小学数学符号化

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学符号化

数学符号化思想主要有下面的几层含义:1.人们有意识地、普遍地运用符号去概括、表述、研究数学;2.研究符号能够生存的条件,即反复选择用怎样的符号才能简洁、准确地反映数学概念的本质,有利于数学的发现和发展,且方便于打字、印刷等等;3.数学符号已经过人工筛选与改造,形成一种约定的、规范的、形式化的系统。

符号化思想的渗透在小学数学教科书中是根据不同的教学阶段的具体情况进行的。渗透主要是从如下几方面作了有计划、有步骤的安排。即:

1.变元的思想。

变元思想是根据小学生的年龄特点和知识水平,采取不同的形式进行渗透,旨在让学生逐步了解变元的思想。例如,九年义务教育五年制小学教科书数学第一册第10页就有“□”出现在算式中。第二册教科书中,就出现借用方格子“□”或括号“()”等代替变元符号“x”,让小学生在其中填上合适的数。例如,

6-□>4 8<14-□

12>7+□ 8+□<11

8<14-□ 10+□<13

诚然,这样的题目我们教师只要求小学生在“方格中”填进一个合适的数,但我们必须明白,如果把“□”换成“x”,那么,上述的算式是不等式,变元x有确定的取值范围。我们应当明白编教科书的意图,符号“□”在这里只起着“位置占有者”的作用。目的是引导学生去思考问题,解决一些有趣的问题,借此,发展学生的思维能力。

2.用字母表示数的思想。

小学数学教科书中的“简易方程”这一部分内容向学生提出用字母表示数。它的实质是一种抽象化。其目的是为了更深刻地探索、揭示数学规律,达到更准确、更简洁地表达数学规律,在较大范围内肯定数学规律的正确性。比如,加法的交换律用a+b=b+a,圆面积用

S=πr2表示等。

3.列方程解应用题的思想。

用方程解法来解答应用题,解法本身蕴含着符号化思想,它主要体现在如下几个方面:(1)代数假设,用字母代替未知数,与已知数平等地参与运算;(2)代数翻译。把题中自然语言表述的已知条件,译成用符号化语言表述的方程。(3)解代数方程。把字母看成已知数,并进行四则运算,进而达到求解的目的。

常用数学符号的教学

目前对待数学符号的教学往往存在这样的问题:一是只把数学符号当作“一种规定的记号”简单地“送给”学生,就认为是完成了任务,没有把符号化思想的教学渗透于数学教学

的始终;二是对符号的书写不规范。

我们在数学教学中若能把符号化思想的教学渗透于数学教学的始终,就能更好地促进学生的数学学习及学生思维能力的发展,诚然,也有利于数学教学质量的提高。为此,要认真

进行常用数学符号的教学,至少要做好如下几方面的教学工作:

1.要使学生理解数学符号的含义和实质。

我们都知道,数学概念本身是抽象的,而数学符号又常常是概念的代表,因此,要搞清楚每个数学符号的含义与实质。使用时,要求特别注意:(1)ABCD中的“∥”与“=”是联合使用,即表示既平行又相等。而x≤y中的小于号与等号是表示析取,即或是“小于”,或是“等于”的,只要取其中的一种可能成立。

2.教育学生规范化书写数学符号。值得注意的是:

(1)数学符号书写的位置必须准确无误。比如小数点是写在个位的右下方的圆点,比如,4.7,它是作为整数部分与小数部分分界的符号。不能把这个圆点写在个位与十分位数的正中间,像“4·7”这样,就是错误的写法。

(2)遵守符号书写的规定或习惯。例如,圆的周长和圆的面积一般是写为:C=2πr,

S=πr2而不可以写成:r=20πa,θ=πr2等。

(3)一个表达式中的数学符号体系要统一。

60°”,因为这样就把弧度制和角度制两种不同的表示角度的符号混写在一起了。

(4)遵守数学符号书写的大小的习惯,不要把常用的数学符号写得过大或过小,或与

一般写法不同。一般的习惯写法是:

“+”、“-”、“×”、“÷”、“=”都在数行中占据一个字的位置。比如3+4=7,有的学生把“=”这个符号写成“”或“==”都是不符合书写要求的。其它数学符号,在书写时,教师都要提出书写要求,示范标准写法,并作必要的书写练习,确保它的正确书写。

3.明确符号化思想在教学中的意义。

教师应该意识到数学教学实质上就是数学语言的教学。在教学活动中,我们要启发学生把“数学问题译为数学语言”这常常表现为将“自然语言叙述的数量关系或空间形式”

“数学符号联结的解析式或几何图形”。诚然,这种互译活动贯穿于教学的始终。例如

“38与62的和除以4的商是多少?”

“ ”

“(38+62)÷4=?”因此,在教学中,多做这方面的思维训练,让学生会作上述两种叙述,这样,学生就能对数学符号化思想及其具体数学符号有比较完整的、透彻的理解。

4.数学符号书写的“笔顺”,在书写时,最好也能加以指导,使学生能流畅、正确地学

好。

/thread-213737-1-1.html

相关文档
最新文档