2018闵行区高考数学二模试卷

合集下载

2018届闵行区高三二模数学考试(含解答)

2018届闵行区高三二模数学考试(含解答)

上海市闵行区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 5. 直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则lim nn nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k =10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++的最小值为二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz - 的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A. 43B. 53C. 23D. 23-15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( ) A. 若30S >,则20180a > B. 若30S <,则20180a < C. 若21a a >,则20192018a a > D. 若2111a a >,则20192018a a <16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点. (1)求三棱锥E DFC -的体积;(2)求异面直线1A E 与1D F 所成的角的大小.18. 已知函数()3sin cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3a =,3b c +=,当2ω=,()1f A =时,求bc 的值.19. 某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关 系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?20. 已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O 为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q 两点,13sin 3BF O ∠=.(1)若直线l 垂直于x 轴,求12||||PF PF 的值;(2)若2b =,直线l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:6l y =上总存在点M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.21. 无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值;(3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.上海市闵行区区2018届高三二模数学试卷2018.04一. 填空题1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 【解析】2a =2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【解析】12103040c c +=+=3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【解析】虚部为零,101m m +=⇒=-4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 【解析】1213(3)2x f --=⇒=5. 直线l 的参数方程为112x ty t=+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【解析】12(1)230y x x y =-+-⇒--=,法向量可以是(2,1)-6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则lim nn nS n a →∞=⋅【解析】2352n n n S +=,1lim 2n n nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 【解析】(2)()0(21)803a b xa b x x x +⋅-=⇒+--=⇒=8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 【解析】5R =,4r =,16S π= 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k =【解析】数形结合,可知图像||||14x y k +=经过点(5,0)-,∴5k = 10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 【解析】分类讨论,当01a <<时,没有最小值,当1a >时,即210x ax -+≤有解, ∴02a ∆≥⇒≥,综上,(0,1)[2,)a ∈+∞11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【解析】① 1234||||||||2x x x x +++=,有10组;② 1234||||||||3x x x x +++=, 有16组;③ 1234||||||||4x x x x +++=,有19组;综上,共45组 12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++的最小值为【解析】52nnn a =-,2[][]155nn n n na n n n ⋅=-=-,22n n n b -=,22()()n n t b c -++的几何意义为点2(,)2n nn -()n ∈*N 到点3(,2)4t t -的距离,由图得,最小值即(2,1)到324y x =- 的距离,为0.4二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【解析】B14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz -的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A.43 B. 53C. 23D. 23- 【解析】42cos 233||||OC n OC n θ⋅===⋅⋅,选C15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( )A. 若30S >,则20180a >B. 若30S <,则20180a <C. 若21a a >,则20192018a a >D. 若2111a a >,则20192018a a < 【解析】A 反例,11a =,22a =-,34a =,则20180a <;B 反例,14a =-,22a =,31a =-,则20180a >;C 反例同B 反例,201920180a a <<;故选D16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3【解析】命题1:()()0f x g x ==,x ∈R ;命题2:()()f x g x x ==,(,0)x ∈-∞; 命题3:2()()f x g x x ==-,x ∈R ;均为真命题,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点. (1)求三棱锥E DFC -的体积;(2)求异面直线1A E 与1D F 所成的角的大小.【解析】(1)121233V =⨯⨯= (2)5524cos 5255θ+-==⋅⋅,所成角为4arccos 518. 已知函数()3sin cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3a =,3b c +=,当2ω=,()1f A =时,求bc 的值.【解析】(1)()2sin()6f x x πω=+,()0336f k πωπππ-=⇒-+=,||1ω<,∴12ω=(2)()1f A =⇒3A π=,由余弦定理,2bc =19. 某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关 系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?【解析】(1)22240(30),110()40(10200),101520(10200),1520t t t F t t t t t t t ⎧-+≤≤⎪=-++<≤⎨⎪-++<≤⎩(2)()5000515F t t ≥⇒≤≤,第5天到第15天20. 已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O 为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q 两点,13sin 3BF O ∠=.(1)若直线l 垂直于x 轴,求12||||PF PF 的值;(2)若2b =,直线l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:6l y =上总存在点M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.【解析】(1)22231x y b +=,:2l x b =,233PF b =,1533PF b =,12||5||PF PF =实用标准文档 (2)22231x y +=,1:(2)2l y x =-,1(2,0)F -,关于l 对称点216(,)55E --,不在椭圆上 (3)设:(2)l y k x b =-,点差得1:3OM l y x k=-,联立1:6l y =,得(36,6)M k -, 代入直线l ,6(362)k k b =--,∴3336b k k =--≥,33k =-,56πα=21. 无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值;(3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.【解析】(1)2t =,对任意正整数n ,2n n a a +=恒成立,∴具有性质T(2)分类讨论,得结论,6n ≥,{}n a 有周期性,周期为3,∴2082a a ==(3)略。

2018上海高三数学二模---函数汇编

2018上海高三数学二模---函数汇编

(2018虹口二模5) 已知函数f (x)2xx2 1x 0,则f1[f1( 9)]—2018上海高三数学二模——函数汇编2(2018宝山二模)10.设奇函数f(x)定义为R,且当x 0时,f(x) x m 1 (这里xm为正常数).若f(x) m 2对一切x 0成立,则m的取值范围是答案:2,(2018宝山二模)15.若函数f x x R满足f 1 x、f 1 x均为奇函数,则下列四个结论正确的是( ) (A) f x为奇函数(B) f x为偶函数(C) f x 3为奇函数(D) f x 3为偶函数答案:C(2018宝山二模)19.(本题满分14分,第1小题满分6分,第2小题满分8分)某渔业公司最近开发的一种新型淡水养虾技术具有方法简便且经济效益好的特点,研究表明: 用该技术进行淡水养虾时,在一定的条件下,每尾虾的平均生长速度为g(x)(单位:千克/年)养殖密度为x,x 0 (单位:尾/立方分米)。

当x不超过4时,g(x)的值恒为2 ;当4 x 20 , g(x)是x的一次函数,且当x达到20时,因养殖空间受限等原因,g(x)的值为0.(1 )当0 x 20时,求函数g(x)的表达式。

(2)在(1)的条件下,求函数f (x) x g(x)的最大值。

2,x 0,41 5 , x N ; (2) 12.5千克/立方分米x ,x 4,208 2答案:(1) g x【解析】f 1(x) 、X, x 0, f 1( 9)3, f 1[f 1( 9)] f 1 (3) 2log 2(x 1), x 07 1(2018虹口二模11) [x]是不超过x 的最大整数,贝U 方程(2X )2 - [2X ] - 0满足x 14 4的所有实数解是 _________ 【解析】当 0x1 , [2x ] 1(2x )2 2 x 1 ;当 x 0 , [2x ] 0 , (2x )2 -,2 4••• x 1,二满足条件的所有实数解为x 0.5或x 1 (2018 虹口二模 21)已知函数 f(x) ax 3 x a (a R , x R ), g(x) 二(x R ).1 x(3)证明:函数f (x)存在零点q ,使得a q q 4q -q 3n 2成立的充要条件是34a.3I 解析】(1) f(二)02aq q 4 q - q 3n 2成立,根据无穷等比数列相关性质,q ( 1,1),1 qqV4 ^4结合第(2)问,a 茲 在(1,-]上递减,在[ ----------------------- ,1)上递增,1 q 32 2 q 诉V4 、、、二 a ( ------ )min g( ^ )-,反之亦然. 1 q 23(1) 如果x 4是关于x 的不等式2f (x) 0的解,求实数a 的取值范围;(2) (2)根据单调性定义分析,在(3) “函数 f (x)存在零点q ,使得a q q 4 q -3n 2q成立”说明判断g(x)在(1,,1)的单调性,并说明理由;和,1)上递增;(1,丁上递减,在(2018杨浦二模1)函数y Igx 1的零点是________________答案:x 10(2018杨浦二模17)(本题满分14分,第1小题满分7分,第2小题满分7分)共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用•据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x x N*满足1 2y x 60x 800.2(1)要使营运累计利润高于800元,求营运天数的取值范围;(2)每辆单车营运多少天时,才能使每天的平均营运利润—的值最大?x【解】(1)要使营运累计收入高于800元,人 1 2令—x260x 800 800 , ............................................ 2 分2解得40 x 80. ........................................ 5分所以营运天数的取值范围为40到80天之间. ........................ 7分(2018杨浦二模21)(本题满分18分,第1小题满分4分,第2小题满分6分,第3小 题满分8分)记函数f(x)的定义域为D.如果存在实数a 、b 使得f(a x) f (a x) b 对任意满足a x D 且a x D 的x 恒成立,则称f (x)为 函数•1(1) 设函数f(x) 1,试判断f(x)是否为 函数,并说明理由;x1(2) 设函数g(x) 2—t ,其中常数t 0,证明:g(x)是 函数;(3) 若h(x)是定义在R 上的 函数,且函数h(x)的图象关于直线x m ( m 为常数)对称,试判断h(x)是否为周期函数?并证明你的结论•【解】1(1)f (x)1 是 函数... 1分x理由如下:f (x)1 1的定义域为{ x |x 0},x只需证明存在实数 a , b 使得 f (a x) f (a x)b 对任意x a 恒成立•1 1a x a x(2) 丫x1 800 x 60 ..........2 x.................................. 9 分2、400 60 20当且仅当 1 800 —x 时等号成立,解得x 400…2 x................ 1分 所以每辆单车营运 400天时,才能使每天的平均营运利润最大,最大为 20元每天.…14分由f(a x) f (a x)b,得——2b,即b 2a x a x(a x)(a x)所以(b 2)(a2x2)2a对任意x a恒成立即b 2,a 0.从而存在a 0,b 2,使f (a x) f (a x) b 对任意x a 恒成立.所以f(x) 11是函数.x(取 t x 2m 2a 由(3)得)(2)记g(x)的定义域为D ,只需证明存在实数a ,b 使得当a x D 且a x D 时,g(a x) g(a x)b 恒成立,即1 2ax t1 2ax tb 恒成立.所以 2a x t 2a x t b(2a x t)(2a x t),化简得,(1 bt)(2a x 2a x)2ab(2 2t ) 2t .所以 1 bt 0,b(22a t 2) 2t 0•因为 tlOg 2 | t | ,1即存在实数a ,b 满足条件,从而g(x) 一—是函数•2x t10分所以h(m x) h(m x)(1),又因为h(a x) h(a x) b(2),h(x 2m 2a) h[m (x m 2a)]由(1 )h[m (x m 2a)] h(2a 由(2)b h[a (a x)] b h(x)......... 12分所以当m a 时,x) h[a (a x)](3)所以 h(x 4m 4a)h[(x 2m 2a) 2m 2a] b h(x 2m 2a)(3)函数h(x)的图象关于直线x m ( m 为常数)对称,(x 4再利用(3)式,h(x 4m 4a) b [b h(x)] h(x).所以f(x)为周期函数,其一个周期为 4m 4a. .............. 15分当 m a 时,即 h(a x) h(a x),又 h(a x) b h(a x),b所以h(a x)-为常数.2所以函数h(x)为常数函数,bh(x 1) h(x) - , h(x)是一个周期函数......... 17分综上,函数h(x)为周期函数。

2018年上海市闵行区高考数学二模试卷

2018年上海市闵行区高考数学二模试卷

2018年上海市闵行区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 双曲线x 2a −y 29=1(a >0)的渐近线方程为3x ±2y =0,则a =________【答案】2【考点】双曲线的离心率 【解析】根据题意,由双曲线的标准方程可得渐近线方程,结合题意可得3a =32,解可得a 的值. 【解答】 根据题意,双曲线x 2a−y 29=1的焦点在x 轴上,其渐近线方程y =±3a x ,若双曲线的渐近线方程为3x ±2y =0,即y =±32x 则有3a =32,则a =2;2. 若二元一次方程组的增广矩阵是(12c 134c 2),其解为{x =10y =0 ,则c 1+c 2=________【答案】 40【考点】系数矩阵的逆矩阵解方程组 【解析】由题意{c 1=10+2×0=10c 2=3×10+4×0=30 ,由此能求出c 1+c 2的值. 【解答】∵ 二元一次方程组的增广矩阵是(12c 134c 2),其解为{x =10y =0 ,∴ {c 1=10+2×0=10c 2=3×10+4×0=30,∴ c 1+c 2=10+30=40.3. 设m ∈R ,若复数z =(1+mi)(1+i)在复平面内对应的点位于实轴上,则m =________ 【答案】 −1【考点】 复数的运算 【解析】利用复数代数形式的乘法运算化简,再由虚部等于0求解即可得答案. 【解答】∵ 复数z =(1+mi)(1+i)=1−m +(1+m)i 在复平面内对应的点位于实轴上, ∴ 1+m =0,即m =−1.4. 定义在R 上的函数f(x)=2x −1的反函数为y =f −1(x),则f −1(3)=________ 【答案】 2【考点】 反函数 【解析】求出函数的解析式,代值计算即可. 【解答】∵ f(x)=2x −1,∴ y =f −1(x)=log 2(x +1), ∴ f −1(3)=2.5. 直线l 的参数方程为{x =1+ty =−1+2t (t 为参数),则l 的一个法向量为________【答案】 (2, −1) 【考点】直线的参数方程 【解析】根据题意,将直线的参数方程变形为普通方程,分析可得直线l 的方向向量,进而由方向向量的定义分析可得答案. 【解答】根据题意,直线l 的参数方程为{x =1+ty =−1+2t ,则直线的普通方程2x −y −3=0, 其一个方向向量为(1, 2), 则其一个法向量为(2, −1);6. 已知数列{a n },其通项公式为a n =3n +1,n ∈N ∗,{a n }的前n 项和为S n ,则limn→∞S nn∗a n=________【答案】 12【考点】数列的求和 数列的极限 【解析】由等差数列的求和公式和极限的运算性质,计算可得所求值. 【解答】数列{a n },其通项公式为a n =3n +1,n ∈N ∗, {a n }的前n 项和为S n , 可得S n =12n(4+3n +1)=3n 2+5n2,则limn→∞S nn∗a n=limn→∞3n 2+5n2n(3n+1)=lim n→∞3+5n 6+2n=3+06+0=12,7. 已知向量a →、b →的夹角为60∘,|a →|=1,|b →|=2,若(a →+2b →)⊥(xa →−b →),则实数x 的值为________ 【答案】 3【考点】平面向量数量积的性质及其运算律 【解析】根据题意,由数量积的计算公式可得a →⋅b →的值,又由向量垂直与向量数量积的关系可得(a →+2b →)⋅(xa →−b →)=xa →2+a →⋅b →+2xa →⋅b →−2b →2=x +(2x −1)−8=0,解可得x的值,即可得答案. 【解答】根据题意,向量a →、b →的夹角为60∘,|a →|=1,|b →|=2,则a →⋅b →=1×2×12=1,若(a →+2b →)⊥(xa →−b →),则(a →+2b →)⋅(xa →−b →)=xa →2−a →⋅b →+2xa →⋅b →−2b →2=x +(2x −1)−8=0, 解可得x =3;8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为________ 【答案】 16π【考点】球的体积和表面积 【解析】先求出球的半径,然后利用球的半径、球心到平面α的距离,平面α截球所得圆面的半径三者满足勾股定理可计算出截面圆的半径,从而求出截面圆的面积. 【解答】设球的半径为R ,球心到平面α的距离为d ,平面α截球所得圆面的半径为r ,则d =3, 由于球的表面积为100π,即4πR 2=100π,则R =5, 由勾股定理可得r =2−d 2=√52−32=4,因此,平面α截球所得圆面的面积为πr 2=π×42=16π,9. 若平面区域的点(x, y)满足不等式|x|k+|y|4≤1(k >0),且z =x +y 的最小值为−5,则常数k =________ 【答案】 5【考点】 简单线性规划 【解析】画出约束条件的可行域,利用目标函数的最小值,转化求解k即可.【解答】平面区域的点(x, y)满足不等式|x|k +|y|4≤1(k>0),可行域如图:可知图象|x|k +|y|4=1(k>0),经过点(−5, 0),目标函数取得最小值,∴k=510. 若函数f(x)=log a(x2−ax+1)(a>0且a≠1)没有最小值,则a的取值范围是________【答案】(0, 1)∪[2, +∞)【考点】对数函数的图象与性质【解析】当0<a<1时,没有最小值,当a>1时,即x2−ax+1≤0有解,△=a2−4≥0,解得a≥2,由此能求出a的取值范围.【解答】函数f(x)=log a(x2−ax+1)(a>0且a≠1)没有最小值,当0<a<1时,没有最小值,当a>1时,即x2−ax+1≤0有解,∴△=a2−4≥0,解得a≥2,综上,a的取值范围是(0, 1)∪[2, +∞).11. 设x1,x2,x3,x4∈{−1, 0, 2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数对(x1, x2, x3, x4)的组数为________【答案】45【考点】分类加法计数原理【解析】根据分类计数原理可得.【解答】①|x1|+|x2|+|x3|+|x4|=2,0+0+0+2=2,有4种,1+0+1+0=2,有6种,故有10组;②:|x1|+|x2|+|x3|+|x4|=3,0+1+1+1=3,有4种,0+1+2+0=3,有C41C31=12种,故有16组;③:|x1|+|x2|+|x3|+|x4|=4,1+1+1+1=4,有1种,0+1+1+2=4,有C41C31=12种,0+0+2+2=4,有12C41C31=6种,故有19组;综上,共45组,12. 设n∈N∗,a n为(x+4)n−(x+1)n的展开式的各项系数之和,c=34t−2,t∈R,b n=[a15]+[2a252]+...+[na n5n]([x]表示不超过实数x的最大整数),则(n−t)2+(b n+c)2的最小值为________ 【答案】425【考点】二项式定理的应用【解析】令x=1可得,a n=5n−2n,[na n5n ]=[n−n∗2n5nbrack=n−1,b n=n2−n2,则(n−t)2+(b n+c)2的几何意义为点(n, n2−n2)(n∈N∗)到点(t, 2−34t)的距离,然后由点到直线的距离公式求解即可得答案.【解答】令x=1可得,a n=5n−2n,[na n5n ]=[n−n∗2n5nbrack=n−1,b n=[a15]+[2a252]+...+[na n5n]=1+2+...+(n−1)=n2−n2,则(n−t)2+(b n+c)2的几何意义为点(n, n2−n2)(n∈N∗)到点(t, 2−34t)的距离的平方,最小值即(2, 1)到y=2−34x的距离d的平方,∵d=√32+42=0.4,∴(n−t)2+(b n+c)2的最小值为425.二.选择题(本大题共4题,每题5分,共20分)“xy=0”是“x=0且y=0”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】根据充分条件和必要条件的定义进行判断即可.【解答】由xy=0得x=0或y=0,即当x=0,y≠0时,也成立,但x=0且y=0不成立,若x=0且y=0,则xy=0成立,即“xy=0”是“x=0且y=0”成立的必要不充分条件,如图,点A、B、C分别在空间直角坐标系O−xyz的三条坐标轴上,OC→=(0, 0, 2),平面ABC的法向量为n→=(2, 1, 2),设二面角C−AB−O的大小为θ,则cosθ=()A.43B.√53C.23D.−23【答案】 C【考点】二面角的平面角及求法 【解析】 利用cosθ=OC →∗n→|OC →|∗|n →|直接求解.【解答】∵ 点A 、B 、C 分别在空间直角坐标系O −xyz 的三条坐标轴上, OC →=(0, 0, 2),平面ABC 的法向量为n →=(2, 1, 2), 二面角C −AB −O 的大小为θ, ∴ cosθ=OC →∗n→|OC →|∗|n →|=42×3=23.已知等比数列{a n }的前n 项和为S n ,则下列判断一定正确的是( ) A.若S 3>0,则a 2018>0 B.若S 3<0,则a 2018<0C.若a 2>a 1,则2019>a 2018D.若1a 2>1a 1,则a 2019<a 2018【答案】 D【考点】等比数列的前n 项和 【解析】A .反例,a 1=1,a 2=−2,a 3=4,即可判断出正误;B .反例,a 1=−4,a 2=2,a 3=−1,即可判断出正误;C .反例同B 反例; 进而判断出D 的正误. 【解答】A .反例,a 1=1,a 2=−2,a 3=4,则a 2008<0;B .反例,a 1=−4,a 2=2,a 3=−1,则a 2008>0;C .反例同B 反例,a 2019<0<a 2018;给出下列三个命题:命题1:存在奇函数f(x)(x ∈D 1)和偶函数g(x)(x ∈D 2),使得函数f(x)g(x)(x ∈D 1∩D 2))是偶函数;命题2:存在函数f(x)、g(x)及区间D ,使得f(x)、g(x)在D 上均是增函数,但f(x)g(x)在D上是减函数;命题3:存在函数f(x)、g(x)(定义域均为D),使得f(x)、g(x)在x=x0(x o∈D)处均取到最大值,但f(x)g(x)在x=x0处取到最小值;那么真命题的个数是()A.0B.1C.2D.3【答案】D【考点】命题的真假判断与应用【解析】根据题意,举例说明命题是否正确即可.【解答】对于命题1,当f(x)=g(x)=0,x∈R时;满足f(x)是奇函数,g(x)是偶函数,且f(x)g(x)是偶函数;对于命题2,当f(x)=g(x)=x,x∈(−∞, 0)时,满足f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;对于命题3:当f(x)=g(x)=−x2,x∈R时,f(x)、g(x)在x=0处均取到最大值,但f(x)g(x)在x=0处取到最小值;综上,命题1,2,3均为真命题.三.解答题(本大题共5题,共14+14+14+16+18=76分)如图所示,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别是AB、CC1的中点.(1)求三棱锥E−DFC的体积;(2)求异面直线A1E与D1F所成的角的大小.【答案】∵在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别是AB、CC1的中点.∴点E到平面DFC的距离d=AD=2S△DFC=12×FC×DC=12×1×2=1,∴三棱锥E−DFC的体积V=13×S△DFC×d=13×1×2=23.取BB1的中点G,连结A1G,EG,则A1G // D1F,∴∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),∵A1G=√A1B12+B1G2=√4+1=√5,A1E=A1G=√5,EG=√BE2+BG2=√1+1=√2,∴cos∠EA1G=A1E2+A1G2−EG22×A1E×A1G =2×5×5=45,∴∠EA1G=arccos45,∴异面直线A1E与D1F所成角为arccos45.【考点】柱体、锥体、台体的体积计算异面直线及其所成的角【解析】(1)点E到平面DFC的距离d=AD=S△DFC=12×FC×DC=12×1×2=1,由此能求出三棱锥E−DFC的体积.(2)取BB1的中点G,连结A1G,EG,则A1G // D1F,从而∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),由此能求出异面直线A1E与D1F所成角.【解答】∵在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别是AB、CC1的中点.∴点E到平面DFC的距离d=AD=2S△DFC=12×FC×DC=12×1×2=1,∴三棱锥E−DFC的体积V=13×S△DFC×d=13×1×2=23.取BB1的中点G,连结A1G,EG,则A1G // D1F,∴∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),∵A1G=√A1B12+B1G2=√4+1=√5,A1E=A1G=√5,EG=√BE2+BG2=√1+1=√2,∴cos∠EA1G=A1E2+A1G2−EG22×A1E×A1G =2×√5×√5=45,∴∠EA1G=arccos45,∴异面直线A1E与D1F所成角为arccos45.已知函数f(x)=√3sinωx+cosωx.(1)当f(−π3)=0,且|ω|<1,求ω的值;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=√3,b+c=3,当ω=2,f(A)=1时,求bc的值.【答案】函数f(x)=√3sinωx+cosωx=2sin(ωx+π6).∵f(−π3)=0,即−πω3+π6=kπ,k∈Z且|ω|<1,∴ω=12.由ω=2,f(A)=1,即2sin(2A+π6)=1∵0<A<π∴A=π3由余弦定理,cosA=b2+c2−a22bc即bc=(b+c)2−bc−a2解得:bc=2.【考点】三角函数中的恒等变换应用正弦函数的图象【解析】(1)利用辅助角公式化简,f(−π3)=0,且|ω|<1,即可求解ω的值;(2)由a=√3,b+c=3,当ω=2,f(A)=1时,利用余弦定理即可求解bc的值.【解答】函数f(x)=√3sinωx+cosωx=2sin(ωx+π6).∵f(−π3)=0,即−πω3+π6=kπ,k∈Z且|ω|<1,∴ω=12.由ω=2,f(A)=1,即2sin(2A+π6)=1∵0<A<π∴A=π3由余弦定理,cosA=b2+c2−a22bc即bc=(b+c)2−bc−a2解得:bc=2.某公司利用APP线上、实体店线下销售产品A,产品A在上市20天内全部售完,据统计,线上日销售量f(t)、线下日销售量g(t)(单位:件)与上市时间t(t∈N∗)天的关系满足:f(t)={10t,1≤t ≤10−10t +200,10<t ≤20 ,g(t)=−t 2+20t(1≤t ≤20),产品A 每件的销售利润为ℎ(t)={40;1≤t ≤1520;15<t ≤20 (单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为F(t),写出F(t)的函数解析式;(2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元? 【答案】F(t)={40(−t 2+30t),1≤t ≤1040(−t 2+10t +200),10<t ≤1520(−t 2+10t +200),15<t ≤20.令F(t)≥5000,①当1≤t ≤10时,40(−t 2+30t)≥5000,解得5≤t ≤25, ∴ 5≤t ≤10.②当10<t ≤15时,40(−t 2+10t +200)≥5000,解得−5≤t ≤15, ∴ 10<t ≤15.③当15<t ≤20时,20(−t 2+10t +200)≥5000,方程无解. 综上,5≤t ≤15.∴ 产品上市的第5天到第15天给公司带来的日销售利润不低于5000元. 【考点】根据实际问题选择函数类型 【解析】(1)根据利润公式和产品销量得出F(t)的解析式; (2)分情况解不等式得出t 的范围. 【解答】F(t)={40(−t 2+30t),1≤t ≤1040(−t 2+10t +200),10<t ≤1520(−t 2+10t +200),15<t ≤20.令F(t)≥5000,①当1≤t ≤10时,40(−t 2+30t)≥5000,解得5≤t ≤25, ∴ 5≤t ≤10.②当10<t ≤15时,40(−t 2+10t +200)≥5000,解得−5≤t ≤15, ∴ 10<t ≤15.③当15<t ≤20时,20(−t 2+10t +200)≥5000,方程无解. 综上,5≤t ≤15.∴ 产品上市的第5天到第15天给公司带来的日销售利润不低于5000元.已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0),其左、右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,过F 2的直线l 交椭圆Γ于P 、Q 两点,sin∠BF 1O =√33. (1)若直线l 垂直于x 轴,求|PF 1||PF 2|的值;(2)若b =√2,直线l 的斜率为12,则椭圆Γ上是否存在一点E ,使得F 1、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →,当b 的取值最小时,求直线l 的倾斜角α. 【答案】∵ sin∠BF 1O =√33,∴ ba =√33,∴ c =√a 2−b 2=√2b ,∴ 直线l 的方程为:x =√2b .把x =√2b 代入椭圆方程可得:2b 23b +y 2b =1,解得y P =√33b ,∴ |PF 2|=√33b ,∴ |PF 1|=√4c 2+(√33b)2=5√33b ,∴ |PF 1||PF 2|=5.b =√2时,椭圆的标准方程为:x 26+y 22=1.c =2.F 2(2, 0),直线l 的方程为:y =12(x −2), 设点关于l 对称点E(m, n),则n2=12(2+m2−2),nm−2×12=−1,解得m =−25,n =−165,即E(−25, −165). 代入椭圆方程:425×6+16225×2≠1,因此点E 不在椭圆上.设l:y =k(x −√2b),(k <0) 代入椭圆的方程可得:x 23b 2+k 2(x−√2b)2b 2=1,化为:(1+3k 2)x 2−6√2k 2bx +6k 2b 2−3b 2=0, ∴ x 1+x 2=6√2k 2b 1+3k 2, ∵ 直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →, ∴ 点M 是线段PQ 的中点.∴ x M =3√2k 2b 1+3k 2,y M =k(3√2k 2b1+3k2−√2b)=√6,解得:b =−√3(1+3k 2)k,∴ x M =−3√6k ,可得M(−3√6k,√6), ∴ b =−√3(1+3k 2)k=−√3k−3√3k ≥6,当且仅当k =−√33时,b 取得最小值6.直线l 的倾斜角α满足:tanα=−√33,α=5π6.【考点】 椭圆的定义【解析】(1)由sin∠BF 1O =√33,可得b a =√33,c =√a 2−b 2=√2b ,可得直线l 的方程为:x =√2b .把x =√2b 代入椭圆方程可得:2b 23b 2+y 2b 2=1,解得y P ,可得|PF 2|,|PF 1|.即可得出|PF 1||PF 2|.(2)b =√2时,椭圆的标准方程为:x 26+y 22=1.c =2.F 2(2, 0),直线l 的方程为:y =12(x −2),设点关于l 对称点E(m, n),则n2=12(2+m 2−2),n m−2×12=−1,解出代入椭圆方程验证即可得出结论.(3)设l:y =k(x −√2b),(k <0).代入椭圆的方程可得:x 23b 2+k 2(x−√2b)2b 2=1,化为:(1+3k 2)x 2−6√2k 2bx +6k 2b 2−3b 2=0,根据直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →,可得点M 是线段PQ 的中点.利用根与系数的关系、中点坐标公式可得:b =−√3(1+3k 2)k,即可得出.【解答】∵ sin∠BF 1O =√33,∴ b a =√33,∴ c =√a 2−b 2=√2b ,∴ 直线l 的方程为:x =√2b .把x =√2b 代入椭圆方程可得:2b 23b2+y 2b 2=1,解得y P =√33b ,∴ |PF 2|=√33b ,∴ |PF 1|=(√33=5√33b ,∴ |PF 1||PF 2|=5.b =√2时,椭圆的标准方程为:x 26+y 22=1.c =2.F 2(2, 0),直线l 的方程为:y =12(x −2), 设点关于l 对称点E(m, n),则n2=12(2+m2−2),n m−2×12=−1,解得m =−25,n =−165,即E(−25, −165). 代入椭圆方程:425×6+16225×2≠1,因此点E 不在椭圆上. 设l:y =k(x −√2b),(k <0) 代入椭圆的方程可得:x 23b 2+k 2(x−√2b)2b 2=1,化为:(1+3k 2)x 2−6√2k 2bx +6k 2b 2−3b 2=0,∴ x 1+x 2=6√2k 2b1+3k2,∵ 直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →,∴ 点M 是线段PQ 的中点.∴ x M =3√2k 2b 1+3k2,y M =k(3√2k 2b1+3k2−√2b)=√6,解得:b =−√3(1+3k 2)k,∴ x M =−3√6k ,可得M(−3√6k,√6), ∴ b =−√3(1+3k 2)k=−√3k−3√3k ≥6,当且仅当k =−√33时,b 取得最小值6.直线l 的倾斜角α满足:tanα=−√33,α=5π6.无穷数列{a n }(n ∈N ∗),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,a n+1,a n+2,…a n+t 中至少有一个等于a n ,则称数列{a n } 具有性质T ,集合P ={p|p =a n , n ∈N ∗}.(1)若a n =(−1)n ,n ∈N ∗,判断数列{a n } 是否具有性质T ;(2)数列{a n } 具有性质T ,且a 11,a 4=3,a 8=2,P ={1, 2, 3},求a 20的值;(3)数列{a n } 具有性质T ,对于P 中的任意元素p i ,a i k 为第k 个满足a i k =p i 的项,记b k =i k+1−i k (k ∈N ∗),证明:“数列{b k }具有性质T ”的充要条件为“数列{a n } 是周期为t 的周期数列,且每个周期均包含t 个不同实数”. 【答案】∵ a n =(−1)n ,∴ {a n }是由2个不同元素组成的无穷数列,且是周期为2的周期数列, 故t =2,{a n }是周期为2的周期数列,对任意的正整数n ,有a n+2=a n ,满足性质T 的条件, 故数列{a n } 具有性质T ;由a 1=1,a 4=3,a 8=2,P ={1, 2, 3},可知t =3,考虑a 8后面连续三项a 9,a 10,a 11,若a 11≠2,由a 8=2及T 性质知,a 9,a 10中必有一个数为2,于是,a 8,a 9,a 10中有两项为2,故必有1或3不在其中,不妨设为i(i =1或3),考虑a 1,a 2,…,a 7中,最后一个等于i 的项,则该项的后三项均不等于i ,故不满足性质T 中的条件,矛盾,于是a 11=2. 同理可得:a 14=a 17=a 20=2;证明:充分性、由数列{a n } 是周期为t 的周期数列,每个周期均包含P 中t 个不同元素, 对于P 中的任意元素p i ,a i k 为第k 个满足a i k =p i 的项,故由周期性得:i k+1=i k +t , 于是,b k =i k+1−i k =t ,数列{b k }为常数列,显然满足性质T .必要性、取足够大的N ,使a 1,a 2,a 3,…,a N 包含P 中t 个所有互不相等的元素,考虑a N 后的连续t 项a N+1,a N+2,…,a N+t ,对于P 中任意元素p i ,必等于a N+1,a N+2,…,a N+t 中的某一个,否则考虑a 1,a 2,…,a N 中最后一个等于p i 的项,该项不满足性质T 中的条件,矛盾. 由p i 的任意性知,a N+1,a N+2,…,a N+t 这t 个元素恰好等于P 中t 个互不相同的元素, 再由数列{a n } 性质T 中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…于是对于P 中的任意元素p i ,存在N′,有b k =i k+1−i k =t(n ≥N′),即数列{b N′+k }为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列,故数列{a n}是“周期为t的周期数列,且每个周期均包含t个不同实数”.【考点】数列的应用【解析】(1)由数列通项公式可得{a n}是由2个不同元素组成的无穷数列,且是周期为2的周期数列,对任意的正整数n,有a n+2=a n,满足性质T的条件,故数列{a n}具有性质T;(2)由题意可知t=3,考虑a8后面连续三项a9,a10,a11,由反证法说明a11= 2.同理可得:a14=a17=a20=2;(3)充分性、由数列{a n}是周期为t的周期数列,每个周期均包含P中t个不同元素,对于P中的任意元素p i,a ik 为第k个满足a ik=p i的项,由周期性得i k+1=i k+t,可得b k=i k+1−i k=t,则数列{b k}为常数列,满足性质T.必要性、取足够大的N,使a1,a2,a3,…,a N包含P中t个所有互不相等的元素,考虑a N后的连续t项a N+1,a N+2,…,a N+t,对于P中任意元素p i,必等于a N+1,a N+2,…,a N+t中的某一个,否则考虑a1,a2,…,a N中最后一个等于p i的项,该项不满足性质T中的条件,矛盾.由p i的任意性知,a N+1,a N+2,…,a N+t这t个元素恰好等于P中t个互不相同的元素,再由数列{a n}性质T中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…,于是对于P中的任意元素p i,存在N′,有b k=i k+1−i k=t(n≥N′),即数列{b N′+k}为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列.【解答】∵a n=(−1)n,∴{a n}是由2个不同元素组成的无穷数列,且是周期为2的周期数列,故t=2,{a n}是周期为2的周期数列,对任意的正整数n,有a n+2=a n,满足性质T的条件,故数列{a n}具有性质T;由a1=1,a4=3,a8=2,P={1, 2, 3},可知t=3,考虑a8后面连续三项a9,a10,a11,若a11≠2,由a8=2及T性质知,a9,a10中必有一个数为2,于是,a8,a9,a10中有两项为2,故必有1或3不在其中,不妨设为i(i=1或3),考虑a1,a2,…,a7中,最后一个等于i的项,则该项的后三项均不等于i,故不满足性质T中的条件,矛盾,于是a11=2.同理可得:a14=a17=a20=2;证明:充分性、由数列{a n}是周期为t的周期数列,每个周期均包含P中t个不同元素,对于P中的任意元素p i,a ik 为第k个满足a ik=p i的项,故由周期性得:i k+1=i k+t,于是,b k=i k+1−i k=t,数列{b k}为常数列,显然满足性质T.必要性、取足够大的N,使a1,a2,a3,…,a N包含P中t个所有互不相等的元素,考虑a N后的连续t项a N+1,a N+2,…,a N+t,对于P中任意元素p i,必等于a N+1,a N+2,…,a N+t中的某一个,否则考虑a1,a2,…,a N中最后一个等于p i的项,该项不满足性质T中的条件,矛盾.由p i的任意性知,a N+1,a N+2,…,a N+t这t个元素恰好等于P中t个互不相同的元素,再由数列{a n}性质T中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…于是对于P中的任意元素p i,存在N′,有b k=i k+1−i k=t(n≥N′),即数列{b N′+k}为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列,故数列{a n}是“周期为t的周期数列,且每个周期均包含t个不同实数”.。

2018届闵行区高三二模数学考试(含解答)

2018届闵行区高三二模数学考试(含解答)

市闵行区2018届高三二模数学试卷一.填空题(本大题共12题,1・6每题4分,7・12每题5分,共54分)2 21.双曲线二一二=1(6/>0)的渐近线方程为3x±2y = 0,则。

= ______________9(\ ? c\fr = 1()2•若二元一次方程组的增广矩阵是1,其解为「二,则q+q=3.设meR,若复数z = (l +〃4)(1 +。

在复平而对应的点位于实轴上,则〃?=4.定义在R上的函数/(幻=2'-1的反函数为y = /7(x),则尸⑶=5.直线/的参数方程为《一.八(/为参数),则/的一个法向量为y = -\ + 2tC6.已知数列{〃〃},其通项公式为q=3〃 + 1, 〃£“,{/}的前〃项和为S”,则lim—」一二J—〃. a7.已知向量a、/;的夹角为60。

,1/7 1=2,若(〃 + 2/;),(刈一/;),则实数x的值为8.若球的表面积为100%,平而。

与球心的距离为3,则平而。

截球所得的圆面面积为一9.若平而区域的点(.y)满足不等式巴+ 1](1 (攵>0),且z = x+y的最小值为一5, k 4则常数%=10.若函数/(x) = logaCT—ax + l)(4>0且aH1)没有最小值,则。

的取值围是11.设为/2,0xw{T,°,2},那么满足29% 1 + 1勺1 + 1勺+ MK4的所有有序数对(% ,七,刍,A4)的组数为312.设〃wN ,。

“为(x + 4)〃—(x + l)〃的展开式的各项系数之和,c =」/ —2, feR, 4(bl表示不超过实数X的最大整数),则(〃一尸+(2+。

尸=1凯争H…的最小值为二.选择题(本大题共4题,每题5分,共20分)13. “冷,=0” 是“x = 0且),=0” 成立的( )A.充分非必要条件B.必要非充分条件C.充要条件D,既非充分也非必要条件14.如图,点A、B、。

上海市松江、闵行区2018届高三下学期质量监控(二模)数学---精校解析Word版

上海市松江、闵行区2018届高三下学期质量监控(二模)数学---精校解析Word版

闵行区、松江区2017-2018学年第二学期高三年级质量调研考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 双曲线的渐近线方程为,则_____________.【答案】【解析】试题分析:双曲线的渐近线为,因为与重合,所以.考点:双曲线的渐近线.2. 若二元一次方程组的增广矩阵是,其解为则______.【答案】【解析】由题意可知,二元一次方程组的解为:,即:,据此可得:.3. 设,若复数在复平面内对应的点位于实轴上,则______.【答案】【解析】,复数在复平面内对应的点位于实轴上,则复数的虚部为零,,解得:.4. 定义在上的函数的反函数为,则________.【答案】【解析】求解指数方程:可得:,由反函数的定义与性质可得.5. 直线的参数方程为(为参数),则的一个法向量为__________.【答案】不唯一【解析】消去参数可得直线的普通方程为:,整理为一般式即:,则直线的法向量可以是(不唯一,与之平行即可).6. 已知数列,其通项公式为,,的前项和为,则_________.【答案】【解析】由数列的通项公式可得数列为等差数列,且,则其前n项和,故,则.7. 已知向量、的夹角为,,,若,则实数的值为___________.【答案】【解析】由题意可得:,且,则:,据此有:,解得:.8. 若球的表面积为,平面与球心的距离为,则平面截球所得的圆面面积为__________.【答案】【解析】设球的半径为,则,解得:,设截面圆的半径为,则,则平面截球所得的圆面面积.9. 若平面区域的点满足不等式,且的最小值为,则常数_______. 【答案】【解析】绘制不等式表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点处取得最小值,即:.若约束条件中含参数,可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值10. 若函数没有最小值,则的取值范围是____________.【答案】【解析】分类讨论:当时,,函数没有最小值,当时,应满足有解,故,综上可得,的取值范围是.11. 设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:①,则这四个数为或,有组;②,则这四个数为或,有组;③,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.12. 设,为的展开式的各项系数之和,,,表示不超过实数的最大整数.则的最小值为___________. 【答案】【解析】利用赋值法,令可得:,,利用数学归纳法证明:,当时,成立,假设当时不等式成立,即,当时:据此可知命题成立,则,,,故,的几何意义为点到点的距离,如图所示,最小值即到的距离,由点到直线距离公式可得的最小值为.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

2018年上海市闵行区中考数学二模试卷及答案(解析版)

2018年上海市闵行区中考数学二模试卷及答案(解析版)

2018年上海市闵行区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:+(﹣1)2018﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC 的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.2018年上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)2【分析】根据单项式的定义即可求出答案.【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD 是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【分析】根据圆心到直线的距离d与半径r的大小关系解答.【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【分析】原式利用绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【分析】符合平方差公式的特点,可以直接分解.平方差公式a2﹣b2=(a+b)(a ﹣b).【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【分析】本题思路是两边平方后去根号,解方程.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【分析】由根的情况,由根的判别式可得到关于m的不等式,则可求得m的取值范围.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【分析】根据互相平行的直线的解析式的值相等确定出k,根据“截距为5”计算求出b值,即可得解.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为8.【分析】首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.【解答】解:根据题意,得:第一组到第四组的频率和是=0.7,又∵第五组的频率是0.10,∴第六组的频率为1﹣(0.7+0.10)=0.2,∴第六组的频数为:40×0.2=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=﹣(用、的式子表示).【分析】根据=+,只要求出、即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==,==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【分析】根据“亚旋转函数”的定义解答.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b 相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【分析】根据三角函数解答即可.【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为17.3米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【分析】根据题意需求AB长.由已知易知AB=BM,解直角三角形MNB求出BM 即AB,再求速度,与限制速度比较得结论.注意单位.【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【分析】过点C作CF⊥AB于点F,则四边形AFCD为矩形,根据矩形的性质可得出BF=5,结合cos∠ABC=,可得出CF的长度,进而可得出AD的长度,在Rt △BAD中利用勾股定理可求出BD的长度,由折叠的性质可得出BP=BA=12,再由PD=BD﹣BP即可求出PD的长度.【解答】解:过点C作CF⊥AB于点F,则四边形AFCD为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算:+(﹣1)2018﹣2cos45°+8.【分析】直接利用二次根式的性质和分数指数幂的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【分析】先将第二个方程分解因式可得:x﹣2y=0或x+y=0,分别与第一个方程组成新的方程组,解出即可.【解答】解:由②得:(x﹣2y)(x+y)=0,x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM【分析】(1)根据自变量与函数值的对应关系,可得A,B点坐标,根据勾股定理,可得A的长,根据锐角三角函数,可得AC,根据相似三角形的判定与性质,可得DC,AD,根据点的坐标,可得答案.(2)根据面积的和差,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)令y=0,则﹣2x+4=0,解得x=2,∴点A坐标是(2,0).令x=0,则y=4,∴点B坐标是(0,4).∴AB===2.∵∠BAC=90°,tan∠ABC==,∴AC=AB=.如图1,过C点作CD⊥x轴于点D,∠BAO+∠ABO=90°,∠BAO+∠CAD=90°,∵∴∠ABO=∠CAD,,∴△OAB∽△DAC.∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C坐标是(4,1).=AB•AC=×2×=5.(2)S△ABC=S△ABC,∵2S△ABM∴S=.△ABM∵M(1,m),∴点M在直线x=1上;令直线x=1与线段AB交于点E,ME=m﹣2;如图2,分别过点A、B作直线x=1的垂线,垂足分别是点F、G,∴AF+BG=OA=2;=S△BME+S△AME=ME•BG+ME•AF=ME(BG+AF)∴S△ABM=ME•OA=×2×ME=,∴ME=,m﹣2=,m=,∴M(1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【分析】根据题目中的关键语句“骑自行车所用时间比驾车所用时间多小时”,找到等量关系列出分式方程求解即可.【解答】解:设自行车的平均速度是x千米/时.根据题意,列方程得﹣=,解得:x1=15,x2=﹣30.经检验,x1=15是原方程的根,且符合题意,x2=﹣30不符合题意舍去.答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC 的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.【分析】(1)根据两角对应相等可得:△ABF∽△CBD,列比例式得:,则BF•BC=AB•BD.(2)先根据三角形全等证明:AF=FG,再根据两组对边分别平行证明:四边形ADGF是平行四边形,所以四边形ADGF是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•BD.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【分析】(1)将A(1,0)、C(0,3)代入抛物线的解析式可求得关于a、c的方程组,解得a、c的值可求得抛物线的解析式,最后依据配方法可求得抛物线的顶点坐标;(2)首先求得A点的坐标,即可证得OA=OC=3.得出∠CAO=∠OCA,然后根据勾股定理求得AD、DC、AC,进一步证得△ACD是直角三角形且∠ACD=90°,解直角三角形得出tan∠OCB==,tan∠DAC==,即可证得∠DAC=∠OCB,进而求得∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,由已知得出QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得出x﹣2+2y=0,然后与抛物线的解析式联立方程,解方程即可求得.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【分析】(1)先利用勾股定理AB=10,进而EH=x,EH=x,FH=x,利用勾股定理建立函数关系式;(2)先判断出∠CAE=∠EBP=∠ABC,进而得出△BEH≌△BEG,即可求出BE,即可得出结论;(3)分两种情况,讨论进行判断即可得出结论.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,BH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形。

2018届上海市闵行区高三下学期教育质量调研考试(二模)

2018届上海市闵行区高三下学期教育质量调研考试(二模)

2018届上海市闵行区高三下学期教育质量调研考试(二模)上海市闵行区2018届高三下学期教育质量调研考试(二模)地理试题(考试时间120分钟满分150分)考生注意:1.全卷共11页,包括两大题,第一大题(1-30小题)为选择题,第二大题(31-54小题)为综合分析题。

第二大题综合分析题包括共同部分(31-46小题)和选择部分(47-54小题)。

所有考生应完成第一大题和第二大题的共同部分试题;第二大题的选择部分分为A、B 两组,两组试题分值相同:A组(47-50小题)为考试手册中“任选模块一”的试题,B组(51-54小题)为“任选模块二”的试题;考生须任选一组答题,如果考生应答了两组试题,只对A组的应答进行评分。

2.请将全部答案写在答题纸上。

3.答题前,先将自己的姓名、学校填写清楚,并填涂准考证号,请仔细核对。

答题时选择题用2B铅笔按要求涂写,综合分析题用黑色水笔填写。

4.考试后只交答题纸,试卷由自己保留。

一、选择题(每小题只有一个正确答案。

每小题2分,共60分)(一)“Hi,有人在吗?”,2月13日(农历正月十四)早上849,休眠了十几天的“月球车玉兔”微博再次发声,一句简单的问候立刻引发了8万多次转发和5万余条评论。

1.玉兔的供电系统自其顶部的太阳能电池板,下列选项正确的是:A.玉兔每天600醒1800入眠B.玉兔休眠状态发生在月球进入月夜的时候C.月球自转一周的时间约需十几天D.早上849,玉兔大约位于上海的正南方2.人类把月球作为宇宙空间探测的第一站的主要原因是月球A.有高真空、强辐射、微重力的环境B.是距离地球最近的自然天体C.昼夜周期较长D.体积小,容易探测3.满月一般发生在农历十五,近两年元宵月却都是“十五的月亮十七圆”,根本原因是A.29.53天只是月相变化的平均周期B.月球的自转周期与公转周期相同C.朔望月比恒星月多2.21日D.白道面与黄道面有5o09′的交角(二)地球表面时刻不停地进行着水循环,读下图回答:4.据图中水平衡数值的大小判断A.低纬度地区大;降水多,蒸发弱B.低纬度地区小;降水少,蒸发弱C.高纬度地区大;降水多,蒸发弱D.高纬度地区小;降水少,蒸发弱5.从图中不同纬度海陆水平衡的差异可以推断出A.形成陆地降水的水汽主要自中低纬度海洋B.形成海洋降水的水汽主要自大陆C.形成陆地降水的水汽主要自高纬度海洋D.形成陆地降水的水汽主要自陆地(三)如右图,一艘轮船沿图中的航线从印度洋驶向大西洋,行进到①处时正看到海上日落,此时刚好是北京时间000。

(完整word版)2018闵行区初三数学二模试卷及参考答案评分标准

(完整word版)2018闵行区初三数学二模试卷及参考答案评分标准

2018闵行区初三数学二模试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=; (C )325a a a ⋅=;(D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限.4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差. 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形; (B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o 时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:21+2-= ▲ .8.在实数范围内分解因式:243x -= ▲ . 91=的解是 ▲ .10.已知关于x 的方程230x x m --=没有实数根,那么m 的取值范围是 ▲ .11.已知直线(0)y kx b k =+≠与直线13y x =-平行,且截距为5,那么这条直线的解析式为 ▲ .12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是 ▲ .13.已知一个40个数据的样本,把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是 ▲ .14.如图,已知在矩形ABCD 中,点E 在边AD 上,且AE = 2ED .设BA a =uu r r ,BC b =uu u r r,那么CE =uu u r▲ (用a r 、b r 的式子表示).15.如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足1a 与2a 互为相反数,1b 与2b 相等,1c 与2c 互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数232y x x =-+-的“亚旋转函数”为 ▲ .16.如果正n 边形的中心角为2α,边长为5,那么它的边心距为 ▲ .(用锐角α的三角比表示)17.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o ,点B 的俯角为60o .那么此车从A 到B 的平均速度为 ▲ 米/秒.(结果保1.732≈1.414)18.在直角梯形ABCD 中,AB // CD ,∠DAB = 90o ,AB = 12,DC = 7,5cos 13ABC ∠=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)ABD C (第14题图)E ABDC(第18题图)B MN (第17题图) l120183(1)2cos45+8-+--o.20.(本题满分10分)解方程组:221;20.y xx xy y-=⎧⎨--=⎩21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x=-+的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC = 90o,tan ABC∠=(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点MC位于直线AB的同侧,使得ABCABMSS∆∆=2求点M的坐标.22.(本题满分10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多14小时,求自行车的平均速度?23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD 相交于点F,FG∥AC,联结DG.(1)求证:BF BC AB BD⋅=⋅;(2)求证:四边形ADGF是菱形.24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy中,抛物线22y ax x c=-+与x轴交于AE G CFD(第23题图)(第21题图)点A 和点B (1,0),与y 轴相交于点C (0,3). (1)求抛物线的解析式和顶点D 的坐标; (2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为底的等腰三角形,求Q 点的坐标. 25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o ,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合). (1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;(2)如果»»2EDEF ,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.(备用图)CBA (第25题图) CB EF D A2018闵行区数学二模参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.A ;4.B ;5.D ;6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.5; 8.2x x +-(; 9.1x =; 10.94m <-; 11.153y x =-+; 12.512; 13.8; 14.13a b -r r ; 15.2132y x x =+-; 16.5cot 2α(或52tan α);17.17.3; 18.12.三、解答题:(本大题共7题,满分78分) 19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)20.解:由②得:20x y -=,+0x y =…………………………………………(2分)原方程组可化为120y x x y -=⎧⎨-=⎩,10y x x y -=⎧⎨+=⎩………………………………(2分)解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩…………………………………(5分)∴原方程组的解是21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩……………………………………(1分)21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分)∴AB =.………………………………(1分)∵90BAC ∠=o ,1tan 2ABC ∠=,∴AC =.过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11522ABC S AB AC ∆=⋅=⨯=.………………………………(1分)∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分)∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)22.解:设自行车的平均速度是x 千米/时.………………………………………(1分)根据题意,列方程得7.57.51154x x -=+;……………………………………(3分)化简得:2154500x x +-=;………………………………………………(2分) 解得:115x =,230x =-;…………………………………………………(2分)经检验,115x =是原方程的根,且符合题意,230x =-不符合题意舍去.(1分)答:自行车的平均速度是15千米/时.………………………………………(1分)23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BF BC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠F AB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD , ∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C , ∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)24.解:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.……………………………………(2分)∴抛物线的解析式是:223y x x =--+.……………………………(1分) ∴顶点坐标D (-1,4).……………………………………………(1分) (2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO =∠OCA .…………………………………(1分)在Rt BOC ∆中,1tan 3OB OCB OC ∠==.………………………………(1分)∵AC =DC =AD =, ∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=o ,∴1tan 3DC DAC AC ∠==,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC =∠OCB .…………………(1分) ∴DAC CAO BCO OCA ∠+∠=∠+∠,即DAB ACB ∠=∠.……………………………………………………(1分) (3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-,化简得:220x y -+=.………………………………………………(1分) 由222023x y y x x -+=⎧⎨=--+⎩,……………………………………………………(1分)解得11118x y ⎧=⎪⎪⎨-⎪=⎪⎩,22118x y ⎧=⎪⎪⎨⎪=⎪⎩.∴点Q的坐标是⎝⎭,⎝⎭.…(2分)25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H ,易得:35EH x =,45BH x =,15FH x =.…………………………(1分)在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分)(2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EP EF=,BP过圆心,∴BG⊥ED,ED =2EG =2DG.…………(1分)又∵∠CEA =∠DEB,∴∠CAE=∠EBP=∠ABC.……………………………………………(1分)又∵BE是公共边,∴BEH BEG∆∆≌.∴35EH EG GD x===.在Rt△CEA中,∵AC = 6,8BC=,tan tan AC CECAE ABCBC AC∠=∠==,∴66339tan822CE AC CAE⨯⨯=⋅∠===.……………………………(1分)∴9169782222BE=-=-=.……………………………………………(1分)∴6672125525ED EG x===⨯=.……………………………………(1分)(3)四边形ABDC不可能为直角梯形.…………………………………(1分)①当CD∥AB时,如果四边形ABDC是直角梯形,只可能∠ABD =∠CDB = 90o.在Rt△CBD中,∵8BC=,∴32cos5CD BC BCD=⋅∠=,24sin5BD BC BCD BE =⋅∠==∴321651025CDAB==,32853245CEBE-==∴CD CE AB BE≠.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形.…………………………(2分)②当AC∥BD时,如果四边形ABDC只可能∠ACD =∠CDB = 90o.∵AC∥BD,∠ACB = 90o,∴∠ACB =∠CBD = 90o.∴∠ABD =∠ACB +∠BCD > 90o.与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC不可能为直角梯形.…………………………(2分)。

2018年上海市闵行区高考数学二模试卷(解析版)

2018年上海市闵行区高考数学二模试卷(解析版)

2018年上海市闵行区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)双曲线(a>0)的渐近线方程为3x±2y=0,则a=2.(4分)若二元一次方程组的增广矩阵是,其解为,则c1+c2=3.(4分)设m∈R,若复数z=(1+mi)(1+i)在复平面内对应的点位于实轴上,则m=4.(4分)定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=5.(4分)直线l的参数方程为(t为参数),则l的一个法向量为6.(4分)已知数列{a n},其通项公式为a n═3n+1,n∈N*,{a n}的前n项和为S n,则=7.(5分)已知向量、的夹角为60°,||=1,||=2,若()⊥(x),则实数x的值为8.(5分)若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为9.(5分)若平面区域的点(x,y)满足不等式(k>0),且z=x+y的最小值为﹣5,则常数k=10.(5分)若函数f(x)=log a(x2﹣ax+1)(a>0且a≠1)没有最小值,则a的取值范围是11.(5分)设x1,x2,x3,x4∈{﹣1,0,2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数对(x1,x2,x3,x4)的组数为12.(5分)设n∈N*,a n为(x+4)n﹣(x+1)n的展开式的各项系数之和,c=,t∈R,b n=[]+[]+…+[]([x]表示不超过实数x的最大整数),则(n﹣t)2+(b n+c)2的最小值为二.选择题(本大题共4题,每题5分,共20分)13.(5分)“xy=0”是“x=0且y=0”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)如图,点A、B、C分别在空间直角坐标系O﹣xyz的三条坐标轴上,=(0,0,2),平面ABC的法向量为=(2,1,2),设二面角C﹣AB﹣O的大小为θ,则cosθ=()A.B.C.D.15.(5分)已知等比数列{a n}的前n项和为S n,则下列判断一定正确的是()A.若S3>0,则a2018>0B.若S3<0,则a2018<0C.若a2>a1,则2019>a2018D.若,则a2019<a201816.(5分)给出下列三个命题:命题1:存在奇函数f(x)(x∈D1)和偶函数g(x)(x∈D2),使得函数f(x)g(x)(x∈D1∩D2))是偶函数;命题2:存在函数f(x)、g(x)及区间D,使得f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;命题3:存在函数f(x)、g(x)(定义域均为D),使得f(x)、g(x)在x=x0(x o∈D)处均取到最大值,但f(x)g(x)在x=x0处取到最小值;那么真命题的个数是()A.0B.1C.2D.3三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、CC1的中点.(1)求三棱锥E﹣DFC的体积;(2)求异面直线A1E与D1F所成的角的大小.18.(14分)已知函数f(x)=sinωx+cosωx.(1)当f(﹣)=0,且|ω|<1,求ω的值;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3,当ω=2,f(A)=1时,求bc的值.19.(14分)某公司利用APP线上、实体店线下销售产品A,产品A在上市20天内全部售完,据统计,线上日销售量f(t)、线下日销售量g(t)(单位:件)与上市时间t(t∈N*)天的关系满足:f(t)=,g(t)=﹣t2+20t(1≤t≤20),产品A每件的销售利润为h(t)=(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A的日销售利润为F(t),写出F(t)的函数解析式;(2)产品A上市的哪几天给该公司带来的日销售利润不低于5000元?20.(16分)已知椭圆Γ:(a>b>0),其左、右焦点分别为F1、F2,上顶点为B,O为坐标原点,过F2的直线l交椭圆Γ于P、Q两点,sin.(1)若直线l垂直于x轴,求的值;(2)若b=,直线l的斜率为,则椭圆Γ上是否存在一点E,使得F1、E关于直线l 成轴对称?如果存在,求出点E的坐标,如果不存在,请说明理由;(3)设直线l1:y=上总存在点M满足=2,当b的取值最小时,求直线l的倾斜角α.21.(18分)无穷数列{a n}(n∈N*),若存在正整数t,使得该数列由t个互不相同的实数组成,且对于任意的正整数n,a n+1,a n+2,…a n+t中至少有一个等于a n,则称数列{a n} 具有性质T,集合P={p|p=a n,n∈N*}.(1)若a n=(﹣1)n,n∈N*,判断数列{a n} 是否具有性质T;(2)数列{a n} 具有性质T,且a11,a4=3,a8=2,P={1,2,3},求a20的值;(3)数列{a n} 具有性质T,对于P中的任意元素p i,为第k个满足=p i的项,记b k=i k+1﹣i k(k∈N*),证明:“数列{b k}具有性质T”的充要条件为“数列{a n} 是周期为t的周期数列,且每个周期均包含t个不同实数”.2018年上海市闵行区高考数学二模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)双曲线(a>0)的渐近线方程为3x±2y=0,则a=2【解答】解:根据题意,双曲线的焦点在x轴上,其渐近线方程y=±x,若双曲线的渐近线方程为3x±2y=0,即y=±x则有=,则a=2;故答案为:2.2.(4分)若二元一次方程组的增广矩阵是,其解为,则c1+c2=40【解答】解:∵二元一次方程组的增广矩阵是,其解为,∴,∴c1+c2=10+30=40.故答案为:40.3.(4分)设m∈R,若复数z=(1+mi)(1+i)在复平面内对应的点位于实轴上,则m=﹣1【解答】解:∵复数z=(1+mi)(1+i)=1﹣m+(1+m)i在复平面内对应的点位于实轴上,∴1+m=0,即m=﹣1.故答案为:﹣1.4.(4分)定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=2【解答】解:∵f(x)=2x﹣1,∴y=f﹣1(x)=log2(x+1),∴f﹣1(3)=2.故答案为:2.5.(4分)直线l的参数方程为(t为参数),则l的一个法向量为(2,﹣1)【解答】解:根据题意,直线l的参数方程为,则直线的普通方程2x﹣y﹣3=0,其一个方向向量为(1,2),则其一个法向量为(2,﹣1);故答案为:(2,﹣1).6.(4分)已知数列{a n},其通项公式为a n═3n+1,n∈N*,{a n}的前n项和为S n,则=【解答】解:数列{a n},其通项公式为a n═3n+1,n∈N*,{a n}的前n项和为S n,可得S n=n(4+3n+1)=,则====,故答案为:.7.(5分)已知向量、的夹角为60°,||=1,||=2,若()⊥(x),则实数x的值为3【解答】解:根据题意,向量、的夹角为60°,||=1,||=2,则•=1×2×=1,若()⊥(x),则()•(x)=x2﹣•+2x•﹣22=x+(2x﹣1)﹣8=0,解可得x=3;故答案为:3.8.(5分)若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为16π【解答】解:设球的半径为R,球心到平面α的距离为d,平面α截球所得圆面的半径为r,则d=3,由于球的表面积为100π,即4πR2=100π,则R=5,由勾股定理可得,因此,平面α截球所得圆面的面积为πr2=π×42=16π,故答案为:16π.9.(5分)若平面区域的点(x,y)满足不等式(k>0),且z=x+y的最小值为﹣5,则常数k=5【解答】解:平面区域的点(x,y)满足不等式(k>0),可行域如图:可知图象(k>0),经过点(﹣5,0),目标函数取得最小值,∴k=5故答案为:5.10.(5分)若函数f(x)=log a(x2﹣ax+1)(a>0且a≠1)没有最小值,则a的取值范围是(0,1)∪[2,+∞)【解答】解:函数f(x)=log a(x2﹣ax+1)(a>0且a≠1)没有最小值,当0<a<1时,没有最小值,当a>1时,即x2﹣ax+1≤0有解,∴△=a2﹣4≥0,解得a≥2,综上,a的取值范围是(0,1)∪[2,+∞).故答案为:(0,1)∪[2,+∞).11.(5分)设x1,x2,x3,x4∈{﹣1,0,2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数对(x1,x2,x3,x4)的组数为45【解答】解:①|x1|+|x2|+|x3|+|x4|=2,0+0+0+2=2,有4种,1+0+1+0=2,有6种,故有10组;②:|x1|+|x2|+|x3|+|x4|=3,0+1+1+1=3,有4种,0+1+2+0=3,有C41C31=12种,故有16组;③:|x1|+|x2|+|x3|+|x4|=4,1+1+1+1=4,有1种,0+1+1+2=4,有C41C31=12种,0+0+2+2=4,有C41C31=6种,故有19组;综上,共45组,故答案为:45.12.(5分)设n∈N*,a n为(x+4)n﹣(x+1)n的展开式的各项系数之和,c=,t∈R,b n=[]+[]+…+[]([x]表示不超过实数x的最大整数),则(n﹣t)2+(b n+c)2的最小值为【解答】解:令x=1可得,,[]=,b n═[]+[]+…+[]=1+2+…+(n﹣1)=,则(n﹣t)2+(b n+c)2的几何意义为点(n,)(n∈N*)到点(t,)的距离的平方,最小值即(2,1)到的距离d的平方,∵d=,∴(n﹣t)2+(b n+c)2的最小值为.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)“xy=0”是“x=0且y=0”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:由xy=0得x=0或y=0,即当x=0,y≠0时,也成立,但x=0且y=0不成立,若x=0且y=0,则xy=0成立,即“xy=0”是“x=0且y=0”成立的必要不充分条件,故选:B.14.(5分)如图,点A、B、C分别在空间直角坐标系O﹣xyz的三条坐标轴上,=(0,0,2),平面ABC的法向量为=(2,1,2),设二面角C﹣AB﹣O的大小为θ,则cosθ=()A.B.C.D.【解答】解:∵点A、B、C分别在空间直角坐标系O﹣xyz的三条坐标轴上,=(0,0,2),平面ABC的法向量为=(2,1,2),二面角C﹣AB﹣O的大小为θ,∴cosθ===.故选:C.15.(5分)已知等比数列{a n}的前n项和为S n,则下列判断一定正确的是()A.若S3>0,则a2018>0B.若S3<0,则a2018<0C.若a2>a1,则2019>a2018D.若,则a2019<a2018【解答】解:A.反例,a1=1,a2=﹣2,a3=4,则a2008<0;B.反例,a1=﹣4,a2=2,a3=﹣1,则a2008>0;C.反例同B反例,a2019<0<a2018;故选:D.16.(5分)给出下列三个命题:命题1:存在奇函数f(x)(x∈D1)和偶函数g(x)(x∈D2),使得函数f(x)g(x)(x∈D1∩D2))是偶函数;命题2:存在函数f(x)、g(x)及区间D,使得f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;命题3:存在函数f(x)、g(x)(定义域均为D),使得f(x)、g(x)在x=x0(x o∈D)处均取到最大值,但f(x)g(x)在x=x0处取到最小值;那么真命题的个数是()A.0B.1C.2D.3【解答】解:对于命题1,当f(x)=g(x)=0,x∈R时;满足f(x)是奇函数,g(x)是偶函数,且f(x)g(x)是偶函数;对于命题2,当f(x)=g(x)=x,x∈(﹣∞,0)时,满足f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;对于命题3:当f(x)=g(x)=﹣x2,x∈R时,f(x)、g(x)在x=0处均取到最大值,但f(x)g(x)在x=0处取到最小值;综上,命题1,2,3均为真命题.故选:D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、CC1的中点.(1)求三棱锥E﹣DFC的体积;(2)求异面直线A1E与D1F所成的角的大小.【解答】解:(1)∵在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、CC1的中点.∴点E到平面DFC的距离d=AD=2S△DFC==1,∴三棱锥E﹣DFC的体积V==.(2)取BB1的中点G,连结A1G,EG,则A1G∥D1F,∴∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),∵A1G===,A1E=A1G=,EG===,∴cos∠EA1G===,∴∠EA1G=arccos,∴异面直线A1E与D1F所成角为arccos.18.(14分)已知函数f(x)=sinωx+cosωx.(1)当f(﹣)=0,且|ω|<1,求ω的值;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3,当ω=2,f(A)=1时,求bc的值.【解答】解:(1)函数f(x)=sinωx+cosωx=2sin(ωx).∵f(﹣)=0,即=kπ,k∈Z且|ω|<1,∴.(2)由ω=2,f(A)=1,即2sin(2A)=1∵0<A<π∴A=由余弦定理,cos A=即bc=(b+c)2﹣bc﹣a2解得:bc=2.19.(14分)某公司利用APP线上、实体店线下销售产品A,产品A在上市20天内全部售完,据统计,线上日销售量f(t)、线下日销售量g(t)(单位:件)与上市时间t(t∈N*)天的关系满足:f(t)=,g(t)=﹣t2+20t(1≤t≤20),产品A每件的销售利润为h(t)=(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A的日销售利润为F(t),写出F(t)的函数解析式;(2)产品A上市的哪几天给该公司带来的日销售利润不低于5000元?【解答】解:(1)F(t)=.(2)令F(t)≥5000,①当1≤t≤10时,40(﹣t2+30t)≥5000,解得5≤t≤25,∴5≤t≤10.②当10<t≤15时,40(﹣t2+10t+200)≥5000,解得﹣5≤t≤15,∴10<t≤15.③当15<t≤20时,20(﹣t2+10t+200)≥5000,方程无解.综上,5≤t≤15.∴产品上市的第5天到第15天给公司带来的日销售利润不低于5000元.20.(16分)已知椭圆Γ:(a>b>0),其左、右焦点分别为F1、F2,上顶点为B,O为坐标原点,过F2的直线l交椭圆Γ于P、Q两点,sin.(1)若直线l垂直于x轴,求的值;(2)若b=,直线l的斜率为,则椭圆Γ上是否存在一点E,使得F1、E关于直线l 成轴对称?如果存在,求出点E的坐标,如果不存在,请说明理由;(3)设直线l1:y=上总存在点M满足=2,当b的取值最小时,求直线l的倾斜角α.【解答】解:(1)∵sin,∴=,∴c==b,∴直线l的方程为:x=b.把x=b代入椭圆方程可得:+=1,解得y P=b,∴|PF2|=b,∴|PF1|==b,∴=5.(2)b=时,椭圆的标准方程为:+=1.c=2.F2(2,0),直线l的方程为:y=(x﹣2),设点关于l对称点E(m,n),则=,×=﹣1,解得m=﹣,n=﹣,即E(﹣,﹣).代入椭圆方程:+≠1,因此点E不在椭圆上.(3)设l:y=k(x﹣b),(k<0)代入椭圆的方程可得:+=1,化为:(1+3k2)x2﹣6k2bx+6k2b2﹣3b2=0,∴x1+x2=,∵直线l1:y=上总存在点M满足=2,∴点M是线段PQ的中点.∴x M=,y M=k(﹣b)=,解得:b=,∴x M=﹣3k,可得M,∴b==﹣﹣3k≥6,当且仅当k=﹣时,b取得最小值6.直线l的倾斜角α满足:tanα=,α=.21.(18分)无穷数列{a n}(n∈N*),若存在正整数t,使得该数列由t个互不相同的实数组成,且对于任意的正整数n,a n+1,a n+2,…a n+t中至少有一个等于a n,则称数列{a n} 具有性质T,集合P={p|p=a n,n∈N*}.(1)若a n=(﹣1)n,n∈N*,判断数列{a n} 是否具有性质T;(2)数列{a n} 具有性质T,且a11,a4=3,a8=2,P={1,2,3},求a20的值;(3)数列{a n} 具有性质T,对于P中的任意元素p i,为第k个满足=p i的项,记b k=i k+1﹣i k(k∈N*),证明:“数列{b k}具有性质T”的充要条件为“数列{a n} 是周期为t的周期数列,且每个周期均包含t个不同实数”.【解答】(1)解:∵a n=(﹣1)n,∴{a n}是由2个不同元素组成的无穷数列,且是周期为2的周期数列,故t=2,{a n}是周期为2的周期数列,对任意的正整数n,有a n+2=a n,满足性质T的条件,故数列{a n} 具有性质T;(2)解:由a1=1,a4=3,a8=2,P={1,2,3},可知t=3,考虑a8后面连续三项a9,a10,a11,若a11≠2,由a8=2及T性质知,a9,a10中必有一个数为2,于是,a8,a9,a10中有两项为2,故必有1或3不在其中,不妨设为i(i=1或3),考虑a1,a2,…,a7中,最后一个等于i的项,则该项的后三项均不等于i,故不满足性质T中的条件,矛盾,于是a11=2.同理可得:a14=a17=a20=2;(3)证明:充分性、由数列{a n} 是周期为t的周期数列,每个周期均包含P中t个不同元素,对于P中的任意元素p i,为第k个满足的项,故由周期性得:i k+1=i k+t,于是,b k=i k+1﹣i k=t,数列{b k}为常数列,显然满足性质T.必要性、取足够大的N,使a1,a2,a3,…,a N包含P中t个所有互不相等的元素,考虑a N后的连续t项a N+1,a N+2,…,a N+t,对于P中任意元素p i,必等于a N+1,a N+2,…,a N+t中的某一个,否则考虑a1,a2,…,a N中最后一个等于p i的项,该项不满足性质T中的条件,矛盾.由p i的任意性知,a N+1,a N+2,…,a N+t这t个元素恰好等于P中t个互不相同的元素,再由数列{a n} 性质T中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…于是对于P中的任意元素p i,存在N′,有b k=i k+1﹣i k=t(n≥N′),即数列{b N′+k}为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列,故数列{a n} 是“周期为t的周期数列,且每个周期均包含t个不同实数”.。

2018年上海市闵行区中考二模数学试题及答案

2018年上海市闵行区中考二模数学试题及答案

上海市闵行区中考二模数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果单项式13a x y +-与212b x y 是同类项,那么a 、b 的值分别为 (A )1a =,3b =; (B )1a =,2b =; (C )2a =,3b =; (D )2a =,2b =.2.如果点P (a ,b )在第四象限,那么点Q (-a ,b -4)所在的象限是(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.3.3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400保留2个有效数字表示为(A )380000; (B )3.8×105; (C )38×104; (D )3.844×105.4.某商场一天中售出李宁运动鞋11双,其中各种尺码的鞋的销售量如下表所示,(A )25,24.5; (B )24.5,25;(C )26,25;(D )25,25.5.下列四个命题中真命题是(A )对角线互相垂直平分的四边形是正方形;(B )对角线垂直且相等的四边形是菱形;(C )对角线相等且互相平分的四边形是矩形; (D )四边都相等的四边形是正方形. 6.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡比为41:3i =的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为(A )5m ; (B )6m ; (C )7m ; (D )8m .二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7 ▲ .8.在实数范围内分解因式:241x x -+= ▲ .9.关于x 的方程2230x x m +-=有实数根,那么实数m 的取值范围是▲ . 10.已知函数(1)()3x f x x -=-,那么(1)f -= ▲ .11.如果反比例函数的图象过点(-1,2),那么它在每个象限内y随x 的增大而 ▲ .12.把函数22y x =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ▲ .13.一个骰子六个面上的数字分别为1、2、3、4、5、6,投掷一次,(第6题图)向上的一面是合数的概率是 ▲ .14.已知:233m a b =- ,1124n b a =+ ,则4m n -= ▲ .15.如图,直线AB ∥CD ∥EF ,那么∠α+∠β-∠γ= ▲ 度. 16.如图,已知DE ∥BC ,且EF ︰BF =3︰4,那么AE ︰AC = ▲ . 17.如图,在Rt △ABC 中,∠C = 90°,AC =8,BC =6,两等圆⊙A 、⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为 ▲ .(保留π)18.如图,已知△ACB 与△DEF是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图所示的形状,使点B 、C 、F 、D 在同一条直线上,且点C与点F 重合,将△ACB 绕点C 顺时针方向旋转,使得点E 在AB 边上,AC 交DE 于点G ,那么线段FG 的长为 ▲ cm (保留根号).三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:12322cos 45|81|----- .20.(本题满分10分)(第17题图) (第16题图) (第15题图) A E C (F )B (第18题图)解方程组:113,231 1.2x x y x x y ⎧+=⎪-⎪⎨⎪-=⎪-⎩21.(本题共2小题,每小题5分,满分10分)已知:如图,在以O 为圆心的两个同心圆中, 小圆的半径长为4,大圆的弦AB 与小圆交于C 、D 两点,且AC =CD ,∠COD = 60°.求:(1)求大圆半径的长;(2)如果大圆的弦AE 长为AEO 的余切.并直接判断弦AE 与小圆的位置关系.22.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)某校九年级二班为开展“迎五一劳动最光荣”的主题班会活动,派小明和小丽两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的宝克牌钢笔每支8元,英雄牌钢笔每支4.8元,他们要购买这两种笔共40支.小明和小丽根据主题班会活动的设奖情况,决定所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的12,但又不少于英雄牌钢笔的数量的14,如果他们买了宝克牌钢笔x 支,买这两种笔共花了y 元.(1)请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;(2)请帮助他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?23.(本题共2小题,每小题6分,满分12分)ADEG HEA BC (第21题图)D O已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF和等腰三角形△ADE,且顶角∠BAF=∠DAE,联结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)当线段FG、GH和GB满足怎样的数量关系时,四边形ABCD是菱形,并加以证明.24.(本题共2题,每小题6,满分12分)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C 两点的直线分别交x轴、y轴于点E、F.抛物线2y ax bx c=++经过O、A、C三点.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)点P为线段OC 上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM(第24题图)为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.25.(本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分)已知:如图①,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE 是△ABC的外角∠ACD的平分线,交BI延长线于E,联结CI.(1)设∠BAC =2α.如果用α表示∠BIC 和∠E ,那么∠BIC = ,∠E = ;(2)如果AB =1,且△ABC 与△ICE 相似时,求线段AC 的长; (3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=35,设BC =m ,试用m 的代数式表示BE .(第25题图②)FABCDEI(第25题图①)ABCDEI闵行区2018学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6.A . 二、填空题:(本大题共12题,每题4分,满分48分) 7. 8.(22x x --; 9.m ≥98-; 10.14-; 11.增大;12.22(3)2y x =--; 13.13; 14.823a b - ;15.180; 16.3︰4; 17.254π;18三、解答题:(本大题共7题,满分78分) 19.解:原式1114=-+…………………………………(2分+2分+2分+2分)14=-.…………………………………………………………………(2分)20.解:设1u x=,12v x y=-,则原方程组可化为331u v u v +=⎧⎨-=⎩.……………………(2分) 解这个方程组,得12u v =⎧⎨=⎩.………………………………………………(2分)于是,得11122x x y ⎧=⎪⎪⎨⎪=⎪-⎩即1122x x y =⎧⎪⎨-=⎪⎩.……………………………………(2分)解方程组得132x y =⎧⎪⎨=⎪⎩. ………………………………………………………(2分)经检验132x y =⎧⎪⎨=⎪⎩是原方程组的解.……………………………………………(1分)所以,原方程组的解是132x y =⎧⎪⎨=⎪⎩ ……………………………………………(1分)21.解:(1)过O 作OF ⊥CD ,垂足为F ,联结OA .∵ OC = OD = 4,∠COD = 60°,∴ OC = OD = CD = 4. 又∵AC =CD ,∴ AC = CD =4.………………………………………(1分)∵ OF ⊥CD ,且OF 过圆心,CD = 4 , ∴CF = FD= 2.∴ AF =6.…………………………………………(1分)在Rt △COF中,222CO OF CF =+,∴ OF= .………………(1分)在Rt △AOF中,222AO OF AF =+,∴ AO= .………………(1分) 即:大圆半径的长为.……………………………………………(1分)(2)过O 作OG ⊥AE ,垂足为G .∵ OG ⊥AE ,且OG 过圆心,AE= ∴AG =EG=1分)在Rt △EOG 中,222EO EG OG =+, ∵OE=,∴OG =4.……………………………………………(1分)在Rt △EOG中,cot EG AEO OG∠===∴cot AEO ∠=2分)答: 弦AE 与小圆相切.………………………………………………(1分)22.解:(1)根据题意,得 8 4.8(40) 3.2192y x x x =⋅+-=+.…………………(3分)根据题意,得定义域为1(40)21(40)4x x x x ⎧<-⎪⎪⎨⎪≥-⎪⎩.………………………………(1分)解得,定义域为8≤ x <403的整数.…………………………(1分+1分)(2)由于一次函数 3.2192y x =+的k >0.所以 y 随x 的增大而增大. 因此,当x =8时花的钱最少.…………………………………………(2分)4032x -=, 3.28192217.6y =⨯+=.………………………………(1分)答:当购买英雄牌钢笔32支,宝克牌钢笔8支时,所花的钱最少,此时花了217.6元.………………………………………………(1分)23.(1)证明:∵ ∠BAF =∠DAE ,∴∠BAF+∠FAD =∠DAE +∠FAD ,即∠BAD =∠FAE .………(1分)在△BAD 和△FAE 中∵ AB =AF ,∠BAD =∠FAE ,AD =AE ,……………………………(3分)∴△BAD ≌△FAE(SAS ).……………………………………(1分)∴BD =EF .…………………………………………………………(1分) (2)当线段满足2FG GH GB =⋅时,四边形ABCD 是菱形.…………………(1分)证明:∵2FG GH GB =⋅,∴FG GH BGFG=. 又∵∠BGF =∠FGB ,∴△GHF ∽ △GFB .∴ ∠EFA =∠FBD .………………………(1分)∵△BAD ≌ △FAE , ∴ ∠EFA =∠ABD . ∴ ∠FBD =∠ABD .…………………………………………………(1分)∵ 四边形ABCD 是平行四边形, ∴ AD // BC .∴ ∠ADB =∠FBD . ∴ ∠ADB =∠ABD .…………………………………………………(1分)∴AB =AD .……………………………………………………………(1分)又∵ 四边形ABCD 是平行四边形, ∴ 四边形ABCD 是菱形.…………………………………………(1分)24.解:(1)∵ 抛物线2y ax bx c =++经过点O 、A 、C ,可得c = 0,…………(1分)∴2421a b a b +=⎧⎨+=⎩,解得32a =-,72b =;………………………………(2分)∴ 抛物线解析式为23722y x x =-+.…………………………………(1分)对称轴是直线76x =…………………………………………………(1分)顶点坐标为(76,4924)……………………………………………(1分)(2)设点P 的横坐标为t ,∵PN ∥CD ,∴ △OPN ∽ △OCD ,可得PN =2t ,∴P (t ,2t ).……(1分)∵点M 在抛物线上,∴M (t ,23722t t -+).…………(1分)如解答图,过M 点作MG ⊥AB 于G ,过P 点作PH ⊥AB 于H ,AG = y A -y M = 2-(23722t t -+)=237222t t -++,BH = PN =2t .…(1分)当AG =BH 时,四边形ABPM 为等腰梯形, ∴2372222tt t -++=,……………………………………………………(1分)化简得3t 2-8t + 4=0,解得t 1=2(不合题意,舍去),t 2=23,………(1分)∴点P 的坐标为(23,13). ∴存在点P (23,13),使得四边形ABPM 为等腰梯形.……………(1分)25.解:(1)∠BIC = 90°+α,…………………………………………………(2分)∠ E =α.…………………………………………………………(2分)(2)由题意易证得△ICE是直角三角形,且∠E = α.当△ABC ∽△ICE时,可得△ABC是直角三角形,有下列三种情况:①当∠ABC = 90°时,∵∠BAC = 2α,∠E = α;∴只能∠E = ∠BCA,可得∠BAC =2∠BCA.∴∠BAC = 60°,∠BCA = 30°.∴AC =2 AB.∵AB = 1 ,∴AC = 2.…………………(2分)②当∠BCA = 90°时,∵∠BAC = 2α,∠E = α;∴只能∠E = ∠ABC,可得∠BAC =2∠ABC.∴∠BAC = 60°,∠ABC = 30°.∴AB =2 AC.∵AB = 1 ,∴AC = 1.………………(2分)2③当∠BAC = 90°时,∵∠BAC = 2α,∠E = α;∴∠E = ∠BAI = ∠CAI =45°.∴△ABC是等腰直角三角形.即AC = AB.∵AB = 1 ,∴AC = 1.…………………(2分)∴综上所述,当△ABC ∽△ICE时,线段AC的长为1或2或1.2(3)∵∠E = ∠CAI,由三角形内角和可得∠AIE = ∠ACE.∴ ∠AIB = ∠ACF .又∵∠BAI = ∠CAI , ∴ ∠ABI = ∠F . 又∵BI 平分∠ABC , ∴ ∠ABI = ∠F =∠EBC . 又∵∠E是公共角, ∴ △EBC ∽△EFI .…………………………(2分)在Rt △ICF 中,sin ∠F=35,设IC = 3k ,那么CF = 4k ,IF = 5k .在Rt △ICE 中,∠E =30°,设IC = 3k ,那么CE =k ,IE = 6k .∵△EBC ∽△EFI .∴BC IF BEFE ==又∵BC =m , ∴BE =.………………………………(2分)。

2018年上海市闵行区七宝中学高考数学模拟试卷(J)

2018年上海市闵行区七宝中学高考数学模拟试卷(J)

2018年上海市闵行区七宝中学高考数学模拟试卷(J)副标题一、选择题(本大题共4小题,共4.0分)1.若椭圆C的方程为,则是曲线C的焦点在x轴上的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】C【解析】解:椭圆C的方程为,若曲线C的焦点在x轴上,,故椭圆C的方程为,则是曲线C的焦点在x轴上的充要条件,故选:C.根据椭圆的性质即可得到曲线C的焦点在x轴上则再根据充要条件的定义即可判断.本题考查充要条件的判断与应用,椭圆的简单性质,基本知识的考查.2.方程的解的个数有A. 0B. 1C. 2D. 3【答案】A【解析】解:由于,所以,由此得到方程无解.故选:A.利用反三角函数,判断等式两侧表达式的范围,即可推出结果.本题考查反三角函数的应用,基本知识的考查.3.已知实数x,y满足,则的取值范围是A. B. C. D.【答案】B【解析】解:设为圆上的任意一点,则P到直线的距离,P到原点的距离,.设圆与直线相切,则,解得,的最小值为,最大值为,,.故选:B.构造直线,过圆上一点P作直线的垂线PM,则,求出的范围即可得出答案.本题考查了直线与圆的位置关系,距离公式的应用,属于中档题.4.实数a,b满足,,则的取值范围是A. B. C. D.【答案】B【解析】解:实数a,b满足,,可得,,令,,可得,它的可行域如图:A在与的交点,,,是双曲线关于对称,显然在A处取得最大值:,在B处取得最小值:.则的取值范围是:.故选:B.求出a,b的范围,利用换元法画出可行域,利用目标函数的几何意义求解范围即可.本题考查线性规划的简单应用,画出可行域,利用换元法同时考查转化思想,数形结合思想的应用.二、填空题(本大题共12小题,共12.0分)5.若,则______.【答案】2【解析】解:,.故答案为:2.利用对数的性质直接求解.本题考查实数值的求法,考查对数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.已知直线l垂直于直角坐标系中的y轴,则l的倾斜角为______.【答案】0【解析】解:由直线倾斜角的定义可得,垂直于直角坐标系中的y轴的直线l的倾斜角为0.故答案为:0.直接由直线的倾斜角的定义得答案.本题考查直线倾斜角的定义,是基础题.7.在复平面内,点对应的复数z,则______.【答案】【解析】解:在复平面内,点对应的复数z,则.故答案为:.求出复数,然后求解复数的模.本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.8.若角的终边经过点,则的值为______【答案】【解析】解:角的终边经过点,可得.则.故答案为:.利用角的终边经过点,求出,然后求解即可.本题考查三角函数的定义,反三角函数的化简求值,是基本知识的考查.9.若不等式的解集为,则实数t等于______【答案】1【解析】解:因为不等式的解集为,即是方程的根,所以,不等式化为,解得.所以.故答案为:1.由题目给出的绝对值不等式的解解为,可知为不等式所对应方程的两个根,求出a,然后求解实数t即可.本题考查了绝对值不等式的解法,考查了数学转化思想方法,若该题采用去绝对值的办法,去绝对值后需要分类讨论,解法变得复杂,该题属基本知识的考查.10.由参数方程为参数,,所表示的曲线的右焦点的坐标为______【答案】【解析】解:根据题意,参数方程变形为普通方程为,为双曲线,其中,,且其焦点在x轴上,则所表示的曲线的右焦点的坐标为;故答案为:.根据题意,将参数方程变形为普通方程,分析其表示的曲线为双曲线,由双曲线的几何性质分析可得答案.本题考查参数方程与普通方程的互化,关键是将参数方程变形为普通方程.11.直角坐标系xOy内有点,,,,将四边形ABCD绕直线旋转一周,所得到的几何体的体积为______.【答案】【解析】解:直角坐标系xOy中,点,,,,如图所示,由图形知四边形ABCD是矩形,将矩形ABCD绕直线旋转一周,所得几何体为底面半径为1,高为2的圆柱,该圆柱的体积为.故答案为:.由题意知四边形ABCD是矩形,矩形ABCD绕直线旋转一周得圆柱,求出圆柱的体积即可.本题考查了矩形旋转后是圆柱体的应用问题,是基础题.12.A,B二校各推荐两篇课题放在一起评比,则四篇课文在排序中没有A校命题相邻的概率为______.【答案】【解析】解:A,B二校各推荐两篇课题放在一起评比,基本事件总数,四篇课文在排序中没有A校命题相邻包含的基本事件个数,四篇课文在排序中没有A校命题相邻的概率为.故答案为:.基本事件总数,四篇课文在排序中没有A校命题相邻包含的基本事件个数,由此能求出四篇课文在排序中没有A校命题相邻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.13.已知平面直角坐标系中的两点,,O原点,有,设:,,是平面曲线上任意三点,则的最大值为______.【答案】【解析】解:由,得.该曲线表示以为圆心,以为半径的圆.如图,圆内接三角形面积最大时三角形为正三角形,且最大面积为..故答案为:.化圆的方程为标准方程,求出圆的半径,结合已知及圆内接正三角形面积最大求解.本题考查曲线与方程,明确圆内接正三角形面积最大是关键,是中档题.14.设点O在的内部,点D,E分别为边AC,BC的中点,且,则______.【答案】2【解析】解:点D,E分别为边AC,BC的中点,,,,故答案为:2.根据向量的几何意义即可求出.本题考查了平面向量加法的几何意义,是基础题.15.设函数,数列的首项,且,若数列不是单调递增数列,则的取值范围______.【答案】【解析】解:;假设,则.若,则,由此可证得是单调递增数列,这矛盾.所以.故答案为:.通过数列与函数的关系式,结合不等式,转化求解的取值范围.本题考查数列与函数的综合应用,反证法的应用,考查转化思想以及计算能力.16.给定曲线,为参数,则这些曲线在直线上所截得得弦长的最大值是______.【答案】【解析】解:将代入曲线方程得,.令,则,,弦长.故弦长的最大值是,故答案为:.联立直线与曲线方程可求交点的横坐标,,要使曲线族在直线上所截得的弦长的最大,则只要最大即可,即t最大即可,根据函数的性质即可求出.本题主要考查了直线与曲线相交求解交点、弦长,解题的关键是灵活利用三角函数的性质及弦长公式,属于中档题三、解答题(本大题共5小题,共5.0分)17.已知圆柱的底面半径为r,上底面圆心为O,正六边形ABCDEF内接于下底面圆P,OA与母线所成角为,试用r表示圆柱的表面积S;若圆柱体积为,求点C到平面OEF的距离.【答案】解:连接AP,由题意可知:OA与母线所成角为,,所以:,---2分,---4分,---6分,,---10分---14分【解析】利用已知条件,通过求解三角形推出圆柱的高,然后求解圆柱的表面积S.利用圆柱的体积,求出底面半径,通过,求解点C到平面OEF的距离.本题考查空间点线面的距离的求法,几何体的体积的求法,考查了直角三角形的解法,是基础题.18.已知向量和向量,且.求函数的最小正周期和最大值;已知的三个内角分别为A,B,C,若有,,,求AC的长度.【答案】解:,,化为.函数的周期为,最大值为2.得,即,由正弦定理得,又,,则.【解析】利用向量共线定理、两角和差的正弦公式、三角函数的性质即可得出;利用正弦定理即可得出.本题考查了向量共线定理、两角和差的正弦公式、三角函数的性质、正弦定理,属于中档题.19.业界称“中国芯”迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为为常数元,之后每年会投入一笔研发资金,n年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,已知3年后总投入资金为研发启动时投入资金的3倍问研发启动多少年后,总投入资金是研发启动时投入资金的8倍;研发启动后第几年的投入资金的最多.【答案】解:由题意知,.所以解得所以.令,得,解得,即,所以.所以研发启动9年后,总投入资金是研发启动时投入资金的8倍.由知第n年的投入资金,当且仅当,即等号,此时.所以研发启动后第5年的投入资金增长的最多.【解析】由题意知,,代入求出p,q的值,即可得到函数的解析式,再代值计算即可求出n的值,利用作差法,求出第n年的投入资金,利用基本不等式即可求出答案.本题考查了函数模型在实际生活中的应用,以及基本不等式的应用,考查了分析问题,解决问题的能力,属于中档题.20.平面直角坐标系xOy中,抛物线:的焦点为F,过F的直线l交曲线于B,C两点.若l垂直于x轴,且线段BC的长为1,求曲线方程;若l的斜率为k,求;设抛物线上异于B,C的点A满足若的重心在x轴上,求得重心的坐标.【答案】解:联立方程,所以BC长,从而的方程为分设,,l:.由、,得到分,所以分若l垂直于x轴,则由,此时重心坐标为.以下设l:,,.设线段BC中点,则,,所以直线AD的斜率,分此时,从而直线AD:与x轴的交点即为的重心.综合有,的重心为或者分【解析】若l垂直于x轴,联立直线与抛物线方程,通过线段BC的长为1,求曲线方程即可;若l的斜率为k,设,,写出l:通过联立直线与抛物线方程,结合韦达定理转化求解;若l垂直于x轴,则由,此时重心坐标为设l:,,设线段BC中点,求出D的坐标,AD的斜率,求出直线系方程,得到定点坐标即为的重心.本题考查抛物线与直线的位置关系的应用,考查转化思想以及计算能力.21.设函数在上有定义,实数a,b满足若在区间上不存在最小值,则称在区间上具有性质p.当,且在区间上具有性质p时,求常数C的取值范围;已知,且当时,,判别在区间上是否具有性质p;若对于满足的任意实数a,b;在区间上具有性质p,且对于任意,当时,有:,证明:当时,.【答案】解:当时,在上存在最小值;当时,在上存在最小值;当时,在上单调递增,所以不存在最小值.所以.因为时,,所以在区间上如果有最小值,则最小值必在区间上取到另一方面,在区间上不存在最小值,所以在区间上具有性质P.首先证明对于任意,.当时,由可知介于和之间若,则在区间上存在最小值,矛盾.利用归纳法和上面结论可得:对于任意k,,当时,.其次证明当且时,;当且时,.任取,设正整数k满足,则.若存在使得,则,即由于当时,,所以在区间有最小值,矛盾.类似可证,当且时,.最后证明:当时,.当时,成立当时,由可知,存在使得,所以.当时,有:若,则,所以在上存在最小值,故不具有性质p,故不成立.若,则假设,则在上存在最小值,故不具有性质p,故假设不成立.所以当时,对于任意都成立.又,故当、,所以,即.所以当时,则存在正整数m使得,则所以当时,,同理可证得当时,.所以当时,必然存在正整数n,使得,所以;当时,显然成立;所以综上所述:当时,.【解析】分别讨论图象的对称轴与1和2的关系,即可得出是否存在最小值,从而求出C的取值范围;由题目条件可得出在区间上如果有最小值,则最小值必在区间上取到,又在区间上不存在最小值,所以在区间上具有性质P;首先证明对于任意,;其次证明当且时,;当且时,;最后证明:当时,.本题考查了函数与方程的综合运用,需要对题目的条件充分理解和利用,证明用到了数学归纳法,属于难题.。

2018年4月上海市闵行高三二模文科数学试卷及答案 精品

2018年4月上海市闵行高三二模文科数学试卷及答案 精品

闵行区2018学年第二学期高三年级质量调研考试数 学 试 卷(文科)考生注意:1.答卷前,考生务必在答题纸上将学校、姓名填写清楚,并填涂准考证号.选择题部分必须使用2B 铅笔填涂;非选择题部分使用黑色字迹的钢笔、圆珠笔或签字笔书写.2.本试卷共有23道题,共5页.满分150分,考试时间120分钟.3.考试后只交答题纸,试卷由考生自己保留.一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.方程组25038x y x y --=⎧⎨+=⎩的增广矩阵为 .2.已知集合{}2|4,=<∈R M x x x ,{}2|log 0N x x =>,则集合M N =I .3. 若12122,23i Z a i Z =+=,且21z z 为实数,则实数a 的值为 .4. 用二分法研究方程3310x x +-=的近似解0x x =,借助计算器经过学校 班级 准考证号 姓名…………………密○……………………………………封○……………………………………○线……………………………第6题图若干次运算得下表:若精确到0.1,至少运算n 次,则0n x +的值为 .5.已知12e e r r 、是夹角为2π的两个单位向量,向量12122,,a e eb ke e =-=+r r r r r r 若//a b rr ,则实数k 的值为 .6.某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[]96,106,样本中净重在区间[)96100,的产品个数是24,则样本中净重在区间[)100,104的产品个数是 .7.一个圆锥的底面积为4π,且该圆锥的母线与底面所成的角为3π,则该圆锥的侧面积为 .8. 公差为d ,各项均为正整数的等差数列{}n a 中,若11,65n a a ==,则n d +的最小值等于 .9. 设双曲线226x y -=的左右顶点分别为1A 、2A ,P 为双曲线右支上一点,且位于第一象限,直线1PA 、2PA 的斜率分别为1k 、2k ,则12k k ⋅的值为 .10. 设ABC ∆的三个内角A B C 、、所对的边长依次为a b c 、、,若ABC ∆的面积为S,且22()S a b c =--,则sin 1cos AA=- .11. 袋中装有7个大小相同的小球,每个小球上标记一个正整数号码,号码各不相同,且成等差数列,这7个号码的和为49,现从袋中任取两个小球,则这两个小球上的号码均小于7的概率为 .12. 设bx ax x f +=2)(,且4)1(2,2)1(1≤≤≤-≤f f ,则)2(f 的最大值为 .13. 已知ABC ∆的重心为O ,6,7,8,AC BC AB ===则AO BC ⋅=uuu r uu u r.14.设()f x 是定义在R 上的函数,若 81)0(=f ,且对任意的x ∈R ,满足(2)()3,(4)(2)93x xf x f x f x f x +-≤+-+≥⨯,则(8)f =____________.二. 选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.二项式61()x x-展开式中4x 的系数为( )(A )15. (B )15-. (C )6. (D )6-.16.在ABC ∆中,“0AB AC ⋅<uu u r uu u r”是“ABC ∆是钝角三角形”的( )(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件17.设函数()|sin |cos 2,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,则函数()f x 的最小值是 ( )(A )1-. (B )0. (C )12. (D )98. 18.给出下列四个命题:①如果复数z 满足||||2z i z i ++-=,则复数z 在复平面的对应点的轨迹是椭圆.②若对任意的n *∈N ,11(1)(2)0n n n n a a a a ++---=恒成立,则数列{}n a 是等差数列或等比数列.③设()f x 是定义在R 上的函数,且对任意的∈R x ,|()||()|f x f x =-恒成立,则()f x 是R 上的奇函数或偶函数.④已知曲线1C =和两定点()()5,05,0E F -、,若()y x P ,是C 上的动点, 则6PE PF -<.上述命题中错误的个数是( )(A )1. (B )2. (C )3. (D )A BCE C 1A 1B 1F 4.三. 解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)本题共有2个小题,.第(1)小题满分6分,第(2)小题满分6分.如图,在直三棱柱111ABC A B C -中,2BAC π∠=,2AB AC ==,16AA =,点E F 、分别在棱11AA CC 、上,且12AE C F ==.(1)求三棱锥111A B C F -的体积;(2)求异面直线BE 与1A F 所成的角的大小.解:20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分.如图,在半径为20cm 的半圆形(O 截取一块矩形材料ABCD ,其中点A 、B 点C 、D 在圆周上.(1)请你在下列两个小题中选择一题作答......即可: ①设BOC θ∠=,矩形ABCD 的面积为()S g θ=,求()g θ的表达式,并写出θ的范围.②设(cm)BC x =,矩形ABCD 的面积为()S f x =,求()f x 的表达式,并写出x 的范围.(2)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积.解:21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.已知椭圆E 的中心在坐标原点O ,焦点在坐标轴上,且经过(2,1),M N 两点.(1)求椭圆E 的方程;(2)若平行于OM 的直线l 在y 轴上的截距为(0)b b <,直线l 交椭圆E 于两个不同点A B 、,直线MA 与MB 的斜率分别为12k k 、,求证:120k k +=.解:22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知函数1()||,4=--∈R f x x x a x .(1)当1a =时,指出()f x 的单调递减区间和奇偶性(不需说明理由);(2)当1a =时,求函数(2)x y f =的零点;(3)若对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围.解:23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.过坐标原点O 作倾斜角为60的直线交抛物线2:y x Γ=于1P 点,过1P 点作倾斜角为120的直线交x 轴于1Q 点,交Γ于2P 点;过2P 点作倾斜角为60的直线交x 轴于2Q 点,交Γ于3P 点;过3P 点作倾斜角为120的直线,交x 轴于3Q 点,交Γ于4P 点;如此下去…….又设线段112231n n OQ QQ Q Q Q Q -,,,,,L L 的长分为123,,,,,n a a a a L L ,数列{}n a 的前n 项的和为n S . (1)求12,a a ; (2)求n a ,n S ;(3)设(01)na nb a a a =>≠且,数列{}n b 的前n 项和为n T ,若正整数,,,p q r s 成等差数列,且p q r s <<<,试比较p s T T ⋅与q r T T ⋅的大小.解:闵行区2018学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准说明:1.本解答仅列出试题的一种或两种解法,如果考生的解法与所列解答不同,可参考解答中的评分标准进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、(第1题至第14题) 1.125318-⎛⎫⎪⎝⎭; 2.()1,2; 3.32-; 4.5.3; 5.12-; 6.44; 7.8π; 8.理8,文17; 9. 1; 10. 4; 11.理34,文17; 12.理18,文14; 13.理14-,文283-; 14.理832014,文86561388或.二、(第15题至第18题) 15.D ; 16.A ; 17.B ; 18.D .三、(第19题至第23题)19. (理) 20 . (文) [解]①由BOC θ∠=,得20cos ,20sin OB BC θθ==,其中0,2πθ⎛⎫∈ ⎪⎝⎭理2分,文3分所以()2800sin cos 400sin 2S g AB BC OB BC θθθθ==⋅=⋅==即()400sin 2g θθ=,0,2πθ⎛⎫∈ ⎪⎝⎭………………………………文理4分②连接OC ,则OB =(020)x << ……………………理2分,文3分所以()2S f x AB BC ==⋅=(020)x <<即()2f x =(020)x <<. ……………………文理4分(2)①由()400sin 2S g θθ== 得当sin 21θ=即当4πθ=时,S 取最大值2400cm .……理4分,文5分此时20sin4BC π==,当BC 取时,矩形ABCD 的面积最大,最大面积为2400cm .…文理2分②22()2(400)400f x x x ==≤+-=,当且仅当22400x x =-,即x =S 取最大值2400cm .……理4分,文5分当BC 取时,矩形ABCD 的面积最大,最大面积为2400cm .…文理2分19. (文) [解](1)111111111111142223323A B C F F A B C A B C V V S C F --∆==⋅=⋅⋅⨯⨯= …6分(2)连接CE ,由条件知1//CE FA ,所以CEB ∠就是异面直线BE 与1A F所成的角.2分在CEB ∆中,BC CE BE ===所以60CEB ∠=, ………………2分所以异面直线BE 与1A F 所成的角为60. …………………………………2分20.(理) [解](1)B AEFC V -=111(42)224332AEFC S AB =⋅=⋅⋅+⨯⨯=……7分(2)建立如图所示的直角坐标系,则)0,0,0(A ,(0,2,0)B ,(0,0,2)E ,(2,0,4)F ,(2,0,2)EF =,(0,2,2)EB =- ……………………2分设平面BEF 的法向量为(,,)n x y z =,则22011,1220n EF x z z x y n EF y z ⎧⋅=+=⎪⇒==-=⎨⋅=-=⎪⎩取得, 所以(1,1,1)n =- ……………………………2分 平面ABC 的法向量为1(0,0,1)n =,则11cos 33n n n n θ⋅===⋅ 所以BEF ∆所在半平面与ABC ∆所在半平面所成二面角θ的余弦值3分 21. [解](1)设椭圆E 的方程为221(0,0,)mx ny m n m n +=>>≠将(2,1),M N 代入椭圆E 的方程,得4181m n m +=⎧⎨=⎩………理2分,文3分解得11,82m n ==,所以椭圆E 的方程为22182x y += …………理2分,文3分设点P 的坐标为00,)x y (,则2220OP x y =+. 又00(,)P x y 是E 上的动点,所以2200182x y +=,得220084x y =-,代入上式得222200083OP x y y =+=-,0y ⎡∈⎣故00y =时,max OP=OP的最大值为 (2)(2)因为直线l 平行于OM ,且在y 轴上的截距为b ,又12OM k =,所以直线l 的方程为12y x b =+.由2212182y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得222240x bx b ++-= ………………文理2分设11(,)A x y 、22(,)B x y ,则212122,24x x b x x b +=-=-. 又1111,2y k x -=-2221,2y k x -=- 故1212121122y y k k x x --+=+--122112(1)(2)(1)(2)(2)(2)y x y x x x --+--=--.………文理2分又112211,22y x b y x b =+=+,所以上式分子122111(1)(2)(1)(2)22x b x x b x =+--++-- …………文理2分21212(2)()4(1)24(2)(2)4(1)0x x b x x b b b b b =+-+--=-+----=故120k k +=.………………………………………………………………文2分 所以直线MA与直线MB的倾斜角互补.…………………………………理2分 22. [解](理)(1)当1,0a b ==时,()|1|f x x x =-既不是奇函数也不是偶函数.……2分∵(1)2,(1)0f f -=-=,∴(1)(1),(1)(1)f f f f -≠-≠- 所以()f x 既不是奇函数,也不是偶函数.………………………………………2分 (2)当1,1a b ==时,()|1|1f x x x =-+, 由5(2)4x f =得52|21|14x x -+=……………………………2分 即2211(2)204x x x ⎧≥⎪⎨--=⎪⎩或2211(2)204x x x⎧<⎪⎨-+=⎪⎩ ………………………2分解得12222x x x ===所以22log log (11x ==-或1x =-. ………………2分 (3)当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为||bx a x--< 即b bx a x x x+<<- ………………………………………………………2分故(]max min ()(),0,1b b x a x x x x+<<-∈又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1b x g b x+==+; 对于函数(](),0,1b h x x x x=-∈①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1b x h b x-==-,又11b b ->+,所以,此时a的取值范围是(1,1)b b +-. ……………………………………2分②当10b -≤<,在(]0,1上,()b h x x x=-≥当x =min ()bx x-=a 存在,必须有110b b ⎧+<⎪⎨-≤<⎪⎩ 即13b -≤<,此时a 的取值范围是(1b +综上,当1b <-时,a 的取值范围是(1,1)b b +-;当13b -≤<时,a的取值范围是(1b +;当30b ≤<时,a的取值范围是∅. ……………………………2分[解](文)(1)当1a =时,函数的单调递减区间为1,12⎡⎤⎢⎥⎣⎦………………2分函数()f x 既不是奇函数也不是偶函数. ………………2分(2)当1a =时,1()|1|4f x x x =--,由(2)0x f =得12|21|04x x --= ………………2分即2211(2)204x x x ⎧≥⎪⎨--=⎪⎩或2211(2)204x x x⎧<⎪⎨-+=⎪⎩ ………………2分解得111222222x x x -===(舍),或所以22log log (11x ==-或1x =-. ………………2分 (3)当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为1||4x a x-< 即1144x a x x x-<<+ …………………………2分故(]max min 11()(),0,144x a x x x x-<<+∈ 又函数1()4g x x x =-在(]0,1上单调递增,∴max 13()(1)44x g x -==………2分 函数1()4h x x x =+在10,2⎛⎤ ⎥⎝⎦上单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增, ∴min 11()()142x h x +==;所以314a <<,即实数a 的取值范围是3,14⎛⎫⎪⎝⎭.……2分 23. [解] (1)如图,由11OQ P ∆是边长为1a 的等边三角形,得点1P的坐标为1(2a ,又1P 1(2a 在抛物线2y x =上,所以211342a a =,得123a = ………………2分 同理2P 22(,32a +在抛物线2y x =上,得243a = ………………2分(2)如图,法1:点1n Q -的坐标为1231(,0)n a a a a -+++⋅⋅⋅+,即点100(,0)(=0)n S Q S -点与原点重合,,所以直线1n n Q P -的方程为1)n y x S --或1)n y x S -=-,因此,点n P 的坐标满足21)n y x y x S -⎧=⎪⎨=-⎪⎩ 消去x210n y ---= ,所以y =又3sin 60n n ya =⋅=,故31n a =从而21324n n n a a S --= ……① ……………………………………………2分由①有211324n n n a a S ++-= ……② ②-①得22113()2()4n n n n n a a a a a ++---=即11()(332)0n n n n a a a a +++--=,又0n a >,于是123n n a a +-= 所以{}n a 是以23为首项、23为公差的等差数,12(1)3n a a n d n =+-=…………2分 (文)1()1(1)23n n a a n S n n +==+ ………………………………文2分 (理)1()1(1)23n n a a n Sn n +==+ 22n n G ==,2lim lim 3(1)3n n n n G S n n →∞→∞==+ ……………………理2分 法2:点1n Q -的坐标为1231(,0)n a a a a -+++⋅⋅⋅+,即点100(,0)(=0)n S Q S -点与原点重合,,所以直线1n n Q P -的方程为1)n y x S --或1)n y x S -=-因此,点(,)n P x y 的坐标满足21)n y x y x S -⎧=⎪⎨=-⎪⎩消去y 得213()n x S x --=,又12n n a x S -=+,所以213()22n n n a a S -=+,从而21324n n n a a S --= …① ……2分 以下各步同法1 法3:点1n Q -的坐标为1231(,0)n a a a a -+++⋅⋅⋅+, 即点100(,0)(=0)n S Q S -点与原点重合,,所以1(,)22n nn n a P S -+,又1(,)22n nn n a P S -+在抛物线2y x =上,得21342n nn a a S -=+ 即21324n n n a a S --= …………………………………………………………2分 以下各步同法1(3)(文)因为2(1)231323n n n nb aa b a++==,所以数列{}n b 是正项等比数列,且公比2301q a =≠,首项2310b a q ==, 因正整数,,,p q r s 成等差数列,且p q r s <<<,设其公差为d ,则d为正整数,所以q p d =+,2r p d =+,3s p d =+则100(1)1p p b q T q -=-,100(1)1p d q b q T q +-=-,2100(1)1p d r b q T q +-=-,3100(1)1p d s b q T q +-=- (2)分p s T T ⋅q r T T -⋅=2321000020(1)(1)(1)(1)(1)p p d p d p db q q q q q +++⎡⎤⋅-----⎣⎦-2231000020()()(1)p d p d p p d b q q q q q +++⎡⎤=⋅+-+⎣⎦- ………………………… 2分而23200000000()()(1)(1)p d p d p p d p d p d d q q q q q q q q +++++-+=---2000(1)()d p p d q q q +=--22000000(1)(1)(1)(1)d p d p d d q q q q q q =--=--- (2)分因为01a a >≠且,所以230001q a q =>≠且,又d 为正整数,所以0(1)d q -与20(1)d q -同号,故2000(1)(1)0---<p d d q q q ,所以,p s T T ⋅q r T T <⋅. (2)分(理)因为2(1)231323n n n nb aa b a++==,所以数列{}n b 是正项等比数列,且公比2301q a =≠,首项2310b a q ==,则100(1)1p p b q T q -=-,100(1)1qq b q T q -=-,100(1)1r r b q T q -=-,100(1)1s s b q T q -=- …… 2分p s T T ⋅q r T T -⋅=21000020(1)(1)(1)(1)(1)p s q r b q q q q q ⎡⎤⋅-----⎣⎦-(注意00p s q rq q ++=) 21000020()()(1)q r p sb q q q q q ⎡⎤=⋅+-+⎣⎦- ………………………… 2分而00000000()()()()q r p s q p s rq q q q q q q q +-+=---0000000(1)(1)(1)()p q p r s r q p p r q q q q q q q ---=---=--(注意q p s r -=-)000000(1)(1)(1)(1)q p p r p p q p r p q q q q q q ----=--=--- ……………………… 2分因为01a a >≠且,所以230001q a q =>≠且又,q p r p --均为正整数,所以0(1)q p q --与0(1)r pq --同号,故000(1)(1)0p q p r p q q q -----<,所以,p s T T ⋅q r T T <⋅.………………… 2分(第(3)问只写出正确结论的,给1分)。

上海2018届高三二模数学卷—三角函数汇编

上海2018届高三二模数学卷—三角函数汇编

上海2018届高三二模数学卷——三角函数汇编1. (2018宝山二模4)函数()x x x f 4cos 4sin 2=()x x x f 4cos 4sin 2=的最小正周期为 . 答案:4π 2. (2018宝山二模12)将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S .3.(2018虹口二模3) 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=【解析】4tan 3α=-,∴1tan()47πα+=- 4.(2018虹口二模12) 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于【解析】在[0,8]π有4个周期,最大值为4416⨯=5.(2018虹口二模)已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若4B π=,求边长c 的值;(2)求ABC ∆面积的最大值.【解析】(1)解为12,∴3A π=,由正弦定理b =c =(2)画出△ABC 的外接圆可知,3AB AC ==时,面积最大,为4.6.(2018杨浦二模9)若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 . 答案:2424.77-或 (2018杨浦二模13)已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为 ( ) )(A4π )(B 2π )(C 2π-)(D 3π-答案: C(2018黄浦二模4)已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 答案:4π(2018黄浦二模18)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10,(010)OA OB x x ==<<米米,线段BA CD 、线段与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度. (1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.答案:解 (1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ). 又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=, 所以,210(010)10x x x θ+=<<+.xy O12π4π1-(2) 依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇 化简,得2550yx x =-++25225()24x =--+. 于是,当52x =(满足条件010x <<)时,max 2254y =(2m ).答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.(2018静安二模15)函数的部分图像如图所示,则)3(πf 的值为( ). A .22 B 3 C .26D . 0答案:C(2018闵行二模18)已知函数()3cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3a =3b c +=,当2ω=,()1f A =时,求bc 的值.【解析】(1)()2sin()6f x x πω=+,()0336f k πωπππ-=⇒-+=,||1ω<,∴12ω= (2)()1f A =⇒3A π=,由余弦定理,2bc =(2018青浦二模3)若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.答案:13(2018青浦二模18)(本题满分14分,第1小题满分6分,第2小题满分8分)已知向量(cos,1)2x m =-,2(3sin ,cos )22x xn =,设函数()1f x m n =⋅+. (1)若[0,]2x π∈,11()10f x =,求x 的值; ()sin()(0,0)f x A x A ωθω=+>>(2)在△ABC 中,角A ,B ,C 的对边分别是c b a ,,且满足2cos 2,b A c ≤求()f B 的取值范围.解:(1)21cos ()cos cos 112222x x x xf x x +=-+=-+111cos sin()2262x x x π=-+=-+ ∵113() sin(); [0,]10652f x x x ππ=∴-=∈又∴33arcsin arcsin 6565x x ππ-=⇒=+ (2)由A C A B a c A b sin 3sin 2cos sin 232cos 2-≤-≤得2sin cos 2sin()B A A B A ⇒≤+2sin cos 2[sin cos cos sin )B A A B A B A ⇒≤+-2sin cos cos (0,]6A B A B B π⇒≥⇒≥⇒∈ ∴111sin()(,0],()sin()()(0,]62622B f B B f B ππ-∈-=-+⇒∈即 (2018崇明二模15)将函数sin 23y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫ ⎪⎝⎭向左平移(0)s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图像上,则A .12t =,s 的最小值为6πB .t =,s 的最小值为6πC .12t =,s 的最小值为3πD .t ,s 的最小值为3π答案:C(2018崇明二模19)(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.) 如图,某公园有三条观光大道,,AB BC AC 围成直角三角形,其中直角边200BC =m ,斜边400AB =m .现有甲、乙、丙三位小朋友分别在,,AB BC AC 大道上嬉戏,所在位置分别记为点,,D E F .(1)若甲乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离; (2)设CEF θ∠=,乙丙之间的距离是甲乙之间距离的2倍,且3DEF π∠=,请将甲乙之间的距离y 表示为θ的函数,并求甲乙之间的最小距离.19、解(1)6π=w ………………………………………………………………………2分⎩⎨⎧=-=+100500A k k A ……………………………………………………………………1分⎩⎨⎧==300200k A ………………………………………………………………………2分 32πθ=…………………………………………………………………………2分()300326cos 200+⎪⎭⎫ ⎝⎛+=∴ππn n f ………………………………………………………1分(2)令()()400cos ≥++=k wn A n f θ……………………………………………2分21326cos ≥⎪⎭⎫ ⎝⎛+⇒ππn []()Z k k k n ∈--∈⇒212,612[]12,1∈n[]10,6∈∴n 10,9,8,7,6=⇒n …………………………………………………3分 答:一年中10,9,8,7,6月是该地区的旅游“旺季”。

2018届上海市闵行区高三第二学期质量调研考试理科数学试题 及答案

2018届上海市闵行区高三第二学期质量调研考试理科数学试题 及答案

闵行区2018学年第二学期高三年级质量调研考试数 学 试 卷(理科) (满分150分,时间120分钟)考生注意:1.答卷前,考生务必在答题纸上将学校、班级、准考证号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 3.本试卷共有23道试题.一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分. 1.已知集合35|22A x x ⎧⎫=->⎨⎬⎩⎭,U =R ,则U A =ð . 2.若复数z 满足(2)(1)2z i i ++=(i 为虚数单位),则z = .3.函数()cos f x x x =,若1()2f a =,则()f a -= .4.计算 22lim 2nn C n n→∞=+ . 5.设)0(24)(1≥-=+x x f x x ,则=-)0(1f .6.已知2πθπ⎛⎫∈ ⎪⎝⎭,,sin cos 22θθ-=,则cos θ= .7. 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .学校_______________________ 班级__________ 准考证号_________ 姓名______________ …………………………密○………………………………………封○………………………………………○线…………………………8.已知集合{1,3}M =,在M 中可重复的依次取出三个数,,a b c,则“以,,a b c 为边长恰好构成三角形”的概率是 .9.已知等边ABC △的边长为3,M 是ABC △的外接圆上的动点,则AB AM ⋅的最大值为 .10.函数1122log log y =+取最小值时x 的取值范围是 . 11.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,12()log g x x=,记函数(),()()()(),()()g x f x g x h x f x f x g x ≤⎧=⎨>⎩,则函数()()5F x h x x =+-所有零点的和为 .12.已知12F F 、是椭圆22122:14x y m m Γ+=-和双曲线22222:14x y n n Γ-=-的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则mn的最大值为 .13.在ABC △中,记角A 、B 、C 所对边的边长分别为a 、b 、c ,设S 是ABC △ 的面积,若2sin ()sin S A BA BC B <⋅,则下列结论中:①222a b c <+; ②222c a b >+; ③cos cos sin sin B C B C >; ④ABC △是钝角三角形.其中正确..结论的序号是 . 14.已知数列{}n a 满足:对任意n *∈N 均有133n n a pa p +=+-(p 为常数,0p ≠且1p ≠),若{}2345,,,19,7,3,5,10,29a a a a ∈---,则1a 所有可能值的集合为 .二.选择题(本大题满分20分)本大题共有4小题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,选对得5分,否则一律得0分.15.已知圆22:1O x y +=和直线:l y kx =,则1k =是圆O 与直线l 相切的( )(A)充要条件. (B)充分不必要条件.(C)必要不充分条件. (D)既不充分也不必要条件. 16.8(2展开式中各项系数的和为( )(A) 1-. (B)1. (C)256. (D)256-. 17.已知)(x f y =是定义在R 上的函数,下列命题正确的是( )(A)若()f x 在[],a b 上的图像是一条连续不断的曲线,且在(),a b 内有零点,则有()()0f a f b ⋅<.(B)若()f x 在[],a b 上的图像是一条连续不断的曲线,且有()()0f a f b ⋅>,则其在(),a b 内没有零点.(C)若()f x 在(),a b 上的图像是一条连续不断的曲线,且有()()0f a f b ⋅<,则其在(),a b 内有零点.(D)若()f x 在[],a b 上的图像是一条连续不断的曲线且单调,又()()0f a f b ⋅<成立,则其在(),a b 内有且只有一个零点. 18.数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,若记数据1232015,,,,a a a a ⋅⋅⋅的方差为1λ,数据3201512,,,,1232015S S S S ⋅⋅⋅的方差为2λ,12k λλ=.则 ( )(A) 4k =. (B) 2k =. (C) 1k =. (D) k 的值与公差d 的大小有关.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,在直三棱柱111C B A ABC -中,90,2ACB AC BC ∠=== ,直线B A 1与平面C C BB 11所成角的大小1C 1B1A为55arctan .求三棱锥11C A BC -的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本.设该公司一年内共生产电饭煲x 万件并全部销售完,每一万件的销售收入为()R x 万元,且2440040000()10100R x x xx=-<<,,该公司在电饭煲的生产中所获年利润为W (万元). (注:利润=销售收入-成本)(1)写出年利润W (万元)关于年产量x (万件)的函数解析式;(2)为了让年利润W 不低于2760万元,求年产量x 的取值范围.21.(本题满分14分)本题共有2个小题,每小题满分各7分.椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点分别为12F F 、,上顶点为A ,已知椭圆Γ过点4(,)33bP ,且220F A F P ⋅= .(1)求椭圆Γ的方程;(2)若椭圆上两点C D 、关于点1(1,)2M 对称,求||CD .22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3) 小题满分6分.已知函数22π()cos 2sin cos 3f x x x x ⎛⎫=-+- ⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)若存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足2[()]()0f t t m -->,求实数m 的取值范围;(3)对任意的1,63x ππ⎡⎤∈-⎢⎥⎣⎦,是否存在唯一的2,63x ππ⎡⎤∈-⎢⎥⎣⎦,使12()()1f x f x ⋅=成立,请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知数列{}n a 为等差数列,12a =,其前n 和为n S ,数列{}n b 为等比数列,且2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+对任意的n *∈N 恒成立. (1)求数列{}n a 、{}n b 的通项公式;(2)是否存在,p q *∈N ,使得222()2020p q a b +-=成立,若存在,求出所有满足条件的,p q ;若不存在,说明理由. (3)是否存在非零整数λ,使不等式112111(1)(1)(1)cos 2n na a a a πλ+--⋅⋅⋅⋅⋅⋅-<对一切n *∈N 都成立?若存在,求出λ的值;若不存在,说明理由.闵行区2018学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.[]1,4-;2.1i -+; 3.12-; 4.14; 5. 1; 6.54-; 7.33π;8. 58;9.,; 10. 1,12⎡⎤⎢⎥⎣⎦,; 11. 5;12.13. ④;14. {}1,3,67---二. 选择题 15. B ; 16. B ; 17.D ; 18. A . 三. 解答题 19. [解]法一: 1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线BA 1与平面CC BB 11所成的角.…………………4分 设1CCy =1BC ==11111tan 4AC A BC y BC ∴∠===⇒=, ……………8分 所以11111111*********C A BCA C BC C BC V V S A C BC CC A C --==⋅=⋅⋅⋅⋅=△.…12分法二:如图,建立空间直角坐标系,设1CCy =1(00)C y ,,,1(20)A y ,,. 则1(22)A B y =--,,,平面C C BB 11的法向量为(100)n =,,. 分设直线B A 1与平面C C BB 11所成的角为θ,则11sin46A B nyA B nθ⋅===⇒=⋅,……………8分所以111111111111183323C A BC A C BC C BCV V V S A C BC CC A C--===⋅=⋅⋅⋅⋅=△. (12)分20.[解] (1)40000()(1640)164360W xR x x xx=-+=--+10100x<<,……6分(2) 解400001643602760W xx=--+≥ (12)分得2(50)0x-≤时,所以50x=.答:为了让年利润W不低于2760万元,年产量50x=. …………………14分21.[解] (1)因为椭圆Γ过点4(,)33bP,所以2161199a+=,解得22a=……3分又以AP为直径的圆恰好过右焦点2F,所以220F A F P⋅=又24(,),(,0),(0,)33bP F c A b得2(,)F A c b=-,24(,)33bF P c=-,所以24()033bc c--+=而22222b ac c=-=-,所以2210c c-+=得1c=………………6分故椭圆Γ的方程是2212xy+=.………………………………7分(2)法一:设点C D 、的坐标分别为1122(,)(,)x y x y 、, 则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分 由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-=121212122()2()01y y x x y y x x --+-=⇒=-- 所以CD所在直线的方程为32y x =-+………………11分将32y x =-+代入2222x y +=得253602x x -+=12||||CD x x =-=== ………14分法二:设点C D 、的坐标分别为1111(,)(2,1)x y x y --、,………9分则2222111122,(2)2(1)2x y x y +=-+-= 两等式相减得1132y x =-+………………11分 将32y x =-+代入2222x y +=得253602x x -+=12||||CD x x =-===.……14分22.[解](1)221()cos 22sin cos 22f x x x x x =++-1πcos 22cos 2sin 226x x x x ⎛⎫=-=- ⎪⎝⎭2分 函数()f x 的最小正周期T π= ………………………………4分 (2)当,123t ππ⎡⎤∈⎢⎥⎣⎦时,20,62t ππ⎡⎤-∈⎢⎥⎣⎦,π()sin 216f t t ⎛⎫⎤=- ⎪⎦⎝⎭6分[]22()[()]()[()22,1F t f t t f t ⇒=-=--∈-- …………………8分 存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()0F t m ->的实数m的取值范围为(),1-∞-.……10分(3)存在唯一的2,63x ππ⎡⎤∈-⎢⎥⎣⎦,使12()()1f x f x ⋅=成立. ………………12分当1,63x ππ⎡⎤∈-⎢⎥⎣⎦时,12,622x πππ⎡⎤-∈-⎢⎥⎣⎦,11π()sin 216f x x ⎛⎫⎤=-+ ⎪⎦⎝⎭2211π()sin 21()6f x x f x ⎛⎫⎤==- ⎪⎦⎝⎭[]21π1sin 2=1,16()x f x ⎛⎫⇒--- ⎪⎝⎭ ………………14分设11()a f x =,则[]1,1a ∈-,由2πsin 2=6x a ⎛⎫- ⎪⎝⎭ 得22ππ22arcsin 2=2arcsin ,66x k a x k a k πππ-=+-+-∈Z 或 所以2x 的集合为2221π17π|arcsin +arcsin +,212212x x k a x k a k ππ⎧⎫=+⋅=-⋅∈⎨⎬⎩⎭Z 或 ∵1π17π5arcsin +,arcsin +6212332126a a ππππ-≤⋅≤≤-⋅≤∴2x 在,63ππ⎡⎤-⎢⎥⎣⎦上存在唯一的值21πarcsin 212x a =⋅+使12()()1f x f x ⋅=成立. 16分23. [解] (1)法1:设数列{}n a 的公差为d ,数列{}n b 的公比为q 。

最新-上海市闵行区2018届中考数学二模试卷含答案解析

最新-上海市闵行区2018届中考数学二模试卷含答案解析

2018年上海市闵行区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如果单项式2a n b2c是六次单项式,那么n的值取()A.6 B.5 C.4 D.32.在下列各式中,二次根式的有理化因式是()A.B.C.D.3.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C. D.4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是()尺码22 22.5 23 23.5 24 24.5 25数量(双) 3 5 10 15 8 3 2A.平均数B.中位数C.众数 D.方差5.下列图形中,既是轴对称又是中心对称图形的是()A.正五边形 B.等腰梯形 C.平行四边形D.圆6.下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A.1个B.2个C.3个D.4个二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣22|=.8.在实数范围内分解因式:a3﹣2a=.9.方程=2的解是.10.不等式组的解集是.11.已知关于x的方程x2﹣x﹣m=0没有实数根,那么m的取值范围是.12.将直线向下平移3个单位,那么所得到的直线在y轴上的截距为.13.如果一个四边形的两条对角线相等,那么称这个四边形为“等对角线四边形”.写出一个你所学过的特殊的等对角线四边形的名称.14.如图,已知在梯形ABCD中,AD∥BC,且BC=3AD,点E是边DC的中点.设,,那么=(用、的式子表示).15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是.16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是.17.点P为⊙O内一点,过点P的最长的弦长为10cm,最短的弦长为8cm,那么OP的长等于cm.18.如图,已知在△ABC中,AB=AC,tan∠B=,将△ABC翻折,使点C与点A重合,折痕DE 交边BC于点D,交边AC于点E,那么的值为.三、解答题:(本大题共7题,满分78分)19.计算:.20.解方程:.21.如图,已知在△ABC中,∠ABC=30°,BC=8,sin∠A=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.22.如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).23.如图,已知在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交边DC于点G,交边AB于点H.联结AF,CE.(1)求证:四边形AFCE是菱形;(2)如果OF=2GO,求证:GO2=DG•GC.24.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.25.如图,已知在△ABC中,AB=AC=6,AH⊥BC,垂足为点H.点D在边AB上,且AD=2,联结CD交AH于点E.(1)如图1,如果AE=AD,求AH的长;(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC 的长;(3)如图3,联结DF.设DF=x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x 的取值范围.2018年上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如果单项式2a n b2c是六次单项式,那么n的值取()A.6 B.5 C.4 D.3【考点】单项式.【分析】直接利用单项式的次数确定方法得出n的值即可.【解答】解:∵单项式2a n b2c是六次单项式,∴n+2+1=6,解得:n=3,故n的值取3.故选:D.【点评】此题主要考查了单项式的次数,正确把握定义是解题关键.2.在下列各式中,二次根式的有理化因式是()A.B.C.D.【考点】分母有理化.【分析】直接利用有理化因式的定义得出答案.【解答】解:∵×=a﹣1,∴二次根式的有理化因式是:.故选:B.【点评】此题主要考查了有理化因式的定义,正确把握有理化因式的定义是解题关键.3.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C. D.【考点】反比例函数的性质;正比例函数的性质.【分析】分别利用正比例函数以及反比例函数的性质分析得出答案.【解答】解:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、y=,每个象限内,y随着x的增大而减小,故此选项错误;D、y=﹣,每个象限内,y随着x的增大而增大,故此选项错误;故选:B.【点评】此题主要考查了正比例函数以及反比例函数的性质,正确把握相关性质是解题关键.4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是()尺码22 22.5 23 23.5 24 24.5 25数量(双) 3 5 10 15 8 3 2A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最大的鞋号.【解答】解:由于众数是数据中出现最多的数,鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最多的鞋号.故鞋店的经理最关心的是众数.故选:C.【点评】本题考查学生对统计量的意义的理解与运用.要求学生对统计量进行合理的选择和恰当的运用.5.下列图形中,既是轴对称又是中心对称图形的是()A.正五边形 B.等腰梯形 C.平行四边形D.圆【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】利用反例对(1)进行判断;根据等腰梯形的对角线相等和三角形中位线性质、菱形的判定方法可对(2)进行判断;根据弦对两条弧可对(3)进行判断;根据正九边形的性质和余弦的定义可对(4)解析判断.【解答】解:有理数乘以无理数不一定是无理数,若0乘以π得0,所以(1)错误;顺次联结等腰梯形各边中点所得的四边形是菱形,所以(2)正确;在同圆中,相等的弦所对的弧对应相等,所以(3)错误;如果正九边形的半径为a,那么边心距为a•cos20°,所以(4)错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣22|=4.【考点】有理数的乘方;绝对值.【分析】直接利用有理数的乘方运算法则化简,再结合绝对值的性质求出答案.【解答】解:|﹣22|=|﹣4|=4.故答案为:4.【点评】此题主要考查了有理数的乘方运算以及绝对值的性质,正确掌握运算法则是解题关键.8.在实数范围内分解因式:a3﹣2a=a(a+)(a﹣).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【解答】解:a3﹣2a=a(a2﹣2)=a(a+)(a﹣).故答案为:a(a+)(a﹣).【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.9.方程=2的解是.【考点】无理方程.【专题】推理填空题.【分析】根据解无理方程的方法可以解答本题.【解答】解:=2,两边平方,得2x+3=4,解得x=,检验:当x=时,,故原无理方程的解是x=.故答案为:x=.【点评】本题考查解无理方程,解题的关键是明确解无理方程的解,注意最后要进行检验.10.不等式组的解集是﹣<x≤3.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣x≥0,得:x≤3,解不等式4x+3>﹣x,得:x>﹣,所以不等式组的解集为:﹣<x≤3,故答案为:﹣<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.已知关于x的方程x2﹣x﹣m=0没有实数根,那么m的取值范围是m<﹣.【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2﹣x﹣m=0没有实数根,∴b2﹣4ac=(﹣1)2﹣4×1×(﹣m)<0,解得:m<﹣.故答案为:m<﹣.【点评】本题主要考查对根的判别式、解一元一次不等式等知识点的理解和掌握,能根据题意得出(﹣1)2﹣4×1×(﹣m)<0是解此题的关键.12.将直线向下平移3个单位,那么所得到的直线在y轴上的截距为﹣2.【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移的性质得出平移后解析式,进而得出答案.【解答】解:∵直线向下平移3个单位,∴平移后的解析式为:y=﹣x﹣2,∴所得到的直线在y轴上的截距为:﹣2.故答案为:﹣2.【点评】此题主要考查了一次函数的平移变换,正确掌握平移规律是解题关键.13.如果一个四边形的两条对角线相等,那么称这个四边形为“等对角线四边形”.写出一个你所学过的特殊的等对角线四边形的名称矩形.【考点】多边形.【专题】新定义;开放型.【分析】我们学过的等腰梯形、矩形、正方形的对角线相等,任选一个即可.【解答】解:矩形、正方形的两条对角线相等.故答案为:矩形.【点评】本题考查了多边形,知道我们学过的等腰梯形、矩形、正方形的对角线相等是解题的关键.14.如图,已知在梯形ABCD中,AD∥BC,且BC=3AD,点E是边DC的中点.设,,那么=+2(用、的式子表示).【考点】*平面向量.【分析】首先连接AC,由在梯形ABCD中,AD∥BC,且BC=3AD,可求得,然后由三角形法则求得,继而求得,然后由点E是边DC的中点,求得,继而求得答案.【解答】解:连接AC,∵在梯形ABCD中,AD∥BC,且BC=3AD,∴=3=3,∴=+=+3,∴=﹣=(+3)﹣=+2,∵点E是边DC的中点,∴==+,∴=+=+(+)=+2.故答案为:+2.【点评】此题考查了平面向量的知以及梯形的性质.注意掌握三角形法则的应用是解此题的关键.15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式求出答案.【解答】解:由题意可得:,故一共有12种可能,这两个小球上的数字之和为偶数的有4种,故这两个小球上的数字之和为偶数的概率是:=.故答案为:.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是15.【考点】条形统计图;扇形统计图.【分析】根据骑自行车的学生人数和所占的百分比求出调查的总学生数,再根据随机抽查的教师人数为学生人数的一半,得出教师人数,再用教师人数减去步行、乘公交车和骑自行车的教师数,即可得出乘私家车出行的教师人数.【解答】解:调查的学生人数是:15÷25%=60(人),则教师人数为30人,教师乘私家车出行的人数为30﹣(3+9+3)=15(人).故答案为:15.【点评】此题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17.点P为⊙O内一点,过点P的最长的弦长为10cm,最短的弦长为8cm,那么OP的长等于3 cm.【考点】垂径定理;勾股定理.【分析】根据直径是圆中最长的弦,知该圆的直径是10cm;最短弦即是过点P且垂直于过点P的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=8cm.∵CD⊥AB,∴CP=CD=4cm.根据勾股定理,得OP===3(cm).故答案为:3.【点评】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.18.如图,已知在△ABC中,AB=AC,tan∠B=,将△ABC翻折,使点C与点A重合,折痕DE 交边BC于点D,交边AC于点E,那么的值为.【考点】翻折变换(折叠问题).【分析】作AF⊥BC于F,连接AD,设AF=a,DC=x,根据相似三角形的性质用a表示CD和BD,计算即可.【解答】解:作AF⊥BC于F,连接AD,设AF=a,DC=x,∵tan∠B=,∴BF=3a,由勾股定理得,AB=a,∵DE⊥AC,AF⊥BC,∴△CED∽△CFA,∴=,即=,解得x=a,∴DF=CF﹣CD=a,∴BD=a,∴=.故答案为:.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】二次根式的混合运算;分数指数幂;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别依据分母有理化、负整指数幂、特殊锐角三角函数值和零指数幂、分数指数幂将各部分计算化简可得.【解答】解:原式=﹣+()0﹣=﹣+1﹣=﹣.【点评】本题主要考查了二次根式的混合运算,运用了分母有理化、负指数幂、特殊锐角三角函数值和零指数幂、分数指数幂等知识点,熟练掌握这些计算法则是关键.20.解方程:.【考点】解分式方程.【分析】首先去掉分母,然后解整式方程,最后验根即可求解.【解答】解:∵,∴(x﹣2)(x﹣4)+2x=x+2,∴x2﹣6x+8+2x=x+2,x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得x1=2,x2=3,检验:当x1=2时,x(x﹣2)(x+2)=0,是增根;当x2=3时,x(x﹣2)(x+2)=15≠0,∴x=2是原方程的解.【点评】此题主要考查了解分式方程,其中(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,已知在△ABC中,∠ABC=30°,BC=8,sin∠A=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.【考点】解直角三角形.【分析】(1)过点C作CE⊥AB与点E,根据已知条件分别解△BCE、△ACE可得BE、CE、AE 的长,即可计算S△ABC;(2)过点D作DH⊥AB与点H知DH∥CE,由D是AC中点可得HE=AE、DH=CE,即可得cot∠ABD.【解答】解:(1)如图,过点C作CE⊥AB与点E,在RT△BCE中,∵BC=8,∠ABC=30°,∴BE=BC•cos∠ABC=8×=4,CE=BC•sin∠ABC=8×=4,在RT△ACE中,∵sin∠A=,∴AC===4,∴AE===8,则AB=AE+BE=8+4,故S△ABC=•AB•CE=×(8+4)×4=16+8;(2)过点D作DH⊥AB与点H,∵CE⊥AB,∴DH∥CE,又∵D是AC中点,∴AH=HE=AE=4,DH=CE=2,∴在RT△BDH中,cot∠ABD===2+2.【点评】本题考查了解直角三角形、勾股定理、三角形中位线定理,通过作辅助线构造直角三角形是解题的关键.22.如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度的概念得到BE:EA=12:5,根据勾股定理计算列式即可;(2)作FH⊥AD于H,根据正切的概念求出AH,结合图形计算即可.【解答】解:(1)∵斜坡AB的坡比为i=1:,∴BE:EA=12:5,设BE=12x,则EA=5x,由勾股定理得,BE2+EA2=AB2,即(12x)2+(5x)2=262,解得,x=2,则BE=12x=24,AE=5x=10,答:改造前坡顶与地面的距离BE的长为24米;(2)作FH⊥AD于H,则tan∠FAH=,∴AH=≈18,∴BF=18﹣10=8,答:BF至少是8米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.23.如图,已知在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交边DC于点G,交边AB于点H.联结AF,CE.(1)求证:四边形AFCE是菱形;(2)如果OF=2GO,求证:GO2=DG•GC.【考点】相似三角形的判定与性质;菱形的判定;矩形的性质.【专题】证明题.【分析】(1)根据矩形的性质得到AD∥BC,由平行线的性质得到∠EAC=∠ACF,推出△EOA≌△FOC,根据全等三角形的性质得到AE=CF,OE=OF,推出四边形AFCE是平行四边形,根据菱形的判定定理即可得到结论;(2)根据相似三角形的性质得到,等量代换求得结论;【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC,∴AE=CF,OE=OF,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形;(2)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO,∴,∵OF=2GO,∴EG=GO,∴GO2=DG•GC.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定,矩形的性质,熟练掌握相似三角形的性质是解题的关键.24.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.【考点】二次函数综合题.【分析】(1)将A、C两点坐标代入解析式即可求出a、c,将解析式配成顶点式即可得到对称轴方程和顶点坐标;(2)先由C、M两点坐标求出直线CM解析式,进而求出D点坐标,由于C、N两点关于抛物线对称轴对称,则CN∥AD,同时可求出N点坐标,然后得出CN=AD,结论显然;(3)设出P点纵坐标,表示出MP的长度,过点P作PH⊥DM于H,表示出PH的长度,在直角三角形PAE中用勾股定理列出方程,解之即得答案.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)和点C(0,3),∴,∴,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,对称轴为直线x=1,顶点M(1,4);(2)如图1,∵点C关于直线l的对称点为N,∴N(2,3),∵直线y=kx+b经过C、M两点,∴,∴,∴y=x+3,∵y=x+3与x轴交于点D,∴D(﹣3,0),∴AD=2=CN又∵AD∥CN,∴CDAN是平行四边形;(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,则MP=4﹣a,又∠HMP=45°,∴HP=AP=,Rt△APE中,AP2=AE2+PE2,即:,解得:,∴P1(1,﹣4+2),P2(1,﹣4﹣2).【点评】本题是二次函数综合题,主要考查了待定系数法求二次函数与一次函数解析式、求抛物线的对称轴及顶点坐标、平行四边形的判定与性质、等腰直角三角形的性质、圆的切线性质、勾股定理、解一元二次方程等知识点,综合性较强,难度适中.第(3)问的直线与圆相切问题往往转化为点到直线的距离与半径相等来解决.25.如图,已知在△ABC中,AB=AC=6,AH⊥BC,垂足为点H.点D在边AB上,且AD=2,联结CD交AH于点E.(1)如图1,如果AE=AD,求AH的长;(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC 的长;(3)如图3,联结DF.设DF=x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x 的取值范围.【考点】圆的综合题.【分析】(1)如图1中,过点D作DG⊥AH于G,由DG∥BC得=====,设EG=a,则EH=3a,列出方程即可解决.(2)关键两个圆内切、外切半径之间的关系,先求出PH,设BP=x,根据AH2=AB2﹣BH2=AP2﹣PH2列出方程即可解决问题.(3)如图3中过点D作DG⊥AF于G,设AG=t,根据AD2﹣AG2=DF2﹣FG2程即求出t与x的关系,再利用三角形面积公式计算即可.【解答】解:(1)如图1中,过点D作DG⊥AH于G,∵AH⊥BC,AB=AC∴∠DGE=∠CHG=90°,BH=CH,∴DG∥BC,∴=====,设EG=a,则EH=3a,∴==,∴AG=2a,AE=3a=2,∴AH=6a=4.(2)如图2中,∵点P为圆心,BP为半径的圆与⊙A外切,CP为半径的圆与⊙A内切,∴AP=AD+BP,AP=PC﹣AD,∴AD+BP=PC﹣AD,∴PC﹣BP=2AD=4,∴PH+HC﹣(BH﹣PH)=4,∴PH=2,∵AH2=AB2﹣BH2=AP2﹣PH2,设BP=x,∴62﹣(x+2)2=(x+2)2﹣22,∴x=2﹣2,∴BC=2BH=2(PB+PH)=4.(3)如图3中,过点D作DG⊥AF于G,设AG=t,∵AD2﹣AG2=DF2﹣FG2,∴22﹣t2=x2﹣(2﹣t)2,∴t=,∴y=S△ABC=18•S△ADG=18וAG•DG=9••,∴y=(0<x<2).【点评】本题考查圆的有关知识、两圆的位置关系、勾股定理、平行线分线段成比例定理等知识,解题的关键是用转化的思想,把问题掌握方程解决,属于中考参考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市闵行区2018届高三二模数学试卷2018.04一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a =2.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c +=3.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m =4.定义在R 上的函数()21xf x =-的反函数为1()y fx -=,则1(3)f -=5.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为6.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅7.已知向量a 、b的夹角为60°,||1a = ,||2b = ,若(2)()a b xa b +⊥- ,则实数x 的值为8.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k =10.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是11.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为12.设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R ,1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为二.选择题(本大题共4题,每题5分,共20分)13.“0xy =”是“0x =且0y =”成立的().A 充分非必要条件.B 必要非充分条件C .充要条件.D 既非充分也非必要条件14.如图,点A 、B 、C 分别在空间直角坐标系O xyz -的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=().A 4.B 3C2.D 2-15.已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是().A 若30S >,则20180a >.B 若30S <,则20180a <C 若21a a >,则20192018a a >.D 若2111a a >,则20192018a a <16.给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈ )是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值;那么真命题的个数是().A 0.B 1C.2D.3三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点.(1)求三棱锥E DFC -的体积;(2)求异面直线1A E 与1D F 所成的角的大小.18.已知函数()cos f x x x ωω=+.(1)当(03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.19.某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式;(2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?20.已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O 为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q两点,1sin 3BF O ∠=.(1)若直线l 垂直于x 轴,求12||||PF PF 的值;(2)若b =,直线l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:l y =上总存在点M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.21.无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值;(3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.上海市闵行区区2018届高三二模数学试卷2018.04一.填空题1.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a =【解析】2a =2.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c +=【解析】12103040c c +=+=3.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m =【解析】虚部为零,101m m +=⇒=-4.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -=【解析】1213(3)2x f --=⇒=5.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【解析】12(1)230y x x y =-+-⇒--=,法向量可以是(2,1)-6.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【解析】2352n n nS +=,1lim 2n n nS n a →∞=⋅7.已知向量a 、b的夹角为60°,||1a = ,||2b = ,若(2)()a b xa b +⊥- ,则实数x 的值为【解析】(2)()0(21)803a b xa b x x x +⋅-=⇒+--=⇒=8.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【解析】5R =,4r =,16S π=9.若平面区域的点(,)x y 满足不等式||||1x y +≤(0k >),且z x y =+的最小值为5-,则常数k =【解析】数形结合,可知图像||||14x y k +=经过点(5,0)-,∴5k =10.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是【解析】分类讨论,当01a <<时,没有最小值,当1a >时,即210x ax -+≤有解,∴02a ∆≥⇒≥,综上,(0,1)[2,)a ∈+∞11.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【解析】①1234||||||||2x x x x +++=,有10组;②1234||||||||3x x x x +++=,有16组;③1234||||||||4x x x x +++=,有19组;综上,共45组12.设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R ,1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为【解析】52nnn a =-,2[[]155n n n n na n n n ⋅=-=-,22n n nb -=,22()()n n t bc -++的几何意义为点2(,2n nn -()n ∈*N 到点3(,2)4t t -的距离,由图得,最小值即(2,1)到324y x=-的距离,为0.4二.选择题(本大题共4题,每题5分,共20分)13.“0xy =”是“0x =且0y =”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解析】B14.如图,点A 、B 、C 分别在空间直角坐标系O xyz-的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=()A.43B.3C.23D.23-【解析】42cos 233||||OC n OC n θ⋅===⋅⋅ ,选C15.已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是()A.若30S >,则20180a >B.若30S <,则20180a <C.若21a a >,则20192018a a > D.若2111a a >,则20192018a a <【解析】A 反例,11a =,22a =-,34a =,则20180a <;B 反例,14a =-,22a =,31a =-,则20180a >;C 反例同B 反例,201920180a a <<;故选D16.给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈ )是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值;那么真命题的个数是()A.0B.1C.2D.3【解析】命题1:()()0f x g x ==,x ∈R ;命题2:()()f x g x x ==,(,0)x ∈-∞;命题3:2()()f x g x x ==-,x ∈R ;均为真命题,选D三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点.(1)求三棱锥E DFC -的体积;(2)求异面直线1A E 与1D F 所成的角的大小.【解析】(1)121233V =⨯⨯=(2)4cos5θ==,所成角为4arccos 518.已知函数()cos f x x x ωω=+.(1)当(03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.【解析】(1)()2sin()6f x x πω=+,()0336f k πωπππ-=⇒-+=,||1ω<,∴12ω=(2)()1f A =⇒3A π=,由余弦定理,2bc =19.某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式;(2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?【解析】(1)22240(30),110()40(10200),101520(10200),1520t t t F t t t t t t t ⎧-+≤≤⎪=-++<≤⎨⎪-++<≤⎩(2)()5000515F t t ≥⇒≤≤,第5天到第15天20.已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O 为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q两点,1sin BF O ∠=.(1)若直线l 垂直于x 轴,求12||||PF PF 的值;(2)若b =,直线l 的斜率为1,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:l y =上总存在点M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.【解析】(1)22231x y b +=,:l x =,23PF =,13PF =,12||5||PF PF =(2)22231x y +=,1:(2)2l y x =-,1(2,0)F -,关于l 对称点216(,)55E --,不在椭圆上(3)设:()l y k x =-,点差得1:3OM l y x k=-,联立1:l y =,得(M -,代入直线l()k =--,∴36b k =--≥,33k =-,5πα=21.无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值;(3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.【解析】(1)2t =,对任意正整数n ,2n n a a +=恒成立,∴具有性质T (2)分类讨论,得结论,6n ≥,{}n a 有周期性,周期为3,∴2082a a ==(3)略。

相关文档
最新文档