0),把下列非负数分别写成一个非负数的平方的形式:。
人教版八年级下册数学16.1二次根式导学案
【自助学习·我尝试自学】
1.平方根、算术平方根用符号怎么表示?
2.说出下列各式的意义,并计算:
,,,,,,.
得出新知:形如式子,,等叫做
讨论:式子只有在条件a 0时才叫二次根式,是二次根式吗?
归纳:二次根式有意义的条件是
【互助探究·我参与互研】
例1.当a为实数时,下列各式中哪些是二次根式?
例2.x 是怎样的实数时,式子
在实数范围有意义?
例3. 当 x 是怎样的实数时,2x 在实数范围内有意义?3x 呢?
【求助交流·我愿意分享】
1.判断下列各式是不是二次根式
2.a 是怎样的实数时,下列各式在实数范围内有意义?
【补助练兵·我能用新知】
1、当x 取________时,二次根式4x -有意义.
2、若则 .
3、使在实数范围内有意义的x 应满足的条件是 .
4、使1x -有意义的x 的取值范围是 .
5、当字母取何值时,下列各式为二次根式:
()2
2340a b c -+-+-=,=+-c b a 11
x -
(1)
(2) (3)
【共助反馈·我能够达标】已知:3x 22x y --+-=,求:4y x )
(+的值。
人教版初中数学八年级下册16.1二次根式的概念及其性质辅导教案
c)二次根式的除法法则:√a / √b = √(a / b),其中b不为0。
d)二次根式的平方:(√a)^2 = a,其中a为非负数。
3.二次根式的化简与运算:通过性质对二次根式进行化简,掌握二次根式的加减乘除运算。
二、核心素养目标
本节课的核心素养目标主要包括:
4.增强数学运算能力:训练学生对二次根式进行加减乘除运算,提高数学运算的速度和准确性,培养严谨细致的数学运算习惯。
5.培养学生的创新意识:鼓励学生在解决二次根式相关问题时,勇于尝试新方法,探索新规律,激发创新思维。
三、教学难点与重点
1.教学重点
(1)理解二次根式的概念:二次根式的定义是本节课的核心,学生需要掌握根号下表示的数为非负数的平方根。
其次,二次根式的性质和运算规则是本节课的重点,也是学生学习的难点。在讲解过程中,我尽量用简单的语言和具体的例子来阐述,但仍有部分学生难以消化。我意识到,可能需要通过更多的练习和变式题目,让学生在反复实践中掌握这些规则。
让我印象深刻的是,在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们通过讨论和实验操作,对二次根式的应用有了更深的理解。这说明,将理论知识与实际操作相结合的教学方式是非常有效的。
1.培养学生的数学抽象能力:通过二次根式的概念及其性质的探究,使学生能够从具体实例中抽象出数学规律,形成数学表达式,提高数学抽象思维。
2.提升逻辑推理能力:引导学生运用二次根式的性质进行推理和论证,掌握二次根式的化简和运算方法,增强逻辑思维和推理能力。
3.发展数学建模素养:通过解决实际问题时运用二次根式,培养学生建立数学模型,运用数学知识解决现实问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计
人教版数学八年级下册16.1第2课时《二次根式的性质》教学设计一. 教材分析人教版数学八年级下册16.1第2课时《二次根式的性质》是初中数学的重要内容,主要让学生了解和掌握二次根式的性质。
教材通过引入实际问题,引导学生探究二次根式的性质,从而培养学生的抽象思维能力和解决问题的能力。
本节课的内容为后续学习二次根式的运算和应用打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。
同时,学生已经学习了二次根式的概念和简单的运算。
但学生在理解和运用二次根式的性质方面还存在一定的困难,因此,教师在教学过程中要注重引导学生理解和运用二次根式的性质。
三. 教学目标1.理解二次根式的性质,并能熟练运用。
2.培养学生的抽象思维能力和解决问题的能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.二次根式的性质及其运用。
2.引导学生理解和运用二次根式的性质。
五. 教学方法1.情境导入:通过实际问题引入二次根式的性质,激发学生的学习兴趣。
2.自主探究:引导学生独立思考,探究二次根式的性质。
3.合作交流:分组讨论,让学生在讨论中理解和掌握二次根式的性质。
4.巩固练习:设计有针对性的练习,让学生在实践中运用二次根式的性质。
5.总结提升:引导学生总结二次根式的性质,并展望后续学习。
六. 教学准备1.准备相关的实际问题,用于导入新课。
2.准备PPT,展示二次根式的性质及相关例题。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考二次根式的性质。
例如:一个正方形的对角线长度为8,求正方形的边长。
2.呈现(10分钟)教师通过PPT展示二次根式的性质,引导学生理解和掌握。
例如:二次根式√a的性质有:(1)√a2=a(a≥0);(2)√a⋅√b=√ab(a≥0,b≥0);(3)√a√b =√ab(a≥0,b>0)。
近年八年级数学下册 16.1 二次根式 第2课时 二次根式的性质导学案 新人教版(2021年整理)
2017八年级数学下册16.1 二次根式第2课时二次根式的性质导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017八年级数学下册16.1 二次根式第2课时二次根式的性质导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017八年级数学下册16.1 二次根式第2课时二次根式的性质导学案(新版)新人教版的全部内容。
第2课时二次根式的性质1。
理解a(a≥0)是一个非负数。
2.理解二次根式的两个性质(a)2=a(a≥0)和2a=a(a≥0)。
3。
会运用上述两个性质进行有关计算和化简.自学指导:阅读教材第3页至4页,完成下列的问题。
知识探究(-)当a〉0时,a表示a的算术平方根,因此a>0;当a=0时,a表示0的算术平方根,因此a=0.概括:一般地:a(a≥0)是一个非负数.知识探究(二)根据算术平方根的意义填空:(4)2=4;(2)2=2;(13)2=13;(0)2=0。
概括:一般地:(a)2=a(a≥0)知识探究(三)22=2;20.01=0。
01;223⎛⎫⎪⎝⎭=23;20=0.概括:一般地:2a=a(a≥0)二次根式的三个性质:(1)a(a≥0)是一个非负数;(2)(a)2=a(a≥0);(3)2a=a(a≥0)。
自学反馈1。
计算:(1)(32)2 (2)(35)2(3)(56)2(4)(72)2解:(1)32;(2)45;(3)56;(4)74。
2.化简:(1)9 (2)()24-(3)25?(4)()23-解:(1)3;(2)4;(3)5;(4)3.3.代数式的概念:用基本运算符号(基本运算符号包括加、减、乘、除、开方等)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式。
人教版数学八年级下册教案 16.1《 二次根式 》
人教版数学八年级下册教案 16.1《二次根式》一. 教材分析人教版数学八年级下册第16.1节《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。
本节内容为后续学习二次根式的应用和二次方程等知识打下基础。
教材通过引入二次根式,让学生体会数学与实际生活的联系,培养学生的数学应用能力。
二. 学情分析学生在学习本节内容前,已掌握了实数、有理数和无理数的基本知识,具备一定的代数运算能力。
但学生对二次根式这一概念的理解和应用尚存困难,因此,在教学过程中,要注重引导学生通过实例认识二次根式,感悟数学与生活的联系,激发学习兴趣。
三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。
2.学会二次根式的运算,提高学生的数学运算能力。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算方法。
五. 教学方法1.情境教学法:通过生活实例引入二次根式,让学生感受数学与生活的联系。
2.启发式教学法:引导学生探究二次根式的性质和运算方法,培养学生的独立思考能力。
3.小组合作学习:学生进行小组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示二次根式的概念、性质和运算方法。
2.练习题:准备适量练习题,巩固学生对二次根式的理解和应用。
七. 教学过程1.导入(5分钟)利用生活实例,如求物体长度、面积等,引出二次根式的概念。
2.呈现(10分钟)讲解二次根式的定义,让学生通过实例理解二次根式。
3.操练(15分钟)让学生进行二次根式的基本运算,如加减乘除,巩固学生对二次根式的掌握。
4.巩固(10分钟)出示练习题,让学生独立解答,检查学生对二次根式的理解和运用。
5.拓展(10分钟)讲解二次根式的性质,如二次根式的乘除法、化简等,引导学生运用性质解决问题。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确二次根式的概念、性质和运算方法。
人教版八年级下册16.1二次根式的性质导学案
数学(学科)导学案
课题16.1 二次根式的性质学案编号01使用时间班级姓名
学习目标
1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;
2.会运用二次根式的两个性质进行化简计算.
重
难
点
重点经历二次根式的性质的发现过程,体验归纳、猜想的思想方法.
难点会运用二次根式的两个性质进行化简计算
一、自主学习
回顾思考:表示,a 的取值范围是.
1. 用基本运算符号(包括加、减、乘、除、乘方和开方)把或连接起来的式子,我们称这样的式子为代数式.
2. 你能列举一些你学过的代数式吗?
练一练:在下列式子中,是代数式的有_个,分别是.
π-3,a≠0
二、合作探究
探究1:用学过的方法完成下列式子的计算.
思考
归纳总结:
的性质:
一般地,=.即一个的算术平方根的平方等于 .................
例题精讲
例
练一练
探究2:
1、计算
2、计算
3、对比发现
归纳总结
的性质:
即任意一个数的平方的算术平方根等于.
概念辨析:如何区分与?
例题精讲
(1)
练习
三、能力提升
1、实数a 在数轴上的对应点如图所示,请你化简:
a
-1 0 1
2、已知,则x 的取值范围是.
五、中考链接
已知a、b、c 是△ABC 的三边长,化简:
老师我不会
老师我想说。
人教版八年级数学下册 16.1.1二次根式的定义 导学案
16.1.2二次根式的性质教学目标1、经历二次根式的性质的发现过程,体验归纳、猜想的思想方法。
2、了解二次根式的上述两个性质。
3、会运用上述两个性质进行有关计算。
教学重点是理解二次根式的上述两个性质;教学难点:是灵活运用上述两个性质进行有关计算。
教学过程一、 回顾与引入1、 平方根的概念:一个数的平方等a (a ≥0),则这个数叫做a 的平方根,记做a ±,则()a a =±22、()a a =23、大家抢答 填空()=22 ()=213 =⎪⎪⎭⎫ ⎝⎛271二、新课讲解从熟悉的知识出发先练习、再观察发现总结规律得出性质一 4、性质一:()()02≥=a a a5、能用几何图形作出直观解释吗?用正方形的面积启发诱导数形结合思想6、填空 课本6页7、比较 2a 和a 有何关系?当a ≥0时,2a = 和a ﹤0,2a = 先练习、再观察发现总结规律得出性质二8、性质二:9、课内练习(()(()(()(()()()(2222322211_____,2______,33_____,5141_____,54____,62____.3⎛⎫-=-= ⎪⎝⎭=---=梳理知识使条理清楚,及时练习巩固10、例1 计算(1)()()221317-- (2)()323332+•⎥⎦⎤⎢⎣⎡--规范书写,知道运算程序、强调性质运用的条件,二次根式运算顺序11、课本7页课内练习第2题(领悟方法,会正迁移)12、计算:217375212-+⎪⎭⎫ ⎝⎛- 要求比较先算括号里与直接利用二次根式性质的优劣;强调先判断2a 中a 的符号三、引申与提高例4 化简:(1)(2) (3) (a <0,b >0) (4)(a >1 ) 四、分享与体会你能说出这节课你的收获和体验与大家分享吗?五、作业1.课本作业题;2.预习下节课。
人教版八年级数学下册16.1二次根式(2)导学案
16.1二次根式(2)导学案一、复习引入1.算数平方根的意义(1)当a >0时,a 表示a 的 ,因此,a 0;(2)当a =0时,a 表示0的 ,因此,a = ; 就是说a (a ≥0)总是一个 数.2.若3x -有意义,则2x =_______.二、 探究新知【探究1】根据算术平方根的意义填空:42=_______;2)2=_______;92=______;32=_______; 13)2=______;72)2=_______;0)2=_______. 根据以上结果,你能发现什么规律?【归纳】 二次根式的性质: (a )2= (a ≥0) 自我检测: 例1 计算: 32)2 ⑵(52提示:⑵中用到了()222b a ab = 【探究2】⑴计算:=24 =22.0 =2)54( =20 . 观察其结果与根号内幂底数的关系,归纳得到: 当=>2,0a a .⑵计算:=-2)4( =-2)2.0( =-2)54( =-2)20( .观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 。
⑶计算:=20 ;当==2,0a a【归纳】二次根式的性质:⎪⎩⎪⎨⎧<=>==0)(a _____0)a ( _____0)a ( ____ 2 a a自我检测:【例1】化简: (1)9 (2)2(4)- (3)25 (4)2(3)-【例2】求下列各式的值.⑴2)45( ⑵2)32(- ⑶2)21(- ⑷2)14.3(π-代数式:用基本运算符号(包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子称为代数式。
【课本练习】第4页 第1、2题三、拓展提升1、化简|a -2|+2)2(a -的结果是( )A .4-2aB .0C .24-aD .42、已知x <y ,化简2)(y x x y ---为_______.3、若a a =2,则a _________;若a a -=2,则a ________.4、已知:实数a 、b 在数轴上的位置如图: 化简:222)(b a b a ---5、已知实数aa =,求22008a -的值是多少?四、课堂小结:. . . . . . . . -1 0 1a b。
八年级数学下册 16.1 二次根式(第2课时)导学案(新版)新人教版
二次根式第 2 课时1、掌握二次根式的基本性质: a a2学习目标: 2、能利用上述性质对二次根式进行化简. 学习重点: 学习难点: 学法指导: 二次根式的性质 a a .2综合运用性 质a 2 a 进行化简和计算。
先自学质疑,再小组互助,最后请求老师帮助 知识链接(1)什么是二次根式,它有哪些性质?(2)二次根式2 有意义,则 x x52 2。
(3)在实 数范围内因 式分解: x 6 x ( 自主学习) =(x+2)(y-)1、计算:42 0.2 2 4 ( )2 5202 观察其结果与根号内幂底数的关系,归纳得到:当 a 0时,a2 2、计算:(4) 2 ( 0 .2 ) 2 4 ( ) 2 5( 20 ) 2 观察其结果与根号内幂底数的关系,归纳得到:当 a 0时, a 2 3、计算:02 当 a 0时,a2 合作探究1、归纳总结将上面做题过程中得到的结论综合 起来,得到二次根式的又一条非常重要的性质:a0 a a 2 a 0 0 a a0 2、化简下列各式: (1) 、 0.32 ( a 0) 3、请大家思考、讨论二 次根式的性质 ( a ) 2 a(a 0) 与 a a 有什么区别与联系。
22 (2) 、 ( 0.5) 2 ( 3) 、 ( 6) (4) 、2a 2=课堂小结 知识方法小结:二次根式的性质: (1) ( 2) (3) 达标检测 1、化简下列各式 (1) 4 x 2 ( x 0) 2、化简下列各式 (1) (a 3)2(2)x4(a 3)(2)2 x 32 (x<-2)注:利用 a a 可将二2次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确 确定“a”的取值 。
。
八年级数学下册 16.1.2 二次根式导学案 (新版)新人教版
八年级数学下册 16.1.2 二次根式导学案 (新版)新人教版16、1二次根式一、学习目标1、理解二次根式的性质,并利用性质对二次根式进行化简。
二、预习内容预习课本P3-4页内容。
1、二次根式的两个性质:。
根据性质进行计算。
(1)如果=x成立,则x一定是()A、正数B、0C、负数D、非负数2、代数式的定义:。
三、预习检测1、如果=-1,则a与b的大小关系为()A、a>bB、b>aC、a≥bD、b≥a2、已知x<1,那么化简的结果是()A、x-1B、1-xC、-x-1D、x+13、下列各式是否成立?(1)=;(2)=ab,等,这些式子有哪些共同特征?【典例】1、实数a,b在数轴上的位置如图所示,化简+a|。
2、已知x为实数时,化简+ 。
二、小组展示(规定出小组展示的时间或方案)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)。
交流内容展示小组(随机)点评小组(随机)____________第______组第______组____________第______组第______组三、归纳总结二次根式的性质:(2=a(a≥0)=a(a≥0)利用二次根式的基本性质进行化简。
四、课堂达标检测1、若=3-a,则a与3的大小关系是()A、 a<3B、a≤3C、 a>3D、a≥32、把二次根式a•化为最简二次根式是()A、B、D、3、已知2<a<3,化简 +|a-3|。
4、已知实数a满足+ =a,求a-xx2的值。
五、学习反馈本节课你学到了什么?有什么收获和体会?还有什么困惑?参考答案预习检测1、B2、B3、(1)成立;(2)不成立;(3)成立;(4)不成立课堂达标检测1、B2、C3、14、xx。
八年级数学下册16.1二次根式(第2课时)导学案(新版)新人教版
八年级数学下册16.1二次根式(第2课时)导学案(新版)新人教版
【学习目标】
1、掌握二次根式的三个基本性质:(1)二次根式的双重非负性即:
(2)=(≥0)、(3)
2、会利用二次根式的性质进行计算、化简。
3、在运用性质进行计算时体会分类的数学思想。
学习重点:二次根式的三个基本性质学习难点:中a值的分类讨论。
【自习自疑文】
阅读教材相关内容,完成以下练习。
1、填空:
;;;;。
由以上式子你发现什么一般规律?用式子表示出来。
2、填空:
;;;。
由以上式子你发现什么一般规律?用式子表示出来。
【自主探究文】
探究一:利用二次根式的性质进行计算。
探究二:利用二次根式的性质进行计算。
归纳:
这种类型的二次根式,其中的a可以取正数,负数和0,在三种情况下它们各自的结果分别是多少?拓展训练:已知实数a、b、c在数轴上的位置如图所示,试化简探究三:利用二次根式的非负性化简求值。
已知若
【自结自测文】
本节课的学习,你有哪些收获?
1、二次根式的值是()
A、-3
B、3或-3
C、9
D、
32、下列各式中。
正确的是()
A、
B、
C、
D、
3、计算:
4、已知a为实数,则式子。
人教版数学八年级下册16.1《二次根式(2)》导学案
二次根式〔2〕 学案学习目标:1.理解二次根式的性质,能运用二次根式的性质进展二次根式的运算和化简;2.2=a 〔a ≥0〕的过程,培养分类的数学思想。
学习重点:2=a 〔a ≥0〕及运用。
学习难点:运用二次根式的性质进展二次根式的化简。
学习过程:一、温故互查〔1〕当a >0时,a 表示a 的 ,因此,;〔2〕当a =0时,a 表示0的 ,因此,a = ;就是说a 〔a ≥0〕总是一个 数。
有意义,那么2x =_______. 3.整数指数幂的运算性质:()n n n b a ab = n n na b a b =⎪⎭⎫ ⎝⎛ 二、设问导读 探究新知阅读课本,完成以下问题 【探究】根据算术平方根的意义填空:2=_______;〕2=_______;2=______;2=_______;〕2=______;〕2=_______;〕2=_______. 根据以上结果,你能发现什么规律?【归纳】二次根式的性质:三、自我检测例1 计算:⑴〕2 = ⑵〔〕2 =⑶2 = ⑷〕2=提示:⑵中用到了()n n n b a ab = ⑷中用到了n n na b a b =⎪⎭⎫ ⎝⎛ 【课本练习】Р5 1四、稳固训练计算:2〔x≥0〕= 〕2=〕2 = 〕2 =五、拓展提升1.计算〔1〕- 2 〔2〕〔12〕22.把以下非负数写成一个数的平方的形式:⑴5 ⑵3.4 ⑶16⑷x 〔x ≥0〕六、小结评价1.请说说你本节课的收获?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:。
人教初中数学八下 16.1 二次根式(第2课时)教案 【经典教学设计合编】
16.1 二次根式(第2课时)教学内容本节课主要学习二次根式的性质a(a≥0)是一个非负数与(a)2=a及其运用。
教学目标一、知识技能理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简。
二、数学思考乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用。
三、解决问题利用二次根式的非负性和(a)2=a(a≥0)解题。
四、情感态度通过利用乘方与开方互为逆运算推导结论(a)2=a(a≥0),使学生感受到数学知识的内在联系。
重难点、关键重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用。
难点:理解二次根式a(a≥0)是一个非负数与(a)2=a。
关键:用分类思想的方法导出a(a≥0)是一个非负数;•用探究的方法导出(a)2=a(a≥0)。
教学准备教师准备:制作课件,精选习题。
学生准备:复习有关知识,预习本节课内容。
教学过程一、复习引入【提出问题】1、什么叫二次根式?2、当a≥0时,a表示什么?当a<0时,a有意义吗?【活动方略】教师给出题目。
学生根据所学知识回答问题。
【设计意图】复习二次根式的概念及算术平方根的基本形式.为二次根式的性质引入作好铺垫。
二、探索新知【问题】a (a ≥0)有没有可能小于零?为什么?教师提出问题。
学生总结出二次根式的性质1: a (a ≥0)是一个非负数. 【设计意图】使学生归纳出二次根式的性质1:a (a ≥0)是一个非负数。
【探究】根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(13)2=______;(0)2=_______。
教师给出题目。
学生口答结果后总结有何规律。
老师点评:是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4。
4同理可得:(2)2=2,132=13,0)2=0,所以(a )2=a (a ≥0)【设计意图】归纳出二次根式的性质2:a 2=a (a ≥0)三、范例点击 例1 已知3+x +5-y =0,求xy 的值是多少? 解:∵3+x +5-y =0,∴3+x ≥0且5-y ≥0, ∴3+x =0且5-y =0;即x +3=0且y -5=0解得x =-3,y =5 ∴xy =-15【设计意图】使学生掌握二次根式的性质1,理解非负式的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学八年级第十六章 16.1 二次根式第 2 课时
导学案
命制学校: 学习目标:
2、能利用上述性质对二次根式进行化简. 五中
命制教师:
2 1、掌握二次根式的基本性质: a a
学习重点: 学习难点: 学法指导:
2 二次根式的性质 a a .
综合运用性 质
a 2 a 进行化简和计算。
先自学质疑,再小组互 助,最后请求老师帮助
知识链接
(1)什么是二次根式,它有哪些性质?
(2)二次根式
2 有意义,则 x x5。
(3)在实 数范围内因 式分解: x 2 6 x 2 (
) =(x+
2
)(y-
)
自主学习
1 、计算:
42
0.2 2
4 ( )2 5
202
观察其结果与根号内幂底数的关系,归纳得到:当 a 0时, a 2
2、计算:
(4) 2
( 0 .2 ) 2
4 ( ) 2 5
( 20 ) 2
观察其结果与根号内幂底数的关系,归纳得到:当 a 0时, a 2
3、计算:
02
当 a 0时, a 2
合作探究
1、归纳总结 将上面做题过程中得到的结论综合 起来 ,得到二次根式的又一条非常重要 的性质:
a0 a a a 0 0 a a0
2
2、化简下列各式: (1)、 0.32
2 (2)、 (0.5) 2 ( 3)、 ( 6)
(4)、
2a 2
=
( a 0)
2 3、 请大家思考、 讨论二 次根 式的性质 ( a ) 2 a(a 0) 与 a a 有什么区别与联系。
课堂小结
知识方法小结:二次根式的性质: (1) (2) (3)
达标检测
1、化简下列各式 (1) 4 x 2 ( x 0) 2、化简下列各式 (1) (a 3) 2 (a 3) (2) (2)
x4
2 x 32
2 (x<-2) 注:利用 a a 可将
二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是 准确确定“a”的取值 。
。