小学数学思维方法有哪些

合集下载

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些在小学数学中,体现了许多数学思想与方法,以下是其中一些例子:1.抽象思维:小学数学强调从具体的事物中提取共性、去除特殊性,实现抽象思维。

例如,学习数的运算时,通过将具体的事物抽象成数字,进行运算操作;学习几何时,通过将具体的图形抽象成几何形状,并进行相应的运算和推理。

2.归纳与演绎:小学数学通过归纳与演绎的方法培养学生的逻辑思维能力。

通过观察和总结,归纳出事物之间的规律,并进一步演绎出更一般的结论。

例如,学习数列时,通过观察数列中的规律,归纳出通项公式,从而推算出数列的任意项。

3.探究性学习:小学数学注重培养学生的探究精神和问题解决能力。

通过设计问题和情境,引导学生主动思考和探索。

例如,教学中可以使用教具和故事情境,让学生通过操作、实践和讨论解决问题。

这种学习方式能够激发学生的学习兴趣,增强他们的思考能力和创新能力。

4.决策与推理:小学数学通过决策问题和推理问题的解决过程,培养学生的逻辑思维和批判思维能力。

通过分析问题,寻找解决方案,并进行论证和验证。

例如,在解决实际问题时,学生需要选择合适的数学方法,进行计算和推理,从而得到正确的答案。

5.审美与美感:小学数学通过培养学生的审美意识,提高他们对数学美感的感知和理解能力。

例如,在几何学习中,学生通过观察和欣赏各种几何形状、图案和艺术作品,体验到数学的美妙和魅力。

6.适度抽象与形象思维:小学数学在引导学生进行适度抽象时,也注重发展形象思维。

通过使用具体的物体和图形,辅助学生理解数学概念、规则和运算。

例如,在学习分数时,可以使用物体的切割和图形的绘制,帮助学生形象地理解分数的概念和运算。

7.整体与部分:小学数学注重培养学生分析整体与部分之间的关系与变化的能力。

例如,在学习分数时,学生需要理解分数是整体与部分的关系,能够将一个整体分成几个相等的部分,并掌握分数的基本概念和运算规则。

以上只是一些例子,小学数学中还有许多其他数学思想与方法的体现。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

小学数学数学思维培养与问题解决方法指南

小学数学数学思维培养与问题解决方法指南

小学数学数学思维培养与问题解决方法指南数学是一门重要的学科,对于小学生的学习和成长具有重要意义。

良好的数学思维和问题解决方法是小学生学习数学的关键。

本文将提供关于小学数学思维培养和问题解决方法的指南。

一、培养逻辑思维能力逻辑思维是小学生数学学习的基础,培养逻辑思维能力对于提高数学解决问题的能力至关重要。

以下是一些培养逻辑思维能力的方法:1. 数学游戏:通过数学游戏,如数独、推理游戏等,让孩子锻炼逻辑思维能力。

这些游戏能够激发孩子的思考,培养他们的推理和解决问题的能力。

2. 逻辑思维训练:进行逻辑思维训练,如填空题、推理题等,可以帮助孩子分析问题、找出规律并做出合理的判断。

3. 实际问题应用:将数学知识与实际问题相结合,让孩子在解决实际问题的过程中培养逻辑思维能力。

例如,在购物时计算找零金额或分配物品数量等,让孩子学会运用逻辑思考解决问题。

二、培养创造性思维创造性思维是培养小学生数学能力的关键。

以下是一些培养创造性思维的方法:1. 开放性问题:给孩子提出一些开放性问题,让他们通过多角度思考和展示创造力。

例如,“用不同的方法画出一个正方形”。

2. 问题解决方法的多样性:引导孩子探索和尝试不同的解决方法,鼓励他们寻找多种解决途径。

例如,在解决数学题时,可以鼓励孩子用不同的方法来验证答案。

3. 鼓励创新思维:鼓励孩子对数学问题进行拓展和变形,提出新的问题和解决办法。

例如,让孩子在乘法表的基础上创造出新的运算法则。

三、问题解决方法指南除了培养数学思维,正确的问题解决方法也是小学生学习数学的关键。

以下是一些问题解决方法的指南:1. 仔细阅读题目:让孩子养成仔细阅读题目的习惯,理解问题的要求是解决问题的第一步。

2. 找出已知和未知条件:帮助孩子分析问题中的已知条件和未知条件,了解问题的关键信息。

3. 寻找问题的解决思路:鼓励孩子通过分析和归纳已知条件,寻找解决问题的思路和方法。

4. 运用适当的数学知识和技巧:帮助孩子选择和运用适当的数学知识和技巧来解决问题。

小学数学的八大思维方法

小学数学的八大思维方法

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些小学数学是培养学生数学思维能力和逻辑推理能力的重要阶段。

为了帮助学生培养正确的数学思想和方法,我们可以运用以下几种思想方法。

一、观察与发现思想方法二、综合思想方法综合思想方法强调把多种知识和方法进行综合运用,从而解决复杂的问题。

例如,在解决一个应用题时,学生可以结合整数、分数、小数等数的知识,运用四则运算的基本法则进行综合计算。

三、抽象思维方法抽象思维方法是指学生通过抽象事物的共同特点和规律,将问题进行归纳和概括,从而进行类比和推理。

例如,学生可以通过观察和比较三角形、四边形、五边形等多边形的特点,得出它们的共同规律,然后解决一些有关多边形的问题。

四、归纳与演绎思想方法归纳与演绎思想方法是指学生通过归纳和总结大量的具体事例和数据,从而发现其中的共同规律。

例如,学生可以通过观察和总结两个数之间的运算特点,得出数的运算规律,然后根据这个规律解决一些计算问题。

五、借助工具思想方法借助工具思想方法是指学生可以通过使用具体的工具,如尺子、天平等来帮助解决问题。

例如,在学习长度的比较时,学生可以使用尺子来测量和比较两个物体的长度,以便更直观地理解大小关系。

六、探究与实践思想方法探究与实践思想方法是指学生通过实际操作和探索,从而获得数学知识和解决问题的能力。

例如,在学习几何形状时,学生可以通过剪纸、折纸等手工活动,来探索不同形状的特点和性质。

以上是小学数学常用的思想方法,通过合理运用这些方法,可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力。

同时,在教学中也需要注意灵活运用这些方法,根据学生的实际情况和能力发展的要求,选择适合的思想方法进行教学。

小学生数学思维培养的方法与技巧

小学生数学思维培养的方法与技巧

以下是培养小学生数学思维的方法和技巧:1. 启发式教学:采用启发式教学方法,引导学生通过观察、推理和实践等方式主动探索数学问题。

教师可以提出有挑战性的问题,鼓励学生思考不同的解决方法,培养他们的逻辑思维和创造力。

2. 问题解决与应用:将数学知识应用到实际问题中,培养学生的问题解决能力。

通过设计真实的情境问题,让学生运用所学的数学概念和方法,分析和解决问题,培养他们的数学思维和实际运用能力。

3. 探究性学习:组织数学探究活动,让学生自主、合作地进行数学问题的研究和发现。

教师可以设计一系列的数学实验、观察和比较,鼓励学生提出自己的猜想和解释,并引导他们运用数学方法进行验证和证明。

4. 游戏与竞赛:运用游戏和竞赛元素来激发学生对数学的兴趣和积极参与。

教师可以设计数学游戏,培养学生的逻辑思维和计算能力。

同时,可以组织数学竞赛,提供一种挑战和比较的机会,激发学生的竞争意识和学习动力。

5. 多样化的教学资源:利用多种教学资源,如数学教具、图形模型、数字游戏等,帮助学生直观地理解抽象的数学概念。

通过实物操作和视觉呈现,加深学生对数学概念的理解和记忆,促进他们的数学思维发展。

6. 拓展思维辅助工具:引入拓展思维辅助工具,如思维导图、流程图、图表等,帮助学生整理和表达数学问题的思路和步骤。

这些工具可以帮助学生更清晰地组织自己的思维过程,提高解决问题的效率和准确性。

7. 鼓励交流与合作:鼓励学生之间的交流与合作,培养学生的团队合作精神和沟通能力。

通过小组讨论、合作解题等活动,学生可以相互借鉴和启发,共同探索和解决数学问题,促进彼此的思维发展。

通过以上方法和技巧,可以培养小学生的数学思维,激发他们对数学的兴趣和热爱,提高他们的问题解决能力、创新思维和逻辑推理能力。

同时,也能够帮助学生建立坚实的数学基础,为将来更高层次的数学学习打下良好的基础。

小学数学的思维方法和教学方法

小学数学的思维方法和教学方法

小学数学的思维方法和教学方法小学数学是培养学生数学思维的重要阶段,对于学生的思维能力发展起着至关重要的作用。

下面将介绍小学数学的思维方法和教学方法。

一、小学数学的思维方法1.抽象思维:小学生的逻辑思维较为简单,因此,在进行数学学习时,需要通过逐步引导培养其抽象思维能力。

可以通过具体的实例运用来引导学生进行抽象思维,例如将简单的实物和抽象的数学符号相对应。

2.归纳和演绎思维:小学生数学学习的新知识一般是通过归纳总结而来,因此,要培养学生通过具体的事例、观察、实验等方法,自主归纳出规律和概念。

同时,也要让学生学会运用归纳的数学规律进行演绎,从而解决问题。

3.探究思维:小学数学教学要培养学生的探究精神和求知欲望。

可以通过提出问题、引导讨论、设计实验等方式,激发学生的学习主动性,让他们参与到数学实践中,自主探究并解决问题。

4.创新思维:小学数学教学要注重培养学生的创新思维能力。

可以通过设计开放性问题、引导学生提出自己的解决方法等方式,激发学生的创新意识,让他们在解决问题的过程中形成自己的思路和方法。

二、小学数学的教学方法1.情境教学法:通过创设情境,让学生亲身体验数学内容,培养他们的兴趣和动手能力。

例如,在学习面积时,可以安排学生游戏,让他们通过实际测量和计算来探索各种图形的面积计算方法。

2.合作学习法:小学数学教学要注重培养学生的合作意识和团队精神。

可以通过小组合作学习的方式,让学生相互合作、协作,共同解决问题。

例如,可以组织学生小组进行探究活动,每个小组负责一部分内容,最后由小组共同汇报成果。

3.游戏教学法:小学生喜欢游戏,通过游戏教学可以激发学生的学习兴趣和主动性。

例如,在学习时钟的概念和读时的方法时,可以设计一些趣味的游戏,让学生通过玩游戏来学习。

4.案例教学法:通过实际案例引导学生进行数学学习。

例如,在学习三角形时,可以通过实际案例展示三角形在建筑、地图等方面的应用,并引导学生进行相应的思考和讨论。

小学数学常见的数学思想方法

小学数学常见的数学思想方法

小学数学常见的数学思想方法在小学数学中,有一些常见的数学思想方法,这些方法不仅帮助学生理解和解决数学问题,还培养了他们的逻辑思维和问题解决能力。

本文将介绍一些常见的小学数学思想方法。

第一、归纳法归纳法是一种从特殊到一般的思维方法。

通过观察和分析特殊情况,再总结规律,推广到一般情况。

例如,学习排列组合时,可以先从2个数字的排列开始归纳,然后推广到更多数字的排列。

这样做可以帮助学生理解和记忆更抽象的概念。

第二、类比法类比法是通过寻找事物之间的共同特征,把问题转化为已知问题的方法。

例如,在学习解方程时,可以把方程看作一个天平,通过移项和化简,使方程两边平衡。

这种类比可以帮助学生把抽象的数学问题转化为更具体和易于理解的形式。

第三、分解法分解法是将复杂的问题分解为若干简单的子问题来解决的思维方法。

例如,在学习长除时,可以将被除数分解成各个位的数字,并逐位进行计算。

这种分解的思维方法可以帮助学生理清思路,简化问题,更容易得到答案。

第四、逆向思维法逆向思维法是从问题的结果出发,逆向推导出解决问题的方法。

例如,在学习排序时,可以先思考如何将数字从大到小排列,然后将步骤反转,即可得到从小到大排列的方法。

逆向思维法可以培养学生的逻辑思维和反向推理能力。

第五、模型法模型法是通过建立数学模型,把实际问题转化为数学问题来解决的思维方法。

例如,在学习面积时,可以通过绘制图形模型来计算面积。

这种方法可以帮助学生理解数学概念,并将数学应用于实际问题中。

第六、试错法试错法是通过尝试不同的方法和策略,找到解决问题的最优解的思维方法。

例如,在学习解方程时,可以尝试不同的代入法或变形法,直到找到满足方程的解。

试错法可以培养学生的探索精神和自主解题能力。

小学数学常见的数学思想方法多种多样,每种方法都有其独特的特点和适用范围。

学生在学习数学时,可以根据问题的性质和自己的思维特点选择合适的方法,培养灵活运用数学思想方法的能力。

通过不断练习和思考,学生可以提高数学思维能力,更好地理解和应用数学知识。

小学数学八大思维方法

小学数学八大思维方法

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的;逆向思维是不依据题目内条件出现的先后顺序,而是从反方向或从结果出发而进行逆转推理的一种思维方式;逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答;正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘;列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的;如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:同上掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展;二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一;对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的;例1 小红有7个三角,小明有5个三角,小红比小明多几个三角这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角;一般对应随着知识的扩展,也表现在以下的问题上;这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时;这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解;在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础;这是因为在较复杂的应用题里,间接条件较多,在推导过程中,利用对应思维所求出的数,虽然不一定是题目的最后结果,但往往是解题的关键所在;这在分数乘、除法应用题中,这种思维突出地表现在实际数量与分率或倍数的对应关系上,正确的解题方法的形成,就建立在清晰、明确的量率对应的基础上;这是一道“已知一个数几分之几是多少,求这个数”的分数除法应用题,题中只有20本这唯一具体的“量”,解题的关键是要找这个“量”所对应的“率”;如图:的“率差”,找出“量”所对应的“率”,是解答这类题的唯一思考途径,按照对应的思路,即可列式求出结果;答:书架上原有书240本;如果没有量率对应的思维方法,用20除以而得的不是所对应的率,必然导致错误的计算结果;因此,培养并建立对应的思维方法,是解答分数乘除法应用题一把宝贵的钥匙;三、假设思维方法这是数学中经常使用的一种推测性的思维方法;这种思维方法在解答应用题的实践中,具有较大的实用性,因为有些应用题用直接推理和逆转推理都不能寻找出解答途径时,就可以将题目中两个或两个以上的未知条件,假设成相等的数量,或者将一个未知条件假设成已知条件,从而使题目中隐蔽或复杂的数量关系,趋于明朗化和简单化,这是假设思维方法的一个突出特点;当“假设”的任务完成后,就可以按照假设后的条件,依据数量的相依关系,列式计算并做相应的调整,从而求出最后的结果来;各长多少米解答这道题就需要假设思维方法的参予;如果没有这种思维方法,将难以找到解题思路的突破口;题目中有两数的“和”;而且是直接条件,两数的“倍”不仅是间接条件,并且附加着“还”多0.4米的条件,这是一道较复杂的和倍应用题,思考这道题,必须进行如下的假设;是直接对应的,至此,就完全转化成简单的和倍应用题;根据题意,其倍数关系如图:答:第一块4.36米,第二块3.3米;电线各长多少米两个标准量的分率一旦一致,就可以用共长的米数乘以假设后的统一分率,求出假设后的分量,这个分量与实际8.6米必有一个量差,这个量差与实际的率差是相对应的;这样就可以求出其中一根电线的长度,另一根电线的长度可通过总长度直接求出;列式计算为:长度;列式计算为:答:同上;上述两种解法都是从率入手的,此题如从量入手也有两种解法,无论从率从量入手,都需要假设的思维方法作为解题的前提条件;由此可见,掌握假设的思维方法,不仅可以增加解题的思路,在处理一些数量关系较抽象的问题时,往往又是创造性思维的萌芽;四、转化思维方法在小学数学的应用题中,分数乘、除法应用题既是重点,又是难点;当这类应用题的条件中,出现了两个或两个以上的不同标准量,从属于这些标准量的分率,就很难进行分析、比较以确定它们之间的关系;运用转化的思维方法,就可以将不同的标准量统一为一个共同的标准量;由于标准量的转化和统一,其不同标准量的分率,也就转化成统一标准量下的分率,经过转化后的数量关系,就由复杂转化为简单,由隐蔽转化为明显,为正确解题思路的形成,创造了必要的条件;培养转化的思维方法,必须具备扎实的基础知识,对基本的数量之间的相依关系以及量率对应等关系,都能做到熟练地掌握和运用,没有这些作为基础,转化的思维方法就失去了前提;转化的思维方法,在内容上有多种类型,在步骤上也有繁有简,现举例如下;从题意中可知,求这批货物还剩下几分之几,必须先知道三辆车共运走全部的几分之几,全部看作标准量“1”,但条件中的标准量却有三个,“全部”、“甲车”和“乙车”,如果不把“甲车”和“乙车”这两个标准量,也统一成“全部”这个标准量,正确的思路将无法形成;上面的转化的思维方法,都是分率在乘法上进行的,简称“率乘”;乙两人年龄各多少岁从题目中的条件与问题来分析,这是一道和倍应用题,但标准量却有两个甲年龄与乙年龄,不通过转化来统一标准量,则无法确定甲乙年龄之间的倍数关系;两人年龄和是60岁,就可以求出甲乙两人各自的年龄;答:甲36岁,乙24岁;如果把甲乙年龄不同的标准量,通过转化统一为乙年龄的标准量,把乙龄则是:如果根据题意画出线段图,还可以转化成另外一种思路;倍,通过这个转化,就可以确定甲乙年龄的倍数关系;答:甲36岁,乙24岁;如果结合对图形中相等部分的观察,转化一下思维的角度,可以将这道较复杂的分数和倍应用题转化为按比例分配的应用题;2,有了两人年龄的“和”,又有了两人年龄“比”的关系,按比例分配应用题的条件已经具备;上述的四种解法,前两种运用了分率转化法,第三种运用了倍比转化法,第四种是将原题转化为按比例分配的应用题,这几种思路,在算法上大同小异,在算理上也有难有易,但都有一个明显的共同点:与转化的思维方法紧密相连;五、消元思维方法在小学数学中,消元的思维方法,也叫做消去未知数的方法;在一些数量关系较复杂的应用题里,有时会出现由两种或两种以上物品组合关系所构成的问题,而已知条件只给了这几种物品相互混合后的数量和总值,如果按照其他的思维方法,很难找到解决问题的线索;这就需要运用消元的思维方法,即:依据实际的需要,通过直接加、减或经过乘、除后,再间接加、减的方法,消去其中一个或一个以上未知数的方法,来求出第一个结果,然后再用第一个结果推导出第二个或第三个结果来;运用消元的思维方法,是从求两个未知数先消去其中一个未知数开始的,然后过渡到求三个未知数,首先消去其中两个未知数;例 1 有大小两种西红柿罐头,第一次买了2个小罐头,3个大罐头,、小罐头每个各重多少公斤根据题目中的条件,排列如下:从条件排列中观察到:两次买罐头的总重量是不一样的,关键在于两次买的大罐头的个数不一样,如果用第二次的总重量减去第一次的总重量,所得到的量差与两次买的大罐头的个数差是直接对应的;这样一减,实际上就消去了2个小罐头的重量,所得的结果就是7-3=4个大罐头的重量,据此,可以求出每个大罐头的重量,有了每个大罐头的重量,再代入原题中任何一个条件,就可以求出每个小罐头的重量;列式计算为:例2 食堂买盐、酱、醋,第一次各买2斤,共付0.96元,第二次买4斤盐、3斤酱、2斤醋共付1.48元,第三次买5斤盐、4斤酱和2斤醋,共付1.82元,求每斤各多少元根据第三次和第二次所买的物品数量,醋的斤数一样,两次付出钱数相减,就把醋消去了;所得的结果就是两次盐、酱斤数差所对应的钱数;考虑到第一次各买2斤付出0.96元,用0.96元除以2,所得的0.48元,正是各买1斤应付的钱数;再用0.48元减去1斤盐、1斤酱的0.34元,就可求出1斤醋的价钱;每斤醋的价钱已求出,再想办法消去盐和酱,如果先消去酱,可用:0.34元×3=1.02元,这1.02元是3斤盐和3斤酱的价钱和,再用第二次共付的1.48-0.14×2=1.2元,这1.2元是消去2斤醋的价钱,也就是4斤盐、3斤酱的价钱之和,由于1.02元里也有3斤酱的价钱,这两个数相减,即可求出每斤盐的价钱;如果求出每斤醋的价钱后,也可以先消去盐,即用:0.34×4=1.36元,这是4斤盐与4斤酱的价钱和;然后按上述求出4斤盐与3斤酱的价钱和1.2元,即可求出每斤酱的价钱;如下式:通过以上两例说明:解答上面这类应用题,按照一般的常规思路,会感到不得其门而入;运用消元的思维方法,就会发现解答上面这类题的规律;由于解题步骤和分析消元的角度上,不是唯一的,因此,消元的思维方法也会促进整个思维的发散性;小学数学中的消元思维方法与中学代数中的消元法是一致的,所不同的是小学数学中的消元没有字母,都是具体的数量;六、发散思维方法发散的思维方法,是依据题目中的条件与条件、条件与问题的相依关系,从不同的角度去分析,从不同的途径去思考,在推理中寻求正确的答案,在比较中选择最佳思路,从而使学生的求异思维得到锻炼和发展;求同思维是求异思维的前提,没有求同就没有真正的求异,或者说就没有真正的发散,但求异思维不是求同思维的自然发展,重要的是教师有计划、有重点地进行发散思维方法的培养;让学生在“同中求异”和“异中求同”,使求同思维与求异思维协同配合,做到培养中的同步发展;是一个正确答案,却是从不同角度进行发散思维的结果;出1300公斤;倍,小数点向右移动三位,结果是1300公斤;上述的三种思路,其与旧知识的联系不尽相同,所以形成了不同的发散加的方法,实际上在运算中使用了乘法的分配律;思路②是用求一个数是另一个数的几又几分之几倍的分数乘法则来进行计算的;思路③是先将分数化成小数,然后在乘法中,根据小数点移位所引起的小数大小变化的规律,从而简便、准确、迅速地求出结果;例2 当分数、百分数应用题学完后,可通过变直接条件为间接条件的表述,来进行发散思维方法的培养;甲储蓄80元,乙储蓄50元;如果把乙储蓄的这个直接条件改为间接条件,并用分数或百分数的形式进行表述,可能有几种表述方式:……如果把甲储蓄的钱数转化为间接条件,仍用分数或百分数的形式进行表述,可有以下几种表述方式:类似的表述方法还有多种,解答步骤也会由简到繁;由此可见,发散思维方法的形成,对于应用题中的数量关系或量率关系,能够进行多角度、多侧面的发散性思考,这种自觉习惯的养成,将是一种宝贵的思维品质;七、联想思维方法联想思维方法是沟通新旧知识的联系,在处理新问题的数量关系时,能够对已掌握的旧知识与新问题之间,产生丰富的联想,并运用知识的正迁移规律,变换审题的角度,使问题得到更顺利、更简捷的解决;例如:当学完分数和比例应用题后,下面的一组数量关系,就可以显示联想思维方法在开阔思路上的作用;行驶一段路程,甲车与乙车速度的比是5∶4;①甲车与乙车的速度比是5∶4,甲车与乙车所用的时间比就是4∶5;这是依据速度与时间成反比关系而联想出来的;如果原题的后面条件是给了甲或乙行完全路的时间,按原来速度比去思考,此题将是反比例应用题,通过联想,将速度比转化为时间比,此题便由反比例应用题转化为正比例应用题;是依比与除法关系联想的结果;如果原题条件的后面给了乙车的速度求甲车速度是多少,就可以用求一个数几又几分之几倍的方法,将原题的正比例应用题转化成分数乘法的应用题;如果原题给了甲车的速度去求乙车的速度,就可以用已知一个数的几又几分之几倍是多少,求这个数的方法,将原题转化成分数除法的应用题;依据分数与比的关系联想的结果;如果后面给了甲车速度,求乙车速度,则转化成求一个数几分之几是多少的乘法应用题;反之,则转化成已知一个数的几分之几是多少,求这个数的除法应用题;在比与除法关系的基础上,联想到求一个数比另一个数多几分之几;乙车速个差率直接对应,那么,用分数除法就可以直接求出乙车的速度;是依据求一个数比另一个数少几分之几而联想出来的;甲车作为标准量,如除法可求出甲车的速度;⑥根据甲车与乙车速度的比是5∶4,则甲乙两车的速度和为5+4据按比例分配应用题所进行的联想;如果原题后面给出两车速度和是多少的条件,就可以用分数乘法分别求出甲车和乙车的速度;⑦根据甲车与乙车速度的比是5∶4,在速度与时间成反比的基础上,联想到甲车与乙车的时间比是4∶5,并由此联想出甲车每小时行完全路的出发,相向而行,求中途的相遇时间,那么,把全路作为标准量,这道题又转化成分数的工程问题;从上例可以看出:联想的面越广,解题思路就越宽,解题的步骤也就会越加准确和敏捷;由此可见,联想思维方法所带来的效益,不仅可以促进学生思维力的发展,也可以直接、有效地提高解答应用题的能力;实践证明:联想思维方法往往是创造性思维的先导;八、量不变思维方法在一些较复杂的分数应用题中,每个量的变化都会引起相关联的量的变化,就如同任何一个分量的变化都会引起总量变化一样,这种数量之间的相依关系,常常出现以下情况:即在变化的诸量当中,总有一个量是有恒的,不论其他量如何变化,而这个量是始终固定不变的;有了量不变的思维方法,就能在纷繁的数量关系中,确定不变量,理顺它们之间的关系,理清解题的思路,从而准确、迅速地确定解答的步骤与方法;运用量不变思维方法,处理应用题时,大体上有以下三种情况:1分量发生变化,总量没有变;2总量发生变化,但其中的分量没有变;3总量和分量都发生了变化,但分量之间的差量没变;因此,要结合题目内容,区别不同情况,做出具体的分析;从题意分析中可以得出:这是一道总量不变的应用题,乙给甲12元后,二人的存款数分量都发生了变化,但二人存款的总钱数总量却始终不变,抓住了这个不变量,就抓住了解题的关键,把乙的存款数看作“1”,如下图所示;元后,乙存款数所占总存款的分率也发生了变化,如图所示;或者根据甲为“1”,先求甲占总存款数的几分之几,把标准量转化为总存化,就在于拿出了12元,这12元所对应的正是总存款数的分率差,据此,=32元,甲原来的存款数是:80-32=48元;此题中,尽管标准量前后不同,中间并经过几度转化,解题过程也较复杂,但总量不变的特点一旦抓住,就会保证思维过程的条理和清晰;这是一道分量不变的应用题,科技书的增加,必然引起两种书总数的增加,也就是一个分量和总量都发生了变化,但有另一个分量始终没变,这就是文艺书的本数,抓住这个不变量,就找到了解题的突破口;当科技书增加后,文艺书仍然是504本,不过它所占两种书总数的分率却发生了变化,这是科技书的增加所引起总本数增加的结果,这时文艺书所占的分率就相应减少;720-630=90本,由于文艺书没变,这90本就是科技书后来又买进的本数;这是一道差量不变的应用题,张华年龄增加的同时,李丽的年龄也在增加,年龄之和也相应增加,张华所占两人年龄和的分率,也必然发生变化,但这个分量的差量,即张华与李丽的年龄差却始终未变;可以形成下面的解题思路;岁;这所差的8岁,对他们两人是固定不变的,当张华36岁时,李丽则是36-8=28岁;。

小学数学思维方法有哪些

小学数学思维方法有哪些

小学数学思维方法有哪些1.逻辑思维逻辑思维是小学数学思维的基础,主要包括归纳推理、演绎推理和判断等。

归纳推理是根据一些具体的例子总结出普遍规律,比如通过观察多组两个整数的和和差的例子,得出两个整数和差的规律;演绎推理是根据已知事实和规律推出新的结论,比如根据一个等边三角形的性质,推导出其内角都是60度;判断是根据已有条件进行判断,比如判断一个数是奇数还是偶数。

2.创造思维创造思维培养学生寻找问题的新解决方法和新思路,主要包括问题的转化、类比思维和发现规律等。

问题的转化是将原问题转化为一个已经解决过的类似问题,比如将一个乘法问题转化为一个相同数的加法问题;类比思维是通过找到问题与已解决问题之间的相似之处,以推导出解决方法,比如通过将一个梯形问题与一个已解决的三角形问题类比,找到其相似之处并解决;发现规律是通过观察问题的特征和规律,找出一般性的结论,比如通过观察一系列的数字,找到它们之间的规律,并预测下一个数字。

3.批判思维批判思维是对数学问题进行质疑和评估,以发现问题的不足之处和解决方案的合理性,主要包括分析、评价和验证等。

分析是对问题进行细致分解,了解其内在性质和关系;评价是对已选取的解决方案进行筛选和评判,从中找到最优解决方案;验证是对解决方案进行实验和计算,确认其是否正确。

4.综合思维综合思维是将不同的思维方法进行整合,灵活应用于解决实际问题。

综合思维需要学生在解决问题时,结合逻辑思维、创造思维和批判思维的能力,寻找最佳解决方案,并进行验证和评价。

综合思维要求学生能够灵活应用各种方法,准确地分析问题,快速找到解决办法,并能对解决过程进行合理的评估和修正。

小学数学思维方法的培养需要教师和家长的引导和辅导,可以通过灵活多样的教学方法和教学活动来培养学生的思维能力。

同时,还需要给学生提供丰富的素材和问题,让他们有足够的机会进行练习和应用。

通过培养小学生的数学思维方法,可以提高他们的逻辑思维、创造思维和批判思维能力,使他们能够独立思考和解决实际问题。

小学数学最常用的16种思维方法

小学数学最常用的16种思维方法

小学数学最常用的16种思维方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

小学数学思维方法有哪些

小学数学思维方法有哪些

小学数学思维方法有哪些1.模型思维:通过建立数学模型,将实际问题转化为数学问题,利用模型进行分析和解决。

例如,在解决几何问题时,可以利用纸片折叠和拼图等方法建立模型,从而更好地理解和解决问题。

2.归纳思维:通过观察和总结规律,从已知的特殊情况逐步推广到普遍情况。

例如,通过观察一系列数列的规律,可以得到数列的通项公式,从而可以计算任意项的数值。

3.推理思维:通过逻辑推理和推导,从已知条件出发,得出新的结论。

例如,在解决面积和周长的问题时,可以通过利用已知条件和数学定理进行推理,得出结果。

4.分类思维:将问题中的元素进行分类,从而更好地理清思路和解决问题。

例如,在解决排列组合问题时,可以将元素分为不同的类别,然后根据不同的类别进行计算。

5.反证法思维:通过假设与已知条件矛盾的情况,从而推出结果的思维方法。

例如,在证明一个数是素数时,可以通过反证法进行推导,假设这个数是合数,然后推出矛盾结果。

6.抽象思维:从具体的实例中抽象出一般规律和概念,从而更好地理解和解决问题。

例如,通过观察数字序列的规律,可以抽象出数列的概念,从而更好地研究数列的性质和变化规律。

8.比较思维:通过比较不同对象或情况的异同,从而找到问题的特点和规律。

例如,在解决容积与体积问题时,可以通过比较不同形状的物体,找到它们的异同之处,从而更好地计算容积和体积。

以上是小学数学思维方法的一些基本思维方法,通过灵活运用这些思维方法,可以提高解决数学问题的能力和技巧。

在实际学习中,应根据具体情况选择合适的思维方法,并结合实际问题的特点进行综合运用。

小学数学解题思维方法

小学数学解题思维方法

小学数学解题思维方法公式法:运用定律、公式、规则、法则来解决问题的方法。

它体现的是由一般到特别的演绎思维。

公式法简便、有效,也是小同学学习数学必须学会和掌握的一种方法。

但一定要让同学对公式、定律、规则、法则有一个正确而深入的理解,并能准确运用。

比较法:通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

找联系与区别,这是比较的实质。

必须在同一种关系下(同一种标准)进行比较,这是"比较'的基本条件。

要抓住主要内容进行比较,尽量少用"穷举法'进行比较,那样会使重点不特别。

因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

2数学解题思维方法一排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。

这种方法也叫淘汰法、筛选法或反证法。

这是一种不可缺少的形式思维方法。

特例法:关于涉及一般性结论的题目,通过取特别值或画特别图或定特别位置等特例来解题的方法叫做特例法。

特例法的逻辑原理是:事物的一般性存在于特别性之中。

例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

可以取小圆半径为1,那么大圆半径就是2。

计算一下,就能得出正确结果。

例:正方形的面积和边长成正比例吗?如果正方形的边长为a,面积为s。

那么,s:a=a(比值不定)所以,正方形的面积和边长不成正比例。

综合法:把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)互相之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。

小学数学思维训练方法探究

小学数学思维训练方法探究

小学数学思维训练方法探究数学是一门需要逻辑思维和抽象思维的学科,对于小学生来说,培养良好的数学思维能力对他们的学习和发展至关重要。

本文将探究一些小学数学思维训练的方法,帮助孩子们更好地理解和应用数学知识。

一、启发式教学法启发式教学法是一种通过启发学生思考和发现规律的教学方法。

在数学教学中,教师可以通过提出问题、引导思考、让学生自己发现解题方法和规律等方式,激发学生的思维活动,培养他们的数学思维能力。

例如,在教学中可以提出一个有趣的问题,让学生通过观察、实验、推理等方式来解决问题,从而培养他们的观察力、分析能力和创造力。

二、实际问题解决法数学是一门与实际生活密切相关的学科,通过让学生解决实际问题来培养他们的数学思维能力是一种有效的方法。

教师可以引导学生将课堂上学到的数学知识应用到实际问题中,让他们体会到数学的实用性和重要性。

例如,在教学中可以给学生提供一些实际问题,让他们通过分析问题、提出解决方案、计算等步骤来解决问题,从而培养他们的问题解决能力和数学思维能力。

三、游戏化学习法游戏化学习法是一种通过游戏的方式来进行数学学习的方法。

游戏可以激发孩子们的学习兴趣,增加他们对数学的喜爱程度,从而提高他们的学习效果。

教师可以设计一些有趣的数学游戏,让学生在游戏中体验数学的乐趣,同时培养他们的数学思维能力。

例如,可以设计一个数学拼图游戏,让学生通过拼图来解决数学问题,从而锻炼他们的空间思维和逻辑思维能力。

四、多样化的题型训练数学思维能力的培养需要通过大量的题目训练来实现。

教师可以设计多样化的题型,让学生在解题过程中不断思考和探索,从而培养他们的数学思维能力。

例如,在教学中可以设计一些开放性问题,让学生通过自己的思考和探索来解决问题,从而培养他们的创造力和解决问题的能力。

五、拓展性活动拓展性活动是一种通过拓展学习内容和开展实践活动来培养学生数学思维能力的方法。

教师可以组织学生参加一些数学竞赛、数学游戏、数学实验等活动,让学生在实践中感受数学的魅力,同时培养他们的数学思维能力。

小学数学思维提升的五大方法

小学数学思维提升的五大方法

小学数学思维提升的五大方法数学是一门逻辑性很强的学科,对于小学生来说,培养良好的数学思维能力至关重要。

这不仅有助于他们在当前的学习中取得好成绩,更能为未来的学习和生活打下坚实的基础。

以下是提升小学数学思维的五大方法:一、多做数学游戏数学游戏是一种有趣且有效的学习方式,能够让孩子们在轻松愉快的氛围中锻炼数学思维。

例如,数字猜谜游戏,家长或老师可以想一个数字,让孩子通过提问来猜出这个数字。

孩子需要运用逻辑推理,不断缩小数字的范围,最终猜出正确答案。

又如搭积木游戏,在搭建的过程中,孩子们需要思考如何平衡、如何组合不同形状的积木以达到特定的目标。

这可以培养他们的空间想象力和几何思维。

还有数学棋类游戏,如五子棋、数独等,这些游戏需要孩子们运用策略和计算,做出最优的决策,从而提高他们的逻辑思维和分析问题的能力。

二、注重实际问题的解决数学源于生活,又应用于生活。

将数学知识与实际问题相结合,能够让孩子们更好地理解数学的意义和价值,同时提升他们运用数学解决问题的能力。

比如,在购物时,可以让孩子计算商品的价格、折扣和找零;在规划旅行时,让孩子计算路程、时间和费用;在做饭时,让孩子按照比例分配食材。

通过解决这些实际问题,孩子们会逐渐明白数学不是抽象的符号和公式,而是能够帮助他们解决生活中各种难题的工具。

他们会更主动地去思考,尝试用不同的方法解决问题,从而提升数学思维。

三、鼓励一题多解在做数学练习题时,不要局限于一种解题方法,鼓励孩子尝试多种思路。

比如一道简单的算术题:“小明有 5 个苹果,小红的苹果比小明多 3 个,小红有几个苹果?”孩子们可能会直接用加法 5 + 3 = 8 来得出答案。

但也可以引导他们这样思考:先假设小红和小明的苹果一样多,都是 5 个,然后再加上多出的 3 个,同样能得到 8 个。

通过一题多解,孩子们能够从不同的角度看待问题,拓宽思维的广度和深度。

他们会发现,解决问题的方法往往不是唯一的,从而培养创新思维和灵活运用知识的能力。

小学数学11种思维

小学数学11种思维

小学数学11种思维(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

1.对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。

根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练孩子对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。

只有这两个概念全理解了,才能做出正确判断。

2、公式法运用定律、公式、规则、法则来解决问题的方法。

它体现的是由一般到特殊的演绎思维。

公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。

但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59×37+12×59+5959×37+12×59+59=59×(37+12+1)……运用乘法分配律=59×50……运用加法计算法则=(60-1)×50……运用数的组成规则=60×50-1×50……运用乘法分配律=3000-50……运用乘法计算法则=2950……运用减法计算法则3、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

培养小学一年级数学思维的九种方法

培养小学一年级数学思维的九种方法

培养小学一年级数学思维的九种方法数学是一门重要的学科,对于小学一年级学生的数学思维的培养尤为重要。

良好的数学思维能力不仅对于学生今后学习数学的发展至关重要,而且对于培养学生的逻辑思维、分析问题能力以及解决问题的能力也起到重要作用。

那么,在小学一年级阶段如何培养孩子的数学思维呢?本文将介绍九种方法来帮助家长和教师进行培养。

方法一:通过游戏激发兴趣小学一年级的学生通常对数学抱有困惑和抵触情绪,因此家长和教师可以通过游戏来激发孩子的兴趣。

例如,可以使用数字积木、数学棋盘游戏等,让孩子在游戏中体验到数学的乐趣,从而激发他们对数学的兴趣。

方法二:通过实物启发思考小学一年级的学生天性好奇,他们对于实物更加感兴趣。

家长和教师可以通过实物的展示和操作,让孩子在感性认识的基础上引导他们从中发现问题,并培养他们的观察、比较和推理能力。

方法三:通过故事情境引导思维故事情境是培养小学一年级学生数学思维的有效手段之一。

家长和教师可以通过编排或选择一些与数学有关的故事情境,让孩子在情境中感受数学的魅力,从中引导他们思考和解决问题。

方法四:通过课堂互动提高思维能力在数学课堂上,家长和教师可以安排一些互动活动,例如小组合作、问题解答等,让孩子在与同学的互动中不断思考、讨论和探索问题。

这样可以培养学生的合作意识、表达能力和解决问题的能力。

方法五:通过练习巩固知识数学是需要不断练习的学科,家长和教师可以通过大量的练习巩固学生的数学知识。

练习题可以分为不同难度,供学生选择和解答。

这样可以培养学生的计算能力、思维能力和运算技巧。

方法六:通过思维导图整理知识思维导图是一种有效的知识整理工具,它可以帮助学生将知识结构化、分类和梳理。

家长和教师可以引导孩子使用思维导图来整理数学知识,从而帮助他们更好地理解掌握数学的概念和规则。

方法七:通过竞赛激发学习动力小学一年级的学生对于竞赛有着天然的好奇和兴趣。

家长和教师可以通过组织数学竞赛,激发学生的学习动力和兴趣,同时培养他们的数学思维和解决问题的能力。

小学数学思维方法

小学数学思维方法

小学数学思维方法
小学数学思维方法包括以下几点:
1. 理解基础概念:小学数学的基础是数的概念和数的运算。

学生要通过具体的实例和图形来理解数的大小、相等和序,以及加法、减法等基本运算的含义。

2. 培养逻辑思维:小学数学需要学生进行逻辑推理和问题解决。

培养学生的逻辑思维能力可以通过解决数学问题、分析数学模式和寻找规律等方式进行。

3. 发现数学规律:数学中有很多规律和模式,学生需要通过观察和思考来发现这些规律,然后运用到解决问题中。

教师可以通过给学生一些有趣的数学问题和游戏来激发他们的发现和探索精神。

4. 灵活运用数学方法:小学数学不仅仅是机械地运算数字,还涉及到实际问题的抽象和应用。

学生需要学会根据问题的特点选择合适的数学方法,例如列方程、制表格、绘图等。

5. 创造性思维:培养学生的创造性思维能力对于数学的学习和问题解决非常重要。

教师可以给学生提供一些开放性的数学问题,鼓励他们运用已学知识进行思考和尝试,培养发散思维的能力。

总之,小学数学思维方法的培养应该注重基础概念的理解、逻辑思维的培养、数
学规律的发现和创造性思维的培养。

通过培养学生的数学思维方法,可以提高他们的解决问题的能力和对数学的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学思想方法有哪些《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。

“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。

演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。

在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想,但最上位的思想还是演绎和归纳。

之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。

每一个具体的方法可能是重要的,但它们是个案,不具有一般性。

作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。

这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。

史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。

我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。

而这正是归纳推理的能力。

就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。

与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。

借助归纳推理可以培养学生“预测结果”和“探究成因”的能力,是演绎推理不可比拟的。

从方法论的角度考虑,“双基教育”缺少归纳能力的培养,对学生未来走向社会不利,对培养创新性人才不利。

一、什么是小学数学思想方法所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。

所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。

数学思想是宏观的,它更具有普遍的指导意义。

而数学方法是微观的,它是解决数学问题的直接具体的手段。

一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。

但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。

如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。

二、小学数学思想方法有哪些?对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。

小学采用直观手段,利用图形和实物渗透集合思想。

在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。

另一方面复杂的形体可以用简单的数量关系表示。

在解应用题中常常借助线段图的直观帮助分析数量关系。

10、统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法:事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。

在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

12、代换思想方法:他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。

如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?13、可逆思想方法:它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。

如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

14、化归思维方法:把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。

而数学知识联系紧密,新知识往往是旧知识的引申和扩展。

让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。

15、变中抓不变的思想方法:在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。

如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?16、数学模型思想方法:所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。

培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

17、整体思想方法:对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法关于数学课标修订变化情况解读新修订课标主要呈现以下九大变化:1. 基本理念“三句”变“两句”,“6条”改“5条”:原来的“三句话”:人人学有价值的数学人人都能获得必需的数学不同的人在数学上得到不同的发展现在的“两句话”:人人都能获得良好的数学教育不同的人在数学上得到不同的发展(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。

)“6条”改“5条”:在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

原课标:数学课程——数学——数学学习——数学教学——评价——信息技术修改后:数学课程——课程内容——教学活动——学习评价——信息技术2.理念中新增加的提法:要处理好四个关系有效的教学活动是什么数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合3.关于数学观的修改:原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

课标修改稿:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具……数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。

有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

数学教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。

4.“双基”变“四基”。

“双基”:基础知识、基本技能;“四基”:基础知识、基本技能、基本思想、基本活动经验“四基”与数学素养:掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。

以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。

现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。

史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。

”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。

陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。

相关文档
最新文档