泊松分布定理

合集下载

时间序列数据泊松分布

时间序列数据泊松分布

时间序列数据泊松分布1.引言1.1 概述时间序列数据是指按照时间顺序排列的一系列观测值或数据点的集合。

这些数据通常是连续的、有序的,并且按照固定的时间间隔进行采样或观测。

时间序列数据可以包含各种类型的信息,如经济指标、气象数据、股票价格等等。

我们可以利用时间序列数据来分析和预测未来的趋势和模式。

泊松分布是一种常见的概率分布,适用于描述单位时间内某一事件发生次数的概率分布情况。

它具有以下几个基本性质:第一,泊松分布描述的是离散的随机事件,比如一定时间内接到的电话数量、网站访问次数等等;第二,泊松分布的期望值和方差相等,即均值和方差都等于λ,其中λ为单位时间内事件发生的平均次数;第三,泊松分布是无记忆性的,即过去的事件对未来事件的发生概率没有影响。

本文旨在探讨时间序列数据与泊松分布之间的关系,并研究时间序列数据服从泊松分布的应用和意义。

通过对时间序列数据的定义和特点进行介绍,以及对泊松分布的基本概念和性质进行阐述,我们将深入研究这两者之间的联系,并讨论在实际应用中时间序列数据服从泊松分布的情况及其重要性。

最终,我们希望能够更好地理解和应用时间序列数据与泊松分布之间的关联,为相关领域的进一步研究和应用提供支持和指导。

1.2 文章结构本文将围绕时间序列数据和泊松分布展开讨论,主要分为三个部分:引言、正文和结论。

在引言部分,将首先对本文的主题进行概述,介绍时间序列数据和泊松分布的基本概念以及它们在实际应用中的重要性。

接着,会详细介绍本文的结构,给读者一个整体的框架,方便理解和阅读。

正文部分将分为两个小节进行阐述。

首先,在2.1节中,将全面阐述时间序列数据的定义和特点。

我们将探讨时间序列数据的概念,并介绍常见的时间序列数据类型和特征,包括趋势、季节性和周期性。

此外,还会探讨时间序列数据的挖掘和分析方法。

接着,在2.2节中,将介绍泊松分布的基本概念和性质。

我们将讨论泊松分布的概率密度函数以及相关的参数。

此外,还会探讨泊松分布在实际应用中的一些常见特点以及与时间序列数据的关联。

泊松分布

泊松分布

X 近似服从 P 3.87 。
例 4.2.2 伦敦飞弹。 二战时伦敦遭到很多次炸弹袭击, 将整个面积分为 N 567 小块,其中发现 k 枚炸弹的小块数为 N k ,总共发现炸弹 537 枚。
k Nk
0 229
1 211
2 93
3 35
4 7
5 1
N pk ,0.9323 226.7 211.4 98.6 31.6 7.1 1.6
验证: k Z , pk 0 ,
pk e
k 0 k 0


k
k!
e
k 0

k
k!
e e 1
************************************************************ 泊松分布与二项分布的关系 考虑二项分布 B n, p ,当 p 很小 n 很大时, B n, p 与P np 非常接近,可相互 近似 若 X ~ B n, p , Y ~ P np ,
k Nk
0
1
2
3
4
5
6
7
8
9
10 16 17
N p k 3.87 54 211 407 525 508 394 254 140 68 29
57 203 383 525 532 408 273 139 45 27
1 1 设 X 为 1 次观察中到达的粒子数, 则 X ~ B 10094, , 10094 3.87 2608 2608
Bk n, p
则 P X k P Y k
令 np ,则
Bk 1 n, p

概率论与数理统计 泊松分布

概率论与数理统计 泊松分布

练习1
设随机变量 X 服从参数为λ的Poisson分布,且已知
PX 1 PX 2 试求 PX 4.
练习1解答
设随机变量 X 服从参数为λ的Poisson分布,且已知
PX 1 PX 2 试求 PX 4.
解: 随机变量 X 的分布律为
PX k k e k 0, 1, 2,
进行600次射击可看作是一个600重Bernoulli试验.
X:600次射击命中目标的次数.
则 X ~ B600, 0.012.
用 Poisson分布近似计算,
取 600 0.012 7.2.
练习3解答(续)
所以,
PB PX 3 1 PX 3
1 PX 0 PX 1 PX 2
P{X N} 0.01.
P{X N} 0.01.
用泊松分布近似计算二项分布
P{X N} N 3k e3 0.99. k0 k!
查表可知,满足上式的最小的 N 是 8 , 因此至少需配 备 8 个工人。
泊松分布的分布律 (PDF)
二项分布的分布律 (PDF)
泊松分布的CDF 二项分布的CDF
• Poisson分布是概率论中重要的分布之一.
• 自然界及工程技术中的许多随机指标都服从 Poisson分布.
• 例如,可以证明,电话总机在某一时间间隔 内收到的呼叫次数,放射物在某一时间间隔 内发射的粒子数,容器在某一时间间隔内产 生的细菌数,某一时间间隔内来到某服务台 要求服务的人数,等等,在一定条件下,都 是服从Poisson分布的.
k e 0
k!
⑵ 又由幂级数的展开式,可知
所以
k e e k e e 1

D4-2 泊松分布.

D4-2 泊松分布.
另一方面,泊松分布可看为二项分布的极限分布.
二、泊松定理
定理: 设随机变量 X n (n 1, 2, ) 服从二项分布B(n, pn ), 其中概率 pn与 n 有关, 并且满足
lim
n
npn



0

lim
n
Cnk
pnk
(1
pn )nk
k e ,
k!
k 0,1,2,
若一年中死亡 x 人, 则保险公司这一年应付出20000x 元,
因此“公司亏本”意味着20000x >300000 即 x >15 人这,样“公司亏本”这一事件等价于“一年中多于15人 的死事亡件”,从而转求“一年中多于15人死亡”的概率若,把
“参加保险的一个人在一年中是否死亡”看作一次随机 试验,则问题可用 n 2500, p 0.002 的伯努利试验来近似.
解: 设需配备 N 人, 记同一时刻发生故障的设备台数 为 X , 那么 X ~ B(300,0.01), 所需解决的问题是确定 最小的 N , 使得 P{X N} 0.99,
由泊松定理 ( np 3)
P{X N} N 3k e3 0.99 k0 k!

1 N 3k e3 3k e3 0.01
在应用中, 当 X ~ B(n, p)且 n 很大 (n 10),p 很小
( p 0.1) 时, 有下面的泊松近似公式(其中 np )
P{X
k} Cnk pkqnk

k e ,
k!
k 0,1,2,
,n
P{X m} k e , m 0,1,2, ,n km k!
D( X ) E( X 2) E2( X ) k 2 k e 2

泊松分布的定义及图形特点.pptx

泊松分布的定义及图形特点.pptx

• Assume that you live in a district of
size 10 blocks by 10 blocks so that
the total district is divided into 100
small squares. How likely is it that the
square in which you live will receive
no hits if the total area is hit by 400
bombs? 2019-7-26
谢谢您的观赏
6
2019-7-26
谢谢您的观赏
7
• 用 X 表示落入该小区内的炸弹数,则
• X~B(400,1/100) n=400, p=1/100 • 因此 P(X=0)=(99/100)^400 • 用Poisson分布近似计算。。 • X近似服从参数为 4 =np=400*1/100的Poisson
谢谢您的观赏
11
例如
一放射性源放射出的 粒子数; 某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数; 一台纺纱机的断头数; …
都可以看作泊松流.
2019-7-26
谢谢您的观赏
12
对泊松流,在任意时间间隔(0,t)内,事件 (如交通事故)出现的次数服从参数为 t 的 泊松分布 . 称为泊松流的强度.谢谢您的观赏源自42019-7-26
谢谢您的观赏
5
• Example In his book, Feller discusses the statistics of flying bomb hits in the south of London during the Second World War.

泊松分布定理

泊松分布定理

泊松分布定理泊松分布定理又称为泊松定理,是概率论中的一条重要定理,它描述了随机事件在单位时间内发生的次数服从泊松分布的概率分布。

泊松分布定理的数学表达式为:P(k) = λ^k * e^(-λ) / k!其中,P(k)表示事件发生k次的概率,λ为单位时间内事件平均发生的次数。

首先,我们来解释一下泊松分布的背景和基本概念。

泊松分布是一种描述离散随机变量的概率分布,它适用于具有以下特点的事件:1. 事件是独立发生的,每次事件的发生与其他事件的发生无关。

2. 事件在单位时间内发生的次数是有限的,没有上限。

3. 事件平均发生的次数在单位时间内是相对稳定的,不会随时间发生变化。

泊松分布定理给出了计算事件发生概率的具体公式,可以通过该公式计算出任意次数事件发生的概率。

泊松分布定理的证明主要基于数学方法,其中用到了高等数学中的泰勒级数展开和极限的概念。

证明的过程比较抽象和复杂,对于一般读者来说可能较难理解。

然而,对于实际应用中的问题,我们可以通过具体的例子来更好地理解和应用泊松分布定理。

例如,假设一个电话交换台每分钟接收的电话次数平均为3次,现在我们希望知道在30分钟内接收到5次电话的概率是多少。

根据泊松分布定理,我们可以计算出这个概率。

首先,将λ=3代入泊松分布定理公式,得到事件发生k=5次的概率P(5):P(5) = 3^5 * e^(-3) / 5!接下来,我们希望计算在30分钟内接收到5次电话的概率,这相当于在30个单位时间内接收到5次电话的概率。

由于事件是独立发生的,我们可以将30分钟内接收到5次电话的概率表示为:P = P(5)^30将前面计算得到的P(5)代入上式,即可计算出在30分钟内接收到5次电话的概率。

通过这个例子,我们可以看到泊松分布定理的应用具有一定的实用性。

在实际问题中,例如交通流量的分析、疾病的发病率研究等,都可以采用泊松分布定理进行概率计算。

总结起来,泊松分布定理是概率论中的一条重要定理,用于描述随机事件在单位时间内发生的次数服从泊松分布的概率分布。

泊松分布

泊松分布
它表示时间间隔(t0,t]内出现的质点数.“在 (t0,t]内 出现k个质点”,即{N(t0,t)=k}是一随机事件,其概率 记为 Pk(t0,t)=P{N(t0,t)=k},k=0,1,2, ….
2.泊松计数过程过程 : {N(t) ,t≥0} 称为强度为 λ 的 泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性;
在X(0)=0和方差函数为已知的条件下, 独立增量过程协方差函数可用方差函数表示为:
CX(s,t)X 2(min(s,t))
1、 泊松过程举例 (Poisson process )
现实世界许多偶然现象可用泊松分布来描述, 大量自然界中的物理过程可以用泊松过程来刻画. 泊松过程是随机建模的重要基石,也是学习随机过程 理论的重要直观背景.著名的例子包括盖格计数器上 的粒子流,二次大战时伦敦空袭的弹着点,电话总机所 接到的呼唤次数,交通流中的事故数,某地区地震发生 的次数,细胞中染色体的交换等等.这类变化过程可粗 略地假定为有相同的变化类型.我们所关心的是随机 事件的数目,而每一变化可用时间或空间上的一个点 来表示.这类过程有如下两个特性:一是时间和空间 上的均匀性,二是未来的变化与过去的变化没有关系. 我们将基于这些性质来建立泊松过程的模型.
若t1<t2t3<t4,则在(t1,t2]内事件A发生的次数N(t2)-N(t1) 与在(t3,t4]内时间A发生的次数N(t4)-N(t3)相互独立,此时 计数过程N(t)是独立增量过程.
若计数过程N(t)在(t,t+s]内(s>0),事件A发生的次数N(t+s)N(t)仅与时间差s有关,而与t无关,则计数过程N(t)是平稳独 立增量过程.
注:由条件(3)知,泊松过程是平稳增量过程且E[X(t)]= t. 由于, =E[X(t)]/t表示单位时间内事件A发生的平均个数, 故称为此过程的速率或强度

概率论与数理统计泊松分布

概率论与数理统计泊松分布

k!k e
Poisson定理的应用
由 Poisson 定理,可知
若随机变量 X ~ Bn, p,
则当n比较大,p比较小时,
令:
np
则有 PX k Cnk pk 1 p nk
k e
k!
练习3
设每次射击命中目标的概率为0.012,现射击600次, 求至少命中3次目标的概率(用Poisson分布近似计 算).
解:按第一种方法. 以 X 记 “第 1 人负责的 20 台
中同一时刻发生故障的台数”,则 X ~ b (20,0.01).
以 Ai 表示事件 “第 i 人负责的台中发生故障不能及 时维修”, 则 80 台中发生故障而不能及时维修的概
率为:
P(A1 A2 A3 A4 ) P(A1) P{X 2}.
k 1
k
1, k 1, k 1, k
如果 是整数,则 k 或 1时,
P(X k)达到最大;
如果 若 不是整数,则 k 时,
P(X k)达到最大;
练习4
为了保证设备正常工作,需配备适量的维修工人,现 有同类型设备 300 台,各台工作是相互独立的,发生 故障的概率都是 0.01. 在通常情况下,一台设备的故障 可有一人来处理. 问至少需配备多少工人,才能保 证当设备发生故障但不能及时维修的概率小于 0.01 ?
n
nk
lim 1
n
n
n
nk n
n
n n
n n
Poisson定理的证明(续2)
所以,
lim
n
Cnk
pnk
1 pn
nk
lim
k n
1
1
1
2
1

泊松分布极限-概述说明以及解释

泊松分布极限-概述说明以及解释

泊松分布极限-概述说明以及解释1.引言1.1 概述概述泊松分布是概率论中重要的分布之一,它描述了在一定时间或空间范围内随机事件发生的次数。

泊松分布常常被用于模拟和分析各种实际问题,如交通流量、电话呼叫数量、网站访问量等。

本文旨在介绍泊松分布的定义、特征以及它在实际应用领域中的重要性。

同时,我们将讨论泊松分布的极限定理,即当事件发生的次数足够多时,泊松分布将趋近于正态分布。

在正文部分,我们首先会详细介绍泊松分布的定义和特征。

泊松分布是一种离散概率分布,描述了在一个固定的时间间隔或空间区域内,某事件发生的次数符合泊松分布的概率。

其次,我们将探讨泊松分布在各个应用领域中的重要性。

由于其简单性和灵活性,泊松分布被广泛应用于各种实际问题的建模和分析中。

例如,在交通领域中,泊松分布可以用来描述车辆通过某个路口的速率和流量。

在通信领域,泊松分布可以用来模拟电话呼叫的数量和到达时间间隔。

在互联网领域,泊松分布可以用来分析网站的访问量和用户的点击行为。

最后,我们将研究泊松分布的极限定理。

当事件发生的次数足够多时,根据中心极限定理,泊松分布的近似分布将趋近于正态分布。

这一定理在实际应用中具有重要的意义,它使得我们可以应用正态分布的性质来分析和预测泊松分布相关问题。

总结起来,本文将介绍泊松分布的定义、特征和应用领域,并分析其极限定理。

通过对泊松分布的深入研究,我们可以更好地理解和应用这一概率分布,为实际问题的建模和解决提供更精确和有效的方法。

对于未来的研究和应用方向,我们也将展望泊松分布在更多领域中的发展和思考。

1.2文章结构文章结构文章将按照以下结构展开:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 泊松分布的定义和特征2.2 泊松分布的应用领域2.3 泊松分布的极限定理3. 结论3.1 总结泊松分布的重要性和应用3.2 对泊松分布极限的意义和影响进行讨论3.3 展望泊松分布在未来的研究和应用方向在本文中,我们将首先在引言部分对泊松分布进行简要介绍和背景阐述。

数理统计6:泊松分布,泊松分布与指数分布的联系,离散分布参数估计

数理统计6:泊松分布,泊松分布与指数分布的联系,离散分布参数估计

数理统计6:泊松分布,泊松分布与指数分布的联系,离散分布参数估计前两天对两⼤连续型分布:均匀分布和指数分布的点估计进⾏了讨论,导出了我们以后会⽤到的两⼤分布:β分布和Γ分布。

今天,我们将讨论离散分布中的泊松分布。

其实,最简单的离散分布应该是两点分布,但由于在上⼀篇⽂章的最后,提到了Γ分布和泊松分布的联系,因此本⽂从泊松分布出发。

由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:泊松分布简介泊松分布是⼀种离散分布,先给出其概率分布列。

若X∼P(λ),则P(X=k)=λkk!e−λ,k=0,1,⋯它的取值是⽆限可列的。

为什么泊松分布会与指数分布、Γ分布有联系呢?这是因为,它们三个都是随机事件发⽣的⼀种描述。

实际上,指数分布的参数λ是⼀种速率的体现,它刻画了随机事件发⽣的速率。

⽽指数分布随机变量的取值,就代表某⼀事件在⼀定的速率下发⽣的时刻距离计时原点的长度。

Y∼E(λ),就代表Y对应的事件事件的发⽣速率是λ,所以平均发⽣时间就在在1/λ处。

这也可以作为E(Y)=1/λ的⼀种解释。

指数分布具有⽆记忆性,这与随机事件的发⽣相似,即已经发⽣历史事件对未来不产⽣影响,⽤数学语⾔说就是P(Y>s+t|Y>s)=P(Y>t)。

这指的是,如果⼀个事件平均会在s时间后发⽣,但是⽬前经过了t时间还没有发⽣,则事件的平均发⽣时间就移动到t+s时间后。

它不会因为你已经等了t时间,就会更快地发⽣。

⽽如果把n个独⽴同分布于E(λ)指数分布随机变量相加,得到的⾃然就是恰好发⽣k个事件的平均时间,这个时间Z∼Γ(n,λ),本质还是⼀种时间的度量。

但Z就不具有⽆记忆性了,这是因为,经过t时间后可能已经发⽣了n−1个事件就差最后⼀个没有发⽣,也可能⼀个事件都没发⽣还需要n个才能凑齐。

泊松分布则刚好相反,指数分布和Γ分布都是限定了发⽣次数,对发⽣时间作度量;泊松分布则是限定了时间1,求随机事件在这⼀段时间内发⽣的次数服从的概率分布。

泊松分布定理

泊松分布定理

一、社会生活对服务的各种要求
某电话交换台在一段时间内收到的电话呼叫数; 一个售货员接待的顾客数; 公共汽车站在一段时间内来到的乘客数等等 都近似服从泊松分布。
二、物理学和生物学领域
一放射性源放射出的 粒子数; 放射性分裂落在某区域的质点数,热电子的发射 显微镜下落在某区域中的血球或微生物的数目
定理1(泊松Poisson定理)
设λ>0是一常数,n是正整数,若limnpn=λ,则 对任一固定的非负整数k,有
lim C p (1 pn )
n k n k n
nk


k
k!
e

一、泊松分布的定义及图形特点
设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P ( X k ) e
泊松分布产生的一般条件
在自然界和人们的现实生活中,经常要遇 到在随机时刻出现的某种事件.我们把在随机 时刻相继出现的事件所形成的序列,叫做随机 事件流. 若事件流具有平稳性、无后效性、普通性, 则称该事件流为泊松事件流(泊松流).
下面简要解释平稳性、无后效性、普通性.
平稳性:
在任意时间区间内,事件发生k次(k≥0)的 概率只依赖于区间长度而与区间端点无关.
三、有泊松定理知,泊松分布可以作为描绘 大量试验中稀有事件出现的频率的概率分 布的数学模型。
我们把在每次试验中出现概率很小的事 件称作稀有事件. 如地震、火山爆发、特大洪水、意外事故等等
由泊松定理,n重贝努里试验中稀有事件 出现的次数近似地服从泊松分布.
到某机场降落的飞机数; 纱锭的纱线被扯断的次数; 一页中印刷错误出现的数目; 一年中暴雨出现在夏季中的次数; 三胞胎出生的次数; 数字通讯中传输数字时发生误码的个数等等 k0,1,2,,

如何理解泊松分布(Poisson Distribution)

如何理解泊松分布(Poisson Distribution)

如何理解泊松分布(PoissonDistribution)【泊松分布是以其发表者Poisson命名的】随机变量X服从参数为λ的泊松分布,记作 X ∼ π ( λ )X\sim\pi(\lambda) X∼π(λ)其分布律为P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , …P\{X=k\}=\frac{\lambda^k e^{-\lambda}}{k!}, k=0,1,2,… P{X=k}=k!λke−λ,k=0,1,2,…其中λ>0注意k取值哟,k是从0到∞!!证明分布律对于上式,我们需要证明其满足分布律的条件,即各值概率求和为1, 即:∑ k = 0 ∞ P { X = k } = 1\sum_{k=0}^{\infty}P\{X=k\}=1 k=0∑∞P{X=k}=1证明如下:∑ k = 0 ∞ P { X = k } = ∑ k = 0 ∞ λ k e −λ k ! = e − λ ∑ k = 0 ∞ λ k k ! = e − λ × e λ = 1\sum_{k=0}^{\infty}P\{X=k\}=\sum_{k=0}^{\infty}\frac{\ lambda^k e^{-\lambda}}{k!}=e^{-\lambda}\sum_{k=0}^\infty\frac{\lambda^k}{k!}=e^{-\lambda}\times e^{\lambda}=1 k=0∑∞P{X=k}=k=0∑∞k!λke−λ=e−λk=0∑∞k!λk=e−λ×eλ=1这个求和用到了函数f(x)=e^x的带有拉格朗日余项的n阶麦克劳林公式哈哈,其实这里只是推导一下就好,更严谨,以后使用公式时候用不到泊松定理这是一种用泊松分布逼近二项分布的定理,可以看作泊松分布分布律从二项分布律的推导,具体内容如下:n为任意正整数,np=λ,λ>0,对任意非负整数k,都有 lim ⁡ x → ∞ C n k p n k ( 1 − p ) n − k = λ k e −λ k ! \lim_{x \to \infty}C_n^k p_n^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} x→∞limCnkpnk(1−p)n−k=k!λke−λ证明思路:让式子只剩下λ,消去n,p1.消去n:使n趋近于∞2.消去p:p=λ/n证明如下: C n k p n k ( 1 − p ) n − k = n ( n −1 ) . . . ( n − k + 1 ) k ! ( λ n ) k ( 1 − λ n ) n − k C_n^k p_n^k (1-p)^{n-k}=\frac{n(n-1)...(n-k+1)}{k!}{(\frac \lambda n)}^k (1-\frac \lambda n)^{n-k} Cnkpnk(1−p)n−k=k!n(n−1)...(n−k+1)(nλ)k(1−nλ)n−k观察右项,尽量配出来原式= λ k k ! [ 1 × ( 1 − 1 n ) × … × ( 1 − k − 1 n ) ] ( 1 − λ n ) n ( 1 − λ n ) − k 原式=\frac {\lambda^k}{k!}[1\times(1-\frac1n)\times…\times(1-\frac {k-1}n)](1-\frac \lambdan)^n(1-\frac \lambda n)^{-k} 原式=k!λk[1×(1−n1)×…×(1−nk−1)](1−nλ)n(1−nλ)−k令n趋近于正无穷,则[ 1 × ( 1 − 1 n ) × … × ( 1 − k − 1 n ) ] → 1 [1\times(1-\frac 1n)\times…\times(1-\frac {k-1}n)] \to 1 [1×(1−n1)×…×(1−nk−1)]→1 ( 1 − λ n ) n → e − λ (1-\frac \lambda n)^n\to e^{-\lambda} (1−nλ)n→e−λ上式为对自然常数e的定义的代换,实质上用到了复合函数的极限运算法则 ( 1 − λ n ) − k → 1 (1-\frac \lambda n)^{-k}\to 1 (1−nλ)−k→1因此,得证 lim ⁡ x → ∞ C n k p n k ( 1 − p ) n − k = λ k e − λ k ! \lim_{x \to \infty}C_n^k p_n^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} x→∞limCnkpnk(1−p)n−k=k!λke−λnp=λ,n很大,p很小时,有近似式: C n k p n k ( 1 − p ) n − k ≈ λ k e − λ k ! C_n^k p_n^k (1-p)^{n-k}\approx \frac{\lambda^k e^{-\lambda}}{k!} Cnkpnk(1−p)n−k≈k!λke−λ即用泊松分布概率值作二项分布概率值的近似一般来说,n>=20,p<=0.0.5,近似效果不错λ的意义从二项分布可知,E(X)=np,而在泊松定理中λ=np,所以λ是否是数学期望呢?已知一个分布,可以求其数学期望(用定义求),我们求出泊松分布的数学期望,看它是否是我们预测的λ即可。

概率论与数理统计2.2.4 泊松分布

概率论与数理统计2.2.4 泊松分布

0.2642411
二、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
离散型随机变量X b(n, p). 又设np ( 0), 则有
lim
n
Cnk
pk (1
p )nk

k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
C
k 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
e4

4 1!
e4

42 2!
e4
43 e4 0.5665. 3!
例2 计算机硬件公司制造某种特殊型号的微型芯片,次品率 次品率达0.1%, 各芯片成为次品相互独立. 求在1000只产品中 至少有2只次品的概率. 以X记产品中的次品数,
X~b(1000,0.001) ,X=0,1,2,...1000.
例:a.某天医院看急诊的人数; b. 某路口一天的交通事故数 c.某本书中的印刷错误数; d. 放射性物质放射的粒子数
例1 一电话总机每分钟收到呼唤的次数服从参数为4
的泊松分布,求
(1) 某一分钟恰有8次呼唤的概率;
(2) 某一分钟的呼唤次数大于3的概率.
解 由X ~ (),P{X k} k e , k 0,1,2, ,

泊松大数定律的证明

泊松大数定律的证明

泊松大数定律的证明
松大数定律证明,泊松分布的大数定律。

泊松大数定理的怠义在于:个别事件的发生的偶然性与不确定性,泊松大数定律可以通过集合众多事象观察或长期观察相同或相近事件.泊松大数定律在平均意义上找出确定性与必然性。

泊松大数定理运用到保险上可说明.尽管各个相互独立的风险单位的损失概率可能各不相同,泊松大数定律但只要有足够多的险种和标的,泊松大数定律可以把各类标的集合在一起.泊松大数定律求出一个整体费率,泊松大数定律然后用适当方法予以上下调整,泊松大数定律使各分类费率更加科学合理.同时在整体上又可保证收支平衡。

小概率事件的实际不可能原理及其推论,泊松大数定律是对投保动机及可保风险测定的标准之一。

泊松大数定律若某风险及其损失发生概率太小.泊松大数定律人们则认为不可能发生.从而失去投保动机;对于保险经营中可能遇到的发生机率小.泊松大数定律但造成损失期望值大的小概率李件.保险人则不能掉以轻心,泊松大数定律而应逐年滚存总准备金予以防范;但当大量观察发现.风险事件发生概率大时,亦难符合可保风险条件的应不予承保,泊松大数定律或采取共保及分保办法处置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



k
k!
, k0,1,2,,
其中 λ >0 是常数,则称 X 服从参数为 的 λ 泊松分布,记作X~P(λ ).
二项分布与泊松分布
历史上,泊松分布是作为二项分布的近 似,于1837年由法国数学家泊松引入的 . 近数十年来,泊松分布日益显示 其重要性,成为概率论中最重要的几 个分布之一. 在实际中,许多随机现象服从或近 似服从泊松分布.
定理1(泊松Poisson定理)
设λ>0是一常数,n是正整数,若limnpn=λ,则 对任一固定的非负整数k,有
lim C p (1 pn )
n k n k n
nk


k
k!
e

一、泊松分布的定义及图形特点 Nhomakorabea设随机变量X所有可能取的值为0 , 1 , 2 , … , 且概率分布为:
P ( X k ) e
泊松分布产生的一般条件
在自然界和人们的现实生活中,经常要遇 到在随机时刻出现的某种事件.我们把在随机 时刻相继出现的事件所形成的序列,叫做随机 事件流. 若事件流具有平稳性、无后效性、普通性, 则称该事件流为泊松事件流(泊松流).
下面简要解释平稳性、无后效性、普通性.
平稳性:
在任意时间区间内,事件发生k次(k≥0)的 概率只依赖于区间长度而与区间端点无关.
一、社会生活对服务的各种要求
某电话交换台在一段时间内收到的电话呼叫数; 一个售货员接待的顾客数; 公共汽车站在一段时间内来到的乘客数等等 都近似服从泊松分布。
二、物理学和生物学领域
一放射性源放射出的 粒子数; 放射性分裂落在某区域的质点数,热电子的发射 显微镜下落在某区域中的血球或微生物的数目
无后效性: 在不相重叠的时间段内,事件的发生是相 互独立的. 普通性:
如果时间区间充分小,事件出现两次或 两次以上的概率可忽略不计.
例如
一放射性源放射出的 粒子数; 某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数; 一台纺纱机的断头数; …
都可以看作泊松流.
对泊松流,在任意时间间隔(0,t)内,事件 (如交通事故)出现的次数服从参数为 λ t 的 泊松分布 . λ 称为泊松流的强度.
三、有泊松定理知,泊松分布可以作为描绘 大量试验中稀有事件出现的频率的概率分 布的数学模型。
我们把在每次试验中出现概率很小的事 件称作稀有事件. 如地震、火山爆发、特大洪水、意外事故等等
由泊松定理,n重贝努里试验中稀有事件 出现的次数近似地服从泊松分布.
到某机场降落的飞机数; 纱锭的纱线被扯断的次数; 一页中印刷错误出现的数目; 一年中暴雨出现在夏季中的次数; 三胞胎出生的次数; 数字通讯中传输数字时发生误码的个数等等
相关文档
最新文档