人教八年级下册数学_菱形的性质同步练习
人教版数学八年级下册 菱形同步练习(Word版含答案)
18.2.2菱形 同步练习一.选择题1.平行四边形、矩形、菱形都具有的性质是( )A .对角线相等B .对角线互相平分C .都是轴对称图形D .对角线互相垂直2.菱形的周长为8,一个内角为120°,则较短的对角线长为( )A .4B .2C .2D .13.菱形ABCD 中,:1:5A B ∠∠=,若周长为8,则此菱形的高为( )A .0.5B .1C .2D .44.菱形ABCD 中,对角线AC BD 、交于点O ,给出下列结论:①A ABC CB =∠∠,②2ABC DBC ∠=∠,③222OA OB AB +=,其中正确的有( ) A .0个 B .1个 C .2个 D .3个 5.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,O 为AC 、BD 的交点,H 为AB 上的中点,则OH 的长度为( )A .3B .4C .2.5D .56.如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定ABE ADF ≌的是( )A .BE DF =B .BAF DAE ∠=∠C .AE AF =D .AEB AFD ∠=∠ 7.如图,在菱形ABCD 中,对角线AC,BD 相交于点O,如果∠ABO=40°,则∠DCO= ( )A .30°B .40°C .50°D .60°8.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则EF的长为()A.4.8B.C.5D.69.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C 重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值为()A.4B.4.8C.5D.610.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S菱形ABCD =AB2;⑤2DE=DC;⑥BF=BC,正确结论的有()个.A.1B.2C.3D.4二.填空题11.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件,则四边形ABCD为菱形.12.如图,在平面直角坐标系中,菱形OABC的顶点O(0,0),A(4,0),∠AOC=60°,则顶点B的坐标为 __________________.13.如图,请你添加一个适当的条件___,使平行四边形ABCD成为菱形.14.如图,菱形ABCD的周长为24,对角线AC,BD交于点O,点E是BC的中点,则OE的长是____.15.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.18.如图,平行四边形ABCD中,E、F分别为CD、BC上两点,AF平分∠BAE,∠EAD=∠FEC.(1)求证:AB=AE;(2)若∠B=90°,AF与DC的延长线交于点H,求证:四边形ABHE为菱形.19.如图,菱形ABCD的边长为1,60ABC∠=︒,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD CE,.,分别于点F G AE EF,,,的中点分别为M N(1)求证:AF EF=.(2)求MN NG+的最小值.(3)当点E在AB上运动时,CEF∠的大小是否变化?为什么?参考答案一.选择题1.B2.C 3.A 4.B 5.C 6.C 7.C 8.B 9.B 10.C 11.OA=OC(答案不唯一).12.(6,23)13.AC BD14.315.8.16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=CB,∴▱ABCD是菱形.(2)解:由(1)得:▱ABCD是菱形,∴BC=AB=5,AO=CO,∵AD∥BC,∴∠AFE=∠CBE,∵AE=AF=3,∴∠AFE=∠AEF,又∵∠AEF=∠CEB,∴∠CBE=∠CEB,∴CE=BC=5,∴AC=AE+CE=3+5=8,∴AO=AC=4.18.(1)证明:∵AC垂直平分BD,∴AB=AD,BC=CD,∵BD平分∠ADC,∴∠ADO=∠CDO,又OD=OD,∠AOD=∠COD,∴△AOD≌△COD(ASA),∴AD=CD,∴AB=AD=CD=BC,∴四边形ABCD是菱形.(2)解:∵四边形ABCD是菱形,∴AB∥CD,∵BE∥CE,∴四边形ACEB是平行四边形,∴DC=AB=CE,∴图中所有与△CBE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.20.答案:(1)证明://∴∠=∠.AD BC,CBD ADBMN是对角线BD的垂直平分线,∴==.,OB OD MB MD在BON 和DOM 中,,,,CBD ADB OB OD BON DOM ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)BON DOM ∴≅,NB MD ∴=,∴四边形BNDM 为平行四边形.又MB MD =,∴四边形BNDM 为菱形.(2)解:四边形BNDM 为菱形,2410BD MN ==,, 190122BOM OB BD ∴∠=︒==,,1 52OM MN ==. 在Rt BOM 中,222251213BM OM OB ++, ∴菱形BNDM 的周长41352=⨯=.。
人教版八年级数学下册 18.2.2.1菱形的性质 同步练习(包含答案)
人教版八年级数学下册18.2.2.1 菱形的性质同步练习一、选择题(共10小题,3*10=30)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( ) A.1 cm B.2 cm C.3 cm D.4 cm3. 如图,在△ABC中,AB≠AC,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F,要使四边形AEDF是菱形,只需添加的条件是()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BD4. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 3 B.3 3 C.2 3 D. 35. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′. 当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D. 106.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为()A.4B.4.8 C.2.4D.3.27. 已知菱形的周长为4 5 ,两条对角线的和为6,则菱形的面积为( )A .2 B. 5 C .3 D .48. 如图,菱形ABCD 的对角线AC ,BD 交于点O ,AC =4,BD =16,将△ABO 沿点A 到点C 的方向平移,得到△A′B′O′.当点A′与点C 重合时,点A 与点B′之间的距离为( )A .6B .8C .10D .129. 如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .4二.填空题(共8小题,3*8=24)11. 菱形的两条对角线长分别是5和12,则此菱形的边长是_______,面积是_______.12.在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AB =7 cm ,则周长是________cm.13. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =110°,则∠BAD =________°, ∠ABD =________°,∠BCA =________°.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为_______.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为________.16.如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为_______.17. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于________.18. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为________.三.解答题(共7小题,46分)19.(6分) 如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.20.(6分) 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.21.(6分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,求∠BAO的大小.22.(6分) 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.23.(6分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.24.(8分) 如图,菱形ABCD的两条对角线相交于点O,∠DAC=30°,BD=12(1)求∠ABC的度数;(2)求菱形ABCD的面积.25.(8分) 在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.参考答案1-5DABBB 6-10 DDCAC11. 6.5,3012. 2813. 70,55,3514. 24 15. 2 316. 1217.4518.2419. 解:(1) ∵四边形ABCD 是菱形,两邻角度数之比为1∶2, ∴∠ABC=∠BAC=60°又∵菱形的周长为40 cm ,AC =AB=10 cm ,BD =2BO=2×AB 2-AO 2 =2×102-52 =10 3 cm(2)S 菱形=12BD·AC =50 3 cm 2 20. 解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°,∴四边形OCED 是矩形,∴OE =CD ,∵四边形ABCD 是菱形,∴CD =BC ,∴OE =BC21. 解:菱形ABCD 中,AB =BC ,∵BE =AB ,∴BC =BE ,∴∠BCE =∠E =50°,∴∠CBE =180°-50°×2=80°,∵AD ∥BC ,∴∠BAD =∠CBE =80°,∴∠BAO =12×80°=40°. 22. 证明:∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴△ADE ≌△CDF(SAS).23. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE , ∵AB =DA ,∴△ABF ≌△DAE(ASA)(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF24. 解:(1)∵菱形ABCD 的两条对角线相交于点O ,∠DAC =30°, ∴∠BAD =2∠DAC =60°,∵AD ∥BC ,∴∠ABC =180°-60°=120°;(2)∵菱形ABCD 的两条对角线相交于点O ,BD =12,∴AC ⊥BD ,DO =12BD =6, 又∵∠DAC =30°,∴AD =2DO =12,∴Rt △AOD 中,AO =122-62=63,∴AC =2AO =123,∴菱形ABCD 的面积=12×AC×BD =12×12×123=72 3. 25. 解:(1)连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∵点E 为BC 的中点,∴AE ⊥BC ,∴∠AEC =90°,∵∠AEF =60°,∴∠FEC =90°-60°=30°,∵∠C =180°-∠B =120°,∠C +∠EFC +∠FEC =180°, ∴∠EFC =30°,∴∠FEC =∠EFC ,∴CE =CF ,∵BC =CD ,∴BC -CE =CD -CF ,即BE =DF(2)连接AC ,由(1)得△ABC 是等边三角形,∴AB =AC , ∵∠BAE +∠EAC =60°,∠EAF =∠CAF +∠EAC =60°,∴∠BAE =∠CAF ,∵四边形ABCD 是菱形,∠B =60°,∴∠ACF =12∠BCD =∠B =60°, ∴△ABE ≌△ACF(ASA),∴AE =AF , 又∵∠EAF =60°,∴△AEF 是等边三角形。
人教版八年级下册数学 18.2.2菱形 同步习题
18.2.2菱形同步习题一.选择题1.菱形ABCD的周长为40cm,它的一条对角线长10cm,则它的另一条对角线长为()A.10cm B.10cm C.5cm D.5cm2.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 3.菱形不具备的性质是()A.对角线一定相等B.对角线互相垂直C.是轴对称图形D.是中心对称图形4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.165.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°6.如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,若∠BAD=70°,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,菱形ABCD中,在边AD、BC上分别截取DM=BN,连接MN交AC于点O,连接DO,若∠BAC=20°,则∠ODC的度数为()A.20°B.40°C.50°D.70°8.如图,在菱形ABCD中,AB=5,对角线BD=8,过BD的中点O作AD的垂线,交AD 于点E,交BC于点F,连接DF,则DF的长度为()A.B.C.D.9.如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35°B.45°C.50°D.55°10.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题11.如图,在▱ABCD中,点E、F分别在边AD,BC上,且DE=BF,则再添加一个条件:可判定四边形AFCE是菱形.(只添加一个条件)12.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.13.如图,菱形ABCD中,AC和BD交于点O,过点D作DE⊥BC于点E,连接OE,若∠BAC=25°,则∠OED的度数是.14.如图,在菱形ABCD中,AB=5,AC=6.过点D作BA的垂线,交BA的延长线于点E,则线段DE的长为.15.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=°.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.参考答案一.选择题1.解:菱形ABCD如右图所示,∵菱形ABCD的周长为40cm,∴AB=BC=CD=AD=10cm;∵对角线BD=10cm,∴BO=DO=5cm;在Rt△ADO中,AO===.∴AD=2AO=.故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:B.3.解:根据菱形的性质可知:菱形的对角线互相垂直平分;菱形既是轴对称图形,又是中心对称图形.进行的对角线相等,而菱形不具备对角线一定相等.故选:A.4.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.5.解:∵四边形ABCD是菱形,∴AB=BC=AD=CD,AB∥CD,AD∥BC,∴∠EAO=∠FCO,∠DAC=∠ACB=36°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠OBC=90°﹣∠ACB=54°,故选:B.6.解:连接BF,如图所示:∵四边形ABCD是菱形,∴∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF=∠BAC,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∴∠DCF=∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,∴∠CFD=180°﹣∠CDF﹣∠DCF=180°﹣75°﹣35°=70°,故选:C.7.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∵四边形ABCD是菱形,∴点O为BD与AC的交点,∵∠ACD=∠BAC=20°,∴∠ODC=90°﹣∠ACD=70°.故选:D.8.解:连接AC,如图:∵四边形ABCD是菱形,O是BD的中点,∴OD=OB=BD=4,AD=AB=5,AC⊥BD,∴OA==3,∵OE⊥AD,∴△AOD的面积=AD×OE=OA×OD,∴OE===,同理:OF=,∴EF=OE+OF=,∵DE===,∵EF⊥AD,∴DF===;故选:D.9.解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.10.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题11.解:添加AE=AF,理由:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,又∵DE=BF,∴AE=FC.∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE是菱形.故答案为:AE=AF.12.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.13.解:∵四边形ABCD是菱形,∠BAC=25°,∴∠ABC=180°﹣25°﹣25°=130°,∴O为BD中点,∠DBE=∠ABC=65°.∵DE⊥BC,在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=65°.∴∠OED=90°﹣65°=25°.故答案为:25°.14.解:∵四边形ABCD是菱形,AB=5,AC=6.∴AB=BC=CD=DA=5,AC⊥BD,OA=OC=3,∴OB===4,∴BD=2OB=8,∵,∴=5DE,解得,DE=,故答案为:.15.解:∵四边形ABCD是菱形,∴AD∥BC,∠DAC=∠BAC,∴∠AFB=∠FBC=80°,∠DAC=∠ACB,∵EF是AB的垂直平分线,∴AF=BF,∴∠F AB=∠FBA=(180°﹣∠AFB)=50°,∴∠DAC=∠BAC=25°,∴∠ACB=25°,故答案为:25.三.解答题16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.18.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.。
18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(原卷版)
§18.2.2.1菱形的性质一、知识导航1.菱形的定义:有一组邻边相等的四边形叫做菱形注意:(1)矩形的定义有两个要素:①是平行四边形;②有一组邻边相等,二者缺一不可;(2)菱形的定义既是它的性质,也是它的判定方法;(3)一组邻边相等的四边形不一定是菱形.2.菱形的性质类别性质符号语言图形边菱形的四条边都相等 四边形ABCD是菱形AB BC CD DA ∴===对角线菱形的两条对角线互相垂直平分,并且每条对角线平分一组对角四边形ABCD是菱形,,,AC BD OA OC OB OD∴⊥==,ABD CBD ADB CDB∠=∠=∠=∠BACDAC BCA DCA∠=∠=∠=∠对称性矩形是轴对称图形,具有两条对称轴(即对角线所在的直线)3.菱形面积计算(1)平行四边形的面积公式:底×高(2)两条对角线长的积的一半二、重难点突破重点1利用菱形的性质求线段长度例1.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24变式1-1如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE 的长等于()A.2B.3.5C.7D.14变式1-2如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()重点点拨:当菱形的一个内角为120°或60°时,菱形被其对角线分为4个含30°角的直角三角形;菱形较短的一条对角线将其分成两个等边三角形,因此可利用其性质进行计算.A .125B .185C .4D .245变式1-3如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为()A .4B .245C .6D .485重点2利用菱形的性质求角度例2.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为()A .65︒B .55︒C .45︒D .25︒变式2-1如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是()A .35°B .30°C .25°D .20°变式2-2如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF∠的度数是()A .90°B .60°C .45°D .30°变式2-3如图,菱形ABCD 的边AB 的垂直平分线交AB 于点E ,交AC 于点F ,连接DF .当100BAD ∠=︒时,则CDF ∠=()A .15︒B .30°C .40︒D .50︒重点3利用菱形的性质计算面积及其应用例3.已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是()A .12cm 2B .24cm 2C .48cm 2D .96cm 2变式3-1已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A .3B .8C .3D .3变式3-2如图,在菱形ABCD 中,对角线BD =4,AC =3BD ,则菱形ABCD 的面积为()重点点拨:在菱形中已知边要求角的度数时需要利用矩形的性质和特殊三角形的性质找到角的关系,这些所求角度一般为45°,60°等特殊角度A .96B .48C .24D .6重点4利用菱形的性质证明线段相等例4.如图,在菱形ABCD 中,BE ⊥CD 于点E .DF ⊥BC 于点F .求证:BF =DE;变式4如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .求证:AF EF =;重点点拨:菱形的对角线容易作为一个直角三角形的斜边,这样两条对角线的交点也是斜边的中点;菱形的面积等于对角线乘积的一半重点点拨:利用菱形的性质证明边的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合重点5利用菱形的性质证明角相等例5.已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.变式5如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.难点6菱形中的图形变换问题例6.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是()AB .2C.D .4变式6-1如图,在菱形纸片ABCD 中,对角线AC 、BD 长分别为16、12,折叠纸片使点A 落在DB 上,折痕交AC 于点P ,则DP 的长为()A .BC .D .变式6-2如图,在菱形纸片ABCD 中,∠A =60°,P 为AB 中点.折叠该纸片使点C 落在点C ′处且点P 在DC ′上,折痕为DE ,则∠CDE 的大小为()A .30°B .40°C .45°D .60°重点点拨:利用菱形的性质证明角的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合难点7菱形中的最值问题例7.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A .12B .1CD .2变式7如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为()A .1B .2C .3D .4难点点拨:解决菱形问题的思考方向:①边;②对角线.有60°的特殊角,就可以由菱形的性质构造等边三角形解决问题;有等边三角形,有中点,会出现“三线合一”三、提升训练1.下列结论中,不正确的是()A .对角线互相垂直的平行四边形是菱形B .对角线相等的平行四边形是矩形C .一组对边平行,一组对边相等的四边形是平行四边形D .菱形的面积等于对角线乘积的一半2.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是()A .90︒B .100︒C .120︒D .150︒3.如图,在△ABC 中,AD 平分BAC ∠,DE AC ∥交AB 于点E ,DF AB ∥交AC 于点F ,难点点拨:解决线段之和最小问题,一般转化为解决“两点之间,线段最短”问题.“两点一线”型:()minPA PB +“一点两线”型:()min ''''''ABC C AB AC BC A B A C BC A A ∆=++=++=若8AF ,则四边形AEDF的周长是()A.24B.28C.32D.364.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.485.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.245B.125C.5D.47.如图,菱形ABCD中,∠ABC=135°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD 于F.若△DEF的周长为2,则菱形ABCD的面积为()A .2B 2C .22D .28.如图,菱形ABCD 的边,8AB =,60B ∠= ,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为()A .5B .7C .8D .1329.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF 是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④10.已知某菱形的周长为8cm ,高为1cm ,则该菱形的面积为A .22cmB .24cmC .26cmD .28cm 11.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为12.如图,在菱形纸片ABCD 中,60A ︒∠=,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 的中点)所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的度数为________.13.如图,在菱形ABCD中,过点D分别作DE⊥AB于点E,作DF⊥BC于点F.求证:AE=CF.14.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.。
菱形的性质(分层作业)- 八年级数学下册(人教版)(解析版)
人教版初中数学八年级下册18.2.3菱形的性质同步练习夯实基础篇一、单选题:1.矩形具有而菱形不一定具有的性质是()A .对边分别相等B .对角分别相等C .对角线互相平分D .对角线相等【答案】D【分析】根据矩形和菱形的性质进行判断即可得出答案.【详解】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:D .【点睛】本题考查了矩形的性质和菱形的性质,能熟记矩形的性质和菱形的性质的内容是解此题的关键.2.菱形的两条对角线的长分别是2cm 和6cm ,则菱形的面积是()A .26cm B .212cm C .28cm D .224cm3.已知菱形ABCD ,2cm AB ,60A ,则菱形ABCD 的面积为()A .23cm B .24cm C 2D .2【答案】DAE ∵四边形ABCD 是菱形,∴2AD AB ,∵60A ,∴30ADE ,则12AE AD ,∴2222213DE AD AE ,4.菱形的周长为24cm ,两个相邻的内角度数之比为1:2,则较短的对角线长度是()A .6cmB .C D .12cm【答案】A【分析】根据菱形的对角线互相垂直且平分各角,可设较小角为x ,因为邻角之和为180°,所以x +2x =180°,所以x =60°,画出其图形,根据含30度角的直角三角形的性质,可以得到其中较短的对角线的长.5.如图,菱形的边长为2,=45ABC ,则点A 的坐标为()A .2,2B . C . D .【答案】D 【分析】根据坐标意义,点A 坐标与垂线段有关,过点A 向x 轴垂线段AE ,求得OE 、AE 的长即可知点A 坐标.【详解】过点A 作AE ⊥x 轴,垂足为E ,则∠AEO =90°,∵=45ABC ,∠AEO =90°∴45AOE OAE ,OE ∴OE AE6.如图,菱形ABCD 的对角线AC BD ,相交于点O ,过点A 作AE BC 于点E ,连接OE .若6OB ,菱形ABCD 的面积为54,则OE 的长为()A .4B .4.5C .5D .5.5【答案】B 【分析】由菱形的性质可得12BD ,由菱形的面积得可得9AC ,然后根据直角三角形斜边上的中线性质即可解答.7.如图,在菱形ABCD中,对角线AC与BD.相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.21B.65C.42D.56∴∠AOE =90°﹣∠BAO =90°﹣25°=65°.故选:B .【点睛】此题考查求角的度数,解题的关键是熟记菱形的性质并能应用.8.如图,菱形ABCD 的周长为40cm ,对角线AC 、BD 相交于点O ,DE AB ,垂足为E ,8cm DE ,则AC 为()A .8cmB .C .D .4cm9.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBA=50°,则∠ACB=_____.于点E,则DE ______.10.如图,在荾形ABCD中,对角线AC,BD分别为16和12,DE AB11.如图,菱形ABCD 的对角线AC BD 、相交于点O ,过点D 作DH AB 于点H ,连接OH ,若64OA OH ,,则菱形ABCD 的面积为_______.【答案】48【分析】由菱形的性质得6OA OC ,OB OD ,AC BD ,则12AC ,再由直角三角形斜边上的中线性质求出BD 的长度,然后由菱形的面积公式求解即可.【详解】解:∵四边形ABCD 是菱形,12.如图,在菱形ABCD 中,E 是CD 上一点,连接AE 交对角线BD 于点F ,连接CF ,若40AED ,则BCF ______°.【答案】40【分析】由“SAS”可证△ABF ≌△CBF ,可得∠BAF =∠BCF ,由平行线的性质可求解.【详解】解:∵四边形ABCD 是菱形,∴AB =CB ,AB ∥DC ,∠ABF =∠CBF ,∵AB =CB ,∠ABF =∠CBF ,BF =BF ,∴△ABF ≌△CBF (SAS ),∴∠BAF =∠BCF ,∵∠AED =40°,AD ∥BC ,∴∠AED =∠BAF ,∴∠BCF =40°,故答案为:40.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.13.如图,在菱形ABCD 中,AE BC ,垂足为点E .AE 与BD 交于点F ,连接CF .若32CBF ,则ECF 的大小为______.【答案】26【分析】根据菱形的性质,得出AB CB ,32ABF CBF ,再根据SAS ,得出ABF CBF ≌,再根据全等三角形的性质,得出BAF BCF ,再根据菱形的性质,得出64ABC ,再根据垂线的定义,得出90AEB ,再根据三角形的内角和定理,得出26BAF ,进而即可得出结果.【详解】解:∵四边形ABCD 是菱形,∴AB CB ,32ABF CBF ,在ABF △和CBF V 中,AB CB ABF CBF BF BF,∴ ABF CBF SAS ≌,∴BAF BCF ,∵323264ABC ABF CBF ,∵AE BC ,∴90AEB ,∴180180906426BAF AEB ABE ,∴26BCF BAF ,即26ECF .故答案为:26【点睛】本题考查了菱形的性质、全等三角形的判定与性质、三角形的内角和定理,解本题的关键在熟练掌握相关的性质、定理.三、解答题:14.已知:如图,菱形花坛ABCD 的边长为10m ,∠BCD =120°,沿对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.∴AO =5m ,15.如图,菱形ABCD 的对角线AC BD 、相交于点O ,DE 垂直平分BC ,垂足为点E ,求ABC 的大小.【答案】120°【分析】根据DE 垂直平分BC ,可得BD DC ,根据菱形的性质可得BD BC DC ,即BDC 为等边三角形,则60DCB o ,则问题得解.【详解】解:在菱形ABCD 中,有AB BC CD AD ,且DC AB ∥,∵DE 垂直平分BC ,∴BD DC ,∴BD BC DC ,∴BDC 为等边三角形,∴60DCB o ,∵DC AB ∥,∴180ABC BCD ,∴180********ABC BCD o o o o ,即∠ABC 的度数为120°.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行的性质等知识,证明BDC 是等边三角形是解答本题的关键.16.如图,菱形ABCD ,E 、F 分别是BC ,CD 上的点,60B EAF ,18BAE ,求CEF 的度数.【答案】18【分析】连接AC ,根据菱形的性质,可知ABC 为等边三角形,60B EAF ,18BAE ,从而可得60AEF ,进而可得18CEF【详解】连接AC ,∵四边形ABCD 是菱形,∴ABC 为等边三角形,∴60BAC ACB ,AB AC ,∴60ACF B ,∵60EAF BAC ,∴BAE CAF ,∴ABE ACF V V ≌,∴AE AF ,∴AEF △为等边三角形,∴60AEF ,∵AEF CEF B BAE ,且18BAE ,∴18CEF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质及等边三角形的判定与性质,掌握菱形的性质是解题的关键17.如图,在菱形ABCD 中,AB =BD =5,求:(1)∠BAC 的度数;(2)AC 的长.18.如图,四边形ABCD 是菱形,对角线AC BD 、相交于点O ,DH AB 于H ,连接OH .(1)求证:OHD ODH .(2)若4OC ,6BD ,求DH 的长.【点睛】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角),解决(1)小题的关键是判断OH 为直角三角形斜边上的中线.能力提升篇一、单选题:1.如图,菱形ABCD 的边AB 的垂直平分线交AB 于点E ,交AC 于点F ,连接DF .当100BAD 时,CDF ()A .15°B .30°C .40°D .50°【答案】B 【分析】连接BF ,利用SAS 判定BCF DCF ≌,从而得到CBF CDF ,根据已知可得出CBF 的度数,从而得CDF 的度数.【详解】如图,连接BF ,∵四边形ABCD 是菱形,∴CD BC ,DCF BCF ,在BCF △和DCF 中,2.如图,在菱形ABCD 中,对角线68AC BD ,,点E 、F 分别是边AB 、BC 的中点,点P 在AC 上运动和过程中,PE PF 的最小值是()A .3B .4C .5D .6【答案】C 【分析】设AC 交BD 于O ,作E 关于AC 的对称点N ,连接NF ,交AC 于P ,可得此时EP +FP 的值最小,最小值为NF ,再由菱形的性质证得四边形ANFB 是平行四边形,然后根据勾股定理求出AB ,即可求解.【详解】解:设AC 交BD 于O ,作E 关于AC 的对称点N ,连接NF ,交AC 于P ,∴PN =PE ,∴PE +PF =PN +PF ,∴此时EP +FP 的值最小,最小值为NF ,∵四边形ABCD 是菱形,∴∠DAB =∠BCD ,AD =AB =BC =CD ,OA =OC ,OB =OD ,AD BC ∥,∵E 为AB 的中点,∴N 在AD 上,且N 为AD 的中点,∵AD BC ∥,∴∠ANP =∠CFP ,∠NAP =∠FCP ,∵AD =BC ,N 为AD 中点,F 为BC 中点,∴AN =CF ,∴()ANP CFP ASA @V V ,∴AP =CP ,即P 为AC 中点,∵O 为AC 中点,∴P 、O 重合,即NF 过O 点,二、填空题:3.已知,在菱形ABCD 中,=100ABC ,对角线AC 和BD 相交于点O ,在AC 上取点P ,连接PB PD 、,若=20PBD ,则PDC 的度数为______.∴==20PBD PDB ,∴=5020=30PDC ;当点P 如下图P 点所在位置时:∵P B P D ,∴==20P BD P DB ,∴=+=70P DC P DB CDO ;综上:PDC 的度数为30 或70 ,故答案为:30 或70 .【点睛】本题考查了菱形的性质以及线段垂直平分线的性质,熟练掌握菱形的性质是解本题的关键,注意分类讨论.4.如图,菱形ABCD 的周长为20,面积为24,P 是对角线BD 上一点,分别作P 点到直线AB 、AD 的垂线段PE 、PF ,则PE PF 等于______5.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是对角线AC上一个动点,点F是边AB上一个动点,连接EF,EB,则EB EF的最小值为______.三、解答题:,点D在y轴上.6.如图1,已知菱形ABCD的顶点A,B的坐标分别为 3,0, 2,0(1)求点C 的坐标;(2)如图2,对角线AC ,BD 相交于点G ,求AC ,BD 的长及点G 的坐标.7.在菱形ABCD 中,60ABC ,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF AE ,连接BE 、EF .(1)如图1,当E是线段AC的中点时,BE和EF的数量关系是__________.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】(1)BE=EF(2)成立,证明见解析【分析】(1)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠BCA=60°,由等边三角形的性质和已知条件得出CE=CF,由等腰三角形的性质和三角形的外角性质得出∠CBE=∠F,即可得出结论;(2)过点E作EG∥BC交AB延长线于点G,先证明△ABC是等边三角形,得出AB=AC,∠ACB=60°,再证明△AGE是等边三角形,得出AG=AE=GE,∠AGE=60°,然后证明△BGE≌△ECF,即可得出结论;(1)∵四边形ABCD是菱形,∴AB=BC.∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°.∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE.∵CF=AE,∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,∴∠ACD=60°,∠DCF=∠∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF.又∵CF=AE,∴GE=CF.即在△BGE和△CEF中,BG CE BGE ECFGE CF,∴△BGE≌△ECF(SAS),∴BE=EF.【点睛】本题考查菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰三角形的判定与性质以及三角形外角的性质等知识,综合性强,较难.熟练掌握上述知识并正确的作出辅助线是解题关键.。
人教版八年级下册数学菱形同步练习、含答案
菱形班级:________ 姓名:________一、选择题1.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形2.菱形的周长为12cm,相邻两角之比为5:1,那么菱形对边间的距离是()A.6cm B.1.5cm C.3cmD.0.75cm3.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图1)则∠EAF等于()A.75°B.60°C.45°D.30°图1 图2 4.已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为()A.12 B.8 C.4 D.25.菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4cm B.3cm C.2cmD.23cm二、判断正误:(对的打“√”错的打“×”)1.两组邻边分别相等的四边形是菱形.…………………………………………………()2.一角为60°的平行四边形是菱形.…………………………………………………()3.对角线互相垂直的四边形是菱形.……………………………………………………()4.菱形的对角线互相垂直平分.…………………………………………………………()三、填空题1AD,则四1.如图3,菱形ABCD中,AC、BD相交于O,若OD=2个内角为________.图3 图4 2.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图4,其他三边长为________;周长为________.1∠BAC,则菱3.菱形ABCD中,AC、BD相交于O点,若∠OBC=2形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm,则它的一组对边的距离等于__________cm,它的面积等于________cm2.5.菱形ABCD中,如图5,∠BAD=120°,AB=10cm,则AC=________cm,BD=________ cm.图5 图6四、已知:△ABC中,CD平分∠ACB交AB于D,DE∥AC交BC于E,DF∥BC交AC于F.求证:四边形DECF是菱形.五、已知ABCD中,如图7,BE平分∠ABC交AD于E,若CE平分∠DCB,且AB=2,求:ABCD的其余边长.图7参考答案一、1.B 2.B 3.B 4.C 5.C二、1.×2.×3.×4.√三、1.60°,120°,60°,120°2.分别为a4a2424 5.10 103 3.60°,120°,60°,120°4.5四、证明:∵DE∥AC,DF∥BC∴四边形DECF为平行四边形∠2=∠3又∵∠1=∠2∴∠1=∠3∴DE=EC∴DECF为菱形(有一组邻边相等的平行四边形是菱形)五、解:过E作EF∥AB交BC于F∵ABCD,∴AD∥BC∴ABFE是平行四边形∴EF=AB,∠1=∠3又∵∠2=∠1,∴∠2=∠3∴BF=FE,同理:EF=FC∴F为BC的中点.又BE、CE为∠ABC、∠DCF的平分线AB∥CD,∴∠EBC+∠ECB=90°1BC=AB∴∠BEC=90°,∴EF=2∴AB=CD=2,AD=BC=2AB=4答题方法:试卷检查五法重视答案,要对结果负责不少同学都说,明明题目都会做,然而考试时却不是这里出错就是那里出错,总是拿不了高分。
最新人教版八年级下册数学 菱形 同步练习(含解析)
菱形同步练习一、选择题1.如图,已知菱形ABCD的周长为12,∠A=60°,则BD的长为()A. 3B. 4C. 6D. 82.下列性质中,矩形具有而菱形不一定具有的是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 邻边相等3.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为()A. 4B. 46C. 47D. 284.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16 C.8D.85.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,且∠CDF=24°,则∠DAB等于()A. 102°B. 104°C. 106°D. 114°6.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是( )A. ③→②→①→④B. ③→④→①→②C. ①→②→④→③D. ①→④→③→②7.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A. 24B. 26C. 30D. 488.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO=20°,则∠CAD 的度数是( )A. 20°B. 25°C. 30°D. 40°9.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为()A. 12⎛⎫ ⎪⎝⎭n-1B. 14⎛⎫ ⎪⎝⎭nC. 12⎛⎫ ⎪⎝⎭nD. 14⎛⎫ ⎪⎝⎭n-1 10.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为( )A. 3B. 2C. 1D. 2二、填空题11.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.12.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是_____.13.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是_______.14.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到菱形的面积为______cm2.15.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.三、解答题16.如图,点P为菱形ABCD对角线BD上一点,连接PA、PC.点E 在边AD上,且AEP DCP∠=∠.求证:PC PE=.17.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.18.已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.(1)求证:△ABE≌△ADF;(2)过点C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.19.(本小题满分10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1∶2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.20.(2017•高港区三模)在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.21.用两个全等的等边△ABC和△ADC,在平面上拼成菱形ABCD,把一个含60°角的三角尺与这个菱形重合,使三角尺有两边分别在AB、AC上,将三角尺绕点A按逆时针方向旋转.(1)如图1,当三角尺的两边与BC、CD分别相交于点E、F时,观察或测量BE,CF的长度,你能得出什么结论?证明你的结论。
八年级数学下册19.2菱形1.菱形的性质练习(含答案)
19.2 菱形1.菱形的性质1.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为( C )(A)1 (B)(C)2 (D)22.如图,在菱形ABCD中,AB=5,对角线AC=6,过点A作AE⊥BC,垂足为E,则AE的长为( C )(A)4 (B)(C)(D)53.菱形的两条对角线的长分别是6和8,则这个菱形的周长是( B )(A)24 (B)20 (C)10 (D)54.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是 4 cm.5.如图,一活动菱形衣架中,菱形的边长均为16 c m,若墙上钉子间的距离AB=BC=16 cm,则∠1= 120°.6.如图,在菱形ACBD中,对角线AB,CD相交于点O,CE⊥AD于点E,若AB=16,CD=12,则菱形的面积是96 ,CE= 9.6 .第6题图7.(2018广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是(-5,4) .第7题图8.已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:因为四边形ABCD是菱形,所以CB=CD,CA平分∠BCD.所以∠BCE=∠DCE.又CE为公共边,所以△BCE≌△DCE.所以∠CBE=∠CDE.因为在菱形A BCD中,AB∥CD,所以∠AFD=∠FDC,所以∠AFD=∠CBE.9.(2018广东)如图,BD是菱形ABCD的对角线,∠CBD=75°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连结BF,求∠DBF的度数.解:(1)如图所示,直线EF即为所求.(2)因为四边形A BCD是菱形,∠CBD=75°,所以∠ABD=∠DBC=75°,DC∥AB,∠A=∠C.所以∠ABC=150°,∠ABC+∠C=180°.所以∠C=∠A=30°.因为EF是线段AB的垂直平分线,所以AF=FB.所以∠A=∠FBA=30°.所以∠DBF=75°-30°=45°.10.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.证明:(1)因为四边形ABCD是菱形,所以AD=CD,∠A=∠C.因为DE⊥AB,DF⊥BC,所以∠AED=∠CFD=90°.所以△ADE≌△CDF.(2)因为四边形ABCD是菱形,所以AB=CB.因为△ADE≌△CDF,所以AE=CF.所以AB-AE=C B-CF.所以BE=BF.所以∠BEF=∠BFE.11.(规律探索题)如图,两个连在一起的全等菱形的边长为1米,一个微型机器人由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,当微型机器人行走了2 019米时停下,求这个微型机器人停在哪个点?并说明理由.解:这个微型机器人停在D点.理由如下:因为两个全等菱形的边长为1米,所以微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离为8×1=8米.因为2 019÷8=252……3,所以当微型机器人走到第252圈后再走3米正好到达D点.12.(拓展探究题)如图1,有一张菱形纸片ABCD,AC=8,BD=6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)解:(1)因为菱形的两条对角线长分别为6,8,所以对角线的一半分别为3,4,所以菱形的边长为5,所以图1平行四边形的周长为2×(5+8)=26; 图2平行四边形的周长为2×(5+6)=22.(2)如图3所示.。
人教版八年级数学下册 菱形 同步课时练习(解析版)
人教版八年级下册18.2.2 菱形 同步课时练习一、选择题1.萎形不一定具备的性质是( ) A .对边平行且相等 B .对角相等 C .对角线互相平分D .对角线相等2.矩形和菱形都一定具有的性质是( ) A .对角线互相垂直 B .对角线互相平分 C .对角线长度相等D .对角线平分一组对角3.如图,下列条件中,能使平行四边形ABCD 成为菱形的是( )A .AB CD = B .AD BC = C .AB BC =D .AC BD =4.在平行四边形ABCD 中,添加下列条件能够判定平行四边形ABCD 是菱形的是( ) A .AC ⊥BDB .AB =CDC .AB ⊥BCD .AC =BD5.下列命题中,假命题是( ) A .对角线垂直的平行四边形是菱形 B .对角线互相平分且垂直的四边形是菱形 C .对角线互相平分且平分一组内角的四边形是菱形 D .对角线相等且垂直的四边形是菱形6.如图,在菱形ABCD 中,点E 、F 分别是AB 、AC 的中点,如果4EF =,那么菱形ABCD 的周长是( )A .16B .24C .28D .327.若菱形ABCD 的边长为2,其中∠ABC =60°,则菱形ABCD 的面积为( ) A .4B .3C .2D .238.如图,已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是( )A .5B .10C .6D .8二、填空题9.在菱形ABCD 中,AB =2,则菱形的周长是___.10.菱形两条对角线长为8cm 和6cm,则菱形面积为_______cm 2.11.命题“对角线互相垂直的四边形是菱形”,这是个______命题.(填“真”、“假”)12.如图,在ABC 中,已知E 、F 、D 分别是AB 、AC 、BC 上的点,且//DE AC ,//DF AB ,请你添加一个________条件,使四边形AEDF 是菱形.13.如图,在菱形ABCD 中,∠BAD =45°,DE 是AB 边上的高,BE =2,则AB 的长是____.14.如图,在菱形ABCD 中,6BC =,点E 是AD 的中点,连接OE,则OE=_____________.15.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且=+EF AE FC ,则边BC 的长为______.16.如图,菱形ABCD 中,E 、F 分别在BC CD 、边上,AB AE =,且AEF 是等边三角形,则C ∠=_______.三、解答题17.如图,平行四边形ABCD 中,对角线BD 平分ABC ∠.求证:平行四边形ABCD 是菱形.18.如图,在▱ABCD 中,点O 是对角线BD 的中点,过点O 作EF ⊥BD ,垂足为点O ,且交AD ,BC 分别于点E ,F . 求证:四边形BEDF 是菱形.19.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,求四边形OCED 的面积.20.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作CE AB ⊥交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形; (2)若8AC =,6BD =,求CE 的长.21.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)试判断四边形AEBO 的形状,并说明理由; (2)若5OE =,8AC =,求菱形ABCD 的面积.22.如图,在菱形ABCD 中,AE ⊥BC 于点E .(1)如图1,若∠BAE=30°,AE=3,求菱形ABCD的周长及面积;(2)如图2,作AF⊥CD于点F,连接EF,BD,求证:EF∥BD;(3)如图3,设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1﹣S2的值.参考答案1.D【解析】【分析】本题考查菱形的性质,菱形两组对边平行,四条边相等,两组对角相等,对角线互相垂直平分,以此可以求解.【详解】解:A、菱形的对边平行且四边相等,此选项说法正确,不符合题意;B、菱形的两组对角相等,此选项说法正确,不符合题意;C、菱形的对角线互相垂直平分,此选项说法正确,不符合题意;D、菱形的对角线不相等,此选项说法错误,符合题意.故选:D.【点睛】本题考查菱形的性质,熟悉菱形的性质是解题的关键.2.B【解析】【分析】根据菱形和矩形的性质对各选项分别进行判断.【详解】解:A、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以A选项错误;B、菱形和矩形的对角线都互相平分,所以B选项正确;C、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以C选项错误;D、菱形的对角线互相垂直平分且平分每组对角,而矩形的对角线互相平分且相等,所以D选项错误.故选B.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了矩形的性质.解题关键是掌握菱形的性质及矩形的性质.3.C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可.【详解】解:A、▱ABCD中,本来就有AB=CD,故本选项错误;B、▱ABCD中本来就有AD=BC,故本选项错误;C、▱ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定▱ABCD是菱形,故本选项正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形,故本选项错误.故选:C.【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.4.A【解析】【分析】根据对角线互相垂直的平行四边形是菱形判定,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故选:A..【点睛】本题考查了菱形的判定.熟记判定定理是解此题的关键.5.D【解析】【分析】利用菱形的判定定理分别对每个选项逐一判断后即可得到正确的选项.【详解】解:A、正确,是真命题;B、正确,是真命题;C、正确,是真命题;D、对角线相等且垂直的四边形也可能是等腰梯形,故错误,是假命题,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解菱形的判定定理,属于基础题,比较简单.6.D根据三角形的中位线定理易得BC=2EF,那么菱形的周长等于4BC【详解】解:点E、F分别是AB、AC的中点,4EF=,∴==,BC EF28四边形ABCD是菱形,∴菱形ABCD的周长是:4832⨯=.故选:D.【点睛】本题考查三角形的中位线定理和菱形周长,掌握这两个知识点是关键.7.D【解析】【分析】过点A作AE⊥BC于E,由含30°角的直角三角形的性质得BE=1,再求出AE的长,然后由菱形的面积公式即可得解.【详解】解:如图,过点A作AE⊥BC于E,则∠AEB=90°,∵菱形ABCD的边长为2,∠ABC=60°,∴∠BAE=90°﹣60°=30°,AB=1,∴BE=12∴AE33∴菱形的面积=BC×AE=2×33故选:D.【点睛】本题考查了菱形的性质,解直角三角形,作辅助线构造出直角三角形是解题的关键.8.A作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,求出CP 、BP ,根据勾股定理求出BC 长,证出MP +NP =QN =BC ,即可得出答案. 【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,则P 是AC 中点,∵四边形ABCD 是菱形, ∴AC ⊥BD ,∠QBP =∠MBP , 即Q 在AB 上, ∵MQ ⊥BD , ∴AC ∥MQ , ∵M 为BC 中点, ∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形, ∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形, ∴PQ ∥AD ,而点Q 是AB 的中点,故PQ 是△ABD 的中位线,即点P 是BD 的中点, 同理可得,PM 是△ABC 的中位线, 故点P 是AC 的中点,即点P 是菱形ABCD 对角线的交点, ∵四边形ABCD 是菱形, 则△BPC 为直角三角形, 113,422CP AC BP BD ====, 在Rt △BPC 中,由勾股定理得:BC =5, 即NQ =5,∴MP +NP =QP +NP =QN =5, 故选:A .本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.9.8cm【解析】【分析】根据菱形的性质可直接进行求解.【详解】解:由菱形的四条边相等可得:菱形的周长为2×4=8cm,故答案为:8cm.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.10.24【解析】【分析】根据菱形的面积等于两对角线乘积的一半求其面积即可.【详解】解:菱形面积是6×8÷2=24cm2;故答案为24.【点睛】本题考查的是菱形的面积的计算,掌握“菱形的面积等于两条对角线乘积的一半”是解本题的关键.11.假.【解析】【分析】利用菱形的判定定理判断后即可确定正确的答案.【详解】对角线互相平分且垂直的四边形是菱形,故错误,是假命题.故答案为:假.【点睛】本题考查了命题与定理的知识,解题的关键是了解菱形的判定方法,难度不大.12.AE AF(不唯一)【解析】先根据平行四边形的判定可得四边形AEDF是平行四边形,再根据菱形的判定即可得.【详解】DE AC DF AB,解://,//∴四边形AEDF是平行四边形,则当AE AF=时,平行四边形AEDF是菱形,故答案为:AE AF=(不唯一).【点睛】本题考查了平行四边形和菱形的判定,熟练掌握菱形的判定方法是解题关键.13.4+【解析】【分析】设AB=x,根据勾股定理列方程为:AD2=AE2+DE2,则x2=(x−2)2+(x−2)2,解方程可解答.【详解】解:设AB=x.∵四边形ABCD是菱形,∴AD=AB=x.∵DE是AB边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1,x2=4﹣∵BE=2,∴AB>2,∴AB=x故答案为:【点睛】本题考查了菱形的性质,等腰直角三角形的性质和勾股定理,熟练掌握菱形的性质是解题的关键.14.3【分析】由菱形的性质可得出AC ⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半即可得出结论. 【详解】解:∵四边形ABCD 为菱形, ∴AC ⊥BD,AB=BC=CD=DA=6, ∴△AOD 为直角三角形. ∵点E 为线段AD 的中点,AD=6, ∴OE=3. 故答案为:3. 【点睛】本题考查了菱形的性质以及直角三角形的性质,本题属于基础题,难度不大.15.【解析】 【分析】根据矩形和菱形的性质可利用“HL ”间接证明ABE CDF ≅,即得出AE =CF .由=+EF AE FC ,即可证明AE =OE ,继而可再次利用“HL ”证明ABE OBE ≅,即得出ABE OBE ∠=∠,从而可求出1303ABE DBE DBC ABC ∠=∠=∠=∠=︒,最后由含30角的直角三角形的性质即可求出答案. 【详解】∵四边形ABCD 是矩形, ∴AB =CD ,90A C ∠=∠=︒. ∵四边形BEDF 是菱形,∴BE =DF ,OE =OF ,DBE DBC ∠=∠∴在ABE △和CDF 中AB CDBE DF=⎧⎨=⎩ ,∴()ABE CDF HL ≅, ∴AE =CF .∵=+EF AE FC ,即OE OF AE FC +=+ ∴AE =OE ,∴在ABE △和OBE △中AE OEBE BF =⎧⎨=⎩,∴()ABE OBE HL ≅,∴ABE OBE ∠=∠∴1303ABE DBE DBC ABC ∠=∠=∠=∠=︒.∴26BD CD ==,∴BC ===故答案为: 【点睛】本题考查矩形、菱形的性质,全等三角形的判定和性质,含30角的直角三角形的性质以及勾股定理,综合性强.掌握各知识点,利用数形结合的思想是解答本题的关键. 16.100︒ 【解析】 【分析】根据菱形性质可得AB =AD =BC =CD ,∠C =∠BAD ,∠B +∠BAD =180°,由AEF 是等边三角形,可得∠EAF =60°,AE =AF ,由AB =AE ,可得∠B =∠BEA =∠AFD =∠D ,可求∠BAE =∠DAF ,设∠BAE =∠DAF =m °,根据两直线平行同旁内角互补可列方程()11802m ︒-︒+60°+2m °=180°求解即可. 【详解】解:在菱形ABCD 中,AB =AD =BC =CD ,∠C =∠BAD ,∠B +∠BAD =180°, ∵AEF 是等边三角形, ∴∠EAF =60°,AE =AF , ∵AB =AE , ∴AD =AF =AB =AE ,∴∠B =∠BEA =∠AFD =∠D ,∴∠BAE =180°-∠B -∠AEB =180°-∠AFD -∠D =∠DAF , 设∠BAE =∠DAF =m °, ∴∠B =()11802m ︒-︒,∠BAD =60°+2m °, ∴()11802m ︒-︒+60°+2m °=180°, 解得m =20°, ∴∠C =∠BAD =60°+40°=100°. 故答案为100°. 【点睛】本题考查菱形性质,等边三角形性质,等腰三角形性质,平行线性质,利用同旁内角互补建构方程是解题关键.17.证明见解析 【解析】 【分析】根据题意可得:13∠=∠,从而AB AD =,即可解答. 【详解】 证明:如图,∵四边形ABCD 是平行四边形, ∴//AD BC , ∴23∠∠=. 又∵BD 平分ABC ∠, ∴12∠=∠, ∴13∠=∠, ∴AB AD =,∴平行四边形ABCD 是菱形. 【点睛】本题主要考查了菱形的判定,平行四边形的性质,解题的关键是熟练掌握菱形的判定定理,平行四边形的性质定理,并能灵活运用相关知识进行证明. 18.证明见解析 【解析】 【分析】证△DOE ≌△BOF (ASA ),得OE =OF ,再证四边形EBFD 是平行四边形,然后由EF ⊥BD 即可得出结论. 【详解】证明:∵四边形ABCD 是平行四边形,O 为对角线BD 的中点, ∴BO =DO ,AD ∥BC , ∴∠EDB =∠FBO ,在△EOD 和△FOB 中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DOE ≌△BOF (ASA );又∵OB =OD ,∴四边形BEDF 是平行四边形, ∵EF ⊥BD ,∴平行四边形BEDF 为菱形. 【点睛】本题主要考查了菱形的判定,平行四边形的判定与性质以及全等三角形的判定与性质等知识,证明△DOE ≌△BOF 是解题的关键. 19.23 【解析】 【分析】连接OE ,与DC 交于点F ,只要证明四边形ODEC 是菱形,四边形ADEO 是平行四边形即可解决问题. 【详解】解:∵CE //BD ,DE //AC , ∴四边形OCED 是平行四边形. ∴OD =EC ,OC =DE .∵矩形ABCD 的对角线AC 与BD 相交于点O , ∴OD =OC .∴平行四边形OCED 是菱形. 连接OE , ∵DE =2,∴AC =2OC =2DE =4, ∵AD =23,∴DC =22224(23)2AC AD -=-=, ∵DE ∥AC ,AO =OC =DE , ∴四边形AOED 是平行四边形. ∴OE =AD =23.∴四边形OCED 的面积为2 3.2DC OE⨯=本题考查矩形的性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用菱形的性质解决问题. 20.(1)见解析; (2)245【解析】 【分析】(1)先判断出OAB DCA ∠=∠,进而判断出DAC DCA ∠=∠,得出CD AD AB ==,此题得证; (2)根据菱形的性质得到OA OC =,BD AC ⊥,132OB OD BD ===,由勾股定理可以求出AB 的长,然后通过菱形的面积公式可以求出CE 的长. (1)证明:∵//AB DC , ∴OAB DCA ∠=∠, ∵AC 平分∠BAD , ∴OAB DAC ∠=∠, ∴DAC DCA ∠=∠, ∴CD AD =, ∵AB=AD , ∴AB CD =, ∵//AB DC ,∴四边形ABCD 是平行四边形, 又∵AB AD =,∴四边形ABCD 是菱形; (2)∵四边形ABCD 是菱形,BD =6,AC =8,∴118422OA OC AC ===⨯=,BD AC ⊥,116322OB OD BD ===⨯=, ∴90AOB ∠=︒,在Rt AOB △中,根据勾股定理可知,5AB =,∴菱形的面积11862422S AC BD ==⨯⨯=, ∵CE AB ⊥,∴菱形面积524S AB CE CE ===, ∴245CE =. 【点睛】本题考查了菱形的判定与性质,平行四边形的判定与性质,等腰三角形的判定,勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.21.(1)四边形AEBO 是矩形,理由见解析; (2)24. 【解析】 【分析】(1)根据//BE AC ,//AE BD 可先证明四边形AEBO 是平行四边形,再利用菱形对角线互相垂直平分可得90AOB ∠=︒,即可证明四边形AEBO 是矩形;(2)利用菱形对角线互相平分的性质可知4OA =,利用勾股定理可求出3AE =,进一步得6BD =,利用菱形面积等于对角线乘积的一半即可求出菱形的面积. (1)解:四边形AEBO 是矩形,理由如下: ∵//BE AC ,//AE BD ,∴四边形AEBO 是平行四边形, ∵ABCD 是菱形, ∴BD AC ⊥, ∴90AOB ∠=︒,∴四边形AEBO 是矩形. (2)解:∵8AC =, ∴4OA =,∵5OE =且90OAE ∠=︒, ∴3AE OB ==, ∴6BD =,∴菱形ABCD 的面积1=242BD AC =. 【点睛】本题考查菱形的性质和面积,矩形的判定定理,勾股定理解三角形,掌握矩形的判定定理:有一个角等于90︒的平行四边形是矩形,是解本题的关键之一,另一个关键是掌握菱形面积等于对角线乘积的一半.22.(1)周长为,面积为(2)见解析【解析】 【分析】(1)根据直角三角形的性质可得2AB BE = ,再由勾股定理可得BE =,从而得到BC AB == ,即可求解; (2)根据菱形的性质和AE ⊥BC ,AF ⊥CD ,可得△ABE ≌△ADF ,从而得到BE =DF ,进而得到CE =CF ,则有∠CBF =∠CBD =12(180°-∠C ),即可求证;(3)连接CG ,可先证明△ADG ≌△CDG ,可得到AG =CG ,△ADG 和△CDG 的面积相等,从而得到S 1﹣S 2=S △CEG ,再由勾股定理可得AE =,然后设EG x = ,则CG AG x == ,根据勾股定理可得EG =,即可求解. (1)解:∵AE ⊥BC ,∠BAE =30°, ∴2AB BE = , ∵AE =3,∴()222222233AB BE BE BE BE -=-== ,∴BE =, ∴AB =,∵四边形ABCD 是菱形,∴BC AB ==,∴菱形ABCD 的周长为4=,面积为3AE BC ⨯=⨯; (2)证明:∵四边形ABCD 是菱形, ∴∠ABE =∠ADF ,AB =AD =BC =CD , ∵AE ⊥BC ,AF ⊥CD , ∴∠AEB =∠AFD =90°, 在△ABE 和△ADF 中,∵∠ABE =∠ADF ,∠AEB =∠AFD ,AB =AD , ∴△ABE ≌△ADF (AAS ), ∴BE =DF ,∵BC =CD , ∴CE =CF ,∴∠CBF =∠CBD =12(180°-∠C ),∴EF ∥BD ; (3)解:连接CG ,∵四边形ABCD 是菱形, ∴∠ADG =∠CDG ,AD =CD , 在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG , DG =DG , ∴△ADG ≌△CDG ,∴AG =CG ,△ADG 和△CDG 的面积相等, ∴S 1﹣S 2=S △CEG , ∵CE =4,BE =8, ∴AB =BC =CE +BE =12, ∵AE ⊥BC ,∴222212845AE AB BE -=-=, 设EG x = ,则45CG AG x == , ∵222EG CE CG += , ∴()22245x x += , 解得:855x,即85EG =, ∴121185165422CEGS S S CE EG -==⨯=⨯=. 【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,熟练掌握菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理是解题的关键.。
人教版初中数学19.2《菱形》同步练习(含答案)
19.2.1 菱形的性质运用菱形的有关知识进行计算和说理专题练习题1.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的4个角分别为()A.30°,150°,30°,150°B.45°,135°,45°,135°C.60°,120°,60°,120°D.以上都不对2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC相交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°3.如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED=50°,则∠CBO=____度.4.如图,在菱形ABCD中,∠ABC=120°,对角线AC,BD相交于点O,AE平分∠CAD,分别交OD,CD于F,E 两点,求∠AFO的度数.5.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC的长为____cm.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.245B.125C .5D .4 7.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为____.8.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和4时,则阴影部分的面积为____.9.如图,O 是菱形ABCD 对角线AC 与BD 的交点,CD =5 cm ,OD =3 cm, 过点C 作CE ∥DB ,过点B 作BE ∥AC ,CE 与BE 相交于点E .(1)求OC 的长;(2)求四边形OBEC 的面积.10.如图,在菱形ABCD 中,∠BAD =44°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连结DF ,则∠CDF 等于( )A .112°B .114°C .116°D .118°11.在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 .12.如图,四边形ABCD 是菱形,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 交AD 的延长线于点F ,求证:DF =BE .13.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD 于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.14.如图,在菱形ABCD中,F是BC上任意一点,连结AF交对角线BD于点E,连结EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?请说明理由.15.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是____.16.如图1,在菱形ABCD中,点E,F分别为AB,AD的中点,连结CE,CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.答案:1. C2. C3. 504. ∵在菱形ABCD中,∠ABC=120°,∴∠BAD=60°,∵对角线AC,BD相交于点O,∴∠BAC=∠CAD=30°,∠DOA =90°,∵AE平分∠CAD,∴∠OAF=15°,∴∠AFO的度数为90°-15°=75°5. 266. A7. 308. 109. (1)∵四边形ABCD是菱形,∴AC⊥BD,∴在Rt△OCD中,OC=CD2-OD2=52-32=4 (cm)(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形,又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形,∵OB=OD,∴S四边形OBEC=OB·OC=4×3=12(cm2)10. B11. 45°或105°12. 连结AC ,∵四边形ABCD 是菱形,∴AC 平分∠DAB ,CD =BC ,∵CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∠CFD =∠CEB =90°,∴Rt △CDF ≌Rt △CBE (HL ),∴DF =BE13. (1)连结AC ,BD ,并且AC 和BD 相交于点O ,∵AE ⊥BC ,且AE 平分BC ,∴AB =AC =BC ,∴BE =12BC =2,∴AE =42-22=23,S =BC ·AE =4×23=83, ∴菱形ABCD 的面积是83(2)∵AC =AB =AD =CD ,△ADC 是等边三角形,∵AF ⊥CD , ∴∠DAF =30°,又∵CG ∥AE ,AE ⊥BC , ∴四边形AECG 是矩形,∴∠AGH =90°, ∴∠AHC =∠DAF +∠AGH =120°14. (1)连结AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE =EC(2)点F 是线段BC 的中点.理由:在菱形ABCD 中,AB =BC , 又∵∠ABC =60°,∴△ABC 是等边三角形,∴∠BAC =60°, ∵AE =EC ,∴∠EAC =∠ACE ,∵∠CEF =60°, ∴∠EAC =12∠CEF =30°,∴∠EAC =12∠BAC ,∴AF 是△ABC 的角平分线,∵AF 交BC 于点F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点 15.17216.(1)易证△BCE ≌△DCF (SAS ),∴CE =CF(2)延长BA 与CF ,交于点G ,∵四边形ABCD 是菱形,∴∠B =∠D ,AB =BC =CD =AD ,AF ∥BC ,AB ∥CD ,∴∠G =∠FCD ,∵点F 为AD 的中点,且AG ∥CD ,易证△AGF ≌△DCF (AAS ),∴AG =CD ,∵AB =CD ,∴AG =AB ,∵△BCE ≌△DCF ,∴∠ECB =∠DCF =∠G ,∵∠CHB =2∠ECB ,∴∠CHB =2∠G ,∵∠CHB =∠G +∠HCG ,∴∠G =∠HCG ,∴GH =CH ,∴CH =AH +AG =AH +AB。
人教版八年级下册数学 18.2.2 菱形 同步练习题(含答案)
18.2 .2 菱形同步练习题基础训练1.如图,▱ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件__________使其成为菱形(只填一个即可).2.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD4.在▱ABCD中,下列结论不一定正确的是()A.AC=BDB.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.AB=CD5.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是__________.(只填写序号)6.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC7.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4C.4D.88.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°9.如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,若AE=4 cm,那么四边形AEDF的周长为()A.12 cmB.16 cmC.20 cmD.22 cm10.如图,将▱ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是()A.AF=EFB.AB=EFC.AE=AFD.AF=BE11.下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是.(填序号)提升训练12.图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD 交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.13.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.探究培优14.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.15.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.参考答案1.【答案】AC⊥BD(答案不唯一)2.【答案】D3.【答案】B4.【答案】A5.【答案】③6.【答案】C解:根据菱形的定义可得,当AB=AD时▱ABCD是菱形,故A正确;根据对角线互相垂直的平行四边形是菱形可得,当AC⊥BD时,▱ABCD是菱形,故B正确;对角线相等的平行四边形是矩形,不一定是菱形,故C不正确;当∠BAC=∠DAC时,在▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形.故D正确.7.【答案】A解:如图,连接OE,与DC交于点F,易得四边形OCED为菱形,得到对角线互相平分且垂直,然后求出OE,DC的长,即可求出菱形OCED的面积.8.【答案】A9.【答案】B10.【答案】C11.错解:①②③⑤诊断:②是最容易出错的,两组邻边分别相等的四边形不一定是菱形,如图,AB=AD,BC=CD,但四边形ABCD不是菱形.判定菱形时,要区分是在四边形还是平行四边形的基础上进行判定的,要注意两者的区别与联系.正解:①③⑤12.证明:∵AF∥CD,∴∠AFE=∠CDE.∵E是AC的中点,∴AE=CE.在△AFE和△CDE中,∴△AFE≌△CDE(AAS).∴AF=CD.∵AF∥CD,∴四边形ADCF是平行四边形.∵∠B=90°,AC=2AB,∴∠ACB=30°,∠BAC=60°.∵AD平分∠BAC,∴∠DAC=∠DAB=30°=∠ACD.∴DA=DC.∴四边形ADCF是菱形.13.(1)证明:∵在▱ABCD中,AD∥BC,∴∠EAO=∠FCO.∵点O是AC的中点,∴AO=CO.又∵∠EOA=∠FOC,∴△AOE≌△COF.(2)解:当EF⊥AC时,四边形AFCE是菱形.理由如下:由(1)知△AOE≌△COF,∴OE=OF.又∵AO=CO,∴四边形AFCE是平行四边形.∴当EF⊥AC时,四边形AFCE是菱形.14.(1)证明:∵MN是BD的垂直平分线,∴MB=MD,NB=ND,MN⊥BD.∴∠BMN=∠DMN.又∵AD∥BC,∴∠DMN=∠BNM.∴∠BMN=∠BNM.∴BM=BN.∴BM=BN=ND=MD.∴四边形BMDN是菱形.(2)解:∵MB=MD,设MD的长为x,则MB=x,在Rt△AMB中,BM2=AM2+AB2,即x2=(16-x)2+82,解得x=10.∴MD的长为10.15.(1)证明:在△ABC和△ADC中,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.在△ABF和△ADF中,∴△ABF≌△ADF(SAS).∴∠AFB=∠AFD.∵∠AFB=∠CFE,∴∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.又∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD,即E为过B且和CD垂直的垂线与CD的交点时,∠EFD=∠BCD. 理由:∵四边形ABCD为菱形,∴∠BCF=∠DCF.在△BCF和△DCF中,∴△BCF≌△DCF(SAS). ∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°. ∴∠EFD=∠BCD.。
人教版 八年级数学下册 第18章 菱形的性质和判定 专项练习题
人教版 八年级数学下册第18章 菱形的性质和判定 专项练习 (含答案)一、单选题(共有9道小题)1.菱形具有而一般平行四边形不具有的性质是( )A.对边平行B.对角线互相平分C.对边相等D.对角线互相垂直2.如图,在菱形ABCD 中, ∠BAD =120°. 已知△ABC 的周长是15,则菱形ABCD 的周长是()A .25B .20C .15D .103.如图,要使□ABCD 成为菱形,则需要添加的条件是( )A.AB=CDB.AC=BDC.AO=OCD.AC ⊥BD4.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于( )米A.63B.6C.33D.35.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形 6.以下四个命题正确的是( ) A. 任意三点可以确定一个圆 B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等7.如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤BD A CABCD8.如图,矩形ABCD 中,AB=8,BC=4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )A.B.C.5D.6 9.四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不变D .线段EF 的长与点P 的位置有关二、填空题(共有8道小题)10.已知菱形一个内角为120°,且平分这个内角的一条对角线长为8cm ,则这个菱形的周长为 。
人教版八年级下册数学菱形同步练习题
菱形一、1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm24.如图,在菱形ABCD中,对角线AC、BD相交于点O,则{HYPERLINK "" |(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.二1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.5.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.86.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.参考答案一、课前预习(5分钟训练)1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角答案:B2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形答案:C3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm2解析:S菱形=×6×8=24(cm2).答案:C4.如图,在菱形ABCD中,对角线AC、BD相交于点O,则(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.答案:(1)BC CD 四条边(2)△ABD、△ABC、△ADC、△BCD △AOB、△BOC、△COD、△DOA △AOB △COB △COD 垂直平分平分一组对角(3)对角线所在的直线二、课中强化(10分钟训练)1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm解析:OE是Rt△BOC的斜边BC上的中线,故OE=BC=AD=3 cm.答案:C2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形解析:连结矩形的两条对角线,则相邻两边中点的连线是三角形的中位线.由三角形的中位线等于第三边的一半及矩形两条对角线相等可得中点四边形的各边都相等,故顺次连结矩形各边中点所得的四边形是菱形.答案:C3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形解析:因为等边三角形的三条边都相等,所以用它拼成的四边形的四条边都相等,而四条边都相等的四边形是菱形,因此选D.答案:D4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.解析:由菱形的邻角互补,可知菱形的另一组内角是60°,60°内角所对的对角线是较短的.根据有一个角是60°的等腰三角形是等边三角形可推出菱形边长是10,因此菱形周长是40.答案:405.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.解:菱形两对角线将其分割为四个全等的直角三角形.设AO=x,因为四边形ABCD为菱形,所以AO=CO,BO=DO,AC⊥BD.又因为AC∶BD=1∶,所以AO∶BO=1∶,BO=.在Rt△ABO中,因为AB2=BO2+AO2,所以AB2=()2+x2=22.所以x=1.所以AO=1,BO=.所以AC=2,BD=.所以菱形的面积为×2×=.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.答案:证明:∵∠ACB=90°,DE是BC的中垂线,∴E为AB边的中点.∴CE=AE=BE.∵∠BAC=60°,∴△ACE为正三角形.在△AEF中,∠AEF=∠DEB=∠BAC=60°,而AF=CE,又CE=AE,∴AE=AF.∴△AEF也为正三角形.∴∠CAE=∠AEF=60°.∴AC EF.∴四边形ACEF为平行四边形.又CE=AC,∴平行四边形ACEF为菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?解:(方案一)S菱形=S矩形-4S△AEH=12×5-4××6×=30(cm2).(方案二)设BE=x,则CE=12-x,∴AE=.因为四边形AECF是菱形,则AE2=CE2,∴25+x2=(12-x)2.∴x=.∴S菱形=S矩形-2S△ABE=12×5-2××5×≈35.21(cm2).经比较可知,(方案二)张丰同学所折的菱形面积较大.三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形解析:根据菱形的判定定理:对角线互相垂直平分的四边形是菱形.答案:D2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm解析:因菱形四边相等,所以每边都为8,其对角线平分一组对角,根据一个角是60°,可求得.答案:C3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°解析:由菱形为中心对称图形可知B正确.答案:B4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°解析:因为AE垂直平分BC,所以AB=AC.又因为AB=BC,所以△ABC为等边三角形.∠BAC=60°,∠EAC=30°.同理可证∠FAC=30°,△AEF是等边三角形,所以∠AEF=60°.答案:C5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.8解析:∵ABCD为菱形,∴AB=BC.又∵∠ABC=60°,∴△ABC为等边三角形.∴AB=BC=AC=4,∠ABO=30°,∠AOB=90°.在△AOB中,OB==.∴BD=BO+OD=.答案:B6.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.解:添加条件:对角线相等.理由:连结AC、BD.在△ABC中,∵AE=BE,BF=CF,∴EF为△ABC的中位线.∴EF=.同理可得FG=,GH=,HE=.又∵AC=BD(添加条件),∴EF=FG=GH=HE.故四边形EFGH为菱形.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.答案:证明:在ABCD中,OD=OB,OA=OC,AB∥CD,∴∠OBG=∠ODE.又∵∠BOG=∠DOE,∴△OBG≌△ODE.∴OE=OG.同理OF=OH.∴四边形EFGH是平行四边形.又∵EG⊥FH,∴四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.答案:证明:如图,把菱形花坛分成9个菱形,由此可得至少有一个小菱形里要栽两株花,因为小菱形的对角线长为m,所以至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.答案:证明:∵EF垂直平分AC,∴EF⊥AC,AO=CO.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠AEO=∠CFO.∴△AOE≌△COF.∴OE=OF.∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AFCE是菱形.- 11 -。
初中数学人教版八年级下册 18.2.2 菱形同步练习(共2课时,无答案).doc
18.2.2 菱形第一课时一、选择题1. 下列各项中,菱形具有而一般平行四边形不具有的性质是 ( ).A. 对角相等B. 对边相等C. 邻边相等D. 对角线相等2. 菱形ABCD中, 对角线AC、BD交于点O, 给出下列结论: ①∠ABC=∠ACB, ②∠ABC=2∠DBC ,③OA²+OB²= AB².其中正确的有 ( ).A. 0个B. 1个C. 2个D. 3个3. 如图, 菱形ABCD中, E、F分别是AB、AC的中点,若EF=2, 则菱形ABCD的周长是 ( ).A. 4B. 8C. 12D. 164. 菱形ABCD中, ∠A:∠B=1:5, 若周长为8, 则此菱形的高为( ).A. 0.5B. 1C. 2D. 45. 菱形的两条对角线分别为2m和2n,则它的高为 ( ).A.mnm+n B.√m2+n2√m2+n2√m2+n2二、填空题6. 菱形是的平行四边形,因此它具有平行四边形的一切性质,此外菱形还具有的性质是:四条边;对角线,并且每条对角线.7. 菱形的两条对角线长度分别为6和8,则它的周长是,面积是 .8. 菱形的周长为 40,两个相邻角度数之比为1:2;则它的较长对角线的长为 .9. 如图,平面直角坐标系中,O为坐标原点,菱形OACB的顶点C在x轴正半轴上,OC=4,点B的纵坐标为1,则点A的坐标是 .10. 如图, 菱形AB₁C₁D₁的边长为1,∠B₁=60°;作B₁C₁边上的高AD₂,以AD₂为边作菱形AB₂C₂D₂,使∠B₂=60°;作B₂C₂边上的高AD₃, 以AD₃为边作菱形.AB₃C₃D₃,使∠B₃=60°;……以此类推,这样作的第n个菱形.ABₙCₙDₙ的边 ADn的长是 .三、解答题11. 如图, 四边形ABCD 中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形 AECD 是菱形;(2)若点 E 是AB的中点,试判断△ABC的形状,并说明理由.12. 如图, 菱形ABCD中, E为AB边上一点, F为BC延长线上一点,且DE=DF.求证: ∠BED +∠F=180°.13. 如图, 菱形ABCD的边长为25, 对角线BD长为40, 点P、Q分别为BD、BC上一动点,求CP+PQ的最小值.第二课时一、选择题1. 对角线互相垂直平分的四边形是( ).A. 任意四边形B. 筝形C. 矩形D. 菱形2. 顺次连结矩形各边的中点,所得四边形是 ( ).A. 筝形B. 矩形C. 菱形D. 正方形3. 下列命题中, 正确的是 ( ).A. 两邻边相等的四边形是菱形B. 有三条边相等的平行四边形是菱形C. 一条对角线被另一条对角线垂直平分的四边形是菱形D. 对角线垂直且一组邻边相等的四边形是菱形4. 给出下列命题:①对角线垂直的四边形是菱形,②有一条对角线平分一组对角的四边形是菱形,③两条对角线分别平分一组对角的四边形是菱形. 其中正确的有( ).A. 0个B. 1个C. 2个D. 3个5. 如图,菱形ABCD的边长为1, BD=1, E、F分别是边AD、CD上的两个动点,且满足AE+CF= 1, 设△BEF的面积为S, 则S的取值范围是( ).A.14≤s≤1B.3√34≤s≤√3C.3√38≤s≤√32D.3√316≤s≤√34二、填空题6. 菱形的判定定理包括:(1) 的平行四边形是菱形;(2) 的平行四边形是菱形; (3) 的四边形是菱形.7. △ABC中,延长BA至D使得AB=AD,延长CA至E使得AC=AE, 当△ABC满足条件时, 四边形 BCDE 是菱形.8. 如图,平面直角坐标系中,四边形OABC为菱形,O为坐标原点, 点A坐标为(2,0), ∠AO C=45°, 则点B的坐标是 .9. 菱形ABCD的边长为6, ∠BAD=60°,如果点P 是菱形内一点,且PB=PD=2√3,那么 AP的长为 .10. 如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .三、解答题11. 如图,矩形ABCD中, 对角线AC、BD交于点O,DE‖AC,CE‖BD.求证:OE与CD互相垂直平分.12 如图, ▱ABCD中, 对角线AC、BD交于O, AH⊥BC于H, ∠1=∠2.(1) 求证: □ABCD是菱形;(2) 若AC=2√5,AH=4,求菱形ABCD的面积.13. 在▱ABCD 中, ∠BAD 的平分线交直线 BC 于点 E, 交直线DC 于点 F。
人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)
菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。
人教版八级数学下册菱形同步练习、含答案
菱形班级:___________________________姓名:___________________________作业导航理解并掌握菱形的性质及判别方法,会利用菱形的性质和判别方法进行推理说明和有关计算.一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm2 4.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为()A.43B.83C.103D.123 5.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1:3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.参考答案一、1.C 2.D 3.B 4.B 5.D二、6.2 cm 7.44厘米8.176 cm2 9.8 cm 5 cm 10.4 cm三、11.四边形AEDF是菱形,AE=E D.12.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC13.24 cm214.9.6 cm专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a 有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.2 菱形漂市一中钱少锋第1课时菱形的性质一.选择题(共4小题)1.(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________ cm2.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH 丄AB,垂足为H,则点0到边AB的距离OH= _________ .7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图 7题图 8题图 9题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D 作DE∥AC交BC的延长线于点E,则△BDE的周长为_________ .9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________ 度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________ 度.10题图 12题 13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________ .12.如图所示,两个全等菱形的长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________ 点.13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________ cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为_________ .15.已知菱形的周长为40cm,两条对角线之比为34,则菱形的面积为_________ cm2.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________ cm2.17.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________ .17题图18题图 19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PEPB的最小值是_________ .19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= _________ 度.三.解答题(共7小题)20.如图,四边形ABCD为菱形,已知A(0,4),B﹣3,0).(1)点D的坐标;(2)求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP 交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD 面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________ ;(2)猜想:_________ = _________ ;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。
专题:数形结合。
分析:此题可过P作PE⊥OM,根据勾股定理求出OP的长度,则M、N两点坐标便不难求出.解答:解:过P作PE⊥OM,∵顶点P的坐标是(3,4),∴OE=3,PE=4,∴OP==5,∴点M的坐标为(5,0),∵5+3=8,∴点N的坐标为(8,4).故选A.点评:此题考查了菱形的性质,根据菱形的性质和点P的坐标,作出辅助线是解决本题的突破口.2.菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.考点:菱形的性质;等边三角形的判定。
分析:根据菱形的性质,求出菱形的边长,由菱形的两边和较短的对角线组成的三角形是等边三角形,进而求出较短的对角线长.解答:解:如图,∵四边形ABCD为菱形,且周长为4,∴AB=BC=CD=DA=1,又∵∠B=60°,∴△ABC是等边三角形,所以AC=AB=BC=1.故选C.点评:本题既考查了菱形的性质,又考查了等边三角形的判定,是菱形性质应用中一道比较典型的题目.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:1考点:菱形的性质;含30度角的直角三角形。
分析:根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.解答:解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.点评:此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.4.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.考点:菱形的性质。
分析:先求出∠A等于60°,连接BD得到△ABD是等边三角形,所以BD等于菱形边长.解答:解:连接BD,∵∠ADC=120°,∴∠A=180°﹣120°=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AB=15.故选A.点评:本题考查有一个角是60°的菱形,有一条对角线等于菱形的边长.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是 3 cm2.考点:菱形的性质。
分析:由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.解答:解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.点评:此题考查了菱形的性质.注意菱形的面积等于对角线乘积的一半.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH 丄AB,垂足为H,则点0到边AB的距离OH= .考点:菱形的性质;点到直线的距离;勾股定理。
分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.解答:解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.点评:本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD 的面积为2cm2.考点:菱形的性质;勾股定理。
分析:因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出BD的长,菱形的面积=底边×高,从而可求出解.解答:解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.点评:本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D 作DE∥AC交BC的延长线于点E,则△BDE的周长为60 .考点:菱形的性质;勾股定理。
专题:数形结合。
分析:因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长.解答:解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=13,AC⊥BD,OB=OD,OA=OC=5,∴OB==12,BD=2OB=24,∵AD∥CE,AC∥DE,∴四边形ACED是平行四边形,∴CE=AD=BC=13,DE=AC=10,∴△BDE的周长是:BD+BC+CE+DE=24+10+26=60.故答案为:60.点评:本题主要利考查用菱形的对角线互相垂直平分及勾股定理来解决,关键是根据菱形的性质得出AC⊥BD,从而利用勾股定理求出BD的长度,难度一般.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= 65 度.考点:菱形的性质。
专题:计算题。
分析:因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.解答:解:∵ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.∵∠BAD=80°,∴∠ABD=×(180°﹣80°)=50°.又∵BE=BO,∴∠BEO=∠BOE=×(180°﹣50°)=65°.故答案为:65.点评:此题考查了菱形的性质和等腰三角形的性质以及三角形内角和定理.属基础题.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= 120 度.考点:菱形的性质。