二元关系的基本运算与性质复习题答案
二元关系
当(xi, yj)∈R 其他 (i=1, 2,…m; j=1, 2,…n)
称MR为R的关系矩阵。
内容
n n n n
4.1 二元关系及其表示 4.2 关系的性质 4.3 关系的运算 4.4 关系的闭包
5
离散数学讲义稿
4.2 关系性质
5种性质: 设R是集合A上的二元关系,则
离散数学讲义稿
第二部分
集合与关系
第4章
二元关系
林 兰
2011.3
内容
n n n n
4.1 二元关系及其表示 4.2 关系的性质 4.3 关系的运算 4.4 关系的闭包
1
离散数学讲义稿
4.1 二元关系及其表示
1. 二元关系
例1:集合A={ 2, 3, 5, 9 }上建立小于关系R,则可表达为: R={ (2,3), (2,5), (2,9), (3,5), (3,9), (5,9) } 例2:男队A={ a, b, c, d },女队B={ e, f, g }。如果A和B的元素间 有混双配对关系:a和g,d和e。可表达为: R={ (a, g), (d, e) } 表示所有可能的混双配对有序对集合: A×B={ (a, e), (a, f), (a, g), (b, e), (b, f), (b, g), (c, e), (c, f), (c, g), (d, e), (d, f), (d, g) } 有 R ⊆ A× B
∴ (R ◦S) -1 = S-1◦R-1
R-1的性质: 设R是A上的二元关系,R-1与R有相同的性质。 (自反,反自反,对称,反对称,传递)
4.4 关系的闭包
1. 定义 设R是集合A上的二元关系。如果另有A上关系R’满足:
二元运算基本概念和性质(离散数学)
a2 a2∘a1 a2∘a2 … a2∘an
.
...
.
...
.
...
an an∘a1 an∘a2 … an∘an
∘ai
a1 ∘a1 a2 ∘a2 .. .. .. an ∘an
13
运算表的实例
例4 A = P({a, b}), , ∼分别为对称差和绝对补运算
({a,b}为全集)
的运算表
∼ 的运算表
证
el = el ∘ er = el ∘ er = er
所以 el = er , 将这个单位元记作 e. 假设 e’ 也是 S
中的单位元,则有
e’ = e ∘ e’ = e.
惟一性得证.
类似地可以证明关于零元的惟一性定理.
注意:当 |S| 2,单位元与零元是不同的;
当 |S| = 1 时,这个元素既是单位元也是零元. 23
因此当
x+y+2xy = 0 x 1/2时,
y
y
x
1
x 2x
是
x
(x = 1/2) 的逆元.
1 2x
27
例题分析(续)
例7 (1) 说明那些运算是交换的、可结合的、幂等的. (2) 求出运算的单位元、零元、所有可逆元素的逆元.
abc
a cab b abc c bca
∘ abc
a aaa b bbb c ccc
25
例题分析
例6 设 ∘ 运算为 Q 上的二元运算, x, yQ, x∘y = x+y+2xy,
(1) ∘运算是否满足交换和结合律? 说明理由. (2) 求 ∘ 运算的单位元、零元和所有可逆元.
解 (1) ∘ 运算可交换,可结合. 任取x, yQ, x ∘ y = x+y+2xy = y+x+2yx = y ∘ x,
新初中数学方程与不等式之二元二次方程组知识点总复习含答案解析
新初中数学方程与不等式之二元二次方程组知识点总复习含答案解析一、选择题1.k 为何值时,方程组2216x y x y k ⎧+=⎨-=⎩只有唯一解? 【答案】k=42±.【解析】【分析】 将方程组转化为一元二次方程,根据△=0求解即可.【详解】2216(1)(2)x y x y k ⎧+=⎨-=⎩ 由(2)得, y=x-k (3)将(3)代入(1)得,2222160x kx k -+-=,要使原方程组有唯一解,只需要上式的△=0,即22(2)42(16)0k k --⨯⨯-=,解得,k=42±.所以当k=42±时,方程组2216x y x y k⎧+=⎨-=⎩只有唯一解. 【点睛】本题考查的是高次方程的解法和一元二次方程根的判别式的应用,掌握当判别式为0时,一元二次方程有两个相等的实数根是解题的关键.2.阅读材料,解答问题材料:利用解二元一次方程组的代入消元法可解形如的方程组. 如:由(2)得,代入(1)消元得到关于的方程: ,将代入得:,方程组的解为 请你用代入消元法解方程组:【答案】解:由(1)得,代入(2)得化简得:,把,分别代入得:,,【解析】这是阅读理解题,考查学生的阅读理解能力,把二元二次方程组利用代入消元转化成一元二次方程,解出一元二次方程的解,再求另一个未知数的解即可3.解方程组:⑴3{351x yx y-=+=⑵3+10{2612x y zx y zx y z-=+-=++=【答案】(1)2{1xy==-;(2)3{45xyz===【解析】(1)先用代入消元法求出x的值,再用代入消元法求出y的值即可.(2)先利用加减消元法去z得到关于x、y的两个方程,解这两个方程组成的方程组求出x、y,然后利用代入法求z,从而得到原方程组的解.(1)2{1xy==-; (2)3{45xyz===“点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题.4.如图,要建一个面积为45 m2的长方形养鸡场(分为两片),养鸡场的一边靠着一面长为14m的墙,另几条边用总长为22 m的竹篱笆围成,每片养鸡场的前面各开一个宽l m的门.求这个养鸡场的长与宽.【答案】这个养鸡场的长为9m,宽为5 m.【解析】试题分析:设鸡场的长为x m,宽为y m,根据鸡场的面积和周长列出两个等量关系,解方程组即可,注意鸡场的长小于围墙的长.解:设鸡场的长为xm,宽为ym,由题意可得:322245x y xy +-=⎧⎨=⎩,且x <14,解得y =3或5; 当y =3时,x =15;∵x <14,∴不合题意,舍去;当y =5时,x =9,经检验符合题意.答:这个养鸡场的长为9m ,宽为5m.5.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组: 2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.6.解方程组:22x 2xy 3y 3x y 1⎧--=⎨+=⎩ 【答案】x 1.5y 0.5=⎧⎨=-⎩【解析】【分析】把方程组的第一个方程分解因式求出x 3y 3-=,再解方程组解x y 1x 3y 3+=⎧⎨-=⎩即可. 【详解】由22x 2xy 3y 3--=得:()()x y x 3y 3+-=, x y 1+=Q ,x 3y 3∴-=,解x y 1x 3y 3+=⎧⎨-=⎩得:x 1.5y 0.5=⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成低次方程组是解此题的关键.7.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①②, 由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩.【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.8.22x -y -3x 10y ⎧=⎨++=⎩,①,② 【答案】x 1y -2=⎧⎨=⎩ 【解析】【分析】根据解二元二次方程组的步骤求解即可.【详解】解:由方程①得:()()x y x-y -3+⋅=,③由方程②得:x y -1+=,④联解③④得x-y=3,⑤联解④⑤得x 1y -2=⎧⎨=⎩所以原方程组的解为x 1y -2=⎧⎨=⎩ 【点睛】本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之.9.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.10.解方程组:222221x y x xy y +=⎧⎨++=⎩【答案】1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【解析】【分析】由方程②得出x +y =1,或x +y =﹣1,进而解答即可.【详解】222221x y x xy y +=⎧⎨++=⎩①②,由②可得:x +y =1,或x +y =﹣1,所以可得方程组221x y x y +=⎧⎨+=⎩①③或221x y x y +=⎧⎨+=-⎩①④,解得:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩; 所以方程组的解为:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【点睛】本题考查了解二元二次方程组,关键是根据完全平方公式进行消元解答.11.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩.【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①②由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.12.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩. 【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩, 即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组13.222102520x y x xy y +-=⎧⎨-+=⎩ 【答案】111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.【详解】222102520x y x xy y +-=⎧⎨-+=⎩①② 将②因式分解,得()()220x y x y --=∴方程组可化为两个新方程组:21020x y x y +-=⎧⎨-=⎩,21020x y x y +-=⎧⎨-=⎩∴方程组的解为:111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.14.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.15.解方程组:2263100x y x xy y -=⎧⎨+-=⎩ 【答案】11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩ 【解析】【分析】先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.【详解】解:2263100x y x xy y -=⎧⎨+-=⎩由②得:()()250x y x y -+=原方程组可化为620x y x y -=⎧⎨-=⎩或650x y x y -=⎧⎨+=⎩, 解得:11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.16.解方程组:2220{25x xy y x y --=+=①②【答案】5{5x y ==-或21x y =⎧⎨=⎩. 【解析】【分析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.【详解】 2220{25x xy y x y --=+=①②由①得()()20x y x y +-=,即0x y +=或20x y -=,∴原方程组可化为0{25x y x y +=+=或20{25x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21x y =⎧⎨=⎩. ∴原方程组的解为5{5x y ==-或21x y =⎧⎨=⎩.17.解方程组:22222303x xy y x xy y ⎧--=⎨-+=⎩【答案】111,1.x y =⎧⎨=-⎩【解析】【分析】首先将由22230x xy y --=得30x y -=或0x y +=,分别与223x xy y -+=求解即可.【详解】解: 22222303x xy y x xy y ⎧--=⎨-+=⎩①②由①得30x y -=或0x y +=,原方程组可化为22303x y x xy y -=⎧⎨-+=⎩;2203x y x xy y +=⎧⎨-+=⎩解这两个方程组得原方程组的解为11,7x y ⎧=⎪⎪⎨⎪=⎪⎩227x y ⎧=⎪⎪⎨⎪=-⎪⎩331,1,x y =-⎧⎨=⎩441,1.x y =⎧⎨=-⎩ 【点睛】 此题考查二元二次方程,解题关键在于掌握运算法则.18.解方程组:2234021x xy y x y ⎧--=⎨+=⎩. 【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【解析】【分析】方程组中第一个方程可因式分解为两个二元一次方程,这两个方程与组中的另一个方程组成两个二元一次方程组,解这两个二元一次方程组即可求得原方程组的解.【详解】解:2234021x xy y x y ①②⎧--=⎨+=⎩, 由①得:(x ﹣4y )(x +y )=0,∴x ﹣4y =0或x +y =0.原方程组可化为4021x y x y -=⎧⎨+=⎩,021x y x y +=⎧⎨+=⎩. 解4021x y x y -=⎧⎨+=⎩,得112316x y ⎧=⎪⎪⎨⎪=⎪⎩;解021x y x y +=⎧⎨+=⎩,得,2211x y =-⎧⎨=⎩.∴原方程组的解为112 316xy⎧=⎪⎪⎨⎪=⎪⎩,2211xy=-⎧⎨=⎩【点睛】本题考查了二元二次方程组的解法,熟练掌握解法是求解的关键.19.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm,修好后又被风吹折,因新断处比前次低5dm,故杆顶着地处比前次远10dm,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB的高为x dm,余下部分BC长为y dm,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm,余下部分为BC为ydm.由题意得22222220;(5)(5)30.y xy x⎧=+⎨+=-+⎩解得2129xy=⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.20.解方程组:22560{21x xy yx y+-=-=①②【答案】11613{113xy==-,221{1xy==.【解析】【分析】先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩ 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。
4.1 笛卡尔积与二元关系4.2 关系的运算
.
17
包含关系: R={<x,y>| x,y∈A∧={,{a},{b},{a,b}}, 则 A上的包含关系是
R={<,>,<,{a}>,<,{b}>,<,{a,b}>,<{a},{a}>,
<{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>} 除此以外,还可以构成其他关系:
1
26
A上的关系数目为 ,这个数目往往是很大的, 而我们通常关注的是其中少量的有特殊含义的关 系. 如EA,IA,整除,小于等于,包含等 3 关系的表示方法. 1)集合表达式 2)关系矩阵 3)关系图 2 接下来的课程,我们将学习关系的运算,关系的性质等.
27
作业(清华版)
28
7.3 关系的运算
关系矩阵表示从A到B的关系
关系矩阵:若A={x1, x2, …, xm},B={y1, y2, …, yn},R 是从A到B的关系,R的关系矩阵是布尔矩阵MR = [ rij ] mn, 其中 rij = 1 < xi, yj> R. 注意:A, B为有穷集,关系矩阵适于表示从A到B的 关系或者A上的关系
3)R的域fidR: R的定义域和值域的并集
fldR=domR∪ranR
例1 R={<1,2>,<1,3>,<2,4>,<4,3>}, 则
domR={1, 2, 4}
ranR={2, 3, 4}
fldR={1, 2, 3, 4}
30
关系的基本运算定义(续)
1)关系的逆 R的记作 R1 = {<y,x> | <x,y>R} R 求关系的逆就是把其中的有序对颠倒过来 .
关系运算习题答案及作业要求
数据库系统原理关系运算习题答案1、笛卡尔积、等值联接、自然联接三者之间有什么区别?笛卡尔积对两个关系R和S进行乘操作,产生的关系中元组个数为两个关系中元组个数之积。
等值联接则是在笛卡尔积的结果上再进行选择操作,从关系R和S的笛卡儿积中选择对应属性值相等的元组;自然连接则是在等值联接(以所有公共属性值相等为条件)的基础上再行投影操作,并去掉重复的公共属性列。
当两个关系没有公共属性时,自然连接就转化我笛卡尔积。
2、设有关系R和S(如下:)计算:3、设有关系R和S(如下:)计算:4、如果R是二元关系,那么下列元组表达式的结果是什么?{t|(u)(R(t)∧R(u)∧(t[1]≠u[1]∨t[2]≠u[2]))}这个表达式的意思是:从关系R中选择元组,该元组满足:第1分量值或第2分量值至少有一个不等于其他某元组。
由于R是二元关系,只有两个分量,由于没有重复元组,上述条件显然满足。
所以,这个表达式结果就是关系R。
5、假设R和S分别是三元和二元关系,试把表达式π1,5(σ2=4∨3=4(R×S))转换成等价的:(1)汉语查询句子;(2)元组表达式;(3)域表达式。
(1)汉语表达式:从R×S关系中选择满足下列条件的元组:第2分量(R中第2分量)与第4分量(S中第1分量)值相等,或第3分量(R 中第3分量)与第4分量(S中第1分量)值相等;并取第1列与第5列组成的新关系。
(2)元组表达式:{t|(u)(v)(R(u)∧S(v)∧(u[2]=v[1]∨u[3]=v[1])∧t[1]=u[1]∧t[2]=v[2])}(3)域表达式:{xv|(y)(z)(u)(R(xyz)∧S(uv)∧(y=u∨z=u))}6、假设R和S都是二元关系,试把元组表达式{t|R(t)∧(u)(S(u)∧u[1]≠t[2])}转换成等价的: (1)汉语查询句子;(2)域表达式:(3)关系代数表达式。
(1)汉语表达式:选择R关系中元组第2分量值不等于S关系中某元组第1分量值的元组。
(必考题)初中七年级数学下册第八单元《二元一次方程组》基础卷(答案解析)
一、选择题1.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()A.23倍B.32倍C.2倍D.3倍B解析:B【分析】设一个苹果的重量为x,一个香蕉的重量为y,一个砝码的重量为a,根据两个图形建立方程组,再解方程组即可得.【详解】设一个苹果的重量为x,一个香蕉的重量为y,一个砝码的重量为a,由图得:2432x ay a x=⎧⎨=+⎩,解得243x ay a=⎧⎪⎨=⎪⎩,则23423x ay a==,即一个苹果的重量是一个香蕉的重量的32倍,故选:B.【点睛】本题考查了二元一次方程组的实际应用,依据题意,正确建立方程组是解题关键.2.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是()A .2018B .2019C .2020D .2021C解析:C 【分析】设竖式纸盒x 个,横式纸盒y 个,正方形纸板a 张,长方形纸板b 张,由题意列出方程组可求解. 【详解】解:设竖式纸盒x 个,横式纸盒y 个, 正方形纸板a 张,长方形纸板b 张,根据题意得:432x y bx y a +⎧⎨+⎩==, ∴5x+5y=5(x+y )=a+b ∴a+b 是5的倍数 故选:C . 【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.3.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限A解析:A 【分析】先根据代入消元法解方程组,然后判断即可; 【详解】21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=,解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫⎪⎝⎭在第一象限. 故选A . 【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键. 4.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t = C解析:C【分析】运用加减消元法求解即可. 【详解】 解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3, 故选:C . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116l C .516l D .118l B 解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=,116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B . 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.6.关于x 、y 的方程组53x ay x y +=⎧⎨-=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出a ,则a 的值是( )A .2B .-2C .1D .-1B解析:B 【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解. 【详解】 解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-,把12x y =⎧⎨=-⎩代入①可得:125a -=,解得2a =-, 故选:B . 【点睛】本题考查二元一次方程组的解,把1x =代入②得到y 的值是解题的关键.7.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本 售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元C解析:C 【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值. 【详解】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得5352 3544 x yx y+⎧⎨+⎩==,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,故选C.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.8.二元一次方程组7317x yx y+=⎧⎨+=⎩的解是()A.52xy=⎧⎨=⎩B.25xy=⎧⎨=⎩C.61xy=⎧⎨=⎩D.16xy=⎧⎨=⎩A解析:A【分析】方程组利用加减消元法求出解即可.【详解】解:7317x yx y+=⎧⎨+=⎩①②,②﹣①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.故选:A.【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.9.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩D解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.10.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩D .若3m n x +与22112m x y --是同类项,则2m =,1n = C解析:C 【分析】求出方程的特殊解即可判断A ;代入得到关于k 的方程,求出即可;代入求出x ,把x 的值代入求出y 即可;根据同类项的定义求出即可. 【详解】A 、1732yx -=,当y=1时,x=7,当y=3时,x=4,当y=5时,x=1,正整数解有3个,故本选项错误;B 、把x=5,y=2代入方程得:10-6=2k ,∴k=2,故本选项错误;C 、利用代入法解方程组得得:x=1,y=-1,故本选项正确;D 、根据同类项的定义得到m+n=2,2m-1=0,解得:12m =,32n =,故本选项错误. 故选:C . 【点睛】本题主要考查了同类项的概念,二元一次方程以及解二元一次方程组等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.二、填空题11.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .2【分析】设小长方形的宽CE 为小长方形的长是根据长方形ABCD 的长和宽列出方程组求解【详解】解:设小长方形的宽CE 为小长方形的长是根据图形大长方形的宽可以表示为或者则大长方形的长可以表示为则解得故答解析:2 【分析】设小长方形的宽CE 为xcm ,小长方形的长是ycm ,根据长方形ABCD 的长和宽列出方程组52313x x yx y +=+⎧⎨+=⎩求解.【详解】解:设小长方形的宽CE 为xcm ,小长方形的长是ycm , 根据图形,大长方形的宽可以表示为52x +,或者x y +, 则52x x y +=+,大长方形的长可以表示为3x y +, 则313x y +=,52313x x y x y +=+⎧⎨+=⎩,解得27x y =⎧⎨=⎩. 故答案是:2. 【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解.12.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.5【分析】根据两个方程系数的关系将两个方程相加即可得到答案【详解】解:①+②得:4x+4y =20则x+y =5故答案为:5【点睛】此题考查解二元一次方程组—特殊法根据所求的式子中各系数与方程组的关系将解析:5 【分析】根据两个方程系数的关系将两个方程相加即可得到答案. 【详解】解:612328x y x y +=⎧⎨-=⎩①②,①+②得:4x +4y =20,则x+y=5,故答案为:5.【点睛】此题考查解二元一次方程组—特殊法,根据所求的式子中各系数与方程组的关系,将原方程组对应相加或相减即可得到答案的方法更为简便.13.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.22【分析】首先设买1包甲乙丙三种糖各abc元根据买甲种糖2包和乙种1包丙种3包共23元列出方程2a+3c+b=23;根据买甲种1包乙4包丙种5包共36元列出方程a+4b+5c=36通过加减消元法求解析:22【分析】首先设买1包甲,乙,丙三种糖各a,b,c元.根据买甲种糖2包和乙种1包,丙种3包共23元,列出方程2a+3c+b=23;根据买甲种1包,乙4包,丙种5包,共36元,列出方程a+4b+5c=36.通过加减消元法求得b+c,a+c的值.题目所求买甲种1包,乙种2包,丙种3包,共需a+2b+3c=(a+c)+2(b+c),因而将b+c、a+c的值直接代入即求得本题的解.【详解】解:设买1包甲,乙,丙三种糖各a,b,c元.由题意得23234536 a b ca b c++=⎧⎨++=⎩①②由②×2−①得:b+c=7③,由③代入①得:a+c=8④,由④+2×③得:a+2b+3c=(a+c)+2(b+c)=8+14=22.故答案为:22.【点睛】根据系数特点,通过加减消元法,得到b+c、a+c的值,再将其做为一个整体,代入求解.14.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m=_____n=_____.2【分析】根据同类项的概念列出方程组解方程组得到答案【详解】根据题意可知2amb2m+3n与a2n﹣3b8的和仍是一个单项式∴解得:故答案为:12【点睛】本题考查了单项式和解二元一次方程组两个单项式解析:2【分析】根据同类项的概念列出方程组,解方程组得到答案.【详解】根据题意可知,2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,∴23238m n m n =-⎧⎨+=⎩,解得:12m n =⎧⎨=⎩,故答案为:1,2. 【点睛】本题考查了单项式和解二元一次方程组.两个单项式的和为单项式,则这两个单项式是同类项,即所含字母相同,并且相同字母的指数也相同.15.若1m ,2m ,…,是从0,1-,2这三个数中取值的一列数,若1232020...700m m m m ++++=,()()()22212202011...13520m m m -+-++-=,则1m ,2m ,…,2020m 中为2的个数是______.600【分析】设0有a 个有b 个2有c个根据题意列出三元一次方程组求解即可【详解】解:设0有a 个有b 个2有c 个根据题意可得:解得故取值为2的个数为600个故答案为:600【点睛】本题考查三元一次方程组解析:600 【分析】设0有a 个,1-有b 个,2有c 个,根据题意列出三元一次方程组,求解即可. 【详解】解:设0有a 个,1-有b 个,2有c 个,根据题意可得: 2020270043520a b c b c a b c ++=⎧⎪-+=⎨⎪++=⎩, 解得920500600a b c =⎧⎪=⎨⎪=⎩,故取值为2的个数为600个, 故答案为:600. 【点睛】本题考查三元一次方程组的实际应用,根据题意列出三元一次方程组是解题的关键. 16.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.【分析】观察发现和形式完全相同故整体考虑可得然后解方程即可【详解】解:∵和形式完全相同∴解的故答案为:【点睛】本题主要考查了整体思想在解二元一次方程组中的应用善于观察所给两个方程组的特点整体考虑是解解析:44x y =⎧⎨=⎩【分析】观察发现31630mx y x ny -=⎧⎨-=⎩和(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩形式完全相同,故整体考虑,可得1513x y +=⎧⎨-=⎩,然后解方程即可. 【详解】解:∵31630mx y x ny -=⎧⎨-=⎩和(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩形式完全相同∴1513x y +=⎧⎨-=⎩,解的44x y =⎧⎨=⎩故答案为:44x y =⎧⎨=⎩ 【点睛】本题主要考查了整体思想在解二元一次方程组中的应用,善于观察所给两个方程组的特点,整体考虑,是解题的关键. 17.已知方程组2221x y x y +=⎧⎨+=⎩,那么x y +=_________.1【分析】根据二元二次方程组代入消元法性质计算得到x 和y 的值从而完成求解【详解】∵∴将代入到得:∴将代入得∴∴故答案为:1【点睛】本题考查了二元二次方程组和代数式的知识;解题的关键是熟练掌握二元二次解析:1 【分析】根据二元二次方程组代入消元法性质计算,得到x 和y 的值,从而完成求解. 【详解】 ∵22x y += ∴22x y =-将22x y =-代入到21x y += 得:441y y -+= ∴1y =将1y =代入22x y +=,得22x += ∴0x = ∴011x y +=+= 故答案为:1. 【点睛】本题考查了二元二次方程组和代数式的知识;解题的关键是熟练掌握二元二次方程组代入消元法、代数式的性质,从而完成求解.18.已知方程组5257x y m x y -=⎧⎨+=⎩中,x ,y 的值相等,则m=________.【分析】根据x 与y 的值相等得到y=x 代入方程组即可求出m 的值【详解】解:由题意得y=x 代入方程组得:解得:x=1m=4故答案为:4【点睛】此题考查了二元一次方程组的解方程组的解即为能使方程组中两方程解析:【分析】根据x 与y 的值相等得到y=x ,代入方程组即可求出m 的值.【详解】解:由题意得y=x ,代入方程组5257x y m x y -=⎧⎨+=⎩得:5257x x m x x -=⎧⎨+=⎩, 解得:x=1,m=4.故答案为:4.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.19.若x a y b =⎧⎨=⎩是方程组2155x y x y -=⎧⎨-+=⎩的解,则a+4b =_____.6【分析】方程组两方程相加求出x+4y 的值将x 与y 的值代入即可求出值【详解】解:①+②得:x+4y =6把代入方程得:a+4b =6故答案为6【点睛】此题考查了二元一次方程组的解熟练掌握运算法则是解本题解析:6【分析】方程组两方程相加求出x+4y 的值,将x 与y 的值代入即可求出值.【详解】解:2155x y x y -=⎧⎨-+=⎩①②, ①+②得:x+4y =6,把x a y b =⎧⎨=⎩代入方程得:a+4b =6, 故答案为6【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.20.若2|327|(521)0a b a b +++-+=,则a b +=______.-3【分析】由|3a+2b+7|+(5a-2b+1)2=0可得:3a+2b+7=0和5a-2b+1=0联立成方程组后解方程组可得a 和b 的值问题得解【详解】解:由题意得解方程组得所以【点睛】本题考查非 解析:-3【分析】由|3a+2b+7|+(5a-2b+1)2=0,可得:3a+2b+7=0和5a-2b+1=0,联立成方程组后解方程组可得a 和b 的值,问题得解.【详解】解:由题意,得3270,5210,a b a b ++=⎧⎨-+=⎩解方程组得1,2,a b =-⎧⎨=-⎩所以3a b +=-.【点睛】本题考查非负数的性质,利用其特殊的性质:非负数≥0,将问题转化为解方程或解方程组.这是解答此类题的规律,要求掌握.三、解答题21.解方程组:22432x y x y +=⎧⎨+=⎩①②. 解析:22x y =⎧⎨=-⎩. 【分析】根据自己的特长,选择代入消元法或加减消元法求解即可.【详解】由22432x y x y +=⎧⎨+=⎩①② 解法1:①×3-②,得24=x ,解得:2x =,把2x =代入①,解得2y =-,∴原方程组的解是22x y =⎧⎨=-⎩; 解法2:由①得:22y x =-③把③代入②得,43(22)2x x +-=解得:2x =,把2x =代入③,得2y =-,∴原方程组的解是22x y =⎧⎨=-⎩. 解法3:由①×2得:424x y +=③,由②-③得,2y =-把2y =-代入①,解得2x =,∴原方程组的解是22x y =⎧⎨=-⎩. 【点睛】 本题考查了二元一次方程组的解法,灵活运用代入消元法或加减消元法是解题的关键. 22.一个n 位数(2n ≥,n 为正整数),我们把最高位上的数移到它的右侧,得到一个新数,再将新数的最高位上的数移到它的右侧,又得到一个新数,…,依次类推,我们把这样操作得到的新数都叫做原数的“谦虚数”.比如56有一个“谦虚数”是65;156有两个“谦虚数”分别是561、615;2834有三个“谦虚数”分别是8342、3428、4283.(1)请写出四位数5832的三个“谦虚数”.(2)一个两位数,个位上的数与十位上的数和为9,如果这个两位数比它的“谦虚数”少9,求这个两位数.(3)一个三位数,百位上的数为a ,十位上的数为1,个位上的数为b ,如果这个三位数与它的两个“谦虚数”的和能被5整除,求+a b 的值.解析:(1)8325,3258,2583;(2)45;(3)4或9或14【分析】(1)根据“谦虚数”的定义描述我们可以依次将最高位上的数移到它的右侧,进而得出5832的三个“谦虚数”;(2)设该数个位数为a ,十位数为b ,进而可以表示出这个数和这个数的“谦虚数”,根据给出的已知条件可以列出一个关于a ,b 的二元一次方程组,即可解得;(3)根据题目已知条件,可以用含a 的式子表示出这个三位数,进而表示出这个三位数的“谦虚数”,通过已知条件列示化简,根据这个三位数与它的两个“谦虚数”的和能被5整除即可求得+a b 的值.【详解】(1)根据“谦虚数”的定义描述,首先将5832最高位上的数移到它的右侧得到一个“谦虚数”8325,再将8325最高位上的数移到它的右侧得到一个“谦虚数”3258,再将3258最高位上的数移到它的右侧得到一个“谦虚数”2583;(2)设该数个位数为a ,十位数为b ,由已知条件可得:9(10)(10)9a b a b b a +=⎧⎨+-+=⎩, 解得:5a =,4b =,∴这个两位数是45;(3)由已知条件可知,这个三位数可以表示为10010a b ++,则它的两个“谦虚数”分别为:10010b a ++、100101b a ++,∴这个三位数与它的两个“谦虚数”的和为,(10010)(10010)(100101)a b b a b a ++++++++,111111111a b =++,1101101101555a ab b +++=++, 12222225a b a b ++=+++, ∵这个三位数与它的两个“谦虚数”的和能被5整除,∴1a b ++能被5整除,∵19a ≤≤,19b ≤≤,∴218a b ≤+≤,∴1a b ++可能取值为:5或10或15,∴+a b 的值为4或9或14.【点睛】本题考查了“谦虚数”新概念及其应用、二元一次方程组、不等式的性质、整式的化简,锻炼了学生对于新概念知识吸收和灵活运用的能力,掌握“谦虚数”的概念并灵活运用以上知识是解题的关键.23.解方程组:(1)35,24;x y x y +=⎧⎨-=⎩ (2)3(1)1,5(1)2 1.x y y x --=⎧⎨-=+⎩解析:(1)21x y =⎧⎨=-⎩;(2)22x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求解即可;(2)原方程整理后利用加减消元法求解即可.【详解】解:(1)3524x y x y +=⎧⎨-=⎩①② ①×2得:6210x y +=③,②+③得:714x =,解得2x =,代入①得:65y +=,解得1y =-,所以,该方程组的解为21x y =⎧⎨=-⎩; (2)原方程组整理得:34256x y x y -=⎧⎨-+=⎩①②, ①×5得:15520x y -=③,②+③得:1326x =,解得2x =,代入①得:64y -=,解得2y =,所以,该方程组的解为22x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组.解二元一次方程组主要有两种方法,加减消元法和代入消元法,掌握“消元”思想是解题关键.24.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.解析:(1)(7,-3);(2)点P 的坐标为(-2,1)【分析】(1)根据公式直接代入计算即可;(2)设点P 的坐标为(a ,b ),根据题意列得5359a b a b +=⎧⎨+=-⎩,求解即可. 【详解】(1)由题意得点()2,3P -的“3属派生点”的横坐标为233-+⨯=7,点()2,3P -的“3属派生点”的纵坐标为3(2)3⨯-+=-3,点()2,3P -的“3属派生点”的坐标为(7,-3),故答案为:(7,-3);(2)设点P 的坐标为(a ,b ),由题意得5359a b a b +=⎧⎨+=-⎩,解得21a b =-⎧⎨=⎩, ∴点P 的坐标为(-2,1).【点睛】此题考查新定义,列方程组解决实际问题,有理数的混合运算,正确理解题中的计算公式是解题的关键.25.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题: (1)写出用含x 、y 的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.26.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?解析:(1)5元的笔记本买25本,8元的笔记本买15本;(2)见解析【分析】(1)设5元、8元的笔记本分别买x 本、y 本,根据题意列二元一次方程组解答;(2)根据(1)中求出的5元、8元笔记本的本数求出应找回的钱数,再与68比较即可得出结论.【详解】(1)设5元、8元的笔记本分别买x 本、y 本,由题意得405868313x y x y +=⎧⎨++=⎩,解得2515x y =⎧⎨=⎩, 答:5元的笔记本买25本,8元的笔记本买15本;(2)应找回的钱数为:3005258155568-⨯-⨯=≠,∴不能找回68元.【点睛】此题考查二元一次方程组的实际应用,有理数的混合运算,正确理解题意是解题的关键. 27.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”.例如:当y x =时,雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =.(1)求“雅系二元一次方程”56y x =-+的“完美值”;(2)3x =是“雅系二元一次方程”3y x m =+的“完美值”,求m 的值;(3)“雅系二元一次方程”1y kx =+(0k ≠,k 是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.解析:(1)x =1;(2)m =﹣6;(3)当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k - 【分析】(1)由已知得到式子x=-5x+6,求出x 即可;(2)由已知可得x=3x+m ,将x=3代入即可求m ;(3)假设存在,得到x=kx+1,所以(1-k )x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11k-. 【详解】(1)由已知可得,x =-5x+6,解得x =1,∴“雅系二元一次方程”y =-5x+6的“完美值”为x =1;(2)由已知可得x =3x+m ,x =3,∴m=﹣6;(3)若“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”,则有x=kx+1,∴(1﹣k)x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11k-.【点睛】本题考查新定义,能够理解题意,将所求问题转化为一元一次方程求解是关键.28.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?解析:(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,根据总价=单价×数量,结合该超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,即可列出关于x,y的二元一次方程组,解之即可;(2)根据总利润=每箱利润×数量,即可求出该超市销售完600箱矿泉水获得的利润.【详解】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:600 203515000x yx y+=⎧⎨+=⎩,解得:400200 xy=⎧⎨=⎩.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
离散数学第4章-二元关系
4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学关系的运算
使(x,y)∈R 的所有y组成的集合称为R的值域,记为ranR。
即ranR = { y | x (<x,y>R) }。称domR ranR为R的域,记
为fldR 。即fldR = domR ranR 。
例1 设A={1,2,3,4}, R1是A上的二元关系,当a,b∈ A,
且a<b 时, (a,b) ∈ R1 , 求R和它的前域,值域和域。
2021/4/14
3
合成运算的图示方法
例2 已知 R={<1,2>, <1,4>, <2,2>,<2,3>, }, S={<1,1>, <1,3>, <2,3>, <3,2>, <3,3>},
求R1, R∘S , S∘R 。 利用图示(不是关系图)方法求合成
R∘S ={<1,3>, <2,2>, <2,3>} S∘R ={<1,2>, <1,4>, <3,2>, <3,3>}
2021/4/14
11
某关系R的关系图为:
1 2 3
4 5
6
a
b d
c
则R的关系矩阵为:
2021/4/14
0 0 0 0
1
1
0
0
0 1 0 0
M
R
0
0
1
0
0 0 0 0
0
0
1
0
12
思考:
写出集合A={1 , 2 , 3 , 4 }上的恒等关系、 空关 系、 全域关系和小于关系的关系矩阵。
R0, R1, R2, R3,…的关系图如下图所示
7.1二元关系的基本概念和表示方法
说明
定义7.5 对任意集合A,定义 全域关系 EA={<x,y>|x∈A∧y∈A}=A×A 恒等关系 IA={<x,x>|x∈A} 空关系
举例
设 A={1,2},那么
EA={<1,1>,<1,2>,<2,1>,<2,2>} IA={<1,1>,<2,2>}
小于或等于关系:LA={<x,y>|x,y∈A∧x≤y},其中 AR。 整除关系:DB={<x,y>|x,y∈B∧x整除y},其中 BZ* Z*是非零整数集 包含关系:R={<x,y>|x,y∈A∧xy},其中 A是集合族。
定义7.4 设A,B为集合,A×B的任何子集所定义的二元关系叫做 从A到B的二元关系;特别当A=B时,则叫做A上的二元关系。
举例
A={0,1},B={1,2,3},那么 R1={<0,2>},R2=A×B,R3= ,R4={<0,1>} 等都是从A到B的二元关系,而R3和R4同时也是A上的 二元关系。 集合A上的二元关系的数目依赖于A中的元素数。 2 如果|A|=n,那么|A×A|=n2, A×A的子集就有 2 n 个。 每一个子集代表一个A上的二元关系,所以A上有 2 n 个不 同的二元关系。 32 例如|A|=3,则A上有 2 个不同的二元关系。
例 设A={1,2},求P(A)×A。 P(A)×A
= {,{1},{2},{1,2}}×{1,2}
= {<,1>,<,2>, <{1},1>,<{1},2>, <{2},1>,<{2},2>, <{1,2},1>,<{1,2},2>}
方程与不等式之二元二次方程组知识点复习
∵x<14,
∴不合题意,舍去;
当 y=5 时,x=9,经检验符合题意.
答:这个养鸡场的长为 9m,宽为 5m.
x2 2xy y2 9
3.解方程组:
x
2
y2
5
.
【答案】
x1 y1
2
,
1
x2 y2
1 2
,
x3 y3
2 1
,
x4 y4
1 2
【解析】
试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解
【答案】这个养鸡场的长为 9m,宽为 5 m. 【解析】 试题分析:设鸡场的长为 xm,宽为 ym,根据鸡场的面积和周长列出两个等量关系,解方 程组即可,注意鸡场的长小于围墙的长. 解:设鸡场的长为 xm,宽为 ym,由题意可得:
x 3y 2 xy 45
22
,且
x<14,解得
y=3
或
5;
当 y=3 时,x=15;
10.
2x y 6
x2
xy
2
y2
0
【答案】
x
y
4 2
或
x
y
2 2
.
【解析】
【分析】
先将原方程组化为两个二元一次方程组,然后求解即可.
【详解】
解:原方程组变形为
2x y 6
x 2y x y 0
∴
2x x 2
y y
6 0
或
2x y 6 x y 0
∴原方程组的解为
x 4
x2 x
y2 m yn
中求出
m、n
的值,然后再求方程组的另一组
解.
【详解】
方程与不等式之二元二次方程组知识点总复习有答案
方程与不等式之二元二次方程组知识点总复习有答案一、选择题1.某商场计划销售一批运动衣,能获得利润12000元.经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利润10元,但可多销售400套,结果总利润比计划多4000元.求实际销售运动衣多少套?每套运动衣实际利润是多少元?【答案】实际销售运动衣800套,实际每套运动衣的利润是20元【解析】【分析】根据计划销售的套数×计划每套运动衣的利润=计划获利12000元;实际销售的套数×实际每套运动衣的利润=实际获利12000+4000元;那么可列出方程组求解.【详解】解:设实际销售运动衣x 套,实际每套运动衣的利润是y 元.根据题意 ,可列方程组()()4001012000120004000x y xy ⎧-+=⎨=+⎩解得:1212800800,2020x x y y ==-⎧⎧⎨⎨==-⎩⎩(舍去), 答:实际销售运动衣800套,每套运动衣的实际利润20元.【点睛】本题考查了二元二次方程组的应用,关键是根据题意列出方程组求解后要判断所求的解是否符合题意,舍去不合题意的解.2.已知A ,B 两地公路长300km ,甲、乙两车同时从A 地出发沿同一公路驶往B 地,2小时后,甲车接到电话需返回这条公路上与A 地相距105km 的C 处取回货物,于是甲车立即原路返回C 地,取了货物又立即赶往B 地(取货物的时间忽略不计),结果两下车同时到达B 地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A 地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR 和线段OR .(1)求乙车从A 地到B 地所用的时问;(2)求图中线段PQ 的解析式(不要求写自变量的取值范围);(3)在甲车返回到C 地取货的过程中,当x= ,两车相距25千米的路程.【答案】(1)5h (2)90360y x =-+(3)67h 30或77h 30【解析】(1)由图可知,求甲车2小时行驶了180千米的速度,甲车行驶的总路程,再求甲车从A 地到B 地所花时间;即可求出乙车从A 地到B 地所用的时间;(2)由题意可知,求出线段PQ 的解析式;(3)由路程,速度,时间的关系求出x 的值.(1)解:由图知,甲车2小时行驶了180千米,其速度为180290÷=(km/h ) 甲车行驶的总路程为: ()2180105300450⨯-+=(km)甲车从A 地到B 地所花时间为: 450905÷=(h )又∵两车同时到达B 地,∴乙车从A 地到B 地所用用的时间为5h.(2)由题意可知,甲返回的路程为18010575-=(km),所需时间为575906÷=(h ),517266+=.∴Q 点的坐标为(105, 176).设线段PQ 的解析式为: y kx b =+, 把(2,180)和(105, 176)代入得: 1802{171086k b k b =+=+,解得90360k b =-=,, ∴线段PQ 的解析式为90360y x =-+.(3)6730 h 或7730“点睛”本题考查了一次函数的应用,解题关键是明确题意,找出所求问题需要的条件,利用数型结合的思想解答问题.3.解方程组:222321x y x xy y +=⎧⎨-+=⎩【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①② 由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.4.解方程组:2256021x xy y x y ⎧+-=⎨-=⎩ ①② 【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【解析】【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩, 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩ 所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .5.解方程组:222023x xy y x y ⎧--=⎨+=⎩.【答案】原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:由①得出(x+y)(x-2y)=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:2220 23x xy yx y⎧--⎨+⎩=①=②由①得:(x+y)(x-2y)=0,x+y=0,x-2y=0,即原方程组化为23x yx y+⎧⎨+⎩==,2023x yx y-⎧⎨+⎩==,解得:123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩,即原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.6.计算:(1(2)解方程组:3534106x yx y-=-⎧⎨-+=⎩(3)解不等式组,并把解集在数轴上表示出来:6234 2111 32x xx x-≥-⎧⎪--⎨-<⎪⎩【答案】(1)12-;(2)35xy=⎧⎪⎨=⎪⎩;(3)21137x-≤≤.【解析】【分析】(1)先求开方运算,再进行加减;(2)用加减法解方程组;(3)解不等式组,再在数轴上表示解集.【详解】解:(1)原式=-3+4-32=12-(2)353 4106x yx y-=-⎧⎨-+=⎩①②①×2+②,得x=0把x=0代入①式 y=3 5所以,方程组的解是0 35xy=⎧⎪⎨=⎪⎩(3)6234211132x xx x-≥-⎧⎪⎨---<⎪⎩①②由①式得,x≥-23由②式得,x<117所以,不等式组的解集是21137x-≤≤,把解集在数轴上表示:【点睛】本题考核知识点:开方,解二元一次方程组,解不等式组.解题关键点:掌握相关解法.7.解方程组:2223,44 1.x yx xy y+=⎧⎨-+=⎩【答案】111,1;xy=⎧⎨=⎩221,57.5xy⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x yx xy y①②+=⎧⎨-+=⎩由②得:()221x y-=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组:23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.8.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.9.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ .【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为()()2620x y x y x y -=⎧⎨-+=⎩ ∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩∴原方程组的解为 42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【点睛】本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.10.解方程组:223403x xy y x y ⎧--=⎨-=⎩【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得326y -±=⨯,解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.11.解方程组:222221x y x xy y +=⎧⎨++=⎩【答案】1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【解析】【分析】由方程②得出x +y =1,或x +y =﹣1,进而解答即可.【详解】 222221x y x xy y +=⎧⎨++=⎩①②,由②可得:x +y =1,或x +y =﹣1,所以可得方程组221x y x y +=⎧⎨+=⎩①③或221x y x y +=⎧⎨+=-⎩①④,解得:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩; 所以方程组的解为:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【点睛】本题考查了解二元二次方程组,关键是根据完全平方公式进行消元解答.12.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩.【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --= 解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.13.解下列方程组:(1)222220560x y x xy y ⎧+=⎨-+=⎩(2)217,11 1.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩【答案】(1)3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩2)112512x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)把原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩再分别解这两个方程组可得答案. (2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案. 【详解】解:(1)因为222220560x y x xy y ⎧+=⎨-+=⎩把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩因为222020x y x y ⎧+=⎨-=⎩把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩ 同理解222030x y x y ⎧+=⎨-=⎩得方程组的解是x y ⎧=⎪⎨=⎪⎩或x y ⎧=-⎪⎨=⎪⎩所以原方程组的解是:3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩(2)因为217,111.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩①②所以①+②得:36x y =+,所以12x y +=,把12x y +=代入② 得:13x y -=-, 所以1213x y x y ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得:112512x y ⎧=⎪⎪⎨⎪=⎪⎩ 经检验112512x y ⎧=⎪⎪⎨⎪=⎪⎩是原方程组的解,所以原方程的解是112512x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.14.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =,故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.15.解方程组:224490x xy y x y ⎧++=⎨+=⎩ 【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.16.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩,解得:1213xy⎧=⎪⎪⎨⎪=⎪⎩,经检验,1213xy⎧=⎪⎪⎨⎪=⎪⎩是方程组的解.【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.17.解方程组:【答案】,.【解析】【分析】先由①得x=4+y,将x=4+y代入②,得到关于y的一元二次方程,解出y的值,再将y的值代入x=4+y求出x的值即可.【详解】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程.18.解方程组:2220 {25x xy yx y--=+=①②【答案】5{5xy==-或21xy=⎧⎨=⎩.【解析】【分析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.【详解】2220{25x xy y x y --=+=①②由①得()()20x y x y +-=,即0x y +=或20x y -=,∴原方程组可化为0{25x y x y +=+=或20{25x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21x y =⎧⎨=⎩. ∴原方程组的解为5{5x y ==-或21x y =⎧⎨=⎩.19.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩ 解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.20.解方程: 【答案】【解析】 解:原方程组即为···································· (2分)由方程(1)代人(2)并整理得:·······························································(2分)解得,························································(2分)代人得。
初中数学方程与不等式之二元二次方程组经典测试题及答案
初中数学方程与不等式之二元二次方程组经典测试题及答案一、选择题1.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则2.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.3.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组: 2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩.所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.4.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y. 【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得 ()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.7.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩【解析】【分析】把第一个方程化为x=3y,代入第二个方程,即可求解.【详解】由方程①,得x=3y③,将③代入②,得(3y)2+y2=20,整理,得y2=2,解这个方程,得y1,y2④,将④代入③,得x1=,2x=﹣所以,原方程组的解是11xy⎧=⎪⎨=⎪⎩11xy⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.8.某商场计划销售一批运动衣,能获得利润12000元.经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利润10元,但可多销售400套,结果总利润比计划多4000元.求实际销售运动衣多少套?每套运动衣实际利润是多少元?【答案】实际销售运动衣800套,实际每套运动衣的利润是20元【解析】【分析】根据计划销售的套数×计划每套运动衣的利润=计划获利12000元;实际销售的套数×实际每套运动衣的利润=实际获利12000+4000元;那么可列出方程组求解.【详解】解:设实际销售运动衣x套,实际每套运动衣的利润是y元.根据题意,可列方程组()()4001012000120004000x yxy⎧-+=⎨=+⎩解得:1212800800,2020x xy y==-⎧⎧⎨⎨==-⎩⎩(舍去),答:实际销售运动衣800套,每套运动衣的实际利润20元.【点睛】本题考查了二元二次方程组的应用,关键是根据题意列出方程组求解后要判断所求的解是否符合题意,舍去不合题意的解.9.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】 2224490x xy y x xy ⎧++=⎨+=⎩①② 由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩, 所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.10.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.11.222102520x y x xy y +-=⎧⎨-+=⎩【答案】111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.【详解】222102520x y x xy y +-=⎧⎨-+=⎩①② 将②因式分解,得()()220x y x y --=∴方程组可化为两个新方程组:21020x y x y +-=⎧⎨-=⎩,21020x y x y +-=⎧⎨-=⎩∴方程组的解为:111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.12.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩,解得:1213xy⎧=⎪⎪⎨⎪=⎪⎩,经检验,1213xy⎧=⎪⎪⎨⎪=⎪⎩是方程组的解.【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.13.计算:(1(2)解方程组:3534106x yx y-=-⎧⎨-+=⎩(3)解不等式组,并把解集在数轴上表示出来:6234 2111 32x xx x-≥-⎧⎪--⎨-<⎪⎩【答案】(1)12-;(2)35xy=⎧⎪⎨=⎪⎩;(3)21137x-≤≤.【解析】【分析】(1)先求开方运算,再进行加减;(2)用加减法解方程组;(3)解不等式组,再在数轴上表示解集.【详解】解:(1)原式=-3+4-32=12-(2)353 4106x yx y-=-⎧⎨-+=⎩①②①×2+②,得x=0把x=0代入①式 y=3 5所以,方程组的解是35 xy=⎧⎪⎨=⎪⎩(3)6234 211132x xx x-≥-⎧⎪⎨---<⎪⎩①②由①式得,x≥-23 由②式得,x <117所以,不等式组的解集是21137x -≤≤, 把解集在数轴上表示:【点睛】本题考核知识点:开方,解二元一次方程组,解不等式组.解题关键点:掌握相关解法.14.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得 答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.15.解方程组:2220{25x xy y x y --=+=①②【答案】5{5x y ==-或21x y =⎧⎨=⎩. 【解析】【分析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.【详解】 2220{25x xy y x y --=+=①②由①得()()20x y x y +-=,即0x y +=或20x y -=,∴原方程组可化为0{25x y x y +=+=或20{25x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21x y =⎧⎨=⎩. ∴原方程组的解为5{5x y ==-或21x y =⎧⎨=⎩.16.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.17.(探究证明)(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.,求证:=EF AD GHAB ; (结论应用) (2)如图2,在满足(1)的条件下,又AM ⊥BN ,点M ,N 分别在边BC ,CD 上.若11=15EF GH ,求BN AM; (联系拓展)(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DN AM的值.【答案】(1)证明见解析;(2)11 15;(3)45. 【解析】分析:(1)过点A 作AP ∥EF ,交CD 于P ,过点B 作BQ ∥GH ,交AD 于Q ,根据矩形的性质证明△PDA ∽△QAB ;(2)根据(1)的结论可得BN AM;(3)过点D 作平行于AB 的直线,交过点A 平行于BC 的直线于R ,交BC 的延长线与S ,SC =x ,DS =y ,在Rt △CSD ,Rt △ARD 中,用勾股定理列方程组求出AR ,AB ,结合(1)的结论求解.详解:(1)如图1,过点A 作AP ∥EF ,交CD 于P ,过点B 作BQ ∥GH ,交AD 于Q , ∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC .∴四边形AEFP ,四边形BHGQ 都是平行四边形,∴AP =EF ,GH =BQ .又∵GH ⊥EF ,∴AP ⊥BQ ,∴∠QAT +∠AQT =90°.∵四边形ABCD 是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB.∴AP ADBQ AB=,∴EF ADGH AB=.(2)如图2,∵GH⊥EF,AM⊥BN,∴由(1)的结论可得EF ADGH AB=,BN ADAM AB=,∴1115BN EFAM GH==.(2)如图3,过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线与S,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得DN ARAM AB=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,222525x yx y⎧⎨-⎩+==,解得34xy⎧⎨⎩==,5xy-⎧⎨⎩==(舍),所以AR=5+x=8,则84105DN ARAM AB===.点睛:这是一个类比题,主要考查了相似三角形的判定与性质,在特殊图形中存在的结论,放在非特殊图形中结论是有可能成立也有可能不成立,但特殊图形中结论的推导过程仍然适用于一般图形.18.解方程组:22444{10x xy yx y-+=++=①②.【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.()28024x y x y x ++=⎧⎪⎨++=⎪⎩ 【答案】3022x y =-⎧⎨=⎩【解析】【分析】运用代入法进行消元降次,即可得解.【详解】()28024x y x y x ++=⎧⎪⎨++=⎪⎩①②由①,得8x y +=-③将③代入②,得6424x +=,解得30x =-④ 将④代入①,得22y =∴方程组的解为3022x y =-⎧⎨=⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.。
离散数学课件第四章二元关系习题
闭包的定义基于关系的传递 性,即如果关系R满足传递性, 那么对于任何元素x,如果存 在元素y和z,使得xRy和yRz, 那么一定存在一个元素z',使 得xRz'。闭包就是由给定关系 和所有满足闭包定义的新元 素构成的关系集合。
闭包具有一些重要的性质, 这些性质决定了闭包在数学 和计算机科学中的广泛应用 。
同余关系的应用
应用1
在密码学中,同余关系可用于生成加 密密钥。例如,通过选择两个同余的 数作为密钥,可以确保加密和解密操 作的一致性。
应用2
在计算机科学中,同余关系可用于实 现数据校验。例如,通过将数据与一 个已知的校验值进行同余运算,可以 检测数据是否在传输过程中被篡改。
THANKS
感谢观看
反对称性
如果对于关系中的每一对 元素,如果元素x与元素y 有关系,且元素y与元素x 也有关系,但元素x与元 素y的关系不等于元素y与 元素x的关系,则称该关 系具有反对称性。
习题解析
习题1
判断给定的关系是否具有自反性、反自反性、对称性和反对称性。通过举例和推理,分析 给定的关系是否满足这些性质。
习题2
表示方法
总结词
掌握二元关系的表示方法是解题的关键。
详细描述
在数学中,我们通常使用笛卡尔积来表示二元关系。例如,如果A和B是两个集合, 那么A和B的笛卡尔积可以表示为A×B,它包含了所有形如(a, b)的元素,其中a属于 A,b属于B。
习题解析
总结词
通过解析具体习题,可以加深对二元关系定义和表示方法的理解。
有着广泛的应用。
05
习题五:关系的同余
同余关系的定义与性质
定义
反身性
对称性
传递性
如果对于任意元素$x$, 都有$f(x) = g(x)$,则 称$f$和$g$是同余的。
离离散数学 第7章 二元关系
关于AC∧BD A×BC×D的讨论
该性质的逆命题不成立,可分以下情况讨论。 (1)当A=B=时,显然有AC 和 BD 成立。 (2)当A≠且B≠时,也有AC和BD成立,证明如下:
任取x∈A,由于B≠,必存在y∈B,因此有 x∈A∧y∈B
<x,y>∈A×B <x,y>∈C×D x∈C∧y∈D x∈C 从而证明了 AC。 同理可证 BD。
<x,y>AC xAyC xByD <x,y>BD (2) 不一定.反例如下:
A={1},B={2}, C = D = , 则 AC = BD 但是 A B.
第二节 二元关系
一、二元关系的定义 1.定义 7.3 如果一个集合满足以下条件之一: (1)集合非空, 且它的元素都是有序对 (2)集合是空集 则称该集合为一个二元关系, 简称为关系,记作 R. 如果<x,y>∈R, 可记作 xRy;如果<x,y>R, 则记作 x y 2.实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R 是二元关系, 当 a,b 不是有序对时,S 不是二元关系 根据上面的记法,可以写 1R2, aRb, a c 等.
关于AC∧BD A×BC×D的讨论
该性质的逆命题不成立,可分以下情况讨论。 (3)当A=而B≠时,有AC成立,但不一定有
BD成立。 反例:令A=,B={1},C={3},D={4}。
(4)当A≠而B=时,有BD成立,但不一定有 AC成立。 反例略。
例 设 A={1,2},求 P(A)×A。 解 P(A)×A ={ ,{1},{2},{1,2}}×{1,2}
4.关系的表示 表示一个关系的方式有三种:关系的集合表达式、关系矩阵、关系图. 关系矩阵和关系图的定义 关系矩阵 若 A={x1, x2, …, xm},B={y1, y2, …, yn},R 是从 A 到 B 的关系, R 的关系矩阵是布尔矩阵 MR = [ rij ] mn, 其中 rij = 1 < xi, yj> R. 关系图 若 A= {x1, x2, …, xm},R 是从 A 上的关系, R 的关系图是 GR=<A, R>,其中 A 为结点集,R 为边集. 如果<xi,xj>属于关系 R,在图中就有一条从 xi 到 xj 的有向边. 注意: 关系矩阵适合表示从 A 到 B 的关系或者 A 上的关系(A,B 为有穷集) 关系图适合表示有穷集 A 上的关系
《离散数学(第三版)》期末复习知识点总结含例题(呕心沥血整理).doc
6、理解函数概念:函数、函 数相等、复介畅数和反畅数。
7、理解单射、满射、双射等 概念,学握其判别方法。 [木章重点习题]
P25,1;P32〜33, 4, 8, 10;P43,2, 3, 5;
2、考核试卷题量分配
试卷题量在各部分的分 配是:集合论约i'40% ,数理 逻辑约占40%,
设R是篥合A上的二元 关系,如果关系R同时 具有性.对称性
和性,则称R是
等价关系。
命题公式G=(PaQ)->R,则G共冇个
不同的解释;把G在其 所有解释下所取真值列 成一个表,称为G的;解
释(「P, Q, ->R)或(0,
(al9a2)e R. \a2,a3)e R,,则(R。如若(a,b)w R,R ,
则有,且(b,b)w R。
R=心)血2)伽)‘(3,4),(4,4啊織劇命题与联
念的基础上,主要掌握闭包的 求法。关键是熟记三个定理的 结论:定理2 ,
=R5a;定理3,s(R)=R o R ';定理4,
n
推论/(/?) =Ijx。
1 , 0)使G的真值 为,
设G二(P, L)是图.如 果G是连通的,并 口,则G
是树。如果根树T的每 个点V最多有两棵子树, 则称T
为O
[单项选择题](选择一个正确 答案的代号,填入括号中)
1.由集合运算定义,下列 各式正确的冇
()O
A.XcXuY
B.XoXuY
C.XcXnY
D.YcXnY
2.设Rp R?是集合A={a, b, c, d)±的两个关系,其中Ri={ (a. a) , (b, b) , (b, c) , (d, d)), R2={ (a, a) , (b, b),
离散数学-第七章二元关系课后练习习题及答案
第七章作业评分要求:1. 合计100分2. 给出每小题得分(注意: 写出扣分理由).3. 总得分在采分点1处正确设置.1 设R={<x,y>|x,y∈N且x+3y=12}.【本题合计10分】(1) 求R的集合表达式(列元素法);(2) 求domR, ranR;(3) 求RR;(4) 求R{2,3,4,6};(5) 求R[{3}];解(1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】(2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】(3) RR={<3,3>, <0,4>}【2分】(4) R{2,3,4,6}={<3,3>, <6,2>}【2分】(5) R[{3}]={3}【2分】2 设R,F,G为A上的二元关系. 证明:(1)R(F∪G)=RF∪RG(2)R(F∩G)RF∩RG(3)R(FG)=(RF)G.【本题合计18分:每小题6分,证明格式正确得3分,错一步扣1分】证明(1)<x,y>,<x,y>∈R(F∪G)t (xRt∧t(F∪G)y) 复合定义t(xRt∧(tFy∨tGy) ∪定义t((xRt∧tFy)∨(xRt∧tGy)) ∧对∨分配律t(xRt∧tFy)∨t(xRt∧tGy) 对∨分配律x(RF)y∨x(RG)y 复合定义x(RF∪RG)y ∪定义得证(2)<x,y>,x(R(F∩G))yt(xRt∧t(F∩G)y) 复合定义t(xRt∧(tFy∧tGy)) ∩定义t((xRt∧tFy)∧(xRt∧tGy)) ∧幂等律, ∧交换律, ∧结合律t(xRt∧tFy)∧t(xRt∧tGy) 补充的量词推理定律x(RF)y∧x(RG)y 复合定义x(RF∪RG)y ∪定义得证(3)<x,y>,<x,y>∈R(FG)s (<x,s>∈R∧<s,y>∈(FG)) 定义s (<x,s>∈R∧t (<s,t>∈F∧<t,y>∈G))) 定义st(<x,s>∈R∧<s,t>∈F∧<t,y>∈G) 辖域扩张公式ts((<x,s>∈R∧<s,t>∈F)∧<t,y>∈G) 存在量词交换t(s(<x,s>∈R∧<s,t>∈F)∧<t,y>∈G) 辖域收缩公式t(<x,t>∈(RF)∧<t,y>∈G) 复合定义<x,y>∈(RF)G 复合定义得证3 设F={<x,y>|x-y+2>0∧x-y-2<0}是实数集R上的二元关系, 问F具有什么性质并说明理由.【本题合计10分:每种性质2分----答对得1分,正确说明理由得1分】解F={<x,y>|x-y+2>0∧x-y-2<0}={<x,y>|-2<x-y<2}自反性: x∈R, <x,x>∈F显然.对称性: <x,y>,<x,y>∈F-2<x-y<2-2<y-x<2<y,x>∈F.不具有反自反性: 反例<2,2>∈F不具有反对称性: 反例<2,3>,<3,2>∈F, 显然2≠3不具有传递性: 反例<2,>,<,5>∈F, 但<2,5>不属于F.4 设A={a,b,c}, R={<a,b>,<a,c>},(1) 给出R的关系矩阵;(2) 说明R具有的性质(用关系矩阵的判定方法说明理由)【本题合计12分:第(1)小题2分;第(2)小题10分----答对性质得1分,说明理由得1分】解(1)R的关系矩阵M(R)为0 1 10 0 00 0 0(2)不具有自反性: M(R)的主对角线不是全为1是反自反的: M(R)的主对角线全为0不具有对称性: M(R)不是对称的是反对称的: M(R)对称的位置至多有一个1是传递的: M(R2)如下0 0 00 0 00 0 0显然满足: 如果M(R2)任意位置为1, 则M(R)对应位置也为15 设A≠, RA×A, 证明(1) r(R)=R∪I A(2) s(R)=R∪R-1【本题合计12分,每小题6分----证明格式正确得2分,过程错误一步扣1分】证明(1) 只要证明r(R)R∪I A和R∪I A r(R)即可先证r(R)R∪I A:I A R∪I AR∪I A自反(自反性的充要条件)r(R)R∪I A (自反闭包的最小性)再证R∪I A r(R):Rr(R)∧I A r(R) (自反闭包的性质及自反性的充要条件)R∪I A r(R)得证(2) 只要证明s(R)R∪R-1及R∪R-1s(R)即可先证s(R)R∪R-1:(R∪R-1)-1=R∪R-1 (理由如下: <x,y>,<x,y>∈(R∪R-1)-1<y,x>∈R∪R-1 (逆运算定义)<y,x>∈R∨<y,x>∈R-1 (∪定义)<x,y>∈R-1∨<x,y>∈R (逆运算定义)<x,y>∈R∪R-1 (∪定义, ∪交换律)所以(R∪R-1)-1=R∪R-1 )R∪R-1是对称的(对称性的充要条件)s(R)R∪R-1 (对称闭包的最小性)再证R∪R-1s(R):Rs(R) (闭包定义) ∧R-1s(R) (后者理由如下:<x,y>,<x,y>∈R-1<y,x>∈R (逆运算定义)<y,x>∈s(R)<x,y>∈s(R) (s(R)是对称的)所以R-1s(R) )R∪R-1s(R)得证6 设A={a,b,c,d}, R={<a,d>,<b,a>,<b,c>,<c,a>,<c,d>,<d,c>}, 用Warshall算法求t(R).【本题合计8分】解依次求出W0,W1,W2,W3,W4=t(R)【2分】W0=M(R)= 0 0 0 11 0 1 01 0 0 10 0 1 0【1分】W1= 0 0 0 11 0 1 11 0 0 10 0 1 0【1分】W2= 0 0 0 11 0 1 11 0 0 10 0 1 0【1分】W3= 0 0 0 11 0 1 11 0 0 11 0 1 1【1分】W4= 1 0 1 11 0 1 11 0 1 11 0 1 1【1分】即t(R)={<a,a>,<a,c>,<a,d>,<b,a>,<b,c>,<b,d>,<c,a>,<c,c>,<c,d>,<d,a>,<d,c>,<d,d>}.【1分】7 设R为A上的自反和传递的关系, 证明R∩R-1是A上的等价关系.【本题合计10分】证明自反性: x∈A,xRx∧xR-1x x(R∩R-1)x【3分】对称性: x,y∈A,x(R∩R-1)y xRy∧xR-1y yR-1x∧yRx y(R∩R-1)x【3分】传递性: x,y,z∈A,x(R∩R-1)y∧y(R∩R-1)z xRy∧xR-1y∧yRz∧yR-1z(xRy∧yRz)∧(xR-1y∧yR-1z) xRz∧xR-1z x(R∩R-1)z【4分】得证.8 设A={1,2,3,4}, 在A×A上定义二元关系R,<u,v>,<x,y>∈A×A, <u,v>R<x,y>u+y=v+x(1)证明R是A×A上的等价关系;(2)确定由R引起的对A×A的划分.【本题合计10分】解(1)自反性: <x,y>∈A×A, <x,y>R<x,y>显然成立.【2分】对称性: <x,y>,<u,v>∈A×A,<x,y>R<u,v>x+v=y+uu+y=v+x<u,v>R<x,y>【2分】传递性: <x,y>,<u,v>,<s,t>∈A×A,<x,y>R<u,v>∧<u,v>R<s,t>x+v=y+u ∧u+t=v+sx+t=y+s<x,y>R<s,t>【2分】因此R 是A×A 上的等价关系.(2)根据R 的定义, <x,y>R<u,v>x+v=y+ux -y=u -v, 因此[<x,y>]R={<u,v>|<u,v>∈A×A ∧u -v=x -y},【2分】 所以R 引起的划分如下:{ { <1,1>,<2,2>,<3,3>,<4,4>},{<1,2>,<2,3>,<3,4>},{<2,1>,<3,2>,<4,3>},{<1,3>,<2,4>},{<3,1>,<4,2>},{<1, 4>},{<4,1>} }【2分】9 设R, S 是A={1,2,3,4}上的等价关系, 其关系矩阵分别为 【本题合计5分】1100110000100001R M ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 1000011001100001S M ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.求包含R 与S 的最小的等价关系.分析: 设包含R 与S 的最小等价关系为T ,则RT, ST, 所以RS T. 而T 是等价关系,根据等价关系的定义,T 应该具有自反性、对称性和传递性。
离散数学第四章二元关系和函数
例题
• 例题4.8:下列关系都是整数集Z上的关系,分别求出它们的 定义域和值域.
– R1={<x,y>|x,yZxy}; – R2={<x,y>|x,yZx2+y2=1};
• domR1=ranR1=Z. R={<0,1>,<0,-1>,<1,0>,<-1,0>} domR2=ramR2={0,1,-1}
IA={<0,0>,<1,1>,<2,2>}
关系实例
• 设A为实数集R的某个子集,则A上的小于等于关系定义为 LA={<x,y>|x,yA,xy}.
• 例4.4 设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A),xy}, 则有 P(A)={,{a},{b},A}. R={<, >,<,{a}>,<,{b}>,<,A>, <{a},{a}>,<{a},A>,<{b},{b}>,<{b},A>,<A,A>}.
– 例如:A={a,b},B={0,1,2},则 AxB={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}; BxA={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}.
– 如果A中的元素为m个元素,B中的元素为n个元素, 则AxB和BxA中有mn个元素.
0100 1010 . 0001 0000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 二元关系的基本运算与性质一、选择题(每题3分)1、 设A I 为集合A 上的恒等关系,而A 上的关系R 是自反的,1R -为其逆,则必有( A )A 、A I R ⊆B 、1A R RI -⊆ C 、A R I =∅ D 、1A R I -=∅2、 设A I 为集合A 上的恒等关系,而A 上的关系R 是反自反的,1R -为其逆,则必有( C ) A 、A I R ⊆ B 、1A I R -⊆ C 、A R I =∅ D 、1A R R I -= 3、 设A I 为集合A 上的恒等关系,而A 上的关系R 是对称的,1R -为其逆,则必有( C )A 、A I R ⊆B 、1A I R -⊆ C 、1R R -= D 、1A R R I -=4、 设A I 为集合A 上的恒等关系,而A 上的关系R 是反对称的,1R -为其逆,则必有( D )A 、A I R ⊆B 、1A I R -⊆ C 、1A I R R -⊆ D 、1A R RI -⊆5、 设A I 为集合A 上的恒等关系,而A 上的关系R 是传递的,1R -为其逆,则必有( B )A 、2R R ⊆ B 、2R R ⊆ C 、1R R -= D 、1A R RI -=6、设R 是集合A 上的自反关系,则其关系矩阵中主对角线上的元素( B ) A 、全为0 B 、全为1 C 、不全为0 D 、不全为17、设R 是集合A 上的反自反关系,则其关系矩阵中主对角线上的元素( A )A 、全为0B 、全为1C 、不全为0D 、不全为1 8、设R 是集合A 上的反对称关系,其关系矩阵中的任一元素为ij a ,当i j ≠时,总有( D ) A 、ij ji a a = B 、1ij ji a a += C 、0ij ji a a = D 、若1,ij a =则0ji a = 9、非空集合X 上的空关系∅不具备的性质是( A )A 、自反性B 、反自反性C 、对称性D 、传递性10、设{1,2,3}A =上的关系R 的关系图如下,则R 不具备的性质为( A )A 、自反性B 、反自反性C 、反对称性D 、传递性11、设R 为{1,2,3}A =上的关系,其关系图如下,则下列为真命题的是( C )A 、R 对称,但不反对称B 、R 反对称,但不对称C 、R 对称,又反对称D 、R 不对称,也不反对称12、设R 为{1,2,3,4}A =上的关系,其关系图如下,则下列为假命题的是( C )A 、R 不自反,也不反自反B 、R 不对称,也不反对称C 、R 传递D 、R 不传递13、{1,2,3,4}A =上的关系{}1,3,1,4,2,3,2,4,3,4R =<><><><><>只不具备( C )A 、 反自反性B 、 反对称性C 、对称性D 、传递性14、设12,R R 是集合A 上的关系,1112,R R --分别为12,R R 的逆,则下列命题错误的是( D ) A 、1111212()R R R R ---= B 、1111212()R R R R ---= C 、1111212()R R R R ----=- D 、1111212()R R R R ---=15、设S R ,是集合A 上的关系,则下列断言错误的是( D ) A 、若S R ,自反,则R S 自反 B 、若S R ,对称,则R S 对称 C 、若S R ,反自反,则R S 反自反 D 、若S R ,反对称,则R S 反对称 16、设S R ,是集合A 上的关系,则下列断言错误的是( A ) A 、若S R ,自反,则R S -自反 B 、若S R ,对称,则R S -对称 C 、若S R ,反自反,则R S -反自反 D 、若S R ,反对称,则R S -反对称 17、设S R ,是集合A 上的关系,则下列断言正确的是( A ) A 、若S R ,自反,则S R 自反 B 、若S R ,对称,则S R 对称 C 、若S R ,反自反,则S R 反自反 D 、若S R ,反对称,则S R 反对称 18、设S R ,是集合A 上的自反关系,则下列断言错误的是( C ) A 、R S 自反 B 、R S 自反 C 、R S -自反 D 、S R 自反 19、设S R ,是集合A 上的反自反关系,则下列断言错误的是( D ) A 、R S 反自反B 、R S 反自反 C 、R S -反自反 D 、S R 反自反 20、设S R ,是集合A 上的对称关系,则下列断言错误的是( C ) A 、R S 对称 B 、R S 对称 C 、R S -对称 D 、S R 对称 21、设S R ,是集合A 上的传递关系,则下列断言正确的是( A ) A 、R S 对称 B 、R S 传递 C 、R S -传递 D 、S R 传递二、填充题(每题4分) 1、设{}2,3,4A =,则其上的小于关系A <={}2,3,3,4<><>,整除关系A D ={}2,4<>.2、设关系{}1,2,2,4,3,3R =<><><>,{}1,3,2,4,4,2S =<><><>,则R S = {}1,4,2,2<><>,1()R S -= {}4,2<>,1()R S --={}2,1,3,3<><>.3、设集合,A B 分别含有,m n 个不同元素,则A 到B 的二元关系的个数为2mn.提示:A 到B 的二元关系的个数即为()A B ρ⨯的基数. 4、设集合A 含有n 个不同元素,则A 上二元关系的个数为22n . 设{}3,4,5A =上的关系}|,{是质数x y x y x R ∨<><=, 则R ={}3,3,3,4,3,5,4,5,5,3,5,4,5,5<><><><><><><>.5、设{}1,2,3,4A =上的二元关系{}2,4,3,3,4,2R =<><><>,其关系矩阵中的任一元素为ij m ,则24m =1,34m =0.6、{},A a b =上全域关系的关系矩阵为1111⎡⎤⎢⎥⎣⎦.7、设{},A a b =到{}1,2,3B =的关系{},1,,2,,3R a b b =<><><>,则其关系矩阵为100011⎡⎤⎢⎥⎣⎦.8、设{}1,2,3,4A =上R 的关系图如右图, 则2R ={}1,1,1,3,2,2,2,4<><><><>.9、设{},,A a b c =上二元关系R 的关系矩阵是101110111R M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则=R R M 111111111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.三、问答题(每题6分)1、设{}1,2,3A =,问A 上存在一个既不是自反又不是反自反的关系吗?为什么?答:存在;如{}1,1,1,2R =<><>.2、设{}1,2,3A =,问A 上存在一个既不是对称又不是反对称的关系吗?为什么? 答:存在;如{}1,2,1,3,2,1R =<><><>.3、设{}1,2,3A =,问A 上存在一个既是对称又是反对称的关系吗?为什么? 答:存在;如{}1,1,2,2,3,3R =<><><>.4、若A 上的二元关系R 是自反的,问1R -是否也是自反的?为什么?答:是的;,a A R ∀∈ 自反,,,a a R <>∈∴则 1,a a R -<>∈,即1R -也是自反的. 5、若A 上的二元关系R 是反自反的,问1R -是否也是反自反的?为什么? 答:是的;因R 反自反,则,A R I =∅ 有11111(),A A A R I R I R I -----===∅=∅ 即1R -也是反自反的.6、若A 上的二元关系R 是对称的,问1R -是否也是对称的?为什么?答:是的;因R 对称,则111()RR R ---==,即1R -也是对称的.7、若A 上的二元关系R 是反对称的,问1R -是否也是反对称的?为什么? 答:是的;因R 反对称,则1,A R RI -⊆ 有111(),A R R I ---⊆ 即1R -也是反对称的.8、若A 上的二元关系1R 和2R 是自反的,问12R R 是否也是自反的?为什么? 答:是的;12,R R 自反,12,A A I R I R ⊆⊆∴,则12A I R R ⊆ ,故12R R 自反. 9、若A 上的二元关系1R 和2R 是自反的,问12R R 是否也是自反的?为什么?答:是的;12,R R 自反,12,A A I R I R ⊆⊆∴,则12A I R R ⊆ ,故12R R 自反. 10、若A 上的二元关系1R 和2R 是自反的,问21R R 是否也是自反的?为什么? 答:是的;21,,R R A a ∈∀自反,21,,,R a a R a a >∈<>∈<∴, 从而 21,R R a a >∈<,即21R R 也是自反的.11、若A 上的二元关系1R 和2R 是自反的,问12R R -是否也是自反的?为什么?答:不一定;如{},A a b =,1{,,,,,}R a a a b b b =<><><>,2{,,,}R a a b b =<><>, 则21,R R 是自反的,但12{,}R R a b -=<>不是自反的.12、若A 上的二元关系12,R R 中有一个是反自反的,问12R R 是否也是反自反的?为什么? 答:是的;若1R 反自反,则1,A R I =∅于是1212()()A A R R I R I R ==∅ ,故12R R 反自反.13、若A 上的二元关系1R 和2R 是反自反的,问12R R 是否也是自反的?为什么? 答:是的;若1R 和2R 反自反,则12,A A R I R I =∅=∅ , 于是1212()()()A A A R R I R I R I ==∅ ,故12R R 反自反.14、若A 上的二元关系1R 和2R 是反自反的,问21R R 是否也是反自反的?为什么? 答:不一定;如{},A a b =,12{,,,}R R a b b a ==<><>, 则21,R R 是反自反的,但12{,,,}R R a a b b =<><> 是自反的.15、若A 上的二元关系12,R R 中有一个是反自反的,问12R R -是否也是反自反的?为什么? 答:不一定;如{},A a b =, 1{,,,,,}R a a a b b b =<><><>,2{,}R a b =<>, 则2R 是反自反的,但12{,,,}R R a a b b -=<><>是自反的.(若1R 是反自反的,结论对)16、若A 上的二元关系1R 和2R 是对称的,问12R R 是否也是对称的?为什么? 答:是的;12,R R 对称,111122,R R R R --==∴,则111121212()R R R R R R ---== ,故12R R 对称.17、若A 上的二元关系1R 和2R 是反对称的,问12R R 是否也是反对称的?为什么? 答:是的;12,R R 反对称,111122,A A R R I R R I --⊆⊆∴ ,则11111121212121122()()()()()()A R R R R R R R R R R R R I -----==⊆ ,故12R R 反对称.18、若A 上的二元关系1R 和2R 是对称的,问12R R 是否也是对称的?为什么? 答:是的;12,R R 对称,111122,R R R R --==∴,则111121212()R R R R R R ---== ,故12R R 对称.19、若A 上的二元关系1R 和2R 是反对称的,问12R R 是否也是反对称的?为什么? 答:不一定;如{},A a b =, 1{,}R a b =<>,2{,}R b a =<>, 则1R 和2R 是反对称的,但12{,,,}R R a b b a =<><> 是对称的.20、若A 上的二元关系1R 和2R 是对称的,问12R R -是否也是对称的?为什么? 答:是的;12,R R 对称,111122,R R R R --==∴,则111121212()R R R R R R ----=-=-,故12R R -对称.21、若A 上的二元关系12,R R 中有一个是反对称的,问12R R -是否也是反对称的?为什么? 答:不一定;如{},A a b =, 1{,,,}R a a a b =<><>,2{,}R a b =<>, 则2R 是反对称的,但12{,}R R a a -=<>是对称的. 注:当1R 是反对称的,则必有12R R -也是反对称的.22、若A 上的二元关系1R 和2R 是对称的,问21R R 是否也是对称的?为什么? 答:不一定;如{},,A a b c =,},,,{1><><=a b b a R ,},,,{2><><=b c c b R , 则21,R R 是对称的,但},{21><=c a R R 不是对称的.23、若A 上的二元关系1R 和2R 是反对称的,问21R R 是否也是反对称的?为什么? 答:不一定;如{},A a b =, 1{,}R a b =<>,2{,}R b a =<>, 则1R 和2R 是反对称的,但12{,}R R a a =<> 是对称的.四、计算题(每题10分)1、设{1,2,3}A =上的关系为{,|02}R a b a A b B a b =<>∈∧∈∧≤-<, 用列举法写出关系R ,写出关系矩阵.解:{1,1,1,2,2,2,2,3,3,3}R =<><><><><>,其关系矩阵为110011001R M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 2、设{1,2,3,4}A =到{B =的关系为2{,|}R a b a A b B a b =<>∈∧∈∧=, 用列举法写出关系R ,写出关系矩阵.解:{1,1,,,4,2}R =<><><>,其关系矩阵为100000001010R M ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.3、设({0,1})A ρ=到({0,1,2}{0})B ρ=-的二元关系为{,|}R a b a A b B a b =<>∈∧∈∧-=∅,写出关系矩阵,画出关系图. 解:{,{0},{1},{0,1}}A =∅,{{1},{2},{0,1},{0,2},{1,2},{0,1,2}}B =,其关系矩阵为111111001101101011001001R M ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,关系图如右图. 4、集合}4,3,2,1{=A 上的关系}4,4,3,4,4,3,1,3,3,3,2,2,3,1,1,1{><><><><><><><><=R ,写出关系矩阵R M ,画出关系图并讨论R 的五种性质.解:R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1100110100100101R M ,R 的关系图为因R M 对角元皆为1,故R 是自反的,不是反自反的;因R M 为对称矩阵,故R 是对称的; 因1,3,3,1R <><>∈,故R 不是反对称的;又因1,3,3,4R <><>∈,但1,4R <>∉,故R 无传递性. 5、设R 是集合}4,3,2,1{=A 上的二元关系,{1,1,1,2,1,3,3,1,3,2,3,3,4,1,4,2,4,3}R =<><><><><><><><><>, 写出关系矩阵R M ,画出关系图并讨论R 的五种性质.解:R 的关系矩阵为1110000011101110R M ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,R 的关系图为 因R M 对角元不全为1,也不全为0,故R 不是自反的,也不是反自反的;因R M 为非对称矩阵,故R 是反对称的,不是对称的;因2R R =,故R 是传递的. 6、在实数平面上,画出关系}0R 所示区域,并判定关系的五种性质.解:关系图为对任意实数x ,直线y x =上的点在区域内,即,x x R <>∈ ,故R 自反; 因R 自反且结点集非空,故R 不是反自反;若R y x >∈<,, 有 2x y -< ,则2y x -<, 即 R x y >∈<,,故R 对称; 因1,0,0,1R R <>∈<>∈,故R 不是反对称;因1,0,0,1R R <>∈<->∈ ,而 R >∉-<1,1,故R 不是传递的.五、证明题(每题10分)1、设,,R S T 是A 上的二元关系, 证明:()R S T R T S T = . 证明:,()(,,)x y R S T z x z R S z y T <>∈⇔∃<>∈∧<>∈ ((,,),)z x z R x z S z y T ⇔∃<>∈∨<>∈∧<>∈((,,)(,,)z x z R z y T x z S z y T ⇔∃<>∈∧<>∈∨<>∈∧<>∈ (,,)(,,)z x z R z y T z x z S z y T ⇔∃<>∈∧<>∈∨∃<>∈∧<>∈,,x y R T x y S T ⇔<>∈∨<>∈ ,x y R T S T ⇔<>∈ ,故原命题成立. 2、设,,R S T 是A 上的二元关系, 证明:()R S T R T S T ⊆ . 证明:,()(,,)x y R S T z x z R S z y T <>∈⇔∃<>∈∧<>∈ ((,,),)z x z R x z S z y T ⇔∃<>∈∧<>∈∧<>∈((,,)(,,)z x z R z y T x z S z y T ⇔∃<>∈∧<>∈∧<>∈∧<>∈ (,,)(,,)z x z R z y T z x z S z y T ⇒∃<>∈∧<>∈∧∃<>∈∧<>∈,,x y R T x y S T ⇔<>∈∧<>∈ ,x y R T S T ⇔<>∈ ,故原命题成立.3、设S 是X 到Y 的关系, i A X ⊆,(){(,)},1,2i i S A y x x y S x A i =∃<>∈∧∈=,证明:1212()()()S A A S A S A = .证明:1212()(,)y S A A x x y S x A A ∈⇔∃<>∈∧∈ 12(,())x x y S x A x A ⇔∃<>∈∨∈∧∈12((,)(,))x x y S x A x y S x A ⇔∃<>∈∧∈∨<>∈∧∈ 12(,)(,)x x y S x A x x y S x A ⇔∃<>∈∧∈∨∃<>∈∧∈ 1212()()()()y S A y S A y S A S A ⇔∈∨∈⇔∈ ,故原命题成立.4、设S 是X 到Y 的关系, i A X ⊆,(){(,)},1,2i i S A y x x y S x A i =∃<>∈∧∈=, 证明:1212()()()S A A S A S A ⊆ .证明:1212()(,)y S A A x x y S x A A ∈⇔∃<>∈∧∈12(,())x x y S x A x A ⇔∃<>∈∧∈∧∈12((,)(,))x x y S x A x y S x A ⇔∃<>∈∧∈∧<>∈∧∈ 12(,)(,)x x y S x A x x y S x A ⇒∃<>∈∧∈∧∃<>∈∧∈1212()()()()y S A y S A y S A S A ⇔∈∧∈⇔∈ ,故原命题成立.5、设R 是集合A 上的二元关系,若R 是自反的和传递的,则2R R =.证明:因R 是传递的,则2R R ⊆,因R 是自反的,则对y A ∀∈,有,y y R <>∈, 于是2,,,,x y R x y R y y R x y R <>∈⇒<>∈∧<>∈⇒<>∈,则2R R ⊆,故2R R =. 6、设R 为集合A 上的二元关系,如果R 是反自反的和可传递的,则R 一定是反对称的. 证明:假设R 不是反对称的,则 y x R x y R y x ≠>∈<>∈<∃,,,, 由R 的传递性知, R x x >∈<, ,此与R 反自反矛盾,故R 反对称.7、设R 是集合A 上的一个自反关系,求证:R 是对称的和传递的当且仅当,a b <>和,a c <>在R 中,则有,b c <>在R 中.证明:⑴R 是对称的和传递的⇒若,a b R <>∈,,a c R <>∈,则有,b c R <>∈.若,a b R <>∈,由R 对称性有,b a R <>∈,而,a c R <>∈,由R 传递性得,b c R <>∈; ⑵若,a b R <>∈,,a c R <>∈,则有,b c R <>∈⇒ R 是对称的和传递的. 若,a b R <>∈,因R 自反,则,a a R <>∈,由条件知,b a R <>∈,即R 对称; 若,a b R <>∈,,b c R <>∈,由R 对称性知,b a R <>∈, 再由条件知,a c R <>∈, 即R 具有传递性.。