离散数学期末测试卷I及答案

合集下载

离散数学期末试卷(4套附答案)

离散数学期末试卷(4套附答案)

一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。

离散数学期末测试卷I及答案

离散数学期末测试卷I及答案
答案:R(x,y) 21.图论的创始人是谁?
答案:瑞士数学家 L.Euler(欧拉) 22.两个图同构是指其中一个图近经过哪些变换可以变为另一个图?
答案:1.挪动点的位置; 2.伸缩边的长短。
23. 什么是孤立点和悬挂点? 答案:孤立点:在任意图 G(V,E)中,度数为 0 的结点。
悬挂点:在任意图 G(V,E)中,度数为 1 的结点。 24.域和环相比增加了哪些要求? 答案:域:设(F,+,•)是环,若(F-{0},•)是阿贝尔群,则称(F,+,•)是域。 25.阿贝尔群具有哪些特点?比普通群增加了什么? 答案:阿贝尔群:设(G,•)是群,若其运算•是可交换的,则称(G,•)为阿贝尔群。 二、填空题 1.鸽笼原理是指什么? 答:n+1 只或更多的鸽子飞进 n 个笼子时,一定有一个笼子里面至少有 2 只鸽子。 2.哪位挪威数学家和法国数学家先后为群的研究做出了杰出的贡献? 答案:挪威数学家 Niels Henrik Abel (尼尔斯· 亨利克·阿贝尔)和法国数学家 Évariste Galois(埃瓦里斯特•伽罗瓦) 为群的研究做出了杰出的贡献。 3.单独一个节点 v 构成的序列 v 到 v 的长度为多少的路?叫做什么? 答案:单独一个节点 v 构成的序列 v 到 v 的长度为 0 的路叫做平凡路 4.命题公式(p→q)→r 的析取范式与合取范式各为什么?
7.设 A, 是一个偏序集,如果 A 中任意两个元素都有上确界和下确界,则称 A, 是一个格。 答:正确。也称(A, )为偏序格。
8.命题公式 P Q 的逆反式是 Q P 。
答:正确。左边= P Q P Q Q P Q P =右边
9.图
是弱连通图。
答:正确。该图为强连通图且属于弱连通图。

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。

求证:g f 和都是满射;但不是单射。

(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。

离散数学期末考试题(附答案和含解析)

离散数学期末考试题(附答案和含解析)

一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。

//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。

//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。

//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。

//备注:二元运算为x*y=max{x,y},x,y ∈A 。

10.下图所示的偏序集中,是格的为 c 。

//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。

2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学> 2022-2023期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本息共16分)1, 若集合A = <1,2,3},则下列表述正确的是〈 )•A. {1,2,3}€AB. AC(1,2}C. U,2,3}gAD. {1,2}£A2. 设 A = {1,2,3},B = (1,2,3,4},人到 B 的关系 R = {O ,>> |工 £ A ,了 £ B },则 R =().A. {<1,2>,V2,3>}B. {V1,1>,V1,2>,V1,3>,V1,4>,V1,5>}C. «1,1>,<2,1>)D. {<2,】>,V3,】>,V3,2>}3. 无向图G 的边数是10,则图G 的结点度数之和为(A. 10B. 20C. 30D. 54. 如图一所示,以下说法正确的是〈 )•A. e 是割点B. {a,e}是点割集C. (b.e}是点割集D. {d}是点割集5-设个体域为整数集,则公式Vx3y (x+y = 2)的解释可为().A. 任意整数工,对任意整数y 满足工+了 = 2B. 对任意整数工,存在整数y 满足工+了 = 2C. 存在一整数z,对任意整数y 满足工+了 = 2D. 存在一整数工,有整数了满足x+jr = 2则人 CHBUC )等于 _____ .7. 设 A = {1,2},B = <2,3},C=(3,4},从 A 到 B 的函数/= (VI,2>,V2,3>},从 B到 C 的函数 g = (V2,3>,V3,4>},则 Ran (g 0/)等于 ______ .8. 设G 是汉密尔顿图,S 是其结点集的一个子集,若S 的元素个数为6,则在G-S 中的连通分支数不超过 ________ .二、填空霆(每小题3分,本题共15分)9.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去 ________ 条边后使之变成树.10.设个体域D = {1,2, 3, 4},则谓词公式(VQ A S)消去量词后的等值式为H.将语句“昨夭下雨,今天仍然下雨.”翻译成命题公式.12. 将i 吾句“我们下午2点或者去礼堂看电彩或者去教室看书.”翻译成命飓公式. 得分评卷人13. 不存在集合A 与B,使得AEB 与AQB 同时成立.14. 如图二所示的图G 存在一条欧拉回路.15. 设 A = {l,2,3},R = (<x,y>l=£A<yCA 且 1+»=4}击={〈工,3>0£人,36人且 工=)},试求 R,S,R" ,r (S ).16. 设图 G = <VtE>»V=(v! 试(1) 画出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4)画出图G 的补图的图形•17. 求-I (PVQ )VR 的析取范式与主合取范式•18. 试证明门 PVQ»P -*(i (n PVn Q)〉.(仅 一、单项选择题(每小题3分,本题共15分)1.C2. D3. B二、填空题(每小题3分,本题共15分)6. {b t c)7. {3,4)(或 C ) 8.6 9.5评卷人三、逻辑公式翻译(每小题6分,本题共12分)四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14 分)评卷人五、计算题(每小题12分,本题共36分)评卷人六、证明题(本题共8分)10.A(1)AA(2) AA(3) AA(4)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天下雨,Q:今天下雨. (2分)则命题公式为:PAQ. (6分)12.设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书. (2分)则命题公式为门(P-Q). (6分)注:或者(1 PAQ)V(PAi Q)四、判断说明题(每小题7分,本题共14分)13.错误•(3分)例:设A = {a},B^{a,{a}}(5 分)则有AEB且AWB. (7分)说明:举出符合条件的反例均给分.14.正确. (3分)因为图G为连通的,且其中每个顶点的度数均为偶数. (7分)如果具体指出一条欧拉回路也同样给分.五、计算题(每小题12分,本题共36分)15.解:R = {V1,3>,V2,2>,V3,1>} (3分)S = {<1,1>,<2,2>,<3,3>} (6分)7?~* = (<3,1>,<2,2>,<1,3>} (9分)r(S) = (<l,l>,<2,2>,<3,3>} (12分)说明:对于每一个求解项,如果部分正确,可以给对应1分・16.解:(1)(2)邻接矩阵10 0.(3)deg(pi) = 2deg(v2)=2deg(v3)=Odcg(vj = 2 (9 分)(4)补图(12 分)17.解门(PVQ)VR«=>(-, PA-i Q)VR 析取范式(5分)PVR)A(n QVR) (7分)«((n PVK)V(QA-i Q))A(-| QVR) (9分) E((I P VK) V(QA-i Q))A((n QV^>V(P An P)) (10分)«(-i PVR VQ) A(" VR Vi Q) A(i QVk VP)A(i QVRV") ⑴分) «(PV-i QVR)A(i PVQVR)A(rPVi QVR) 主合取范式(12 分)六、证明题(本题共8分)18.证明:(Di PVQ P(1 分)<2)P P(附加前提) (3分)(3)Q T(l)(2)/ (5 分)(4)PAQ T(2)(3)/ (6 分)(5)n(i PV-i Q) T(4)E (7 分)(6)P^n (n PV-i Q) CP 规则(8 分)说明:(D因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分.(2)可以用真值表验证.采用反证法可参照给分.。

离散数学期末考试试题与答案

离散数学期末考试试题与答案
这与结论 ∑ d(v) =2|E| Байду номын сангаас盾! 矛盾说明 T 不止 一片树叶。
12. (8分) (G, · )是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1· u-1· g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g· u-1· u=g· e=g e**g=u*g=u· u-1· g=e· g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u· g-1· u 这里, g-1是在代数运算· 下的逆元
13. (5分) G是一个群,H,K是G正规子群. 证明: H∩K是G正规子群.
证明: (1) (3分) a,b HK,就有a,b H, a,b K, 因为H, K是群G的子群, 所以,a*b-1H,a*b-1K,因此a*b-1 HK。故 HK是G的子群。 (2) (2分) 对于a HK, gG, 就有a H,aK。 因为H,K是群G的正规子群,所以 g*a*g-1H, g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
1. (6分) 已知 A={{a},a,b}, B={{b}, a}, 求 A×B, AB, P(A). 解: A×B={({a},{b}), ({a},a), (a, {b}), (a, a), (b, {b}), (b, a)} AB=(A-B) ∪(B-A)={{a}, b, {b}} P(A)={Ø, {a}, a, b, {{a}, a}, {{a},b}, {a,b}, A}.
2. (4分) 已知R1,R2是A上的对称关系, R1∘R2对称吗? 证明或 举反例说明.

离散数学期末考试试题及答案详解

离散数学期末考试试题及答案详解

离散数学期末考试试题及答案详解一、【单项选择题】(本大题共15小题,每题3分,共45分)在每题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,那么AB( )。

[A] 3,8 [B]3 [C]8 [D]3,83、假设X是Y的子集,那么一定有( )。

[A]X不属于Y [B]X∈Y[C]X真包含于 Y [D]X∩Y=X4、以下关系中是等价关系的是( )。

[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,以下表述中错误的选项是( )。

[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的.每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李获得好成绩,命题“除非小李努力学习,否那么他不能获得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},那么A到A的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,那么命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.那么G 的割(点)集是( )。

(完整word版)离散数学期末练习题带答案

(完整word版)离散数学期末练习题带答案

4, 2 } U I A ,则对应于 R 的划分是(
)。
A. {{ 1},{2,3},{4}}
B. {{ 1,3},{2,4}}
C. {{ 1,3},{2},{4}}
D. {{ 1},{2},{3},{4}}
23.设 G A, 是群,则下列陈述不正确的是(
)。
A. (a 1) 1 a C. an a m an m
Байду номын сангаасC. a b ab 1
D. a b a b 1
19. 设简单图 G 所有结点的度数之和为 50,则 G 的边数为(
(
)
A. 50
B. 25
C. 10
D. 5
20.设简单无向图 G 是一个有 5 个顶点的 4-正则图,则 G 有(
A. 4
B. 5
C. 10
D. 20
)。 )条边。
21.设集合 A {1,2,3,4} , A 上的等价关系 R { 1,1 , 3,2 , 2,3 ,
D. x y lcm{ x, y} ,即 x, y 的最小公倍数
25. 设 X {1,2,3 }, Y { a,b, c, d}, f { 1, a , 2, b , 3, c } ,则 f 是
(
)。
A .从 X 到 Y 的双射
B.从 X 到 Y 的满射,但不是单射
C.从 X 到 Y 的单射,但不是满射
)。
A. G 的所有结点的度数全为偶数
B. G 中所有结点的度数全为奇数
C. G 连通且所有结点度数全为奇数
D. G 连通且所有结点度数全为偶数
36.下列 不.一.定.是树的是( ) A. 无回路的连通图 D
B. 有 n 个结点, n-1 条边的连通图

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

离散数学期末复习试题及答案

离散数学期末复习试题及答案

离散数学习题参考答案第一章集合1.分别用穷举法,描述法写出以下集合(1)偶数集合〔2〕36的正因子集合〔3〕自然数中3的倍数〔4〕大于1的正奇数(1)E={⋯,-6,-4,-2,0,2,4,6,⋯}={2 i | i∈I }(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 }(3) N3= { 3, 6, 9, ```} = { 3n | n∈N }(4) A d= {3, 5, 7, 9, ```} = { 2n+1 | n∈N }2.确定以下结论正确与否〔1〕φ∈φ×〔2〕φ∈{φ}√〔3〕φ⊆φ√〔4〕φ⊆{φ}√〔5〕φ∈{a}×〔6〕φ⊆{a}√〔7〕{a,b}∈{a,b,c,{a,b,c}}×〔8〕{a,b}⊆{a,b,c,{a,b,c}}√〔9〕{a,b}∈{a,b,{{a,b}}}×〔10〕{a,b}⊆{a,b,{{a,b}}}√3.写出以下集合的幂集〔1〕{{a}}{φ, {{ a }}}( 2 ) φ{φ}〔3〕{φ,{φ}}{φ, {φ}, {{φ}}, {φ,{φ}} }〔4〕{φ,a,{a,b}}{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }},{a, {a b }}, {φ,a,{ a, b }} }〔5〕P〔P〔φ〕〕{φ, {φ}, {{φ}}, {φ,{φ}} }4.对任意集合A,B,C,确定以下结论的正确与否〔1〕假设A∈B,且B⊆C,那么A∈C√ 〔2〕假设A∈B,且B⊆C,那么A⊆C× 〔3〕假设A⊆B,且B∈C,那么A∈C× 〔4〕假设A⊆B,且B∈C,那么A⊆C ×5.对任意集合A,B,C,证明右分配差差左=--=--)C A ()B A ()C B (A M.D )C B (A )C B (A )C A ()B A ()C B (A )1(右差分配差左右差的结论差左=--=-------=-)C A ()B A ()C A ()B A ()C B (A M.D )C B (A )2)C A ()B A ()C A ()B A ()1()C B (A )1)C A ()B A ()C B (A )2(右交换结合幂等差左=--=-)C A ()B A (,)C B ()A A ()C B (A M.D )C B (A )C A ()B A ()C B (A )3())B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B)B A (BA B )B A )(4( --⊕=⊕+结合分配对称差差左右零一互补==φ-φ-)B A ()B A ()A ()U )B A (()C B (A )C B (A M .D )C B (A C )B A ()C B (A C )B A )(5( --=--差结合差左右差结合交换结合差左=----=--B )C A (B)C A ()B C (A )C B (A C )B A (B )C A (C )B A )(6(左交换零一互补分配差右=------------=--C )B A ()5()C B (A )B C (A )U )B C ((A ))C C ()B C ((A ))C B (C (A ))C B (C (A )5()C B ()C A (C )B A )(7(6.问在什么条件下,集合A,B,C满足以下等式时等式成立须左若要右右左A C ),C B (A C ,)C A ()B A (C )B A ()C B (A )1(⊆∴⊆⊆⊆==时等式成立是显然的右左φ=∴⊆=-⊆⊆=-B A ,B A ,B A B A A ,A B A )2(时等式成立代入原式得φ==∴φ=φ-φ=⊆==-B A ,A ,B ,B B ,B B A BB A )3(时等式成立只能B A ,A B ,A B ,B A ,B A ,A B B A A B B A )4(=∴⊆φ=-⊆φ=-φ==-=-矛盾当矛盾当若A B A b ,A b ;A B A b ,A b ,B b ,B ,B A B A )5(=⊕∈∉=⊕∉∈∈∃φ≠φ==⊕} 时等式成立是显然的左右B A BA AB ,B A B BA ,B A A ,B A B A ,B A B A )6(=∴=⎩⎨⎧⊆⊆⊆⊆⊆⊆=时等式成立左φ=∴=-=====--C B A A )C B (A )C B (A )C B (A )C A ()B A (A)C A ()B A )(7(时等式成立左C A ,B A ),C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(8(⊆⊆∴⊆φ=-====φ=--时等式成立左)C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(9(⊆∴φ=-====φ=--时等式成立知由C A B A ,C A B A ),C A ()B A (,)6()C A ()B A ()C A ()B A ())C A ()B A (())C A ()B A (()C A ()B A )(10(=∴-=--=---=--φ=-----φ=-⊕-时等式成立B A B )B A (U )B A ()A A ()B A ()A B (A B)A B (A )11(⊆∴=====-7.设A={a,b,{a,b},},求以下各式〔1〕φ∩{φ}=φ 〔2〕{φ}∩{φ}={φ} 〔3〕{φ,{φ}}-φ={φ,{φ}} 〔4〕{φ,{φ}}-{φ}= {{φ}} 〔5〕{φ,{φ}}-{{φ}}={φ} 〔6〕A-{a,b}={{a,b}, φ} 〔7〕A-φ = A〔8〕A-{φ}={a,b,{a,b}} 〔9〕φ-A=φ 〔10〕{φ}-A=φ8.在以下条件下,一定有B=C吗?(1) C A B A =否,例:A={1,2,3},B={4},C={3,4},C B ,}4,3,2,1{C A B A ≠==而 。

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。

A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。

A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。

A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。

2. 有一个集合A={1,2,3},则集合A的幂集为______。

3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。

三、解答题1. 请写出离散数学中常用的数学符号及其含义。

2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。

3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。

四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。

2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。

3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。

参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。

- ∩:交,表示集合的交集操作。

- ∖:差,表示减去一个集合中的元素。

- ⊆:包含,表示一个集合包含于另一个集合。

- =:相等,表示两个集合具有相同的元素。

2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。

《离散数学》期末练习题考试卷和答案

《离散数学》期末练习题考试卷和答案

a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5


D. x x是有理数, x 5

6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。

最新大学《离散数学》期末考试试卷及答案-(1)

最新大学《离散数学》期末考试试卷及答案-(1)

安徽大学2006-2007学年第1学期《离散数学》期末考试试卷(A 卷)(时间120分钟)开课院(系、部) 姓名 学号 .一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题( )A 、42=+x ;B 、我们要努力学习;C 、如果ab 为奇数,那么a 是奇数,或b 是偶数;D 、如果时间流逝不止,你就可以长生不老。

2.下列命题公式中,永真式的是( )A 、P Q P →→)(;B 、P P Q ∧→⌝)(;C 、Q P P ↔⌝∧)(;D 、)(Q P P ∨→。

3.在谓词逻辑中,令)(x F 表示x 是火车;)(y G 表示y 是汽车;),(y x L 表示x 比y 快。

命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的?( ) I.)),()()((y x L y G x F y x →∧∀⌝∀ II.)),()()((y x L y G x F y x ⌝∧∧∃∃III. )),()()((y x L y G x F y x ⌝→∧∃∃A 、仅I ;B 、仅III ;C 、I 和II ;D 、都不对。

4.下列结论正确的是:( )A 、若C AB A =,则C B =; B 、若B A B A ⊆,则B A =;C 、若C A B A =,则C B =;D 、若B A ⊂且D C ⊂,则D B C A ⊂。

5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ⊆; C 、24A A ⊆; D 、34A A ∈。

6.设R 是集合},,,{d c b a A =上的二元关系,},,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。

下列哪些命题为真?( ) I.R R ⋅是对称的 II. R R ⋅是自反的 III. R R ⋅不是传递的A 、仅I ;B 、仅II ;C 、I 和II ;D 、全真。

(完整word版)离散数学期末考试试题及答案

(完整word版)离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》期末考试复习题及答案第一部分、考试形式和时间答题时限:120 分钟考试形式:闭卷笔试第二部分、考试题型和得分构成一、选择题:对每一道小题,从其4个备选答案中选择最适合的一项,每小题2分,共10道小题,20分。

二、填空题:每空1分,共5道小题,10个空白处待填,10分。

三、判断题:每一道小题均以陈述语句描述,对的打√,错的打х。

每小题1分,共10道小题,10分。

四、综合题:每小题10分,共6道小题,60分。

第三部分、考试复习范围一、选择题1.含n个元素的集合A的幂集的元素个数为多少?答案:2n个。

2.数理逻辑的创始人是谁?答案:莱布里茨。

3.设(R,+,⋅)是环,它有哪些特性?答案:1.(R,+)是阿贝尔群。

2.(R,•)是半群。

3.•对+可分配。

4.排中律满足哪些性质?答案:A ∧ 不成立。

(不应同时否认一个命题(A )及其否定(非A ))x (F (x )∨F (x ))对任何个体x 而言,x 有性质F 或没有性质F 。

5.什么是真命题?命题“如果雪是黑的,则1+1=0”是真命题吗?答案:真值为真的命题为真命题。

命题“如果雪是黑的,则1+1=0”是真命题!解析:p:雪是黑的;q:1+1=0;如果雪是黑的,则1+1=0:p →q 。

由于p 为假,所以无论的真值如何,“p →q ”的真值都为真。

6. 下列哪个等价公式有错?A .P Q Q P →⇔→;B .P Q P Q →⇔⌝∨;C .P Q Q P →⇔⌝∨;答案:A7. 设G 为4阶有向图,度数列为(3,4,2,3),若它的入度列为(1,2,2,1),则出度列为哪项?A .(1,2,1,2);B .(2,2,0,2);C .(2,1,1,2).答案:B解析:有向图中:度数=出度数+入度数。

8. 设{}{},3,4,S a φ=,则表示空元素属于S 怎样写?答案:Ø∈S9. 什么是前束范式?下面哪个是前束范式?A .(,)()()(,,)Q x z x y R x y z →∃∀ ;B .()()(,)x y Q x y ∀∃.A答案:前束范式:如果量词均在全式的开头,它们的作用域延伸到整个公式的末端,则该公式叫做前束范式。

B 。

解析:如果量词均在全式的开头,它们的作用域延伸到整个公式的末端,则该公式叫做前束范式,显然B 选项满足定义。

9. 无向图G 中有16条边,且每个结点的度数均为2,则结点数是多少?答案:16解析:由于每个结点的度数为2,所以可以排除G 中存在孤立点(度数为0)和悬挂点(度数为1)。

由此可知,G 中的任何一个结点皆是使用一度与上一个结点相连再使用另一度与下一个结点相连,从而每条边与两个结点关联(上一个结点与下一个结点),但是每个结点又与两条边相连,故结点数为:16×2÷2=16个。

10. 含n 个命题变元的命题公式的不同的真值指派有几种?答案:2n 种11. 集合论的创始人是?答案:G.Cantor(康托尔)13.以下推理错误的是?A .,P P Q Q ⌝∨⇒;B .,P P Q Q ∧⇒⌝; 错误!未找到引用源。

C .,Q P Q P ⌝→⇒⌝答案:B14.设G 为4阶有向图,度数列为(4,4,2,2),若它的入度列为(2,2,1,1),则出度列为哪项?CA .(2,1,1,2);B .(1,2,1,2);C .(2,2,1,1)15.图论中的握手定理的内容是什么?答案:握手定理:在任何(n,m )图G=(V ,M )中,其所有结点度数之和等于边数m 的两倍,即:∑deg(v)=2m 。

16.下面哪一种图不一定是树?A .有n 个结点1n -条边;B .无圈连通图;C .每对结点间有唯一的一条路的图D .无圈但增加一条边,就得到一个且仅有一个圈.答案:A17.对于任意素数p 和正整数n ,存在多少个元素的有限域?答案: P n18.下面所示的偏序集中,哪个是格?答案:B【解析】要想对偏序格进行正确地判断,前提是一定要吃透概念和定义:设(L,≤)是偏序集,若L 中的任意两个元素组成的子集均存在上确界及下确界,则称(L,≤)为偏序格。

另外,加设∅≠S ⊆L 。

上确界:子集S 的最小上界:lub(S)或sup(S)下确界:子集S 的最大下界:glb(S)或inf(S)注意:1.只有一条线上的两个元素可以比较大小。

未在一条线上的两个元素没有偏序关系(无法比较大小)2.若对于S x L ∈∀∈∃,a 均有a x ≤,则a 为S 的上界,反之,为下界。

A 选项中{a,b}的下界元素有c 和0,但是由于c 和0无偏序关系而无法比较大小,导致{a,b}没有下确界。

C 选项{a,b}没有上确界。

D 选项{a,b}没有上、下确界,{c,d}没有上、下确界。

B 选项中({a,c}上确界:a,下确界:c;{a,b}上确界:1,下确界:c;{d,e}上确界:c,下确界:0;.....)任意两个元素组成的子集都存在上确界和下确界,故B 选项是偏序格!19.设)(x S 表示x 是学生。

)(x T 表示x 是老师,),(y x A 表示x 钦佩y 。

则命题“所有学生都钦佩某些老师”符号化为后的表达式是什么?答案:)),()()((x y x A y T x S y →∧∃∀20.谓词公式()(()(,))()()x P x yR x y Q x S x∀∨∃→∨中量词(y∃)辖域是答案:R(x,y)21.图论的创始人是谁?答案:瑞士数学家L.Euler(欧拉)22.两个图同构是指其中一个图近经过哪些变换可以变为另一个图?答案:1.挪动点的位置;2.伸缩边的长短。

23. 什么是孤立点和悬挂点?答案:孤立点:在任意图G(V,E)中,度数为0的结点。

悬挂点:在任意图G(V,E)中,度数为1的结点。

24.域和环相比增加了哪些要求?答案:域:设(F,+,•)是环,若(F-{0},•)是阿贝尔群,则称(F,+,•)是域。

25.阿贝尔群具有哪些特点?比普通群增加了什么?答案:阿贝尔群:设(G,•)是群,若其运算•是可交换的,则称(G,•)为阿贝尔群。

二、填空题1.鸽笼原理是指什么?答:n+1只或更多的鸽子飞进n个笼子时,一定有一个笼子里面至少有2只鸽子。

2.哪位挪威数学家和法国数学家先后为群的研究做出了杰出的贡献?答案:挪威数学家Niels Henrik Abel (尼尔斯·亨利克·阿贝尔)和法国数学家Évariste Galois(埃瓦里斯特•伽罗瓦)为群的研究做出了杰出的贡献。

3.单独一个节点v构成的序列v到v的长度为多少的路?叫做什么?答案:单独一个节点v构成的序列v到v的长度为0的路叫做平凡路4.命题公式(p→q)→r的析取范式与合取范式各为什么?答案:析取范式:r q p ∨⌝∧)( 合取范式:)()(r q r p ∨⌝∧∨5.集合A, B 的对称差A ⊕B 可以表示为什么?答案:)()(B A B A ⋂-⋃6.半群(S, *)满足哪些特性?答案:S 是非空集合,*是S 上满足结合律的二元封闭运算。

7.在谓词逻辑中,命题“所有有理数是实数”符号化为什么?命题“有些实数是有理数”符号化为什么?答案:设Q(x):x 是有理数,R(x):x 是实数。

则命题“所有有理数是实数”符号化为:))()((x x R x Q →∀命题“有些实数是有理数”符号化为:))()((x R x Q x ∧∃8.布尔代数的定义是怎样的?答案:元素个数≥2的有补分配格称作布尔代数。

9.设R ⊆ A ⨯ A , 则R 在A 是反自反的充要条件是什么?答案:I A I R=∅10.什么情况下称 f 是 A 到B 的双射?答案:f 既是A 到B 的单射,也是A 到B 的满射时称f 是A 到B 的双射。

11.补元的定义是怎样的? 答案:==A A U A A I Y ,∅.则称A 是A 的补元。

12.什么是分配格?答案:若格)(≤,L是分配,(≤L的乘法运算“•”对格的加法运算“+”相互可分配,则称)格。

13.设(R,+,⋅)是环,怎样成为交换环、含幺环、无零因子环?答案:环的定义:(R,+,•)是含有两个二元运算的代数结构,若:(1)(R,+)是阿贝尔群。

(2)(R,•)是半群。

(3)•对+可分配。

则称(R,+,•)是环。

另外:R中的乘法运算可交换,则称(R,+,•)是交换环。

R中的乘法运算有幺元,则称(R,+,•)是含幺环。

14.命题公式中的对偶式分别是怎样定义的?答案:将至多含有3个逻辑联结词(否定联结词,析取联结词,合取联结词)的命题公式A中的析取联结词换成合取联结词,将1换成0,将0换成1,合取联结词换成析取联结词后所得到的命题公式A*称为命题公式A的对偶式。

15.一个集合的上/下确界是怎样定义的?答案:在偏序集(A,≤),∅≠S⊆A,S的最小上界称为上确界sup(S),S的最大下界称为下确界inf(S).三、判断题1.(A, f1, f2,…, f k)=(B, g1, g2,…, g k) 表示这两个代数结构是同构的。

答:错。

(A, f1, f2,…, f k)≅(B, g1, g2,…, g k)才表示这两个代数结构是同构的。

2.关系图G R中的每一对不同点之间的边都是成对出现的,则称R是对称的。

答:正确。

3.若(S, *)是有限半群,则一定存在幺元e,并构成独异点(S, *,e)。

答:错误。

代数结构(S,*)中,若S 为有限集合,*是S 上满足结合律的二元封闭运算,则称(S,*)为有限半群。

例如:S={0,2,4},*8是模8乘法运算。

则(S,*8)是有限半群, 但不存在幺元。

4.有向图G=(V, E)中的∀u, v ∈V, u 和v 相互可达,则称G 为强连通图。

答:正确。

5.在关系图G R 中,对任意的x,y,z ∈A,只要x 到y 有边且y 到z 有边,就一定有x 到z 有边,则R 是传递的。

答:正确。

6.设,G *是一个群,a G ∈,则11()a --=0。

答:错误。

设G 是非0实数集,*是其上的数的乘法运算,显然(G,*)是群。

则任意属于 G 的元素x ,其逆元X -1 =x 1,从而(X -1)-1=X 。

7.设,A ≤是一个偏序集,如果A 中任意两个元素都有上确界和下确界,则称,A ≤ 是一个格。

答:正确。

也称(A,≤)为偏序格。

8.命题公式P Q →的逆反式是Q P ⌝→⌝。

答:正确。

左边=P Q P Q Q P Q P ⌝→⌝=⌝∨=∨⌝=→=右边9.图 是弱连通图。

答:正确。

该图为强连通图且属于弱连通图。

10.A 上的关系R 是等价的意味着R 必须具有自反性、对称性和传递性。

答:正确。

11.若关系R 的M R 中主对角线元素全为1,则R 是反自反的。

相关文档
最新文档